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This thesis presents a formal business process modelling language called StAC.
The distinctive feature of this language is the concept of compensation, which
can be defined as the action taken to correct any errors or when there is a change
of plan. The motivation for developing StAC came from a collaboration with
IBM concerning the extension of existing notions of compensation for business
transactions within the BPBeans enterprise technology.

The StAC language supports sequential and concurrent processes, as well as
compensation and early termination. A system specification has two compo-
nents, the StAC processes that describe the system behaviour and compensation
information, and the B specification that describes the system state and its basic
operations. The language has two variants: the basic one that supports nested
compensation; and an extended one where each process may have multiple com-
pensations. Both StAC variants were applied to several examples and it emerged
that both variants have features that make them useful to specify different types
of systems. An operational semantics was defined for StAC extended with mul-
tiple compensation, and the interpretation of basic StAC was defined in terms
of the extended language. An operational approach is also used to justify the
integration of StAC processes with B operations.

A strategy for the refinement of StAC specifications is explored in this thesis.
This strategy proposes to explicitly embed the behavioural and compensation
information into a B machine. The machine obtained is standard B, allowing
the use of the B notion of system refinement to prove the refinement of StAC
specifications.

An extension to UML activity diagrams is defined as a way of making StAC
more accessible to non-formal methods users. In UML a StAC specification is
modelled by a class diagram that describes the data, and an activity diagram
that describes the behaviour of the system.

StAC has formalised the notion of compensation while extending the notion
of transaction compensation in several ways. The most relevant extensions are:
the non-atomicity of compensation that allows a compensation to be a complex
process and that a compensation itself can be compensated; and multiple com-
pensation that allows a process to have several independent compensations.
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Chapter 1
Introduction

The motivation for this work came from the collaboration of the Declarative
Systems and Software Engineering (DSSE) Group with the Transaction Process-
ing Design and New Technology Development Group at IBM UK Laboratories,
Hursley. The collaboration has been concerned with approaches and techniques
for component-based enterprise system development, in particular, with IBM’s
BPBeans (Business Process Beans) technology, that is a feature of the IBM Web-
Sphere Application Server Enterprise Edition. We started our work by analysing
the underlying semantics of the graphical design language of the Application
Builder for Components (ABC) tool [CVG101b], a tool that supports the devel-
opment of BPBeans applications. The ABC tool has the following basic features:

e The target enterprise solution is built by composing Enterprise Java Beans
(EJBs) [MH99].

e The tool allows sequential and parallel composition of behaviours.

e [t should be possible for earlier actions to be compensated, whereby the
system keeps track of the compensations that need to be executed if part

of a process is to be aborted.

The IBM group believes that compensation gives more flexibility than the tra-
ditional commit-rollback approach to transaction processing. This flexibility is
necessary for the heterogeneous distributed environment on which modern en-
terprise systems operate. In the case of abnormal events, instead of restoring
the system to the state before activities were performed, activities can have a

compensation activity associated with them.
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Compensation is a key concept in this thesis, therefore in this paragraph we
will try to describe what is our interpretation of compensation. In the context of
business transactions, Gray [GR93] defines a compensation as the action taken
to correct any errors or when there is a change of plan. Consider the following
example, a client buys some books in an on-line bookstore, the bookstore debits
the client’s account as the payment for the book order. The bookstore later re-
alises that one of the books in the client’s order is out of print. To compensate
the client for this problem, the bookstore can credit the account with the amount
wrongfully debited and send a letter apologising for their mistake. This example

shows that a compensation can be more than just undoing previous actions.

The main goal of our work is to clarify and understand the mechanics of compen-
sation, which is a complex concept. The complexity arises in particular because
of the combination of compensation with parallel execution. We have defined
a formal business process modelling language based on the ABC design lan-
guage, called StAC [BF00] (Structured Activity Compensation). StAC supports
sequential and concurrent processes, as well as compensation. In ABC, the de-
scription of a system determines the way to “connect” simple components (EJBs)
in order to create a complete system. In StAC, the components are B [Abr96]
operations (B is a model-oriented formal notation). We use B instead of EJBs
because it provides a higher-level description, and we want the StAC language
to have a formal semantics. In our approach a system specification has two
components: the StAC specification that describes the execution order of the
operations including ordering of compensation operations, and a B specification

that describes the state of the system and its basic operations.

In Section 1.1 we briefly describe business transactions and ways of recovery from
failures. Section 1.2 presents some related work that could be used in business

process modelling.

1.1 Transactions and Failure

The concept of transaction is described in [GR93] as a collection of operations on

the application state. A standard example of a transaction is the credit or debit
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of money from a bank account. The crucial problems in transaction processing
are maintaining state consistency when concurrent transactions are reading and
changing the state, and recovering from failure. ACID transactions (which satisfy
the atomicity, consistency, isolation, and durability properties) were introduced

to deal with consistency and failure in transaction processing.

