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| ast Lecture

* High-level coordination patterns:
o Contexts
 Request Replication
e Worker Pools
* Pipelines

e Rate Limits



logay

e | ast lecture (of the module!)
 Something a bit different:
e Concurrency Research
* Concurrency + Programming Languages

* Types for Concurrency



Disclaimer

This is my particular, mildly opinionated take
on these topics.

't is not an exhaustive survey of the field.

But hopefully it will peak your interest...



Concurrency Research

 CSresearch in concurrency comes from a few different
communities:

¢ Systems
e Theory / Algorithms
e \erification / Formal methods

 Programming Languages



A Systems Approach

Developing and implementing new / better techniques and approaches to
concurrent/distributed systems.

Strong emphasis on performance, scale and scalability (quantitative).

—xamples from recent top venues:
A Scalable Oft-Heap Allocated Key-Value Map
 Wait-Free Universal Construct for Large Objects

 Delegation Sketch: a Parallel Design with Support for Fast and Accurate Concurrent
Operations

e Avoiding Scheduler Subversion using Scheduler-Cooperative Locks

* Revisiting Broadcast Algorithms for Wireless Edge Networks



A [heory Approach

* Developing new algorithms, complexity-theoretic models and establishing tighter
asymptotic bounds.

 Many different models for “computation” (congested cligue model, local model) with
many variations (synchronous, asynchronous, fault models, topological properties).

e (Usually) not about implementation:
e Synchronous Byzantine Lattice Agreement in O(log(f)) Rounds

* Almost-surely Terminating Asynchronous Byzantine Agreement Protocols with a
Constant Expected Running Time

* Exact Consensus under Global Asymmetric Byzantine Links
* Silence

* An O(log3/2 n) Parallel Time Population Protocol for Majority with O(logn) States



A Verification Approach

o Studying verification and analysis technigues for concurrent and distributed
computation models (not quite program verification, despite the name).

 Not the same models as in “theory”, but typically quite abstract.

* Main techniques: Model checking, games, automata (many different
kinds), algebras and co-algebras

e Scalable Termination Detection for Distributed Actor Systems

* Verification of Flat FIFO Systems

e Guard Automata for the Verification of Safety and Liveness of Distributed Algorithms
* Partially Observable Concurrent Kleene Algebra

e Sized Types with Usages for Parallel Complexity of Pi-Calculus Processes



A PL Approach

A combination of all of the above! PL research is a very broad and rich area (no bias
whatsoever), even it we just zoom in on concurrency.

On a spectrum between applied and foundational (usually corresponds to more
systems-y or more verification-y).

Typically targets some “minimal” model of a programming language (e.g. A-calculus/

PCF for functional languages; Featherweight Java/Scala for OO; m-calculus for channel-
based concurrency).

Main techniques: Type systems, static analysis, runtime instrumentation/checking,
program logics.

* A Separation Logic for Effect Handlers

e Distributed Causal Memory: Modular Specification and Verification in Higher-Order Distributed Separation Logic
e Practical Smart Contract Sharding with Ownership and Commutativity Analysis

o A Static Verification Framework for Message Passing in Go using Behavioural Types



A PL Approach

* |ts not just about coming up with new programming
languages.

* |n fact, mostly not about that.

* About new technigues that make “programming better":
* Stronger / more precise / expressive type systems.
* Analyses to rule out or tflag certain “bad” programs.

* Logics for program reasoning.



Sidenote

e Rust did not invent ownership types (Clarke, Potter,
Noble in OOPSLA98)

* Ownership + concurrency also not invented / unique to
Rust.

* Most new PL features of “today” were invented 20+
years ago in academia.



How do “fancy types” help with
concurrency”?

This month you will see the interaction of ownership
types for mem. management and concurrency in Rust.

Ownership types are about managing aliasing. So are
data races.... good match!

Ownership types are a form of so-called affine types.

What about channels” Does “usage control™ help”



How do “fancy types” help with
concurrency”?

 \What can go wrong with channel-based concurrency?
Deadlocks!

* Usage control of channels and deadlocks — deadlocks
arise from a mismatch in channel usage by peers!

* A lot of PL work on channel-based concurrency has
been devoted to types (and related analyses) to
orevent deadlocks.



Simple Types for Channels

* |n their simplest form: channel types specity types of
payloads (e.g. as found in Go).

* Prevents certain communication errors (e.g. expect an
int, get a string).



Simple Types for Channels

* |n their simplest form: channel types specity types of
payloads (e.g. as found in Go).

* Prevents certain communication errors (e.g. expect an
int, get a string).

