
Lectures Notes on
Verification of Functional Programs

Construction and Verification of Software
FCT-NOVA

Bernardo Toninho

8 March, 2022

During lecture, we briefly touched upon the different traditions and techniques of program
verification in functional and imperative programming. We now delve a bit further into the veri-
fication of functional programs as a stepping stone to the verification of imperative programs.

The contents of Section 2 are inspired by notes by Michael Erdmann and Frank Pfenning.

1 Reasoning about imperative programs

As we will see throughout the semester, it is often the case that we specify the result of an im-
perative computation by appealing to a functional definition that we wish to prove equivalent
to the outcome of the imperative procedure. For instance, consider the following imperative
implementation of the factorial function:

method factImp(n: int) returns (r: int)
{

r := 1;
var m := n;
while (m > 0) {

r := r*m;
m := m-1;

}
}

While we have not yet developed the techniques that will allow us to prove that this method
computes the factorial of its (non-negative) integer argument, we now take the first step in any
formal proof of program correctness: its specification. Since the method aims to implement the
factorial function, it is reasonable to require its argument be a natural number (i.e. n≥0). To
specify what the value computed by the method, stored in r, actually is the factorial of n, we
must devise a specification-level construct that is somehow equal to n!. As hinted above, we do
this by defining a mathematical function:

function fact(n: nat) : nat
{

if n=0 then 1 else n*fact(n-1)
}

1

REASONING ABOUT IMPERATIVE PROGRAMS 2

Note the use of the term mathematical. While the definition above is a piece of code, we must
convince ourselves (and, eventually, Dafny) that the code actually is equivalent (in some sense)
to a proper mathematical function (i.e., an assignment of exactly one natural number to each
natural number), that can be used in a logical specification. For a recursive piece of code such
as fact above, this means that we must be sure that fact is both pure (i.e. does not make use
of nor mutate any state) and terminates for all its possible arguments.

Informally, it is fairly easy to see that this is indeed the case: fact is pure since it does not
rely on any state. As for termination, fact takes arguments of type nat (i.e. integer numbers
greater than or equal to 0). If the argument n is 0, fact terminates immediately. Otherwise,
the recursive call structure will act on successive smaller values (n-1, n-2, . . .) until eventually
reaching 0, at which point we know the function terminates. A bit more formally, there is a
well-founded ordering on the recursive calls to fact(n), which is the mathematical term for a
binary relation with a minimal element. Since such an ordering exists, the number of calls must
be finite and so the function terminates. In this course we will not address the issue of proving
termination in a fully formal sense, although we will often have to convince our verification
tools that certain procedures do, in fact, terminate.

At this point the reader may wonder what would happen if our specification logic could
refer to functions that are not mathematical in the sense above. If such were indeed the case, our
logical statements would be meaningless since they would not denote properties of values. For
instance, it would be logically meaningless to even state ∀ n.fact(n)≥1, regardless of its truth
value, if fact(n) were not in fact equal to some (in this case natural) number. A related issue
would arise if the definition of fact were not a pure function (i.e., one that does not depend
on state), since there would be no unique number that is equal to fact(n), for any given n.
In essence, we require that the functions we use in our specifications be referentially transparent:
any function call f(x) can be replaced with its corresponding value (and vice-versa) without
changing the meaning of the specification.

Now that we have convinced ourselves that our definition of fact above can indeed be
used in specifications, we tentatively specify our imperative implementation:

method factImp(n: int) returns (r: int)
ensures r=fact(n)
{. . .}

This specification is not quite right: factImp is defined for arguments of type int, whereas
fact is defined for natural numbers. The correct specification is:

method factImp(n: int) returns (r: int)
requires n≥0
ensures r=fact(n)
{. . .}

Unfortunately, while our specification is indeed correct, our tools cannot prove that factImp
satisfies the specification without further assistance. We will flesh out these ideas further in the
following weeks.

However, what do we mean when we say that factImp satisfies the specification? In this
case, satisfying the specification means that for all possible n : int such that n≥0, it is the case
that the call to factImp(n) returns a value that is equal to fact(n). But what do we know
about fact(n)? We have argued that it must be equivalent to a mathematical function, but
how do we know that it is actually the factorial function? Proving that our pure functions are
correct is the goal of the remainder of this document.

