
Project
Overflowing Counters

Construction and Verification of Software
FCT-NOVA

Bernardo Toninho

17 May, 2022

This project is due on Sunday, June 5, at 23h59m. The exact details on how to turn in your
solution will be made available at a later date. You will be expected to submit a zip file with
your (annotated) Java files that should pass Verifast’s analysis (with the arithmetic overflow
check turned off). All methods must have pre and post conditions. Code that fails to meet
these requirements will be considered as a failing project.

The project consists of verifying a sequence of bounded counters, which may be accessed
concurrently, using the techniques discussed in class. The project is split into two tasks: Task
1 (Section 1) consists of the implementation and verification of a sequential counter sequence;
Task 2 (Section 2) consists of the implementation and verification of a concurrent analogue of
the sequence. You will have to install the spec java.util.concurrent.locks.javaspec
(available online in CLIP) for the package java.util.concurrent.locks by copying it to
the bin/rt/ folder of your local verifast installation and append the rt.jarspec file with the
name of the spec file.

Important Note: inconsistent predicates used as invariants or in preconditions of methods
will let you incorrectly verify code. The symptom will be that you will be able to prove false,
and that you will not be able to call those methods (since it is impossible to satisfy the precon-
dition).

1 Sequential Counter Sequence (Task 1)

For this task we will not (yet) be concerned with concurrency. The goal here is to implement
a fixed-capacity sequence of counters. The sequence will be backed by an array of Counter
objects. The sequence must support the following API:

public class CounterSequence {
...

public CounterSequence(int cap) { ... }

public CounterSequence(int[] arr) { ... }

public int length() { ... }

1



1.1 Individual Counters 2

public int capacity() { ... }

public int getCounter(int i) { ... }

public int addCounter(int limit) { ... }

public void remCounter(int pos) { ... }

public void remCounterPO(int pos) { ... }

public void increment(int i, int val) { ... }

public void decrement(int i, int val) { ... }
}

Constructors. The first constructor takes as a parameter the maximum capacity of the se-
quence, allocating memory accordingly and creating a sequence that has no counters. The sec-
ond constructor takes as input an array of integers, with the intent of creating a sequence that
will have as many counters as there are integers in the array (i.e., the capacity of the sequence is
the length of the array). Each integer in the array denotes the upper-limit of the corresponding
counter in sequence (more on this below).

Selectors. The length and capacity methods return the current number of counters and the
total capacity of the sequence, respectively. The getCounter method returns the value of the
counter in position i of the sequence.

Modifiers. The addCounter appends a new counter to the end of the sequence with upper-
limit given the parameter limit, assuming the sequence is not at maximum capacity. The
method returns the index of the added counter. New counters always start with value 0. The
two removal operations, remCounter and remCounterPO, both delete the counter at the
given index of the sequence, assuming the index contains a counter. The remCounter op-
eration is not order preserving, moving the last element of the sequence to the position of the
removed counter. The remCounterPO operation must preserve the order of the elements of
the sequence (i.e. moving all appropriate counters accordingly). The increment and decrement
operations add and remove the given value to the counter in position i of the sequence. These
operations assume the given value is positive and i is a valid index.

1.1 Individual Counters

We now focus on the individual counters that will be contained in the sequence. These objects
should adhere to the following API:

public class Counter {
private int val;
private int limit;
private boolean overflow;

OVERFLOWING COUNTERS 17 May, 2022



1.2 Verification 3

public Counter(int val, int limit) { ... }

public int getVal() { ... }
public int getLimit() { ... }

public void incr(int v) { ... }
public void decr(int v) { ... }

}

The fields of the counter represent its current value, its upper-limit and a boolean flag that
becomes true if the counter has ever over or underflowed its limit. The limit is always a positive
number. The get operations simply return the value of the counter and its limit.