 Doesn'’t prevent deadlocks or “orphan messages” (in
asynchrony, sent messages may not be received).



Channel |/O Types [San98]

e Distinguish channel input and output capabillities:

chan<- i1nt VS <-chan int VS chan int

* (Go does not have |/O types, exactly.

 |/O types are governed by subtyping (e.g., chan<-
int < chan int).

* Different threads may have different types for a given
channel.



Channel |/O Types [San98]

Distinguish channel input and output capabillities:
chan<- i1int vS<-chan int vS chan int
Go does not have |/O types, exactly.

/O types are governed by subtyping (e.Q., chan<- int <
chan int).

Different threads may have different types for a given channel.

Provides a more fine-grained control of channel usage but...
still doesn't help much.




Advanced Types for Channels

* Ownership types in Rust control the number of times a
variable Is “used”:

let sl = String::from(”“hello”); | let sl = String::from(“hello”);
let s2 = sl; let s2 = &sl;
println! (“{}"”,sl); println! (“{}"”,sl);

* | ets explore a similar idea but for channels.



|_inear Types for Channels |[KPT99]

o Control the number of times a resource (i.e. a channel)
IS used.

* A channel capability of linear type must be used
exactly once.

func f(c <-lchan int) {
c <-1
c <- 2
}
func g(c lchan int) {
c <- 1 //Bad!

}




|_inear Types for Channels |[KPT99]

o Control the number of times a resource (i.e. a channel)
IS used.

* A channel capability of linear type must be useo
exactly once.

func f(c <-lchan int) { func h(c, d <-lchan int) {
c <-1 c <- 1 //Bad! ‘d' not used.
c <- 2 }
}
func g(c lchan int) { func 1(c lchan int) {
c <- 1 //Bad! go (¢ <- 1) //out cap. used
} fmt.Println(<-c)
}



|_inear Types for Channels |[KPT99]

e Control the number of times a resource (i.e. a channel)
'S used.

* A channel capability of linear type must be useo
exactly once.

* [ype system expresses obligations on linear channels.
* Certain bad behaviors are ruled out by typing.

* Can linear channels used concurrently deadlock?



|_inear Types for Channels |[KPT99]

» Certain bad behaviors are ruled out by typing.

* Can linear channels used concurrently deadlock?

func f(c,d <-1lchan int) { func main() {

c <-1 .
q4 <— > c := make(lchan 1int)
\ d := make(lchan int)
. f
func g(c,d 1lchan<- 1int) ({ go t(c,d)

< — d go g(C,d)
<— o o
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» Certain bad behaviors are ruled out by typing.
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func f(c,d <-1lchan int) { func main() {
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\ d := make(lchan int)
. f
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Session Types |[HVKO98]

o Channel types specify a sequence of interactions.
 Channel types as protocol descriptions.

e Jakes advantage of duality of input and output

stype T = !int;?int;End dual(T) = ?int;!int;End

func f(c schan T) { func g(c schan dual(T)) {
// c:!int;?int;End // c:?int;!int;End
c <- 23 //c:?2int;End <- C // c:lint;End
fmt.Println(<-c) //c:End c <- 42 // c:End

' }
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Session Types |[HVKO98]

o Channel types specify a sequence of interactions.
 Channel types as protocol descriptions.

e Jakes advantage of duality of input and output

stype T = !int;?int;End dual(T) = ?int;!int;End

func f(c schan T) { func g(c schan dual(T)) {
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Session Types |[HVKO98]

e Session types are linear and “stateful”.
o Duality ensures compatibility of endpoints.

e Linearity ensures actions must take place in the right order.

stype T = !int;?int;End dual(T) = ?int;!int;End

func f(c schan T) { func g(c schan dual(T)) {
// c:!int;?int;End // c:?int;!int;End
c <- 23 //c:?int;End <- C // c:lint:;End
fmt.Println(<-c) //c:End c <- 42 // c:End

' }




Session Types |[HVKO98]

o Channel types specify a sequence of interactions.
e Also allows for a torm of labelled choice.

e [ypes denote finite-state automata of behaviors (CFSM).
stype T = Choice{Add: ?int;?int;!int;T,
Sym: ?int;!int;T, Quit:End}
func f(c schan T) {

for {

case c of
Add: n := <-c; m := <- ¢; c<- n+m
Sym: n := <-Cc; ¢ <- -1%n

Quit: break

+}
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Session Types |[HVKO98]

o Channel types specify a sequence of interactions.
e Also allows for a torm of labelled choice.

e [ypes denote finite-state automata of behaviors (CFSM).
stype T = Choice{Add: ?int;?int;!int;T,
Sym: ?int;!int;T, Quit:End}
func f(c schan T) {

for {

case c of
Add: n := <-c; m := <- ¢; c<- n+m
Sym: n := <-Cc; ¢ <- -1*n

Quit: break

+}



Session Types |[HVKO98]

e \What about deadlocks?