1.1.1 ACID Transactions

ACID transactions were presented by Gray in 1983 [GR93]. An ACID transaction

is a collection of operations that has the following basic properties:

Atomicity Either all operations of the transaction succeed or none of the opera-
tions happen. When all operations of a transaction succeed, the transaction

ends with commit. Otherwise it ends with rollback.

Consistency The execution of all operations of a transaction results in a con-
sistent state, assuming that the state at the beginning of the transaction

was consistent.

Isolation A transaction is executed as if no other transaction is executed at the
same time. In practice several transactions are executed at the same time,
but it appears to each transaction that the other transactions occurred

before or after it.

Durability Once a transaction commits all of its effects will survive any system

failures.

An ACID transaction is the basic building unit for organising an application into
atomic blocks of operations. ACID transactions are bracketed by a begin work
instruction and a end work instruction. Two different end work instructions can
be called at the end of the transaction: a commit instruction if the transaction

has succeeded or a rollback instruction if the transaction aborted.

The major disadvantage of ACID transactions is that it is not possible to com-
mit or abort parts of such transactions. When considering long running trans-
actions, that involve long and complex operations, the ACID behaviour implies
that rolling back will be very expensive. Moreover, a long running transaction is

more frequently interrupted by failures because of its long execution time.
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1.1.2 Compensation

A compensation is the action taken to correct something that has gone wrong.
Generally a compensation undoes the action that occurred. But there are actions
that are not reversible, as for example the firing of a missile, which can be com-

pensated by destroying the missile before it reaches its target.

The concept of compensation comes from the transactions described in [Gra81],
where these have an associated compensation transaction that corrects any errors
of an already committed transaction. Garcia-Molina and Salem [GMS87] used the
idea of compensation transaction to overcome the problems of long running ACID
transactions, by defining the concept of sagas. A saga partitions a long running
transaction into a sequence of several smaller subtransactions, where each of the
subtransactions has an associated compensation. If one of the subtransactions in
the sequence aborts, the compensation associated with those subtransactions is

executed in reverse order.

1.1.3 BPBeans

The BPBeans framework is described in [CVGO01la] and [MRST00]. A BPBean
is a Java class' that describes a simple action that needs to be performed by a
system. Generally, a BPBean will receive a piece of input data, process it, update

some stored data, and produce a result.

The BPBeans framework tool allows an application designer to build an ap-
plication by defining a nested hierarchy of business processes. The top level of
the hierarchy describes the major processes of the system, where each process
can be decomposed into several subprocesses. The leafs of the hierarchy are basic
operations, described by BPBeans. The tool supports several process combina-
tors, as parallel and sequential, that can either communicate synchronously or
asynchronously. The BPBeans runtime is then responsible for combining the
necessary middleware to support the application. Also, the runtime will con-
trol transactions and advanced error recovery, such as compensation, through

properties and constructs added to the business process model.

'More specifically a BPBean is a combination of a JavaBean with some XML code that
describes the services required by the JavaBean. The XML code is generated when the BPBean
is loaded into the ABC tool. A JavaBean is a Java class that implements a specific interface.
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/ Travel Agency \

Figure 1.1: BPBeans example

1.1.3.1 ABC Tool

As mentioned before, a BPBeans application is made up of a hierarchy of nested
components. At the bottom of this hierarchy are the primitive components, which
are referred to as activities. Using the ABC tool, the application designer can
connect these primitive components into composite components called processes.
Processes may also contain other processes, which is how the hierarchy of com-
ponents is built up. The ABC tool supplies several process connectors, the more

relevant are the following:
Concurrent Where several processes or activities are executed in parallel.

Sequential A sequential process will step through a sequence of tasks according

to a predefined order.

Compensation Pair A compensation pair has two elements, a primary task
and a compensation task. If the primary task is executed, the compensation
task is remembered and can be called later if the primary task needs to be

compensated.

We refer to the invocation of compensation activities as reversal. If we reach a
point where compensation will no longer be required, compensation activities can

be forgotten. We refer to this as acceptance.

The BPBeans framework uses a graphical representation of the patterns described

above. Also, the framework provides for acceptance and reversal of tasks, which
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are represented in Figure 1.1. In this figure, the ovals represent activities, while
boxes and arrows are used to group and order these. The boxes with the dashed
line represent compensation pairs. In this case, Book Flight is compensated by
Cancel Flight. Arrows represent sequencing of activities, so Book Flight occurs
before Credit Check. Processes in the same box not connected by arrows repre-
sent concurrent activities, so the compensation pairs with primary processes Book
Flight and Book Hotel take place concurrently. The box with the tick represents
transaction acceptance, while the box with the cross represents transaction re-
versal. The solid circle represents the entry point, while the circle with the dot in
the center represents the exit point. A process in BPBeans may consist of several

hierarchically structured diagrams.