LECTURE NOTES 8 March, 2022

REASONING ABOUT FUNCTIONAL PROGRAMS 3

2 Reasoning about functional programs

As showcased above, Dafny includes both pure functions and imperative code. In this section
we use the term Dafny to refer exclusively to its functional fragment, which is pure.

When proving the correctness of a functional program we must be able to refer to some
underlying definition of the programming language and its operational behavior (or operational
semantics). While a precise and complete definition of the functional core of Dafny is out of the
scope of this course, we will make use of the following assumptions and notation:

• We will generally not distinguish between a mathematical object (such as an integer or a
natural number) and its representation as an object in Dafny.

• When reasoning about functional programs, we will ignore any machine-based limits and
so integers and reals will be mathematical integers and real numbers and not machine
integers or reals.

• We write e for arbitrary expressions and v for values, a special kind of expression.

• We write e ↪→ v to mean that e evaluates to value v.

• We write e
1

=⇒ e′ to mean that expression e reduces to expression e′ in a single step.

• We write e
k

=⇒ e′ to mean that expression e reduces to expression e′ in k steps.

• We write e =⇒ e′ to mean that expression e reduces to expression e′ in 0 or more steps.

Our notion of step in the operational semantics is kept abstract and does not necessarily
coincide with the actual operations performed by an implementation. Since our main concern
is proving correctness rather than proving complexity bounds, the concrete number of steps is
mostly irrelevant and we will frequently use the notation e =⇒ e′ for reduction. Evaluation
and reduction are related in the sense that if e ↪→ v then either e is equal to v already or e 1

=⇒
e1

1
=⇒ . . .

1
=⇒ v (and vice-versa). Values are special forms of expression in that they evaluate

to themselves “in 0 steps”. For any value v, there is no expression e such that v 1
=⇒ e. We

assume that function application reduces in a single-step to its function body with the formal
parameters substituted for the function arguments, as in math. We will assume that all primitive
operations such as addition, subtraction, conditional branching, etc., all reduce in a single-step
when acting on values (i.e. 3 + 2

1
=⇒ 5 and if true then e1 else e2

1
=⇒ e1). For example,

we have that:

fact(0)
1

=⇒ (if 0=0 then 1 else 0*fact(0-1)) 1
=⇒ 1

2.1 Equivalence of Expressions and Referential Transparency

In a pure functional language, we say that two expressions e and e′ of the same (non-function)
type are equivalent, written e ≡ e′, (a) whenever the evaluation of e produces the same value as
the evaluation of e′; or, alternatively, (b) if the evaluation of e and of e′ both loop forever. Note
that this notion of equivalence is potentially distinct from mathematical equality, written e = e′.

As mentioned above, the principle of referential transparency means that in any functional
program we may replace any expression with any other equivalent expression without affect-
ing the value of the program. This is a powerful principle since it enables reasoning about
functional programs. Roughly speaking, this is substitution of “equals for equals”, a notion

LECTURE NOTES 8 March, 2022

2.2 Proving a Simple Function Correct 4

so familiar from mathematics that one does it all the time without any worries. While this may
sound obvious, this principle is extremely useful in practice, and it can lend support to program
optimization or simplification steps that help develop better programs.

For pure functional programs such as those we will be reasoning about, because evaluation
causes no side-effects, if we evaluate an expression twice, we obtain the same result. More-
over, the relative order in which one evaluates (non-overlapping) sub-expressions of a program
makes no difference to the value of the program, so one may in principle use parallel evaluation
strategies to speed up code while being sure that this does not affect the final value.

Our setting is further restricted: not only are we considering pure functional programs but
we will also restrict our attention to terminating programs (this is also known as total functional
programming). This means that two expressions are equivalent if-and-only-if they evaluate to
the same value.

2.2 Proving a Simple Function Correct

The correctness property of a function corresponds to a lemma we can use in proving the cor-
rectness of later functions. As a first, simple example, consider the function:

function square(n: int) : int { n*n }

It is trivial to conclude that the function above implements the squaring function f(n) = n2.
Throughout the course we will take such “obvious” properties for granted, but it is instructive
to see what a formal proof of the correctness of the square looks like:

Lemma 2.1. For every integer value n, square(n) ↪→ n2.