* |f two threads use a single session channel dually, no
deadlocks!



Session Types |[HVKO98]

* |f two threads use a single (no higher-order channels) session
channel dually, no deadlocks! (Theorem)

e Great but... a bit weak / restrictive.
e Active area of research:

 Behavioral Types for deadlock-freedom (e.qQ.
[Koba02,|K04,KS08,CV09,Pado14,BTP19,LP19, etc.])

 Multiparty Session Types [HYCOS8, etc]
 Behavioral Types + Model-Checking [CRRO2,LNTY17, etc.]

e “Logical” session types [CP10,TCP13,LM16,BTP18,DP20,etc.]



Dependent Session Types [TCP11]
 Add logical assertions on data to types:

stype T = Choice{Add: ?int;?int;!int;T,
Sym: ?int;!int;T, Quit:End}
func f(c schan T) {

for {

case c of
Add: n := <-c; m := <- ¢c; c<- n+m
Sym: n := <-C; Cc <- =1*n

Quit: break

}
+}



Dependent Session Types [TCP11]
 Add logical assertions on data to types:

stype T = Choice{Add: ?(x:int);?(y:int);!(z:int|z=y+x);T,
Sym: ?(x:int);!(y:int|y=-x);T, Quit:End}
func f(c schan T) {

for {

case c of
Add: n := <-c; m := <- ¢; c<- n+m
Sym: n := <-Cc; Cc <- =1%*n

Quit: break

}
}}
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stype T = Choice{Add: ?(x:int);?(y:int);!(z:int|z=y+x);T,
Sym: ?(x:int);!(y:int|y=-x);T, Quit:End}
func f(c schan T) {

for {
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Add: n := <-c; m := <- ¢; c<- n+m
Sym: n := <-c; Cc <- -1%n

Quit: break

}
}}



Dependent Session Types [TCP11]
 Add logical assertions on data to types:

stype T = Choice{Add: ?(x:int);?(y:int);!(z:int|z=y+x);T,
Sym: ?(x:int);!(y:int|y=-x);T, Quit:End}
func f(c schan T) {

for {

case c¢ of
Add: n := <-c; m := <- ¢; c<- n-m
Sym: n := <-C; ¢ <- =1*n

Quit: break

}
}}



Dependent Session Types [TCP11]

 Add logical assertions on data to types...

* More to It than that;
 Compile-time veritication requires decidable assertions
e ...0r explicit proof objects
* Implications on trust if in a distributed setting

* [ype dependency + linearity Is very tricky



Multiparty Session Types [HYCOS8]

* A framework for deadlock-free communication between many
parties/endpoints using multiple channels.

* Generalizing duality (two endpoints) to multiparty compatibility
(many endpoints).

* Global types specity the conversation from a global perspective:

B — S :ltemld.

S — B :Quote.

B—S:{Ok:S— Sh:{Ok:S — Sh: Address.
Sh — S : Receipt.
S — B : Receipt.
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Multiparty Session Types [HYCOS8]

* A framework for deadlock-free communication between many
parties/endpoints using multiple channels.

* GGeneralizing duality (two endpoints) to multiparty compatibility
(many endpoints).

 Endpoint types are algorithnmically derived from global types:

G1B = Sl(ltemld); S?(Quote); SI{Ok : S?(Receipt).end, Quit : ...}

G1S = B?(ltemld); B!(Quote); B?{Ok : Sh'{OFk : Sh!(Address); Sh?(Receipt); B!(Receipt), Quit : ... },
Quit : ...}

G 1Sh = S?{Ok :S?(Address);S!(Receipt); end, Quit : ...}
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(many endpoints).
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Multiparty Session Types [HYCOS8]

G1B = Sl(ltemld); S?(Quote); SI{OFk : S?(Receipt).end, Quit : ...}

G1S = B?(ltemld); B!(Quote); B?{Ok : Sh'{OFk : Sh!(Address); Sh?(Receipt); B!(Receipt), Quit : ... },
Quit : ...}

G 1Sh = S?{Ok :S?(Address);S!(Receipt); end, Quit : ...}

e (Global types are essentially message sequence charts.

o For "well-formed” global types, it endpoints adhere to endpoint
types, deadlock-freedom guaranteed.

 No “"orphan messages".

e Ongoing research on relaxing “well-formedness” / increasing
expressiveness.