1.2 Related Work

In this section we briefly discuss notations that could be used in the context
of business process modelling. We divided the notations in five categories: for-
mal notations, graphical notations, combined notations, transaction processing

models, and specific business process modelling notations.

1.2.1 Formal Notations

Here we will describe some well-known formal notations. We will look at event-
based and state-based notations. In a state-based formalism a system is described
in terms of state evolutions, while in a event-based formalism a system is described
by sequences of events. The first two approaches presented, Hoare’s Communi-
cating Sequential Processes (CSP) [Hoa85] and Milner’s Calculus for Communi-
cating Systems (CCS) [Mil89], are event-based approaches. In the last subsection
we present a state-based approach, B AMN developed by Abrial [Abr96]. From
the existing formal languages, we present the ones that are most relevant to this

thesis.

1.2.1.1 CSP

CSP is a process algebra where a process communicates with the environment
through events. The set of all events that a system can perform is called alphabet.

The behaviour of a process is described by an algebraic expression constructed
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by atomic events and CSP operators. Atomic events are either basic processes or

elements of the process alphabet.

The CSP language includes several basic processes, such as STOP that refuses
to engage in any event, and SKIP that describes successful termination. CSP
also provides process constructors for defining structured processes. The event
prefixing expression a — P represents the process that engages in event a and
then behaves as process P. CSP has two different kinds of choice: external and
internal. External choice is described by the operator [|: the expression P[|Q
describes the process that can behave like either P or () — this choice is resolved
by the environment. The internal choice is described by the operator r: the
expression P () also describes the process that can behave like either P or @),

but in this case the choice is resolved internally by the process.

The parallel composition of processes is represented by P || . The process
P || @ executes P and () concurrently, and it can only interact by synchronis-
ing over common events of both alphabets. The parallel operator can introduce
deadlock (where no process can make any progress) if both processes do not have
a common next event. A related approach to parallel composition is given by
the interleaving operator, written P ||| Q). Here, processes P and () are executed

independently of each other.

Processes can be defined recursively. The recursive expression u P e E(P) be-
haves as E(P), where E(P) is a guarded expression containing P. The expression
p P e E(P) has an unique solution; Hoare [Hoa85] shows that this solution is the
weakest fixed point of the function of P = E(P).

The hiding operator is used to hide events from the environment. The expression
P\ C describes the process that behaves as P with each event in C' hidden, where
C'is a set of events from the alphabet of P.

The most simple semantic model for CSP is the traces model, which describes
the process behaviour in terms of sequences of observable events (each sequence
of events is called a trace). The traces model is unable to distinguish internal and

external choice, and does not model divergence. A divergence is a trace that can
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lead to an infinite sequence of internal events. The failures-divergences model is
a more complex model that overcomes these limitations of the traces model. In
failures-divergences model, a process is modelled by two sets: a set of failures and
a set of divergences. A failure is a pair (s, X), where s is a sequence of events of
P, and X is a set of events that P can refuse from that state on. These semantic
models can be used to define refinement in terms of inclusion of sets of traces.
The FDR tool [FDRI7] from Formal Systems supports the automated analysis

and verification of CSP processes.

1.2.1.2 CCS

CCS is a process algebra similar to CSP. The CCS language has similar construc-
tors to CSP, although it uses different denominations and notations to describe
those constructors. The CSP basic processes SKIP and STOP are represented
in CCS as 0 and NIL. CCS describes event prefixing as ‘.’, external choice as ‘+’,

and parallelism as ‘|".

The differences between CSP and CCS are not just syntactical, there are signifi-
cant differences in their interpretation of some operators [But92]. One difference
is in the hiding operator, as CCS has a special event 7 that represents unob-
servable behaviour. Hiding an event is just renaming it to 7. Another difference
is that CCS does not have an internal choice operator. Internal choice may be
expressed in CCS using 7, for example, the internal choice between P and () can
be described in CCS as 7.P + 7.Q).

The semantics of a CCS process is defined by a set of transition rules based
on the structure of the expressions. A process makes a transition by engaging in
some event. Each process operator has one or more associated transition rules,
and those rules define the meaning of the operator. Milner defines a notion of
behavioural equivalence between processes called bisimulation. Bisimulation is a
binary relation that is defined by comparing processes transition sequences. In
[Mil89] two kinds of bisimulation are presented: a strong bisimulation relation
that treats 7 as a “visible” event, and a weak bisimulation relation where 7 cannot

be observed.
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MACHINE M
SETS Ss
CONSTANTS (C
PROPERTIES P
VARIABLES V
INVARIANT [
INITIALISATION nit
OPERATIONS

