
Concurrent Programming
Languages

Channel-based Concurrency Module
Lecture 1: Introduction to Go

Bernardo Toninho
(with António Ravara and Carla Ferreira)

12 October 2021

MIEI - Integrated Masters in Comp. Science and Informatics  
Specialization Block

Admin Stuff — Planning
4 Lectures:

1. Introduction to the Go programming language

1.1. Basic language features & program organization

1.2. Channel-based concurrency in Go

2. Coordination using Channels: Patterns and Perils

3. (Advanced) Channel-based Programming Patterns

4. Selected Research Topic (TBD)

Admin Stuff — Planning
4 Labs:

1. Go introduction

2. Mini-Project

3. Project

4. Project

Parallelism vs Concurrency
Parallelism: Programming as the simultaneous
execution of (possibly related) computations.

Concurrency: Programming as the composition of
independently executing processes.

picture from https://talks.golang.org/

https://talks.golang.org/

Parallelism vs Concurrency
Parallelism: Programming as the simultaneous
execution of (possibly related) computations.

Concurrency: Programming as the composition of
independently executing processes.

Concurrency vs Parallelism

- Concurrency is not parallelism, but parallelism is enabled by
concurrency!

- Programs can be concurrent and have 0 parallelism.
- Well-written concurrency may run better on a multiprocessor.

Concurrency and Independence

- Concurrency is a way to structure work into
independent pieces …

 Andrew Gerrand (Golang)

… but then you have to coordinate those pieces

- “Independent” here refers to a way of thinking about
problems, and structuring their solutions.

- Concurrent processes may indeed interfere/interact

The Go Language
- Designed by Pike, Griesemer, Thompson and others in late 2007

at Google.

- A simple but powerful language

- C without (most of) the scary parts

- Channel-based concurrency primitives built-in, closures,
garbage collection, proper strings, …

- Motivated by software problems at “Google scale” (good
performance, fast builds, easy to understand)

The Go Language
- Note: This will not be a complete introduction / tutorial on Go.

Just enough to get us going.

- Many good resources are available:

- https://tour.golang.org/

- https://golang.org/doc/code.html

- https://golang.org/doc/effective_go.html

https://tour.golang.org/
https://golang.org/doc/code.html
https://golang.org/doc/effective_go.html

Design Philosophy
- Go is a strongly-typed imperative language:

• Programs are collections of structs and functions that
manipulate them.

• Pointers, but no pointer arithmetic (for safety).
• All functions copy their arguments (more later).
• Channel-based concurrency and green threads built-in and

“easy to use” (based on CSP, CCS).

Don’t communicate by sharing memory,
share memory by communicating

Variables and Assignment
var a,b int //creates two variables of type int

 //initially 0  

b = 10 //assigns 10 to b  
 //after it has been created

b := 10 //creates and initializes b (as int)
 //b must be a new name

- All types have a so-called zero value (recursive for composite types).

- All variables and declared imports must be used (compile-time error)

- Types for variables can often be omitted (lightweight type inference).

Hello World :)
package main

import (// imports packages
"fmt" // fmt for printing

)

func main() {
fmt.Println("Hello, world!")

}

- All go source files must define some package (doesn’t need to
match file name or folder).

Hello World :)
package main

import (// imports packages
"fmt" // fmt for printing

)

func main() {
fmt.Println("Hello, world!")

}

- Unused imports are flagged as compiler errors.

Hello World :)
package main

import (// imports packages
"fmt" // fmt for printing

)

func main() {
fmt.Println("Hello, world!")

}

- Program entry point. Function without args, no return value.

Loops
for initialisation ; condition; post {  
 // zero or more statements  
}

sum := 0
for i := 0; i < 10; i++ {

sum += i
}

sum := 1
for ; sum < 10; {

sum += sum //doubles sum until it is 16
}

for ; ; {
… //forever

}

Quiz
func incr(x int) int {
 x = x+1

return x
}

What number does this program print?

func main() {
a := 22
incr(a)
fmt.Println(a)

}

Quiz
func incr(x int) int {
 x = x+1

return x
}

What number does this program print? 22!