Proof. We prove this statement directly, relying on the operational semantics of the language:

square(n)
1

=⇒ n * n by evaluation of function application
1

=⇒ n× n by evaluation of ∗
= n2 by math

Note how each reasoning step above is justified by some basic principle or assumption.
Again, we will not generally prove such trivial functions in this way. Dafny’s proof automation
mechanisms effectively take care of a lot of this administrative reasoning, including in more
sophisticated settings. However, this kind of reasoning is in fact happening “somewhere” under
the hood, and we should be aware of it.

3 Proofs by Induction

The simplest form of induction, which you may recall from math or calculus classes, is induc-
tion over the naturals 0, 1, This is known by a few names: mathematical induction, standard
induction, simple induction or weak induction. The idea is simple but powerful: assume we want to
prove a property for every natural number n. We first prove that the property holds for the first
natural number, 0 (the base case). Then, we assume the property holds for an arbitrary natural
n and establish it for n+ 1 (the induction step). The two steps together guarantee the property
holds for all natural numbers – why? We know it holds for 0, and because of the inductive step,

LECTURE NOTES 8 March, 2022

PROOFS BY INDUCTION 5

it must hold for its successor 1. By the same account, if it holds for 1 then it must hold for its
successor 2, and so on, for any given natural number.

There are many small variations of this general scheme which can be easily justified and
which we will also call mathematical induction. For instance, induction might start at 1 if we
want to prove a property of all positive integers rather than the naturals. As a side note, the
attentive reader may have noticed that the kind reasoning that justifies how induction “works”
is similar to the one used to intuitively justify how recursive functions behave. This is more
than coincidence: proofs by induction and recursive functions are related in a strong and pre-
cise sense. In fact, they can be seem as the same thing. This is known as the Curry-Howard
correspondence, but we will leave it at that.

As you may have guessed, proofs by induction are the main workhorse when reasoning
formally about (recursive) functional programs. To see how it all works, consider the following
recursive function:

function power(n: int, m: int) : int {
if m=0 then 1 else n*power(n,m-1)

}

The function above (inefficiently) computes nm for an arbitrary integer n and natural number
m by multiplying n with itself m times. We take 00 = 1. In fact, we should actually write the
function as:

function power(n: int, m: nat) : int {
if m=0 then 1 else n*power(n,m-1)

}

The function is only correct if its second argument is a natural number and not an arbitrary
integer. If m could be a negative integer, evaluation would not terminate.

Lets now prove that power(n,m) does indeed calculate nm using induction.

Theorem 3.1. power(n,m) ↪→ nm for all natural numbers m and all integers n.

Proof. By mathematical induction on m.

Base Case: m = 0

We need to show that power(n,0) ↪→ n0, for all n.
power(n,0)

2
=⇒ 1 by evaluation of function application and the conditional

Induction Step: Assume that, for some m ≥ 0, and all integers n, power(n,m) ↪→ nm. Prove
that the property holds for m+ 1.

We need to show that power(n,m+ 1) ↪→ nm+1.
power(n,m+ 1)

2
=⇒ n*power(n,m+ 1− 1) by evaluation of function application and the conditional
2

=⇒ n*power(n,m) by math
=⇒ n*n

m by the induction hypothesis
1

=⇒ n× nm by evaluation of ∗
= nm+1 by math

which completes the proof.

LECTURE NOTES 8 March, 2022

GENERALIZING THE INDUCTION HYPOTHESIS 6

The level of detail of a proof typically depends on the context in which the proof is carried
out (and the mathematical sophistication of the expected reader). In this course, you should feel
free to omit the number of computation steps and combine obvious reasoning steps. Appeals
to the induction hypothesis and other non-obvious steps (like appealing to lemmas) should be
justified as in the example above.