Yy opl(z) =S

END

Figure 1.2: Abstract machine structure

1.2.1.3 B

B AMN is a model-oriented formal notation that is part of the B-method de-
veloped by Abrial [Abr96]. In the B-method, a system is defined as an abstract
machine which has the structure presented in Figure 1.2. The sets clause presents
user defined sets that can be used in the rest of the machine; those sets can either
be enumerated or deferred. The properties are used to define logical properties
of the constants or sets of the machine. The variables describe the state of a
machine, they are described using set-theoretic constructs, as for example, sets,
partial functions, and sequences. The invariant is a set of first-order predicates.
The invariant provides typing constraints for the variables of the machine, e.g.
basket € CLIENT — P(BOOK), and may also include logical properties that
must be preserved by the variables. The initialisation describes the initial values
for each variable of the machine. The initialisation must establish the invariant.
Operations act on the variables while preserving the invariant and can have input
and output parameters. Initialisation and operations are written in the genera-
lised substitution notation of B AMN, which includes constructs such as assign-
ment, guarded statements, and choice. In the assignment statement z := FE, x
is a variable and E is an expression that may use any of the available variables.
Simultaneous assignment x := F || y := F is equivalent to z,y := E, F. In the
guarded statement
SELECT G THEN S END
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the guard G is a condition on the state variables and S is an AMN statement.
This statement will be enabled only when GG holds. The nondeterministic choice

between two statements is written

CHOICE S OR 7T END
that will be enabled when either S or T are enabled. The unbounded choice

ANY z WHERE P THEN S END

nondeterministically chooses some value x satisfying P and then behaves like
S. This is a subset of the language, as we only presented the AMN constructs
that will be used through this thesis. The B method has two supporting tools,
Atelier-B [Ate98] from Steria and B-Toolkit [Bto96] from B-Core.

1.2.2 Graphical Notations

This section presents two graphical notations, Statecharts and Activity Diagrams,
which are part of the Unified Modelling Language (UML) [RJB99]. UML is a
object-oriented modelling language that aggregates several graphical notations,
each notation can be used to specify different features of the system. We have
chosen these notations for their “proximity” to process languages, as they all can

represent graphically process operators like concurrency, sequence, and choice.

1.2.2.1 Statecharts

Statechart diagrams are a graphical notation developed by Harel [Har87] for the
specification of reactive systems. Statecharts are an extension to the standard
state-transition diagrams, including features as hierarchy, concurrency, and com-
munication. A statechart diagram may have several interpretations. To try to
overcome this problem, Harel and Naamad [HN96] defined a deterministic seman-
tics for statecharts. However, the notation used to describe data is a low-level

programming language without a precise semantics.

A Statechart is composed of states and transitions. Next, we present a brief

description of these two main components:
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Figure 1.3: Statechart example

States There are three types of states: basic states, and-states, and or-states.
The basic states do not have any substates, they are at the bottom of the
state hierarchy. The and-states represent concurrent states: an and-state
is composed by several simultaneous substates. The or-states represent
sequential states: an or-state is composed by several substates, that will be

executed by predefined order.

Transitions A transition represents an evolution in the state of the system:
upon the occurrence of an event the system may evolve from a state to
another. A transition in Statecharts is composed by five elements: source
state, target state, event, action, and condition. The event, action, and
condition are said to be the label of the transition. A transition labelled
E[cond]/act is triggered by event E when the condition cond holds. Action

act is performed when the transition takes place.

Figure 1.3 shows a statechart where state P is composed of two concurrent sub-
states () and R, represented by a box divided by a dashed line. When entering
state P, states A and C' become simultaneously enabled. The small horizontal
arrows show that A and C' are the initial states of () and R. If event x occurs,
A will evolve to B and C will evolve to E, both transitions will occur simultane-
ously. This means that states () and R are synchronised over event z. If event
w then occurs, a transition from F to D will take place. Event w only affects
state R while state () remains unaltered, in this case states  and R evolve in-
dependently. State @) finishes after the occurrence of x because there are not

any outgoing transitions in B. State R may never finish as all its substates have
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outgoing transitions. Note that state D has two outgoing transitions for events
v and z. In this situation, whichever event occurs first will trigger its associated
transition: the occurrence of v causes the state to evolve to E, while the occur-
rence of z causes the state to evolve to C'. There are two transitions exiting state
P: the unlabelled transition occurs after both concurrent states  and R have
finished; the labelled transition is triggered by the occurrence of event m and
causes process P to terminate immediately — if the concurrent processes () and

R have not finished they will be interrupted.

1.2.2.2 Activity Diagrams

Activity diagrams [F'S00] are used to describe the flow of control within a system.
They model sequences of activities in a process. Although activity diagrams have
similar constructs to statecharts, the two notations are used to specify different
abstraction levels of a system. Activity diagrams are intended to specify the over-
all control flow of a system, while statecharts are intended to specify in detail a

specific process of a system.

Activity diagrams consist of activities, transitions between activities, decisions

and synchronisations:

Activities Activities describe the execution of a task in a system. Activities
have a hierarchical structure, each activity can have a nested activity di-
agram. Actions are a special kind of activity, they represent tasks that
cannot be further decomposed. Actions are atomic, noninterruptible, and

instantaneous.

