
Lectures Notes on
Separation Logic

Construction and Verification of Software
FCT-NOVA

Bernardo Toninho

12 April, 2022

1 Aliasing and Hoare Logic

As we have discussed in the previous lecture, Hoare logic’s basic framework is not generally
suited for reasoning about programs with dynamically allocated memory that may be shared
(i.e., aliased) across different parts of the program. For instance, if we revisit the Hoare logic
rule for assignment:

{A[E/x]} x := E {A}

We can observe that this reasoning principle is only sound if no other variable can alias x. The
following Hoare triple is valid

{y ≥ 0 ∧ x ≥ 0} x := −1 {y ≥ 0 ∧ x < 0}

but only in a setting where x and y are not treated as dynamic memory references which may
refer to the same underlying memory region. In such setting, assigning to x would mutate y
and we would somehow require the Hoare triple to be:

{y ≥ 0 ∧ x ≥ 0} x := −1 {y < 0 ∧ x < 0}

In the presence of language features that provide abstraction or information hiding (e.g.
functions/methods, objects, interfaces, modules), the problem is further aggravated. Object
references may be aliased, object fields may be shared across multiple objects, methods may
alias memory references, etc.

A language such as Dafny, which does include these features, extends the basic principles of
Hoare logic with framing conditions, where each function and method must precisely specify
which memory regions it may modify. To ensure soundness, Dafny (and related approaches)
are conservative with respect to the treatment of aliasing. In method M below:

method M(a: C, b: C)
modifies a

{
a.f := 2+b.f;
assert b.f = old(b.f);

}

1

SEPARATION LOGIC 2

The assertion fails because Dafny’s underlying logic makes no assumption on the memory
locations denoted by a and b beyond the fact that they are (non-null) references to objects of
type C. In particular, after the assignment a.f := 2+b.f we cannot assure that the field f
of b has not been changed because a and b might refer to the same object. For the assertion to
hold, we must be explicit in our specification, enforcing that a and b are not aliases to the same
memory region:

method M(a: C, b: C)
modifies a
requires a 6= b

{
a.f := 2+b.f;
assert b.f = old(b.f);

}

When defining object interfaces in this style, since objects may refer to shared mutable state
(e.g. in fields), this means that we must either expose the object’s fields in the modifies clauses
of its methods or we have to use a technique such as the dynamic frames approach, where the
memory frame of each object is explicit but abstracted in the object’s ghost state.

An alternate approach, adopted by the formalism of Separation Logic [Rey02], is the so-
called small footprint reasoning, which allows us to reason in terms of (implicitly) disjoint or
separate portions of the heap (i.e. dynamically allocated memory). As we will see, this provides
significant streamlining of reasoning about shared mutable state.

2 Separation Logic

Separation logic [Rey02] is an extension of Hoare logic specifically designed to facilitate rea-
soning about programs that manipulate shared mutable state through pointer manipulation
(including information abstraction mechanisms) via reasoning about ownership transfer. The
latter point plays a key role, since it avoids the need for explicit framing that arises in related
Hoare-logic based approaches.

Assertions in separation logic allow reasoning about shared mutable state by providing a
precise description of dynamically allocated memory and providing a general theory for mod-
ular reasoning about both concurrent and sequential programs, where different components
may potentially interfere with one another through shared memory. The two key principles of
separation logic are:

Implicit Framing A program need not specify in an explicit way the properties of state that is
changed or unchanged by the program (i.e., no reads/modifies clauses).

Small Footprint The precondition to any given program or code fragment describes the com-
ponents of dynamic memory (i.e. the heap) that the program or code fragment uses.