You should convince yourself that the reasoning above does indeed prove the power func-
tion is correct: we show that power(n,0) is correct, for all n (base case); we show that, for some
m and all n, if we assume power(n,m) is correct (the inductive hypothesis) then power(n,m+
1) is correct (inductive case). Then, we can carry out this reasoning for an arbitrary m: the func-
tion is correct for 0; by the inductive step, it is correct for 1; by the inductive step, it is correct for
2, and so on up-to m. This is often the intuitive reasoning one performs when writing recursive
functions.

4 Generalizing the Induction Hypothesis

From the example above it may seem that proofs by induction are always straightforward.
While this is the case for many proofs, there is the occasional function whose correctness proof
turns out to be more difficult. This is often because the statement we are trying to prove is too
weak, and what we have to prove is something more general that the final result we are aiming
for. This is referred to as generalizing the induction hypothesis. While it can be shown that there
is no general recipe for this that will always work, we can isolate a common case. Consider
the following alternative implementation of the power function, through the use of a helper
function:

function pow(n: int, m: nat,r: int) : int {
if m=0 then r else pow(n,m-1,r*n)

}
function powerAlt(n: int,m: nat) : int {

pow(n,m,1)
}

The pow function uses its third argument r as an accumulator, that is then used as the final
result for powwhen m is 0. You should convince yourself that the definition of powerAlt above
and the definition of power from before are indeed equivalent.

As an aside, this is a commonly used trick in functional programming. In the earlier power
function, if we want to calculate power(2,4) we must calculate power(2,3) and multiply
it by 2, which in turn requires calculating power(2,2) and multiplying that intermediate re-
sult by 2, and so on. Compilers for functional languages must make arrangements for storing
the intermediate computations, so that the final result can be correctly “unrolled” back. On
the other hand, the pow function above does not have this kind of recursive structure – it fea-
tures so-called tail recursion. For instance, to calculate pow(2,4,1) we need only calculate
pow(2,3,2), and so pow(2,2,4), and so pow(2,1,8) and finally pow(2,0,16), which is
16. No “unrolling” back of intermediate results is needed. For functions of this shape, compil-
ers can optimize away any special arrangements for storing intermediate computations, which
can make the execution of tail-recursive functions such as pow much more efficient when com-
pared to the execution of functions like power. This is called tail-call optimization.

We would now like to prove that powerAlt(n,m) ↪→ nm, for all integers n and naturals
m. This requires proving something about pow, which takes one more argument. Intuitively,
we would like to prove pow(n,m,1) ↪→ nm. Unfortunately, proving this statement directly by
induction will fail. Lets see where it breaks down.

LECTURE NOTES 8 March, 2022

GENERALIZING THE INDUCTION HYPOTHESIS 7

Suppose we have assumed the induction hypothesis:

pow(n,m,1) ↪→ nm

and try to prove

pow(n,m+ 1,1) ↪→ nm+1

We proceed as we did in the inductive case for power:

pow(n,m+ 1,1)
2

=⇒ pow(n,m+ 1− 1,1*n)
1

=⇒ pow(n,m,1*n)
1

=⇒ pow(n,m,n)

but now we are stuck. We cannot apply the induction hypothesis since the last argument in
the call to pow is not 1. The solution is to generalize the property to allow any r : int in such a
way that the desired result follows easily. The generalization is as follows:

Lemma 4.1. pow(n,m,r) ↪→ r × nm, for all r, all n ≥ 0, and all m natural.

Proof. By mathematical induction on m.

Base Case: m = 0

We need to show that pow(n,0,r) ↪→ r × n0, for all n.
pow(n,0,r)

2
=⇒ r by evaluation of function application and the conditional
= r × n0 by math

Induction Step: Assume that, for some m ≥ 0, and all integers n and r′, pow(n,m,r′) ↪→
r′ × nm. Prove that the property holds for m+ 1.

We need to show that pow(n,m+ 1,r) ↪→ r × nm+1.
pow(n,m+ 1,r)

2
=⇒ pow(n,m+ 1− 1,r*n) by evaluation of function application and the conditional
2

=⇒ pow(n,m,r × n) by math and evaluation of ∗
=⇒ (r × n)× nm by the induction hypothesis, with r′ = r × n
= r × nm+1 by math

which completes the proof.

The correctness of powerAlt can now be established directly.

Theorem 4.2. powerAlt(n,m) ↪→ nm, for all integers n and natural numbers m.