Model-Checking Types [CRRO2]

* What is model-checking” [Emerson et al. 80,86, ... |

* An automated method for veritying it (concurrent) finite-
state systems satisty a given temporal property.

* Finite-state systems modeled as ~finite-state automata
(more precisely, Kripke structures).

 What are temporal properties”? Formulas in Linear
Temporal Logic (LTL).

« MF @ (i.e., system satisfies formula) is decidable.



Model-Checking Types [CRRO2]

e What is LTL? [Pnueli77]
. Propositional Logic (A A B, 7 A) +
* “In the neXt state, A is true” (X A)
e “Ais true Until B becomes true” (A U B)
e “Ais Globally (always) true” (G A)

* “Ais true at some point in the Future” (F A)



Model-Checking Types [CRRO2]

o Safety properties (“something bad won't happen”)
o G (reactor_temp > 1000)
o G —(crit_region1 A crit_region?2)
* [ iveness properties (“something good will happen”)
« G (sending = F received )
e F(x>5)
* Fairness (“something good always will happen in the future”):

G (F crit_region)



Model-Checking Types [CRRO2]

* \What is model-checking good for?

Provide a model of your system as a finite state “automata’.
Provide a specification in the form of an LTL formula.

Model-checking can decide whether the model satisties the spec.,
and if it doesn't, can provide a counter-example.

Variants exist with “richer” models (process models) and slightly richer
logics (modal p-calculus — can talk about state changes via actions).

Sounds great but... model-checking LTL is PSPACE-Complete, u
-calculus is PSPACE-Complete. But is still usable in practice! (lots of
work to make it so).




G 1B

Model-Checking Types [CRRO2]

* \What does it have to do with types”

S!(ltemld);

S?(Quote);

SHOE : S?(Receipt).end,
Quit : ...}

func Buyer(sellerChan schan T
//Determining item logic..
sellerChan <- itemId
quote := <- sellerChan
i1f quote < .. {
sellerChan <- Ok
recelpt := <- selerChan
} else

//Quit logic

uyerSeller) {



Model-Checking Types [CRRO2]

* |n this "world”, types for endpoints are very descriptive:

func Buyer(sellerChan schan TBuyerSeller) {
G1B = Sl(ltemld); //Determining item logic..
S?(Quote); sellerChan <- itemId
SI{Ok : S?(Receipt).end,| duote := <- sellerChan
tht:...} 1f quote < .. {
sellerChan <- Ok
recelpt := <- selerChan
} else
//0Quit logic
}




Model-Checking Types [CRRO2]

func Buyer(sellerChan schan TBuyerSeller) {
G1B = Sl(ltemld); //Determining item logic..
S?(Quote); sellerChan <- itemId
SI{Ok : S?(Receipt).end,| duote := <- sellerChan
tht:...} 1f quote < .. {
sellerChan <- Ok
recelpt := <- selerChan
} else
//0Quit logic
}

e Such rich types can reasonably be used as models.



Model-Checking Types [CRRO2]

G1B = Sl(ltemld); G1S = B?(ltemld); G 1Sh = S?{Ok:S?(Address);
S?(Quote); B!(Quote); S!(Receipt);
' . Q9 - B?{OFk : Sh!(Address); end,
>H{ Ok tS (Receipt).end, Sh?(Receipt); Quit : ...}
Quit:...} B!(Receipt),
Quit : ...}

 \We can engineer formulae that denote properties of interest:

. GUS!) T = F(S!?) T)) “Eventual reception for S’

e GUSHT VS TVBHYTV...)=(*) T "No global deadlocks”
 Can also do “no partial deadlocks”, but its a bit verbose...

o Useful it we can extract/infer such types from code, but has limitations wrt data
dependent behaviors and termination.




This is all great but...
how about In practice”



Session Types In Practice

e Session types rely on linear typing, which is absent from most
general purpose languages.

* Without linearity, compile-time correctness is compromised.
* Options:

e Forego linearity, relying on dynamic checks.

 Extend the host language’s type system.

* Encode linearity in the host language’s type system in some way.



Session Types In Practice

* Foregoing linearity:
* We still want to provide correctness guarantees.

* |ldea: Encode the session behavior using the
language's type structure



Session Types In Practice

G1B = Sl(ltemld);
S?(Quote);
SHOE : S?(Receipt).end,
Quit : ...}



Session Types In Practice

type BStatel struct
SellerChan chan

}

type BStateZ2 struct

type BState3d struct

{

interface{}

{ ..
{ ..