Transitions A transition indicates the evolution in the sequence of activities.
When the source activity finishes its tasks, one of its outgoing transitions

is triggered automatically.

Decisions A decision describe several alternative paths protected by a boolean
guard expression. If more than one guard expression evaluates to true, an
activity diagram is nondeterministic. In order to assure that the diagram

is deterministic the guard expressions must be mutually exclusive.

Synchronisations Synchronisations model concurrent flows of work. There are

two kinds of synchronisations: fork and join. A fork can split a path into
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Figure 1.4: Activity diagram example

several concurrent sequences of activities. A join synchronises those con-

current paths initiated by a fork.

Figure 1.4 shows a very simple activity diagram describing the same travel agency
example of Figure 1.1. The diagram starts with two concurrent activities, Book
Flight and Book Hotel, where concurrency is represented by the horizontal bar.
After both concurrent paths are finished the activity Credit Check is executed.
After that, the guard creditOk is evaluated and depending on the guard value a
different path will be executed, which is represented by a diamond where each
outgoing arrow describes a alternative path. In our example if creditOFk is false,

the activities Cancel Flight and Cancel Flight are executed concurrently.

1.2.3 Combined Notations

In this section we present the csp2B [But00] notation that combines CSP with B.
There are several other notations that combine different languages. The csp2B

notation will be described in more detail as the approach used to justify the inte-
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MACHINE VendingMachine
ALPHABET C(Coin Tea Coffee

PROCESS VM = AwaitCoin WHERE

AwaitCoin = Coin — DeliverDrink
DeliverDrink = Tea — AwaitCoin
| Coffee — AwaitCoin
END
END

Figure 1.5: csp2b example

gration of StAC processes with B specifications was based on the csp2b approach
of combining CSP and B. Nevertheless, in the end of this section we discuss briefly

some different approaches on how to combine notations.

1.2.3.1 csp2B

In [But00] Butler presents the csp2b tool which combines a CSP-like description
with B specifications. The B machine is used to describe the system state and
operations, while the CSP is used to describe the order in which the operations of
a B machine may occur. The tool converts CSP-like specifications into standard
B specifications. The resulting B machine can be animated, and appropriate

proof obligations can be generated using a B tool.

The csp2B tool supports a process language similar to CSP, including prefixing,
choice and the deadlock process STOP. Parallel composition and interleaving
are supported only at the outermost level. Internal nondeterminism is not sup-

ported, but it can be modelled using nondeterministic operations in B.

The tool converts a CSP machine into a B machine containing variables that
represent the implicit states of the CSP processes. For each event of the CSP
machine, a B operation is created which updates appropriately the variables that
represent the implicit state. The CSP machine can be used by itself or to con-

strain the execution of an existing B machine.
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Figure 1.5 shows the CSP machine that describes a vending machine [But00].
This machine has three operations, Coin, Tea, and Coffee. The behaviour of
the machine is described by the CSP process VM, which can either be on state
AwaitCoin or on state DeliverDrink. AwaitCoin is the initial state of process
VM. In state AwaitCoin the only enabled operation is Coin, in DeliverDrink
state both Tea and Coffee operations may be invoked. The csp2B tool can con-
vert the vending machine CSP specification into a standard B machine, which

can be either in state AwaitCoin or DeliverDrink, and has operations Coin, Tea,
and Coffee.

Other Combined Notations

A more general approach from csp2B on how to combine notations is presented
in [ZJ93]. Zave and Jackson ([ZJ93] and [ZJ96]) address some problems of com-
posing partial specifications written in different languages. In their approach,
heterogeneous specifications are translated into a common specification domain.
The composition of partial specifications is just the conjunction of those specifi-

cations in the common domain.

UML [RJB99] has unified a collection of software development approaches in
order to create a standard notation, applicable to a wide range of applications
and domains. This unification is mainly syntactical, although UML also tries to
standardize the informal semantics associated with each notation. Furthermore,
in UML it is possible to specify different perspectives of a system in a suitable
notation. The static structure of a system may be specified using class diagrams,
but state machine diagrams are more appropriate to specify the dynamic be-
haviour of a system. The lack of a formal semantics in any of the UML notations
implies that is difficult to verify the consistency between specifications written in

different notations.

1.2.4 Transaction Processing Models

The transaction models were introduced to deal with the increasing complexity
of the transactions. These models should provide a way of grouping operations

within a transaction and at a higher level a way of structuring transactions.
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The most elementary transaction model is the ACID model (described in Sec-
tion 1.1.1), any other model that increases the transactions organization is called
an advanced model. Next, we will briefly described the more relevant advanced
transaction models that support compensation, such as nested and open nested

transactions, compensating transactions, and ConTracts.

Sagas

In the saga construct (already mentioned in Section 1.1.2), transactions are non-
hierarchical and purely sequential. Compensation activities are invoked when

there is a failure in a system.