Proof.

powerAlt(n,m)
1

=⇒ pow(n,m,1) by evaluation rule for application
=⇒ 1× nm by Lemma 4.1
= nm by math

LECTURE NOTES 8 March, 2022

TAKING STOCK 8

5 Taking stock

We have now seen some techniques that allow us to formally prove the correctness of functional
programs, the most important of which is the use of mathematical induction to establish cor-
rectness properties of recursive functions. From a conceptual point of view, this is important for
our verification programme because the specification of imperative code must often appeal to
functional code, the meaning of which may not be entirely obvious. Crucially, within a prover
such as Dafny, it is simply not possible to prove that our specification is “correct” in an absolute
sense – there is no Dafny analogue of Theorem 3.1, which must be established through external
means. However, it is possible to establish in Dafny a weaker result, related to Theorem 4.2 –
that powerAlt and power are equivalent (see Exercise 3).

The more pragmatically minded reader may be wondering what is the point of all this when
the main goals of the course are studying the verification of imperative programs. It turns out
that the kind of reasoning we made in the previous section on generalizing the inductive hy-
pothesis is exactly the same kind of reasoning we must often make when proving the correctness
of loops in imperative code. As we will see in detail in later lectures, to prove that factImp from
Section 1 is correct, we must define a loop invariant: a property that holds throughout all execu-
tions of the loop, from which the correctness of the procedure follows. Devising the appropriate
loop invariant and generalizing the inductive hypothesis are instances of the same principle.

6 Exercises

1. Prove, using the style of Section 3, that the function fact from Section 1 is correct. That
is, prove that fact(n) ↪→ n!, for all natural numbers n.

2. Consider the following alternative formulation of the factorial function:

function factAcc(n: nat,a: int) : int
{

if (n = 0) then a else factAcc(n-1,n*a)
}
function factAlt(n: nat) : int { factAcc(n,1) }

Prove that factAlt is a correct implementation of the factorial function.

3. Using Dafny, define the functions pow, powerAlt and power as above. Prove, using
Dafny, that power and powerAlt are equivalent. That is, define in Dafny:

lemma powerEquiv(n: int,m: nat)
ensures power(n,m) = powerAlt(n,m,1)

{ . . . }

Hint: Dafny will not be able to prove this lemma automatically, just as we could not
establish the result directly by induction. Define another lemma that we can use to prove
powerEquiv. Note that using a lemma in Dafny uses the same syntax as calling a function
(ended with ;).

4. Do the same as in Exercise 3 but for fact and factAlt.

5. Try to understand what the following mystery functions compute and prove them correct.
You may use Dafny to do so if you wish:

LECTURE NOTES 8 March, 2022

EXERCISES 9

(a) function mystery1(n: nat,m: nat) : nat
{ if n=0 then m else mystery1(n-1,m+1) }

(b) function mystery2(n: nat,m: nat) : nat
decreases m

{ if m=0 then n else mystery2(n+1,m-1) }

(c) function mystery3(n: nat,m: nat) : nat
{ if n=0 then 0 else mystery1(m,mystery3(n-1,m)) }

(d) function mystery4(n: nat,m: nat) : nat
{ if m=0 then 1 else mystery3(n,mystery4(n,m-1)) }

6. [?] If you carried out Exercise 5 in Dafny, you likely used Dafny primitive functions in
your specification. Without using any specification for mystery1 prove the following
lemma:

lemma mys1c(n: nat,m: nat)
ensures mystery1(n,m) = mystery1(m,n)
{}

Hint: You will likely have to prove something about mystery1(n,0) and the relation of
mystery1(n,m+1) and 1+mystery1(n,m).

7. [? ? ?] Similarly, without using any specification for mystery2 prove the following prop-
erty:

lemma mysEq(n: nat,m: nat)
ensures mystery1(n,m) = mystery2(n,m)

{}

LECTURE NOTES 8 March, 2022

	Reasoning about imperative programs
	Reasoning about functional programs
	Equivalence of Expressions and Referential Transparency
	Proving a Simple Function Correct

	Proofs by Induction
	Generalizing the Induction Hypothesis
	Taking stock
	Exercises