In go, all functions copy the value of their arguments…

func main() {
a := 22
incr(a)
fmt.Println(a)

}

Quiz

By passing pointers we can modify a, “as expected”.

func incr(x *int) {
 *x = *x+1
}

func main() {
a := 22
incr(&a)
fmt.Println(a)

}

Arrays and Slices
var a [2]string // creates a as array of 2 strings
a[0] = "Hello"
a[1] = "World"

primes := [6]int{2, 3, 5, 7, 11, 13} //creates & initializes

• [n]T is the type of an array of size n with elements of type T

func printer(arr [6]int) {
for i := 0; i < len(arr); i++ {

fmt.Println(arr[i])
}

}  
…  
primes := [6]int{2, 3, 5, 7, 11, 13}  
morePrimes := [7]int{2, 3, 5, 7, 11, 13, 17}  
printer(primes)
printer(morePrimes)

Arrays and Slices
• [n]T is the type of an array of size n with elements of type T

func printer(arr [6]int) {
for i := 0; i < len(arr); i++ {

fmt.Println(arr[i])
}

}  
…  
primes := [6]int{2, 3, 5, 7, 11, 13}  
morePrimes := [7]int{2, 3, 5, 7, 11, 13, 17}  
printer(primes) // OK
printer(morePrimes) // Type error

Arrays and Slices
• [n]T is the type of an array of size n with elements of type T

func printer(arr [6]int) {
for i := 0; i < len(arr); i++ {

fmt.Println(arr[i])
}

}  
…  
primes := [6]int{2, 3, 5, 7, 11, 13}  
morePrimes := [7]int{2, 3, 5, 7, 11, 13, 17}  
printer(primes) // OK
printer(morePrimes) // Type error

Arrays and Slices
• [n]T is the type of an array of size n with elements of type T

Note: Arrays are values! A lot of copying above…

Arrays and Slices
- Arrays in Go are quite rigid. Not used often.

- Slices build on arrays to provide flexibility.

primes := [6]int{2, 3, 5, 7, 11, 13} //array literal
otherPrimes := []int{19, 23, 29} //slice literal

somePrimes := primes[0:3] //slicing an array

nums := make([]int, 5) //allocate + return slice

 
 

Arrays and Slices
- Arrays in Go are quite rigid. Not used often.

- Slices build on arrays to provide flexibility.

primes := [6]int{2, 3, 5, 7, 11, 13} //array literal
otherPrimes := []int{19, 23, 29} //slice literal

somePrimes := primes[0:3] //slicing an array

nums := make([]int, 5) //allocate + return slice

 
 

Arrays and Slices

- Slices have a length and a capacity:

primes := [6]int{2, 3, 5, 7, 11, 13}

somePrimes := primes[0:3] //slicing an array

fmt.Println(len(somePrimes)) // 3
fmt.Println(cap(somePrimes)) // 6

fmt.Println(somePrimes) // [2 3 5]
fmt.Println(somePrimes[3:cap(somePrimes)]) // [7 11 13]

Arrays and Slices
- Slices can be copied and appended:

primes := []int{2, 3, 5, 7, 11, 13}
p := []int{19, 23, 29}

s := make([]int, len(primes), cap(primes)*2)
copy(s, primes)
primes = s //doubled capacity

a := append(primes,p[0],p[1],p[2]) //[2 3 5 7 11 13 19 23 29]
b := append(primes,p…) //[2 3 5 7 11 13 19 23 29]

Arrays and Slices

- Slices can be copied and appended:
primes := []int{2, 3, 5, 7, 11, 13}
p := []int{19, 23, 29}

s := make([]int, len(primes), cap(primes)*2)
copy(s, primes)
primes = s //doubled capacity

a := append(primes,p[0],p[1],p[2]) //[2 3 5 7 11 13 19 23 29]
b := append(primes,p…) //[2 3 5 7 11 13 19 23 29]

Quiz
func incr(s []int) {

for i,n := range s { //iterates over s, providing
 s[i] = n+1 //the index and value

}
}

func main() {
a := make([]int,5)
fmt.Println(a)
incr(a)
fmt.Println(a)

}

What does this program print?