The modifier operations increment and decrement the counter, respectively. The value of the
counter will always be between 0 (inclusive) and its upper-limit (non-inclusive). The increment
operation, if the increment results in an overflow, will update the boolean flag accordingly
and set the counter value modulo the limit. For instance, a counter whose value is 5 and whose
upper-limit is 10, given an increment of 5 will have value 0. A similar counter with an increment
of 6 will have value 1, and so on. As is the case in the counter sequence, the increment and
decrement values are assumed to be positive. The decrement operation aims to decrement the
counter value, if the decrement would result in an underflow (i.e., a negative counter value), the
operation updates the flag accordingly and sets the value to 0 instead. If no underflow occurs,
the decrement decreases the value of the counter as expected.

1.2 Verification

Both classes must be accompanied with the appropriate predicates that characterize the mem-
ory footprint (and invariants) of their respective objects. All methods should have the appro-
priate pre-conditions, adhering to the informal but precise description above. In terms of post-
conditions, the Counter operations should precisely describe the changes to the Counter’s
internal state (i.e., of its value and the flag), following the description of the modifier operations
given above.

The CounterSequence operations, as a result of the predicate-based verification, need
only visibly capture the number of elements of the sequence and its capacity. This means that
the operations that add or remove counters from the sequence should have post-conditions that
track this fact accordingly. The lookup operation need only additionally ensure that its result
is non-negative (i.e., you need not verify that the result is within the upper-bound of the corre-
sponding counter).

Important Note: The class invariant for the sequence should maintain the fact that all stored
counter objects are correct (i.e., their values are between 0 and their upper-limits). This will
require characterizing the array via the array_slice_deep predicate (up to the number of
stored counters) and the array_slice predicate (for the null positions at the end of the
sequence).

2 Concurrent Counter Sequence (Task 2)

The concurrent version of the sequence should be a wrapper for your sequential implementation
from Task 1, adhering to the following structure:

public class CCSeq {

OVERFLOWING COUNTERS 17 May, 2022



2.1 Client Code 4

CounterSequence seq;
//Other relevant fields go here...

public CCSeq(int cap) { ... }

public int getCounter(int i) { ... }

public void incr(int i, int val) { ... }

public void decr(int i, int val) { ... }

public int addCounter(int limit) { ... }

public void remCounter(int i) { ... }
}

The sequence’s operations must be implemented (using monitors and conditions) such that
they can be safely used by concurrent threads, as discussed in lecture. The constructor initial-
izes a sequence with the given capacity. The getCounter operation returns the value of the
counter at position i, or −1 if that position is invalid. Both incr and decr operations behave
as before, except the index i may not necessarily be a valid index in the sequence. If i is not a
valid index, the operations will return without modifying any counter in the sequence.

The addCounter operation will append a new counter (with the given limit) to the se-
quence, returning the index of the new counter. The remCounter operation will remove the
counter at the given index, or have no effect if the index does not contain a counter. Note
that these operations will require adequate concurrency control mechanisms to ensure that the
insertion only takes place on a non-full sequence and that the removal only takes place on a
non-empty sequence.

2.1 Client Code

You will also be required to implement a client that launches 100 threads to (a) add counters and
perform increment/decrements to the added counter; (b) query a counter’s value and remove
it from the sequence, printing a log on the standard output. The threads that perform (a) should
run concurrently with those that perform (b).

2.2 Verification

You will need to use the verification technique for monitors and conditions discussed in class
to verify concurrent usages of the sequence. It will be convenient to define three predicate
constructors: one for the shared sequence state and two specialized variants that relate to the
conditions necessary to verify the operations of the sequence. You will also need to define the
concurrent invariant, which specifies the memory layout of the concurrent sequence and the
logical representation of any monitors and conditions. This invariant must be preserved by all
the operations of the sequence.

OVERFLOWING COUNTERS 17 May, 2022


	Sequential Counter Sequence (Task 1)
	Individual Counters
	Verification

	Concurrent Counter Sequence (Task 2)
	Client Code
	Verification