}
}

G1B = Sl(ltemld);

S?(Quote);
SHOE : S?(Receipt).end,
Quit : ...}



Session Types In Practice

G1B = Sl(ltemld);

type BStatel struct { S7(Quote);
: SHOE : S?(Receipt).end
SellerChan chan interface({} ¥ )
) Quit : ...}

type BState2 struct { .. }

func (b *BStatel) SendItemIdToS(itemId int) *BState2 {
b.SellerChan <- itemId
return &BStateZ2{b.SellerChan}



Session Types In Practice

type BStatel struct { G1B = S!(ltemld);
SellerChan chan interface{} S?(Quote);

' SHOE : S?(Receipt).end,

type BState2 struct { .. } Quit: ...}

func (b *BStatel) SendItemIdToS(itemId int) *BState2 {
b.SellerChan <- itemId

return &BState2{b.SellerChan}

}
func (b *BState2) RecvQuoteFromS() (*Quote, *BState3d) ({

quote := <- b.SellerChan
return quote. (*Quote) , &BState3{b.SellerChan}
}



Session Types In Practice

G1B = Sl(ltemld);

S?(Quote);
SHOE : S?(Receipt).end,
Quit : ...}
func BeginSession() (*SStatel,*BStatel,*ShStatel) {

BandS := make(chan interface{})
SandSh := make(chan interface{})
return &SStatel{BandS,SandSh},
&BStatel {BandS},
&ShStatel {SandSh}
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G1B = Sl(ltemld);

S?(Quote);
SHOE : S?(Receipt).end,
Quit : ...}
func BeginSession() (*SStatel,*BStatel,*ShStatel) {
BandS := make(chan interface{})
SandSh := make(chan interface{})

return &SStatel{BandS,SandSh},
&BStatel {BandS},
&ShStatel{SandSh}




Session Types In Practice

func BeginSession() (*SStatel,*BStatel,*ShStatel) {
BandS := make(chan interface{})

SandSh := make(chan interface{}) G1B = Sl(ltemld);

return &SStatel{BandS,SandSh}, S7(Quote); |
&BStatel {BandS}, S!{Okf S7(Receipt).end,
&ShStatel {SandSh} Quit : ...}

}
func Buyer (b *BStatel, threshold float32) *Receipt {

g, b := b.SendItemIdToS(93).RecvQuoteFromsS/()
if (g.price < threshold) {
b := b.ChooseOkToS ()

recelipt, b := b.RecvReceiptFromS(); b.EndSession();
return receipt

} else {
b := b.ChooseQuitToS()



Session Types In Practice

e Encode session states as Go structs.
e Possible actions as availlable methods.

e Actions always produce the corresponding next state
(fluent API).

 API| “enforces” the state change, but some programmer
cooperation Is required...

 \What about linearity”



Session Types In Practice

type BStatel struct {
SellerChan chan interface{}
used boolean

}
type BState2 struct { .. }

func (b *BStatel) SendItemIdToS(itemId int) *BState2 {
if b.used { panic() }
else {
b.used = true
b.SellerChan <- i1temId
return &BStateZ2{b.SellerChan}

Y



Session Types In Practice

 What about linearity”

 Can dynamically enforce that each state is used at
MOSt once.

e Cannot enforce that states are used, but, If used then
porotocol is followed.

* Programming this encoding by hand Is rather tedious
SO....



Session Types in Practice
[CHJINY19]

1 global protocol Pget(role M, role F, role S) {

2 Head from F[1] to S; Res from S to F[1]; // (1) Obtain metadata from Server

3 Meta from F[1] to M; Job from M to F[1,K]; // (2) Allocate Fetcher download tasks
4 Get from F[1,K] to S; Res from S to F[1,K]; // (3) Perform downloads

5 Data from F[1,K] to M; Sync@A from F[1,K] to M; // (4) Gather data and control channels

6 y // Sync@A is the local type projection of Sync onto A, 1.e., a delegation

7 global protocol Sync(role A, role B) { choice at A { Done from A to B; } // Choice: terminate B (i.e., F;) or ...

8 or { ... } }

* Roles are parameterized to allow for more explicit
representation of concurrent topologies.

 |f protocol is “well-formed”, generate API.



