Concurrent Programming
| anguages

Channel-based Concurrency Module
Lecture 1: Introduction to Go

12 October 2021

MIEI - Integrated Masters in Comp. Science and Informatics
Specialization Block

Bernardo Toninho
(with Antonio Ravara and Carla Ferreira

)
k NOVALINCS

Admin Stuff — Planning

4 |ectures:
1. Introduction to the Go programming language
1.1. Basic language features & program organization

1.2. Channel-based concurrency in Go

2. Coordination using Channels: Patterns and Perils

3. (Advanced) Channel-based Programming Patterns

4. Selected Research Topic (TBD)

Admin Stuff — Planning

4 Labs:
1. Go introduction
2. Mini-Project
3. Project

4. Project

Parallelism vs Concurrency

Parallelism: Programming as the simultaneous
execution of (possibly related) computations.

Concurrency: Programming as the composition of
iINndependently executing processes.

picture from https://talks.golang.org/

https://talks.golang.org/

Parallelism vs Concurrency

Parallelism: Programming as the simultaneous
execution of (possibly related) computations.

Concurrency: Programming as the composition of
iINndependently executing processes.

Concurrency vs Parallelism

- Concurrency iIs not parallelism, but parallelism is enabled by
concurrency!

- Programs can be concurrent and have 0 parallelism.

- Well-written concurrency may run better on a multiprocessor.

Concurrency and Independence

- Concurrency is a way to structure work into
iINndependent pieces ...

... but then you have to coordinate those pieces

Andrew Gerrand (Golang)

- “Independent” here refers to a way of thinking about
problems, and structuring their solutions.

- Concurrent processes may indeed interfere/interact

The Go Language

- Designed by Pike, Griesemer, Thompson and others in late 2007

at Google.

- A simple but powertul language

- C without (most of) the scary parts

- Channel-based concurrency primitives built-in, closures,
garbage collection, proper strings, ...

- Motivated by software problems at “Google scale” (good
performance, fast builds, easy to understand)

>

e

A

The Go Language

- Note: This will not be a complete introduction / tutorial on Go.

- Many good resources are available:

Just enough to get us going.

- https://tour.golang.org/

- https://golang.org/doc/code.html

- https://golang.org/doc/ettective_go.html

https://tour.golang.org/
https://golang.org/doc/code.html
https://golang.org/doc/effective_go.html

Design Philosophy

- Go Is a strongly-typed imperative language:

 Programs are collections of structs and functions that
manipulate them.

» Pointers, but no pointer arithmetic (for safety).
* All functions copy their arguments (more later).

 Channel-based concurrency and green threads built-in and
‘easy to use” (based on CSP, CCS).

® 0000 0000 0000 0000 000
» Don't communicate by sharing memory, @
: share memory by communicating :

00 00000 00000 00000 00000 00

Variaples and Assignment

var a,b int //creates two variables of type int
//initially O

b = 10 //assigns 10 to b
//after it has been created
b := 10 //creates and initializes b (as int)

//b must be a new name

- All types have a so-called zero value (recursive tor composite types).
- All variables and declared imports must be used (compile-time error)

- Types for variables can often be omitted (lightweight type inference).

Hello World :)

package main

import (// imports packages
"fmt" // fmt for printing
)

func main() {
fmt.Println("Hello, world!")

}

- All go source files must define some package (doesn't need to
match file name or folder).

Hello World :)

package main

import (// imports packages
"fmt" // fmt for printing
)

func main() {
fmt.Println("Hello, world!")

}

- Unused imports are flagged as compiler errors.

Hello World :)

package main

import (// imports packages
"fmt" // fmt for printing
)

func main() {
fmt.Println("Hello, world!")

}

- Program entry point. Function without args, no return value.

| O0PS

for initialisation ; condition; post {
// zero or more statements

}
sum := 0
for 1 := 0; 1 < 10; 1++ {
sum += i
}
sum := 1
for ; sum < 10; {
sum += sum //doubles sum until it is 16
}

// forever

Quiz

func incr(x int) int { func main() {
X = X+1 a = 22
return x incr(a)
} fmt.Println(a)
'

What number does this program print”

Quiz

func incr(x int) int { func main() {
x = x+1 a := 22
return Xx incr(a)
} fmt.Println(a)
}

What number does this program print? 22!

In go, all functions copy the value of their arguments...

