
Synthesizing Proteins
LPCT Project

Bernardo Toninho

26 October, 2021

1 Synthesizing Proteins Concurrently

Have you ever wondered how a protein is produced? Well, you are about to find
out (skipping the complicated details)!

Proteins are essentially long chains of amino acids that are arranged in some
specific, orderly fashion. Proteins perform many functions in biology, such as
DNA replication, and effectively carry out all the functions that are necessary
for life. Proteins differ from each other primarily in their sequence of amino
acids, governed by the nucleotide sequence of their genes, which then undergoes
so-called protein folding into a specific 3D structure that determines its function.

1.1 Transcription and Translation

In effect, to manifest a gene is to produce, or synthesize, its corresponding
protein. Protein synthesis can be divided into two steps: transcription and
translation. Transcription is the process by which the information in DNA
is transferred to a messenger RNA (mRNA) molecule, which acts as a form of
template. The resulting mRNA molecule is a single-stranded copy of the gene,
which is then translated into a protein molecule.

During translation, the mRNA molecule is “read”, relating the DNA sequence
to the amino acid sequence in the protein. Each group of three bases in mRNA
is called a codon. Each codon encodes a particular amino acid. The mRNA
sequence is then used as a template to assemble the chain of amino acids that
form a protein.

1.1.1 Transcribing DNA to mRNA

DNA is a complex molecule composed of two so-called polynucleotide chains
(that form the famous double helix). The chains are composed of simpler units

1



called nucleotides. Each nucleotide is composed of one of four nucleobases:
Cytosine, Guanine, Adenine and Thymine. DNA strands are effectively de-
scribed as a sequence of nucleobases, and so can be represented by a string of
Cs, Gs, As and Ts.

The transcription process effectively scans the nucleobase sequence, one base at
a time, and builds an RNA molecule out of so-called complementary nucleotides.
The RNA transcript carries the same information as the DNA chain, but where
the base Thymine (T) is replaced by the RNA-only base, Uracil (U).

While there is more to transcription than this, in our approximation, the follow-
ing is a valid transcription of a DNA sequence:

DNA Sequence - GGGCCGTCTTCTTCGTTAAA

Transcribed mRNA - GGGCCGUCUUCUUCGUUAAA

1.1.2 Translating mRNA to Amino acid chains

The set of amino acids is as follows: Alanine (Ala), Arginine (Arg), Asparagine
(Asn), Aspartic acid (Asp), Cysteine (Cys), Glutamine (Gln), Glutamic acid
(Glu), Glycine (Gly), Histidine (His), Isoleucine (Ile), Leucine (Leu), Lysine
(Lys), Methionine (Met), Phenylalanine (Phe), Proline (Pro), Serine (Ser), Thre-
onine (Thr), Tryptophane (Trp), Tyrosine (Tyr) and Valine (Val). Don’t worry,
we will only use the shorthands to refer to these. Each amino acid is character-
ized by three mRNA nucleotide bases, according to the table in Figure 1.

Given a codon, we can determine its corresponding amino acid as follows: we
use its first nucleotide to refer to the line on the left; its second nucleotide to
refer to the column; and, its third nucleotide to refer to the line on the left.
As you can see, there is a lot of redundancy in this process – many different
codons translate to the same aminoacid (this is called genetic redundancy). For
example, the codon GUU translates to Val, whereas the codon AUG translates to
Met.

In order for the resulting amino acid chain to form a valid protein, it must
adhere to the following (simplified) rules: its first aminoacid must be Met and
it must be ended by one of the three termination codons (UAA, UAG or UGA).

Now that you know how proteins are produced from DNA sequences, your task
is to implement a concurrent protein synthesis analyzer. Your analyzer must be
able to answer two kinds of queries:

1. Given a DNA sequence, what is its transcription into mRNA.
2. Given a DNA sequence, what is its corresponding amino acid chain (and

does that chain form a valid protein).

2



Figure 1: Amino Acid Table (© 2014 Nature Education)

3



The two queries pressupose the rules described above. You need not investigate
further on how these processes actually happen in real cells.

While it may seem overkill to realize this as a concurrent program, lets do it
anyway.

2 System Specification

Your system must be composed of two software components, a client and a
server. Each component must compile to a separate binary.

2.1 Client

The client sends user-specified requests to the server, receives and prints the
result to standard output.

The client and the server communicate using a standard TCP socket. The client
binary should take as command line arguments the server address and port and
a flag to determine whether it will perform a transcription or translation request.
The client will then read from standard input the DNA sequence (as a string
containing only occurrences of the letters C, G, A and T), whose length must
be a multiple of three, send the corresponding request to the server, receive the
response and print it to standard output. You may assume the DNA sequence
only contains valid nucleotide bases.

To launch the client, the command should be:

./client -transcribe host:port

or

./client -translate host:port

respectively, where host:port is the server address and port, the flag
-transcribe specifies that the request will be for transcription and the
-translate flag signals a translation request. The client will then read the
DNA string from standard input and send to the server a message of the form:

[Request <type> <data>]

The client will then receive from the server a message of the form:

[Result <type> <data> <valid>]

with the appropriate response. If a client loses contact with the server, it should
print a Disconnected from server message to standard output and terminate.