Session Types in Practice
CHJINY19

Method name and signature (parameters, result type)

State type (with nested peer/action types)

State
M_1
M_2
M_3
M_4

Peer(s)
F_1

F_1toK
F_T1toK
F_1toK

I/O action

Receive
Scatter
Gather

GatherAndSpawn

func mainM(req HttpReq, K int) {
proto := Pget.New()
M := proto.M.Kgt1.New(K) // API for K>1
ss1 := shm.Listen(8888+1); defer ss1.close()

M.F_1.Accept(ss1)
for 1 := 2; 1 <=K; i++ {

ssi := shm.Listen(8888+1); defer ssi.close()

1
2
3
4
5 go mainF1(req, 8888+1)
6
7
8
9

go mainF_2toK(req, 8888+1)
10 M.F_2toK.Accept(i, ssi) // Supported by K>1 API 23 func runA(a *A_1) End_A {
11 M.run(runM) // runM: func(*M_1) End_M

12 } }

Message label/values, aux. functions

Meta(a *Meta)

Job(a [J]Job)

Data(a []Data)

Sync_A(run func(*A_1) End_A)

14 func runM(m *M_1) End_M {

Successor
*M_2

*M_3

*M_4
End_M

15 var meta Meta; var data Data
16 // F[1]?Meta. F[1,K]!Job. F[1,K]?Data. F[1,K]?Sync@A

17  return m.F_1 .Receive .Meta(&meta).

18 F_1toK.Scatter .Job(split(&meta)).
19 F_1toK.Reduce .Data(&data, agg).
20 F_1toK.GatherAndSpawn.Sync_A(runA)

21 }

22

24 return a.B.Send.Done() // Just do Done, for brevity

25 3



Session Types in Practice
[CHJNY19]

 Based on earlier work [HY17] for Java, which is more
faithful to what was shown earlier (e.g., noO
parameterized roles).

e Communication substrate can be channels or actual
sockets.

o Similar (but simpler) approaches exist for Scala
[SDHY17], Python [DHHNY15] and F# [NHYA18].



Model Checking Go Types
[LNTY17,LNTY 18]

* Previous works presuppose you have the global
specification and want to write the endpoints.

* Often we already have the program and want to verity
ts properties.

 Can we extract from a (Go program a type-based
abstraction (i.e. a model) and then verify it



Model Checking Go Types

Model

|—> Checker
G0 [ In_ferenceJ_> Behavioural \mCRLZ [10]
Source -—>l ——»O

~code | ° Go SSA | types ) L’”'I‘ermination
‘ ) Checker

KITTeL [17]
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Model Checking Go Types

func prod(ch chan int) {
for 1 := 9; 1 < 5; 1++ {
ch <- 1 // Send 1 to ch
}

Go
Source —=
code
- w,

\

Inference

Go SSA

close(ch) // No further values accepted at ch

)
func cons(chl, ch2 chan int) {
for {
select {
case x := <~-chl: print(x) // Either 1input from chl
case x :® <-ch2: print(x) // or input from ch2
)
}
}
func main() {
chl, ch2 := make(chan int), make(chan 1int)

go prod(chl)
go prod(ch2)
cons(chl, chl)

)

Behavioural | o

types

) T

" Model
Checker

mCRL2 [10]

Termination
Checker

KITTeL [17]
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Model Checking Go Types

s

Model
\ ) ) Checker
Go : I
Inference Behavioural \mCRLZ [10]
Source Go SSA types .
code \ L, Termination
func prod(ch chan int) { ' - Checker
for 1 := 9; 1 < 5; 1++ {
ch <- 1 // Send 1 to ch KITTeL [17]
}
close(ch) // No further values accepted at ch
}
func cons(chl, ch2 chan int) { -
for { {prod(ch) = ch;prod{ch) & closech
select { / X : cons(chl, ch2) = &{chl;cons{chl, ch2), ch2;cons{chl, ch2)}
case x :% <~chl: print(x) // Either 1input from chl .
case x :m <-ch2: print(x) // or input from ch2 main() = (newchl, ch2);(prod{chl) | prod{ch2) Icons(c.hl, ch.l))}
) inmain()
}
}
func main() ¢
chl, ch2 := make(chan int), make(chan int)

go prod(chl)
go prod(ch2)
cons(chl, chl)
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Model Checking Go Types

func prod(ch chan int) {

for 1 ::= 9; 1 < 5; 1++ {
ch <- 1 // Send 1 to ch
}
close(ch) // No further values accepted at ch
}
func cons(chl, ch2 chan int) {
for {
select {
case x := <~-chl: print(x) // Either input from chl
case x := <-ch2: print(x) // or input from ch2
)
}
}
func main() {
chl, ch2 := make(chan int), make(chan 1int)

go prod(chl)
go prod(ch2)
cons(chl, chl)