Nested and Open Nested Transactions

In nested transactions [Mos82], a transaction is decomposed into a hierarchy of
subtransactions. Each subtransaction can either commit or rollback, and the
commit will only take effect when its parent transaction (transaction’s prede-
cessor in the hierarchy) commits. The rollback of a transaction causes all of
its subtransactions to rollback. With the tree structure of nested transactions,
invoking a commit or a rollback instruction will only effect its subtransactions
and it is dependent on the outcome of its predecessor in the hierarchy. In open
nested transactions [WS92|, which are a generalisation of nested transactions,
subtransactions can commit or abort independently of their predecessor. Consid-
ering that a transaction can abort after several of its subtransactions have already
committed, open nested transactions require a compensation function for each
subtransaction. The compensation function has to semantically undo the effects
of committing its corresponding transaction. In both nested and open nested

transactions the invocation of rollback is based on system failure.

Compensating Transactions

A formal approach that attempts to overcome the limitations of ACID transac-
tions is presented in [KLS90]. The authors introduce the notion of compensating
transactions, which allows access to uncommitted data and undoing of commit-
ted transactions. Compensation is formalised in terms of the properties it has to
guarantee: a compensating transaction has to reverse the effects of execution of

the associated transaction, so that the state of the system after the compensation



1. Introduction 17

must be identical to the state before the execution of the transaction. This no-
tion of compensation is very restrictive, and for real world actions (e.g., firing a
missile, sending a letter) is impossible to achieve. This approach does not provide

a specification language, the focus is on properties of compensation.

ConTracts

The ConTract model [WR92, RSS97] has a structured approach to compensation.
In ConTracts a system is described as a set of steps (actions or operations),
which are executed according to a script (control flow description). Each step
must have an associated compensation that will be invoked explicitly by the
user within a conditional instruction: if the outcome of a step is false, then the
associated compensation is executed. In this approach a compensation step has
to semantically revert the effects of the associated step, which can be more than
just undoing. Although compensations may be non-atomic, each step can only

have a single compensation.

1.2.5 Business Process Modelling Languages

A business process is defined in [HCO1] as “a collection of activities that takes one
or more kinds of of input and creates an output that is of value to the customer”.
Typical examples of those activities are making a claim to a insurance company
or applying for a mortgage from a bank. A business process can be performed

by a combination of people, machines and computer systems.

In this section we present two approaches specifically developed for business pro-
cess modelling: Architectural Modelling Box for Enterprise Redesign (AMBER)
[EJLT99], and Role Activity Diagrams (RADs) [Oul95].

1.2.5.1 AMBER

AMBER has a core language containing some basic modelling concepts. The core
language can be tailored to specific purposes by a specialisation mechanism. The
language has three aspect domains, that can be seen as three different views of

the business process being modelled:

Actor domain It describes graphically the entities present in a business pro-

cess. The actor domain description can be structured, and also can have
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file claim
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assess claim

damage occurs

reject claim

Figure 1.6: AMBER example (behaviour model)

inform insurant

assess damage

interaction points, indicating physical or logical locations at which the actor

can interact with its environment.

Behaviour domain It describes graphically what happens in a business process.
Action is the basic concept in the behaviour domain, modelling an atomic
computation. An action can only happen when its enabling condition is
satisfied. These conditions are formulated in terms of other actions having
occurred. Several behaviours can be grouped in blocks, and also blocks can
be nested. Separated blocks can interact, and those interactions are related

to the interaction points in the actor domain.

Item domain It models the item (it can be seen as a data structure) on which

the behaviour is performed.

The item domain was not yet included in AMBER. Part of AMBER has a formal
semantics that can be given by a state automaton. In [JMMS98] the authors
describe how to verify a subset of AMBER with SPIN.

Figure 1.6 shows the behaviour model of an insurance company [EJLT99]. We
do not present here the actor domain nor the item domain, they are described
in [EJL*99]. The irregular box on the left, damage occurs, describes a trigger.
The occurrence of an accident triggers two actions: file claim and assess damage.
The black diamond says that the actions are initiated concurrently. The black
square that precedes action assess claim describes a synchronisation point, the
claim will only be assessed after both previous actions have ended. The white
diamond describes choice, either accepted claim or reject claim will be enabled.
The white box says that action inform insurant can be enabled by either of its
previous actions. The cross-arrow disables action alter claim, the claim cannot

be changed after settlement.
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1.2.5.2 Role Activity Diagrams

Role Activity Diagrams (RADs) [Oul95] are a business process modelling nota-
tion. RADs describe a business process by using roles, which typically correspond
to real-world entities. Different roles can communicate and coordinate through

interactions. Next, we describe the main concepts in RADs:

Roles A role involves a set of activities, and it represents a particular responsi-
bility within business process. A role may be a group, a department, or a

system. The behaviour of the role is described by a sequence of activities.