Quiz
func Filter(s []int, fn func(int) bool) []int {

var p []int // == nil
for _, v := range s {
 if fn(v) {

 p = append(p, v)
 }
}
return p

}
func main() {

a := []int{1,2,3,4,5,6,7,8,9,10}
a = Filter(a,func (x int) bool { return x%2==0 })
fmt.Println(a)

}

…and this one? :)

Structs and Methods
- Composite types in Go are defined as structs:

type Person struct {
 name string
 age int
}

func main() {
 p1 := Person{“Bob”,20}
 p2 := Person{name:”Alice”}
 p2.age = 23
 p3 := Person{p2.name,p2.age}
}

Structs and Methods
- Structs literals are values

func setAgeBad(p Person, age int) { //Modifies a copy
p.age = age

}

func setAgeBetter(p *Person, age int) {
p.age = age
}

func (p *Person) setAge(age int) {
p.age = age
}

Structs and Methods
- Structs literals are values

func setAgeBad(p Person, age int) {
p.age = age

}

func setAgeBetter(p *Person, age int) { //Modifies via pointer
p.age = age
}

func (p *Person) setAge(age int) {
p.age = age
}

Structs and Methods
- Structs literals are values

func setAgeBad(p Person, age int) {
p.age = age

}

func setAgeBetter(p *Person, age int) {
p.age = age
}

func (p *Person) setAge(age int) { //Method syntax
p.age = age
}

- Methods can be defined on structs or struct pointers.

Quiz
type Person struct {
 name string
 age int
}

func (p Person) setAge(age int) { p.age = age }

func main() {
p := Person{name:”Alice”}
p.setAge(23)
fmt.Println(p.age)

}

What does this program print?

Quiz
type Person struct {
 name string
 age int
}

func (p *Person) setAge(age int) { p.age = age }

func main() {
p := Person{name:”Alice”}
p.setAge(23)
fmt.Println(p.age)

}

This is probably the one you want to write.

type Stringer interface {
 String() string
}

func (p Person) String() string {
 return fmt.Sprintf(“%v (%d)”, p.name, p.age)
}

…
fmt.Println(Person{name:”Bob”,age:23}) //Bob (23)

Interfaces
- Interfaces are just sets of methods.

- A type implements an interface implicitly by implementing its
methods.

- Functions (and methods) can take interface valued arguments.

type Reader interface {
Read(b []byte) (n int, err error)

}

type Writer interface {
 Write(b []byte) (n int, err error)
}

type ReadWriter interface {
 Reader
 Writer
}

Interfaces
- Interfaces can embed other interfaces:

Error Handling
- Go does not have exceptions.

- For “catastrophic” errors, built-in function panic.

- Non-fatal errors in Go are just values of error type:
type error interface {
 Error() string

}

- Package errors provides some facilities for manipulating
errors.

Error Handling
- A common idiom:

func Hello(name string) (string, error) {
 if name == “” {
 return “”, errors.New(“Empty Name”)
 }
 message := fmt.Sprintf("Hi, %v. Welcome!", name)
 return message, nil

}

Error Handling
- A common idiom:

func Hello(name string) (string, error) {
 if name == “” {
 return “”, errors.New(“Empty Name”)
 }
 message := fmt.Sprintf("Hi, %v. Welcome!", name)
 return message, nil

}

Error Handling
- A common idiom:

func Hello(name string) (string, error) {
 if name == “” {
 return “”, errors.New(“Empty Name”)
 }
 message := fmt.Sprintf("Hi, %v. Welcome!", name)
 return message, nil

}

Error Handling
- On the client side code:

func main() {
 reader := bufio.NewReader(os.Stdin)
 text , _ := reader.ReadString(‘\n’)
 text = strings.Replace(text,”\n”,””,-1)
 message, err := Hello(text)
 if err != nil {
 //…
 }
 fmt.Println(message)

Error Handling
- On the client side code:

func main() {
 reader := bufio.NewReader(os.Stdin)
 text , _ := reader.ReadString(‘\n’)
 text = strings.Replace(text,”\n”,””,-1)
 message, err := Hello(text)
 if err != nil {
 //…
 }
 fmt.Println(message)

- Design and conventions encourage explicit error checking.

Error Handling
- Custom errors are easy to define:

type SyntaxError struct {
 Line int
 Col int
 Token string

}
func (er *SyntaxError) Error() string {
 return fmt.Sprintf(“%d:%d: Syntax error on token %v.”,
e.Line, e.Col, e.Token)
}

Error Handling
- A common pattern:

ast, err := parse(s)
if err != nil {
 switch err.(type) {
 case SyntaxError:

 …
 case ScopingError:
 …

 }
}

- Go supports concurrency
• goroutines
• channels

- Go supports parallelism
• multi-processors
• memory model

Concurrency in Go

Concurrency in Go
- Go favors channel-based concurrency over shared-memory

concurrency.