}

{ prod(ch) = a;pmd(ch) & closech

cons(chl, ch2) = &{chl;cons{chl, ch2), ch2;cons{chl, ch2)}

main() = (newchl, ch2);(prod{chl) | prod{ch2)

| cons{chl, chl ))}

inmain()
¥ ($)E vx. (A [Alx) (Always]
(9= py.($V (A)y) [Eventually)
g L (AT (No terminal
Ve = py. [Aly [No cycle]
Vg = (Aaeala V1z) = (AT [No global deadlock]
U % (Aaes la V 12) = @ ((1a)T) Liveness (s)
v, j{ (Nicp) la) = ©(({ta|a € @)})T) [Liveness (b)
e

— ﬂ(~LE \4 lclo a)
= & ((14)T)

% = (/\aeﬂ la*)
def

Ve = (/\aeﬂ la*)

[Channel safety’

[Eventual reception



Model Checking Go Types

* Analyze Go programs in SSA form:

func myselect(c chan int) {

select {
case msg := <-C:
print("received: ", msg)

case <-time.After(time.Second):
print("timeout: ready 1in 1s")
default:
print("default: always ready")

}
}
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Model Checking Go Types

* Analyze Go programs in SSA form:

func myselect(c chan int) {

select (

case msg :=
print("received: ", msg)

case <-time.After(time.Second):
print("timeout: ready 1in 1s")

default:
print("default:

<=C:

always ready")

func myselect(c)

entry
O Y
t0 = time. After(3:time.Duration)
t1 = select nonblocking [<—c,<-1t0] // receive
t2 = extract t1 #0 // case index [~ (...)
t3 = t2 == jump 1
if t3 goto 2 else 3
X l 4
[/ timeout 1 Y
t4 = t2 == | ( )
if t4 goto 4 else 5 /] cont.
‘ jump 1 — (...)
return
5
// default T
> ) ‘return
jump 1 l
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Model Checking Go Types

* Analyze Go programs in SSA form:

func myselect(c chan int) {

select (

case msg :=
print("received: ", msg)

case <-time.After(time.Second):
print("timeout: ready 1in 1s")

default:
print("default:

<=C:

always ready")

func myselect(c)

entry
0 Y
t0 = time. After(3:time.Duration)
t1 = select nonblocking [<-c,<—10] // receive
t2 = extract t1 #0 // case index [~ (...)
t3 = t2 == jump 1
if t3 goto 2 else 3
. ;
[/ timeout 1 Y
t4 = t2 == | ( )
if t4 goto 4 else 5 /I cont.
‘ jump 1 — (...)
return
5
// default T
> ) return
jump 1 l
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Model Checking Go Types

* Analyze Go programs in SSA form:

func myselect(c chan int) {

select (

case msSg :=
print("received: ", msg)

case <-time.After(time.Second):
print("timeout: ready 1in 1s")

default:
print("default:

<=C:

always ready")

func myselect(c)

entry
0 Y
t0 = time. After(3:time.Duration) 2
t1 = select nonblocking [<-c,<—10] // receive
t2 = extract t1 #0 // case index [~ (...)
t3 = t2 == jump 1
if t3 goto 2 else 3
i l 4
[/ timeout 1 Y
t4 = t2 == \ ()
if t4 goto 4 else 5 /] cont.
‘ jump 1 — (...)
return
5
// default T
> ) return
jump 1 l
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Model Checking Go Types

* Analyze Go programs in SSA form:

func myselect(c chan int) {

select (

case msg :=
print("received: ", msg)

case <-time.After(time.Second):
print("timeout: ready 1in 1s")

default:
print("default:

<=C:

always ready")

func myselect(c)

entry
0 Y
t0 = time. After(3:time.Duration)
t1 = select nonblocking [<—c,<=1t0] // receive
t2 = extract t1 #0 // case index [~ (...)
t3 = t2 == jump 1
if t3 goto 2 else 3
] 4
[/ timeout 1 Y
t4 = t2 == | ( )
if t4 goto 4 else 5 //cont.
| jump 1 — (...)
return
5
// default T
> ) return
jump 1 l
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Model Checking Go Types

* Analyze Go programs in SSA form:

func myselect(c chan int) {

select (

case msg :=
print("received: ", msg)

case <-time.After(time.Second):
print("timeout: ready 1in 1s")

default:
print("default:

<=C:

always ready")

func myselect(c)

entry
0 Y
t0 = time. After(3:time.Duration)
t1 = select nonblocking [<—c,<=1t0] // receive
t2 = extract t1 #0 // case index [~ (...)
t3 = t2 == jump 1
if t3 goto 2 else 3
] 4
[/ timeout 1 Y
t4 = t2 == | ( )
if t4 goto 4 else 5 //cont.
| jump 1 — (...)
return
5
[/ default T
> ) return
jump 1 l



Model Checking Go Types

Analyze Go programs in SSA form.