State A role has a state, it determines in which point of the activities sequence
the role is. When a role executes an activity, the state will evolve to the
next state. A role has an initial state and may have a final state. If the

final state is also the initial state, the role will iterate.

Activities There are two kinds of activities: action activities and interaction
activities. An action is a task that a role executes in isolation. The exe-
cution of an action will cause the state to evolve. An interaction is a task
that is executed by a set of roles. An interaction can only occur when all
roles involved are “ready”, roles synchronise at interaction points. When

an interaction is executed all roles involved will move to the next state.

Control Commonly, a role evolves sequentially from one state to the next. In
addition to the sequential construct, RADs have constructs to describe
choice and concurrency. In a choice there can be several alternative paths,
but only one may be chosen. Concurrent paths must join again, denoting

that all paths have completed their tasks.

We used the same insurance company example presented in Section 1.2.5.1 to
illustrate RADs concepts and notations. Figure 1.7 shows the insurance company
specified using RADs. The RAD specification has three roles: Garage, Insurant,
and Insurance Company. The trigger for this business process is the occurrence of
a car accident by an insurant. This is called an external event and is represented
by a solid arrow. The flow of control is represented by the vertical line connecting
the activities in a role, and states are represented by ovals. An action activity
is represented by a black box, as for example, assess claim and settle claim.

The triangles pointing upwards represent concurrent paths, in our example the
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Figure 1.7: RAD example

insurant will execute concurrently the activities ask assessment and file claim.
The interaction activity that initiates an interaction is represented by a shaded
box, as for example file claim. The other interaction activities are represented
by white boxes and do not require a label. Choice is represented by downward
pointing triangles, each triangle describes an alternative path. In our example,

the triangles labelled accept and reject are alternative paths.

1.3 Overview

Chapter 2 introduces and gives an overview of StAC, a business process language.
Some examples are presented to illustrate different features of the language. The
first example, the raffle, is a simple example dealing with sequential, parallel and

compensation operators. This example will be used to describe how to define a B
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machine containing the state and the activities used in the StAC processes. The
e-bookstore example focuses on compensation scoping. The last one, the order

fulfillment example, focuses on early termination.

Chapter 3 introduces some extensions to the StAC language leading to StAC;.
In the extended language, a process can have several independent compensation
tasks, we called this feature multiple compensation. Within multiple compen-
sation we have defined two compensation mechanisms: selective compensation
and alternative compensation. With selective compensation, the reversal invokes
the compensation of some activities, leaving the remaining activities unchanged.
With alternative compensation, an activity can have several compensations at-
tached and the reversal will choose which of these should be invoked. To illus-
trate selective and alternative compensation we present two examples: the travel
agency and arrange meeting example. [CVG102] is based on results of Chapter
2 and 3.

In Chapter 4 we define the operational semantics for the StAC; language. The op-
erational semantics presentation is divided in two parts. The first part excludes
the early termination operator, and focus on the remaining StAC; operators.
Restricting the language gives a better understanding of the interpretation of
compensation, as it avoids the complexity introduced by early termination. In
the second part we present the operational rules for termination, which raises
several issues on the “interference” between compensation and early termina-
tion. The semantics for StAC is defined in terms of the StAC; semantics by a
translation function, so the interpretation of a StAC process is given in terms
of the StAC; semantics. We formally justify the integration of a StAC process
with its associated B machine through an operational approach. [BF00] describes

an early version of the operational semantics of StAC excluding early termination.

In Chapter 5 we explore a possible approach to the refinement of StAC spec-
ifications. In this approach, the behavioural and compensation information are
explicitly embedded in a B machine. The fact that the resulting machine is
standard B means that one can apply the B notion of refinement to prove the
refinement of StAC specifications. This strategy was applied to the e-bookstore

example and the Atelier-B tool was used for generating and to help prove the
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proof obligations.

Chapter 6 proposes some extensions to UML activity diagrams to include repre-
sentations for compensation and early termination operators. In UML a StAC
specification is modelled by a class diagram that describes the data, and a set
of activity diagrams that describe the behaviour (including compensation infor-
mation) of the system. The examples arrange meeting, e-bookstore, and order
fulfillment were modelled using the extended UML, which allows the representa-

tion of either implicit or multiple compensation tasks.



Chapter 2

The StAC Language

In this chapter we start by presenting StAC syntax, followed by an informal
description of the StAC operators. A few examples are introduced in order to
illustrate the use of StAC. We will use one of the examples to show how the
activities are described in B (Appendix A presents the B machines for all the

examples).