To achieve this, Separation Logic extends Hoare Logic assertions with two new key connec-
tives, the separating conjunction A∗B and the memory access assertion L 7→ V . More generally,
the language of separation logic we will use throughout this course is given by the following
grammar:

LECTURE NOTES 12 April, 2022

2.1 Proof Rules 3

A,B ::= Separation Logic Assertions

L 7→ V Memory Access

| A ∗B Separating Conjunction

| emp Empty heap

| C Boolean condition (pure)

| C ?A : A Conditional

C ::= B ∧ C | C ∨ C | V = V | V 6= V | ...
V ::= ... Pure Expressions

L ::= x.` | [x] Memory reference

A pure expression, ranged over by the meta-variable V , is any expression that does not
depend on memory locations. Separation logic assertions are meant to be assertions on the
contents of dynamic memory, as follows: emp holds true only of the empty heap or memory; the
separating conjunction A ∗ B holds iff we can find two disjoint memory regions such that one
satisfies A and the other satisfies B; the memory access assertion L 7→ V holds in a state where
memory location denotes by L contains the value denoted by V .

The underlying model of separation logic assumes that dynamic memory (the heap) is a set
of memory locations (L) storing contents V . Memory contents themselves are values of basic
type or references (i.e. pointers) to memory locations.

Precise Assertions An assertion A is called precise if it uniquely specifies a part of the heap.
For instance, the assertion emp is precise since it holds exactly of the empty heap. The separating
conjunction A ∗ B is precise when both A and B are precise. Dually, the assertion true is not
precise since it holds of any heap; neither are the assertions emp ∨ x 7→ 10 or x 7→ 10 ∨ y 7→
10. Perhaps less obviously, the assertion ∃x.x 7→ 10 is also imprecise. This is the case since
{emp} x := newCell(10);x := null {∃x.x 7→ 10} is valid.

2.1 Proof Rules

The proof rules of separation logic are exactly those of Hoare logic, with the following excep-
tions.

Assignment Assignment is now expressed easily in terms of the memory access assertion,
with the precondition referring exactly to the memory region changed by the assignment oper-
ator. The rule is:

{x 7→ V } x := E {x 7→ E}

Memory Access Since the programming language models dynamic memory, we need a rea-
soning principle for memory lookups:

{L 7→ V } y := L {L 7→ V ∧ y = V }

LECTURE NOTES 12 April, 2022

SEPARATION LOGIC IN VERIFAST 4

The rule states that in a memory configuration where the location L contains V , the assign-
ment y := L (note that y is a stack variable, not a heap location) results in a state where the
contents of L unchanged and where y is V .

Frame Rule Due to the meaning of separating conjunction, the frame rule allows us to pre-
serve all information about “the rest of the world”, effectively enabling local reasoning about the
effects of a program:

{A} P {B}
{A ∗ C} P {B ∗ C}

Note that, unlike the frame rule for Hoare logic, we need no side-conditions to this rule. The
memory footprint of P is given precisely by assertion A and so we need not specify explicitly
what has been modified by P (it must be mentioned in A) nor what is unchanged (it is framed
away as C).

3 Separation Logic in Verifast

Verifast is a verification tool for C and Java code based on Separation Logic and a notion of
symbolic execution and abstract predicates [VJP15]. We will cover some specific aspects of the
Verifast approach in upcoming lectures. For now, lets see how to specify a simple counter-like
class in Java:

public class Account {

int balance;

/*@
predicate AccountInv(int b) = this.balance |-> b &*& b >= 0;
@*/

public Account()
//@ requires true;
//@ ensures AccountInv(0);
{
balance = 0;

}
...

}

Just as in Dafny, methods specifications are given in terms of pre- and post-conditions, given
by requires and ensures clauses in comments which are then processed by the verifier. Unlikely
Dafny, however, we do not specify the memory regions modified or read by methods. Instead,
we characterize memory by a combination of separation logic assertions and abstract predicates.

In the code above, we are defining an AccountInv predicate that takes as argument an integer
value. The predicate uses separating conjunction (written as &*&) as a traditional conjunction
to specify that the predicate holds of a memory configuration where the memory location this
.balance contains the value b and b is non-negative. Note that since b ≥ 0 is pure, the use
of separating conjunction is equivalent to using standard conjunction. In fact, Verifast does not
have any other form of conjunction for this precise reason.