Since Go’s channel-based comm. are language
orimitives, they are all explicit in the SSA IR.

Roughly, each SSA block is extracted as a separate
type definition.

Some post-processing can minimize the definitions.



Model Checking Go Types

 Fach SSA block is extracted as a separate type
definition:

......................... e
O Y
t0 = time. After(3:time.Duration) 2
t1 = select nonblocking [<-c,<—1t0] // receive
t2 = extract t1 #0 // case index —> (...)
t3 = t2 == 0 jump 1
if t3 goto 2 else 3 ‘
l 4
3 : L
[/ timeout 1 Y
t4 = t2 ==
. ) > (...) [/ cont.
if t4 goto 4 else 5 , |
| 4 jump 1 — (...)
return
5
[/ default T
>
() return
jump 1




Model Checking Go Types

 Fach SSA block is extracted as a separate type
definition:

func myselect(c)

t0 = time. After(3:time.Duration)
t1 = select nonblocking [<-c,<—10]

// receive

t2 = extract t1 #0 // case index (...)
t3 = t2 == {) Jump 1
if t3 goto 2 else 3
i l 4
[/ timeout 1 Y
t4 = t2 == 1 ‘ ..\
if t4 goto 4 else 5 //cont.
jump 1 Ll ()
return
5
[/ default T
g () return
jump 1 l

-
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10

func myselect(c chan int) {

select {
case msg := <-=C:
print("received: ", msg)

case <-time.After(time. Second):
print("timeout: ready in 1s")
default:

print("default: always ready")

myselecty(c) = & {c; myselect;{c); myselect;{c),

myselecti(c)= 0

r;myselecty(c); myselect;{(c),
r; myselects(c); myselect;(c)}
fori € {1,2,4,5)

myselect3(c)= myselecty(c) ® myselects(c)



Model Checking Go Types

* Once types are extracted, model checking for liveness and
safety properties:

* Eventual reception of messages

 Channel safety (no send or close on closed channel)
» (Global deadlock-freedom

» Partial deadlock-freedom

e Termination checking of loops is also employed (loop
guards obtain during type extraction).



Model Checking Go Types

Godel Checker

Programs LoC | #states ¥, ¥; ¢¥s V. Infer Live Live+CS Term
1 mismatch [36] 29 53 X X v v 620.7 996.8 996.7 v
2 fixed [36] 27 16 v v v v 624.4 996.5 996.3 v
3 fanin [36, 39 41 39 v v v v 631.1 996.2 996.2 v
4  sieve [30, 36] 43 00 n/a - - E n/a
5 philo [40] 41 65 X X v v 6.1 996.5 996.6 v
6 dinephil3 [13, 33] 55 3838 v v v v 645.2 996.4 996.3 v
7 starvephil3 47 3151 X X v v 628.2 996.5 996.5 v
8 sel [40] 22 103 X X v 4.2 996.7 996.6
9 selFixed [40] 22 20 v v v v 4.0 996.3 996.4 v
10 jobsched [30] 43 43 v v v v 632.7 996.7 1996.1 v
11 forselect [30] 42 26 v v v 623.3 996.4 996.3 v
12 cond-recur [30] 37 12 v v v 4.0 996.2 996.2 v
13 concsys [42] 118 15 x X v 549.7 996.5 996.4 ve
14 alt-bit [30, 35] 70 112 v v v v 634.4 996.3 996.3 v
15 prod-cons 28 106 v o x v o/ 4.1 996.4 1996.2 v
16 nonlive 16 8 v v v v 630.1 996.6 996.5 timeout
17 double-close 15 17 v v o x / 3.5 996.6 1996.6 v
18 stuckmsg 8 4 v o v v X 3.5 996.6 996.6 v
19 dinephil5 61 ~1M v v v 626.5 41.2sec 41.4 sec v
20 prod3-cons3 40 57493 v v v/ 465.1 409sec  40.9 sec v
21 async-prod-cons 33 164897 v VvV V 43 47.7sec  89.4 sec v
22 astranet [26] ~18k 1160 v v v v’ 25125 704 sec 75.0 sec v

Column 4 5 6 7 8 9 10 11 12




summary

* A briet and narrow overview of (message-passing) concurrency
research in PL.

e Two particular instances applied to Go.

 Many (hot) topics were not covered:
* Higher-order concurrent separation logic (hot!)
* Logical (and richer) session types (hot!)
* |Infinite state systems?”

* |nterplay of shared memory + channel-based concurrency.
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