- Shared-memory concurrency features available in go standard library,
mostly for low-level programming (sync package)

- Channel-based concurrency built into the language (type system and
syntax).

- Inspired by Hoare’s CSP, Milner’s CCS and -calculus. π

Goroutines

- A running program is made up of one or more goroutines.

- A goroutine is a function that:

- executes concurrently to other goroutines

- in the same address space

- Goroutines are green threads.

Goroutines vs Threads
- Goroutines are much more lightweight than OS threads

- Stack size

- OS threads - large fixed size

- Goroutines - independent call stack, grows dynamically

- Scheduling

- OS threads - OS…

- Goroutines - Go runtime

- “clever” scheduling

Goroutines are very inexpensive, can have 1000s!

Concurrency vs Parallelism

- Concurrency is not parallelism, but parallelism is enabled by
concurrency!

- Programs can be concurrent and have 0 parallelism.

- Well-written concurrency may run better on a multiprocessor.

Creating Goroutines
• To start a goroutine, just invoke a function and say “go”

func print_digits() {
for number := 1; number < 27; number++ {

fmt.Printf("%d ", number)
}

}
func main(){

go print_digits();
go print_digits();
fmt.Printf(“finished”);

}

Creating Goroutines
• To start a goroutine, just invoke a function and say “go”

func print_digits() {
for number := 1; number < 27; number++ {

fmt.Printf("%d ", number)
}

}
func main(){

go print_digits();
go print_digits();
fmt.Printf(“finished”);

}

When main goroutine finishes,
the program terminates!

Synchronizing goroutines
- Two ways of synchronizing goroutines in Go :

• locks (package “sync”)
• channels (synchronous or asynchronous)

- Threaded programming is complex
• Shared memory and locks are difficult to reason about
• Risk of latent deadlocks and race conditions

Don’t communicate by sharing memory,
share memory by communicating

• Go provides primitives based on channels to synchronize
go routines.

Channel Types

• In its simplest form, the type looks like this

• Channels are a reference type (use make to allocate one)

var c = make(chan int) c := make(chan int)or

var c chan <payload type>

Communicating with Channels
c:=make(chan int) //create a channel for int of size 0

//(synchronous)  

c <- 1 //send 1 on c

v = <- c //receive on c, assign to v
 
v := <-c //receive and initialize v

<-c //receives on c and discards value

Goroutines & channels

func main(){
c := make(chan bool)
c <- true
b := <-c
fmt.Println(b)

}

func main(){
c := make(chan bool)
c <- true
b := <-c
fmt.Println(b)

}

Goroutines & channels

fatal error: all goroutines are asleep - deadlock!

goroutine 1 [chan send]:
main.main()
 /Users/btoninho/bitbucket.org/progconc/bad.go:14 +0x59
exit status 2

main goroutine is stuck on the
send, waiting for someone to

receive on c…

Goroutines & channels
func print_digits(c chan bool) {

for number := 1; number < 27; number++ {
fmt.Printf("%d ", number)

}
c<-true

}

func main(){
c := make(chan bool)
go print_digits(c)
go print_digits(c)
<-c;<-c; //receive twice & discard values
fmt.Printf(“finished”);

}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 19 20 21 22 23 24 25 26 finished

• By default channels have size 0 (c has size 0)

Synchronous channels
c := make(chan bool)

goroutine teacher  
 

c <- “kitcat”

c

goroutine student

 h := <- c
 fmt.Printf(“Eating %s“,h)

• Channels with size 0 support synchronous communication

• Both sender and receiver block until a handshake can occur

• c is now a channel with size 5

Asynchronous channels
c := make(chan bool,5)

• Channels of non-0 size provide asynchronous comm.

• Sending blocks if channel is full; receive blocks if empty.

func main(){
c := make(chan bool,5)
c <- true
b := <-c
fmt.Println(b)

}

true

Challenges
- Channel-based concurrency tries to alleviate the challenges of sharing

data across threads
- Races on shared variables (Bad) vs races on channel access (OK)
- Not a panacea:

• Deadlocks (Cyclic dependency on channel accesses)
• Starvation (Some threads never access what they need)
• Go programs still manipulate state (races on data structures / variables

can still happen, accesses must be disciplined).

That’s it for today…
- Go - the very basics
- Goroutines
- Channels

• Synchronous and asynchronous channels
• Basic channel ops

- Next Lecture: putting it all to use, selective communication,
wait groups, etc.