Moving to the modifier methods, we have:

public class Account {

int balance;

/*@

LECTURE NOTES 12 April, 2022

3.1 Input and Output Parameters in Predicates 5

predicate AccountInv(int b) = this.balance |-> b &*& b >= 0;
@*/

void deposit(int v)
//@ requires AccountInv(?b) &*& v >= 0;
//@ ensures AccountInv(b+v);
{
balance += v;

}

void withdraw(int v)
//@ requires AccountInv(?b) &*& b >= v;
//@ ensures AccountInv(b-v);
{
balance -= v;

}
}

Note the use of AccountInv(?b) in the pre-conditions. This mode of use states that the
parameter b is an output parameter of the predicate, which warrants its use in the post-condition
as a way of referring to the old value of the account balance.

3.1 Input and Output Parameters in Predicates

Consider the following code, specifying a Node structure such as that of a linked list.
/*@

predicate Node(Node n; Node nxt, int v) = n.next |-> nxt &*& n.val |-> v;
predicate List(Node n;) = n == null ? emp : Node(n,?h,_) &*& List(h);

@*/

public class Node {
Node next;
int val;

public Node()
//@ requires true;
//@ ensures Node(this,null,0);
{

next = null;
val = 0;

}
...
}

In the definitions of the List and Node predicates above, the first parameter of the predicate
is identified as an input parameter, which means that any use of the predicate must provide a
concrete Node value. The parameters after the ; may be used as input or output, meaning that
we may use them in a similar style to the account balance example of the previous section. One
way of thinking about output parameters is as existentially quantified variables.

This warrants the use of the Node predicate in the definition of List, where we inductively
state (in the non-null case) that a part of the heap is a Node, whose next field (used as an output
parameter) must itself be a List. It is important to note that this definition of List excludes
cycles in the list, since the memory of each cell must be disjoint due to the use of separating
conjunction.

3.2 Typestates in Verifast

We can easily model the typestate approach in Verifast via the abstract predicate model:
/*@

predicate StackInv(Stack s;) = s.head |-> ?h &*& List(h);
predicate NonEmptyStack(Stack s;) = s.head |-> ?h &*& h != null &*& List(h);

@*/

LECTURE NOTES 12 April, 2022

EXERCISES 6

public class Stack {

Node head;

public int pop()
//@ requires NonEmptyStack(this);
//@ ensures StackInv(this);
{
int v = head.getval();
head = head.getnext();
return v;
}

public boolean isEmpty()
//@ requires StackInv(this);
//@ ensures (result ? StackInv(this):NonEmptyStack(this));
{
return head == null;

}

public void push(int v)
//@ requires StackInv(this);
//@ ensures NonEmptyStack(this);
{
Node n = new node();
n.setval(v);
n.setnext(head);
head = n;
}

}

In the Stack example above, we can characterize the abstract (sub)state that represents a non-
empty stack. The idea is that abstract substates should logically imply the general representa-
tion invariant. In the example above, we have that NonEmptyStack(s) implies StackInv(s).

As will become clearer in the next lecture, while the tool can often derive this implication
automatically, its automation often requires programmer assistance, in the form of open and
close annotations. The statement open P(x) instructs the verifier to expand the definition of
P (x), which must be known to hold (in many situations, Verifast maintains predicates abstract
and does not replace them with their definitions outright). Dually, the annotation close P(x)
tries to use the ambient assumptions to establish the validity of P (x).

4 Exercises

1. Install the Verifast tool.

2. Implement a savings account class in Java, maintaining a savings and a checking balance
(check last week’s exercises for the constraints on the two balances). Verify your imple-
mentation in Verifast.

3. Add a static method to your implementation that transfers money between two savings
accounts.

4. Implement and specify the Counter class from previous lecture that uses two integer Cell
fields.

References

[Rey02] J.C. Reynolds. Separation logic: a logic for shared mutable data structures. In Proceed-
ings 17th Annual IEEE Symposium on Logic in Computer Science, pages 55–74, 2002.

LECTURE NOTES 12 April, 2022

REFERENCES 7

[VJP15] Frédéric Vogels, Bart Jacobs, and Frank Piessens. Featherweight verifast. Log. Methods
Comput. Sci., 11(3), 2015.

LECTURE NOTES 12 April, 2022

	Aliasing and Hoare Logic
	Separation Logic
	Proof Rules

	Separation Logic in Verifast
	Input and Output Parameters in Predicates
	Typestates in Verifast

	Exercises