For convenience, the provided repository contains an implementation of the
messages (package message) you will need to use between the client and the

4



server, as well as their marshalling and unmarshalling to-and-from JSON byte
slices. You may wish to reuse these messages inside your server, or use your
own data types. If you want to reuse the message type but feel the need to add
an extra field to the message, you will need to readjust the existing marshalling
and unmarshalling code.

2.2 Server

The server receives requests from one or more clients, performs the correspond-
ing transcription or translation (and validation) request and answers back with
the reply.

To launch the server, the command should be:

./server port

The server must be able to handle client requests concurrently. This means that
at any given time, the server can be performing translations and transcriptions
for different clients (and so of various DNA sequences).

From the perspective of the server, a client request (using the message formats
from the supplied code — see below):

[Request type DNA]

can (and should) be split into multiple smaller jobs, performed by multiple
workers. The partition of the request into jobs and their aggregation into a final
answer is relatively straightforward: in both translation and transcription, the
order of the DNA and the transcribed mRNA matters, and so the aggregation
must preserve the original order of the DNA sequence. For transcription, the
operation is at the single nucleotide level. For translation, since the sequence is
assumed to have a length that is a multiple of three, the operation ultimately
can be performed at the codon level.

Note: A translation request requires performing transcription. The server can
exploit this when splitting such a request into tasks that can be performed
concurrently. For instance, you should think on how to divide the request such
that there is the most potential for parallelism across the combined transcription-
translation steps.

If a server loses contact with a client, it should stop working on any pending
requests on behalf of the disconnected client (jobs that are already underway
need not be forcibly terminated, you can just wait for them to complete and
ignore the result).

5



2.2.1 Additional Server Requirements

1) The server must use multiple workers to perform the client jobs. However,
despite the fact that goroutines are cheap, you probably want to limit
the number of goroutines that the server creates. While the focus is on
concurrency, you should aim to maximize the potential for parallelism.

2) Choosing a good way of organizing (and creating) workers, suited to the
specific context of the problem is part of the challenge. There might
be several equivalent options, but you should be able to argue why your
choices are good. You will likely want to assign to each worker a range of
the DNA / mRNA sequence, rather than a single base.

3) Choosing a good way of aggregating the work is also part of the challenge,
considering the order of the sequence must be preserved. Note also that
a translation request is effectively a two step process, so care is needed to
ensure the absence of data races.

4) Correctness is mandatory. The server must only produce correct
answers that match the client’s request.

5) The server should try to minimize mean response time for client requests.
If the server gets a very large request, followed by a small request, it
is reasonable to expect that the small request finishes before the large
request. If the server gets several requests of similar size, the requests
should finish roughly (although not necessarily) in the order they arrived.
Your code should document if/how these concerns are taken into account.

3 Supplied Code

• message/message.go defines the message types needed for client/server
exchanges.

• client/client.go is where you will implement your client program.

• server/server.go is where you will implement your server program.

4 Grading

Projects are to be completed preferably in groups of two (at most three), which
must match with the groups of the mini-project. The standard plagiarism rules
apply and will be enforced.

6



The project deadline will be on the 8th of November at 23:59, enforced by
Github Classroom. You must turn in your code and a brief report (add a PDF
to the repository), documenting the various design choices in your work. The
report should try to address the questions below.

Your code must not use locks or mutexes. All synchronization must be done
using goroutines, channels, and Go’s channel-based select. Waitgroups may
be used to ensure a program does not terminate before it should. Any of the
techniques seen in lecture may be used (but they need not all be used!).

You should try to avoid using fixed-size buffers and arrays to store things that
can grow arbitrarily in size. For example, using fixed-size buffers for message
queues might not be the best solution (which doesn’t mean you should not
use buffered channels entirely!). Its often better to use a linked list (see the
container/list package, but note that it is not thread safe) or some other
data structure that can expand to arbitrary size.

Your project will receive a better grade according to the following criteria:

• Correctness: Does the server answer correctly? (Critical!)

• Worker creation: When and how are workers created?

• Worker management: How are workers organized amongst themselves
and in the overall system? How is work divided among and allocated to
workers? How is work aggregated? Does the solution limit parallelism
potential?

• Data management: How are data structure accesses managed in order
to ensure the absence of data races?

• Fairness and responsiveness: How does the server aim to minimize
mean response time?

• Overall code quality

• Use of tests to validate your code

The criteria are not listed in any particular order. The main focus will be on
correctness and worker creation/management.

Note: The project may seem scary, but its bark is worse than its bite. Relax
and try to have some fun!

7


	Synthesizing Proteins Concurrently
	Transcription and Translation
	Transcribing DNA to mRNA
	Translating mRNA to Amino acid chains


	System Specification
	Client
	Server
	Additional Server Requirements


	Supplied Code
	Grading