Quiz

func incr(x *int) { func main() {
*x = *x+1 a := 22
} incr(&a)
fmt.Println(a)
'

By passing pointers we can modify a, "as expected”.

Arrays and Slices

var a [2]string // creates a as array of 2 strings
a[0] = "Hello"
a[l] = "World"
primes := [6]int{2, 3, 5, 7, 11, 13} //creates & initializes

® [n]T is the type of an array of size n with elements of type T

Arrays and Slices

® [n]TIis the type of an array of size n with elements of type T

func printer(arr [6]int) {
for 1 := 0; 1 < len(arr); 1i++ {
fmt.Println(arr[1])

}
}
primes := [6]int{2, 3, 5, 7, 11, 13}
morePrimes := [7]int{2, 3, 5, 7, 11, 13, 17}

printer (primes)
printer (morePrimes)

Arrays and Slices

® [n]TIis the type of an array of size n with elements of type T

func printer(arr [6]int) {
for i := 0; 1 < len(arr); i++ {
fmt.Println(arr[1])

}
}
primes := [6]int{2, 3, 5, 7, 11, 13}
morePrimes := [7]int{2, 3, 5, 7, 11, 13, 17}
printer (primes) // OK

printer (morePrimes) // Type error

Arrays and Slices

® [n]TIis the type of an array of size n with elements of type T

func printer(arr [6]int) {
for 1 := 0; 1 < len(arr); 1++ {
fmt.Println(arr[1])

}
}
primes := [6]int{2, 3, 5, 7, 11, 13}
morePrimes := [7]int{2, 3, 5, 7, 11, 13, 17}
printer (primes) // OK
printer (morePrimes) // Type error

Note: Arrays are values! A |ot of copying above...

Arrays and Slices

- Arrays In Go are quite rigid. Not used often.

- Slices build on arrays to provide flexibility.

primes := [6]int{2, 3, 5, 7, 11, 13} //array literal
otherPrimes := []int{19, 23, 29} //slice literal
somePrimes := primes[0:3] //slicing an array

nums := make([]int, 5) //allocate + return slice

Arrays and Slices

- Arrays in Go are quite rigid. Not used often.

- Slices build on arrays to provide flexibility.

primes := [6]int{2, 3, 5, 7, 11, 13} //array literal
otherPrimes := []int{19, 23, 29} //slice literal
somePrimes := primes[0:3] //slicing an array

nums := make([]int, 5) //allocate + return slice

Arrays and Slices

- Slices have a length and a capacity:

primes := [6]int{2, 3, 5, 7, 11, 13}

somePrimes := primes[0:3] //slicing an array

fmt.Println(len(somePrimes)) // 3
fmt.Println(cap(somePrimes)) // 6

fmt.Println(somePrimes) // [2 3 5]
fmt.Println(somePrimes[3:cap(somePrimes)]) // [7 11 13]

Arrays and Slices

- Slices can be copied and appended:

primes := []int{2, 3,

P -

S =

a :
b :

[1int{19, 23, 29}

5,

7, 11, 13}

make([]int, len(primes), cap(primes)*2)
copy (s, primes)
primes = s

//doubled capacity

append(primes,p[0],pr[1],p[2]) //[2 3 5 7 11 13 19 23 29]

append(primes, p..)

//[2 3 5 7 11 13 19 23 29]

Arrays and Slices

- Slices can be copied and appended:

primes := []int{2, 3,

P -

S

a :
b :

[1int{19, 23, 29}

5,

7, 11, 13}

make([]int, len(primes), cap(primes)*2)
copy (s, primes)
primes = S

//doubled capacity

append(primes,p[0],p[1],p[2]) //[2 3 5 7 11 13 19 23 29]

append (primes, p..)

//12 3 57 11 13 19 23 29]

Quiz

func incr(s []int) {
for i,n := range s { //iterates over s, providing
s[i] = n+1 //the index and value
}
}
func main() {
a := make([]int,5)
fmt.Println(a)
incr(a)

fmt.Println(a)

What does this program print??

Quiz
func Filter(s []int, fn func(int) bool) []int {

var p []int // == nil
for , v := range s {

if fn(v) {

p = append(p, V)

}

L

return p

Y

func main() {
a := []int{1,2,3,4,5,6,7,8,9,10}

a = Filter(a,func (x int) bool { return x%2==0 })
fmt.Println(a)

}

...and this one? :)

Structs and Methods

- Composite types in Go are defined as structs:

type Person struct {
name string

age int
'
func main() {
pl := Person{“Bob”,20}
p2 := Person{name:”"Alice"”}
p2.age = 23
p3 := Person{p2.name,p22.age}

Structs and Methods

- Structs literals are values

func setAgeBad(p Person, age int) { //Modifies a copy
p.age = age

}

func setAgeBetter(p *Person, age int) {
p.age = age

}

func (p *Person) setAge(age int) {
p.age = age

}

Structs and Methods

- Structs literals are values

func setAgeBad(p Person, age int) {
p.age = age

}

func setAgeBetter(p *Person, age int) { //Modifies via pointer
p.age = age

}

func (p *Person) setAge(age int) {
p.age = age

}

Structs and Methods

- Structs literals are values

func setAgeBad(p Person, age int) {
p.age = age

}

func setAgeBetter(p *Person, age int) {
p.age = age

}

func (p *Person) setAge(age int) { //Method syntax
p.age = age

}

- Methods can be defined on structs or struct pointers.

Quiz

type Person struct {
name string
age int

}

func (p Person) setAge(age int) { p.age = age }

func main() {
p := Person{name:”Alice”}

p.setAge(23)
fmt.Println(p.age)

What does this program print??

Quiz

type Person struct {
name string
age int

}

func (p *Person) setAge(age int) { p.age = age }

func main() {
p := Person{name:”Alice”}

p.setAge(23)
fmt.Println(p.age)

This Is probably the one you want to write.

INterfaces

- Interfaces are just sets of methods.

- Atype implements an interface implicitly by implementing its
methods.

- Functions (and methods) can take interface valued arguments.

type Stringer interface {
String() string

}

func (p Person) String() string {
return fmt.Sprintf(”“%sv (%d)”, p.name, p.age)

}

fmt.Println(Person{name:"”Bob”,age:23}) //Bob (23)

INterfaces

- Interfaces can embed other Iinterfaces:

type Reader interface {
Read(b []byte) (n int, err error)

}

type Writer interface {

Write(b []byte) (n int, err error)
}
type ReadWriter interface {

Reader

Writer

Crror Randling

Go does not have exceptions.

For “catastrophic” errors, built-in function panic.
Non-fatal errors in Go are just values of error type:

type error interface {
Error() string

}

Package errors provides some facilities for manipulating
errors.

Crror Randling

- A common 1diom:

func Hello(name string) (string, error) {

1f name == “" {
return “", errors.New(“Empty Name”)
}
message := fmt.Sprintf("Hi, %v. Welcome!", name)

return message, nil

Crror Randling

- A common 1diom:

func Hello(name string) (string, error) {

1f name == “" {
return “", errors.New(“Empty Name”)
}
message := fmt.Sprintf("Hi, %v. Welcome!", name)

return message, nil

Crror Randling

- A common 1diom:

func Hello(name string) (string, error) {

1f name == “" {
return “", errors.New(“Empty Name”)
}
message := fmt.Sprintf("Hi, %v. Welcome!", name)

return message, nil

Crror Hanaling

- On the client side code:

func main() {
reader := bufio.NewReader(os.Stdin)
text , := reader.ReadString(‘\n’)
text = strings.Replace(text,”\n”,”",-1)
message, err := Hello(text)
if err != nil {

//..

}

fmt.Println(message)

Crror Randling

- On the client side code:

func main() {
reader := bufio.NewReader(os.Stdin)
text , := reader.ReadString(‘\n’)
text = strings.Replace(text,”\n”,”",-1)
message, err := Hello(text)
if err != nil {

// ...

}

fmt.Println(message)

- Design and conventions encourage explicit error checking.

Crror Handling

- Custom errors are easy to define:

type SyntaxError struct {
Line 1int
Col int
Token string
}
func (er *SyntaxError) Error() string {
return fmt.Sprintf(“%d:%d: Syntax error on token %v.”,
e.Line, e.Col, e.Token)

}

Crror Randling

- A common pattern:

ast, err parse(s)
if err != nil {
switch err. (type) {
case SyntaxError:

case ScoplingError:

Concurrency in Go

- (50 supports concurrency

e goroutines

e channels

- (Go supports parallelism

* multi-processors

* memory model

Concurrency in Go

Go favors channel-based concurrency over shared-memory
concurrency.

Shared-memory concurrency features available in go standard library,
mostly for low-level programming (sync package)

Channel-based concurrency built into the language (type system and
syntax).

Inspired by Hoare’s CSP, Milner's CCS and m-calculus.

(Goroutines

- A running program is made up of one or more goroutines.
- A goroutine Is a function that:

- executes concurrently to other goroutines

- In the same address space

- Goroutines are green threads.

Goroutines vs Threads

- Goroutines are much more lightweight than OS threads
- Stack size

- OS threads - large fixed size

- - Independent call stack, grows dynamically
- Scheduling

- OS threads - Os...

- - Go runtime

- “clever” scheduling

Goroutines are very inexpensive, can have 1000s!

Concurrency vs Parallelism

- Concurrency is not parallelism, but parallelism is enabled by
concurrency!

- Programs can be concurrent and have 0O parallelism.

- Well-written concurrency may run better on a multiprocessor.

Creating Goroutines

e [0 start a goroutine, just invoke a function and say "go”

func print digits() {
for number := 1; number < 27; number++ {
fmt.Printf("%d ", number)

}
}

func main(){
go print digits();
go print digits();
fmt.Printf(“finished”);
}

Creating Goroutines

e [0 start a goroutine, just invoke a function and say "go”

func print digits() {
for number := 1; number < 27; number++ {
fmt.Printf("%d ", number)

}
}

func maJ._n() 1 o When main goroutine finishes,
go print digits(); the program terminates!

go print digits();
fmt.Printf(“finished”);
}

finished

Synchronizing goroutines

- Two ways of synchronizing goroutines in Go :
 locks (package “sync”)
 channels (synchronous or asynchronous)
- Threaded programming Is complex
 Shared memory and locks are difficult to reason about
» Risk of latent deadlocks and race conditions
® 0000 0000 0000 0000 000

» Don't communicate by sharing memory, @
: share memory by communicating :

00 0000 0000 0000 0000 o0

Channel Types

e (G0 provides primitives based on channels to synchronize
go routines.

® |n its simplest form, the type looks like this

var ¢ chan <payload type>
e Channels are a reference type (use make to allocate one)

var ¢ = make(chan int) oOr ¢ := make(chan int)

Communicating with Channels

c:=make(chan int) //create a channel for int of size O
// (synchronous)

c <-1 //send 1 on c
Vv = <- C //receive on ¢, assign to v
vV := <-C //receive and initialize v

<-C //receives on ¢ and discards value

(Goroutines & channels

fmt.Println(b)
}

(Goroutines & channels

func main(){
¢ := make(chan bool) | o
main goroutine Is stuck on the

¢ <- true .
send, waiting for someone to

D = <-cC receive on c...
fmt.Println(b)

fatal error: all goroutines are asleep — deadlock!

goroutine 1 [chan send]:

main.main()
/Users/btoninho/bitbucket.org/progconc/bad.go:14 +0x59

exlt status 2

Goroutines & channels

func print digits(c chan bool) {
for number := 1; number < 27; number++ {

fmt.Printf("%d ", number)

Y

c<-=true

}

func main(){
¢ := make(chan bool)
go print digits(c)
go print digits(c)
<-c;<-C; //receive twice & discard values
fmt.Printf(“finished”);

1234567891011 12 13 14 1516 17 1812 34567389 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 19 20 21 22 23 24 25 26 finished

Synchronous channels

c := make(chan bool)

e By default channels have size 0 (¢ has size 0)

e Channels with size O support synchronous communication

® Both sender and receiver block until a handshake can occur

goroutine teacher goroutine student

c <- “kitcat” h := <- cC
fmt.Printf(“Eating %s”,h)

Asynchronous channels

c := make(chan bool,5)

® C IS now a channel with size 5
e Channels of non-0 size provide asynchronous comm.

e Sending blocks it channel is full; receive blocks if empty.

func main(){

¢ := make(chan bool,5)
c <- true
b := <-c

fmt.Println(b)
}

true

Challenges

- Channel-based concurrency tries to alleviate the challenges of sharing
data across threads

- Races on shared variables (Bad) vs races on channel access (OK)
- Not a panacea:

 Deadlocks (Cyclic dependency on channel accesses)

e Starvation (Some threads never access what they need)

* (Go programs still manipulate state (races on data structures / variables
can still happen, accesses must be disciplined).

That's It for today...

- Go - the very basics

- (oroutines

- Channels

* Synchronous and asynchronous channels
* Basic channel ops

- Next Lecture: putting it all to use, selective communication,
walt groups, etc.