2.1 Introduction

We can say informally that in StAC a system is specified as a process, and such
process will be decomposed into several sub-processes in a top-down approach.
At the bottom level there will only be activities (each activity is an atomic com-
putation), so they cannot be further decomposed. Formally a system is described

by a set of equations of the form
N =P,

where N is a process identifier and P is an expression that can contain several
process identifiers, including NV, since the equations can have recursion. We have
determined, for simplicity reasons, that the first equation describes the overall

system being specified. The syntax of StAC is presented in Table 2.1.
The specification of a system is not complete just with the StAC equations, as

we might also want to specify the effect of the basic activities on the information

structures. Instead of extending StAC to include variables and expressions we

23
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Process = A (activity label)
| null (null)
| b— P (condition)
| rec(N) (recursion)
| P;Q (sequence)
| P Q (parallel)
| || zex(). Py (generalised parallel)
| PQ (choice)
| [Jeex(). Py (generalised choice)
| let X =ein Py (let)
| © (early termination)
| {P} (termination scoping)
| P+Q (compensation pair)
| X (reverse)
| [ (accept)
| [P] (compensation scoping)

Table 2.1: StAC Syntax

used the B notation [Abr96] to specify the effect of activities. With this approach
the specification of a system has two components, a set of process equations and
a B machine describing the activities. The B machine includes an information
state X, operations on the state and boolean expressions. In Section 2.3.1 we

show how to describe activities in B.

2.2 StAC Operators

The StAC language allows sequential and parallel composition of processes, and
the usual process combinators. Besides these, it has specific combinators to deal

with compensation. An overview of the language is given in this section.

2.2.1 Basic Operators

Each activity label A (in StAC) has an associated activity 4 (in B) representing
an atomic change in the state: if ¥ is the set of all possible states, then Aisa

relation on Y.

Note: In the rest of the thesis we consider the capital letters A to D are activi-

ties, and the letters P to S are processes.
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The process null does nothing and completes immediately. This process has
a similar interpretation to the CCS inactive agent O that does not produce any

action.

In the conditional operator, process P is guarded by a boolean function b. This
boolean function can consult the state, i.e., b : ¥ — BOOL. Process b — P be-
haves as P if b is evaluated to true. Conversely, if b is false, the conditional process
terminates immediately, i.e., process false — P behaves as null. Notice that
the StAC interpretation of the conditional process differs from the interpretation

of guarding in B. For example, in B the sequence:
SELECT b THEN P END ;T

will deadlock if b is false, while in StAC the process (b — P) ;T will execute T if
b is false. This implies that StAC does not model deadlock, while for example B
and CSP do.

The recursive operator rec(IN) enables the use of a process identifier N of the

right-side of an equation to be used in the left-side term of an equation.

2.2.2 Sequential and Parallel Operators

The sequential construct combines two processes, P;(). In process P;(QQ, P is

executed first, and only when P terminates () can be executed.

In parallel process P || @, the execution of the activities of P and @ is inter-
leaved. Generalised parallel extends the parallel operator over a set X, which

can either be finite or infinite. For example,
|| x€{r1,x2,23} . P:v

describes three parallel instances of process P, where each instance is indexed by
a unique index z belonging to set X. A parallel process completes when all the

processes instances complete.
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The indexing of generalised processes must be a constant set. Allowing the index
to be an expression in the state may create problems, as the activities within
the generalised process may alter the state, and consequently alter the indexing

expression. An example of this problem is showed in process:
P = zes. S:=0;Q(x) (2.1)

where S € P(N) is a state variable. Because S is assigned a new value, it is

unclear how the generalised process should be interpreted.

To overcome this limitation we introduced the let statement that makes explicit
at what point the state is being accessed. In the statement let X = e in Pk,
the state expression e' is assigned to X, so the value of X is fixed before the
execution of Pyx. After fixing the value of X, Px represents process P where
every occurrence of index X is replaced by the value of e. After rewriting process

(2.1) using a let statement, we obtain:
P =let X=5 in ||[zex.(S:=0;Q(z))

The fact that the state variable S is altered within the generalised process does
not interfere with index X. Because X was fixed to the value of S at the beginning

of the let statement.

Communication Model

StAC does not explicitly model communication between processes. Since activ-
ities act on a shared global state, defined by the variables of a B machine, the
processes of a parallel composition can communicate indirectly via variables. This
will be described in Section 2.3.1.

2.2.3 Choice

The choice P [ @ selects whichever of P or @) is enabled. If both P and @ are
enabled, the choice is made by the environment and it is resolved at the first

activity. The environment could be a user selecting one of the options in a menu,

'We are assuming that the outcome of the expression e is a set, i.e., e € ¥ — P(Y), where
Y is a set.
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for example. Notice that the [] operator causes nondeterminism in some cases. If

we consider the following example:
(4;B)[1(4;0)

when activity A occurs its not possible to determine which one of the two be-
haviours A; B or A;C will be chosen. In this case, the choice is made by the
system rather than the environment. Generalised choice extends choice over a
infinite or finite set of processes. This operator was introduced to avoid having
to introduce process parameters in StAC. For example, a process that allows a

user to choose a book would be described in StAC as:
[| e BoOK . Choose Book;,

as opposed to having b as parameter, ChooseBook(b : BOOK). In both generalised
operators we will use the notation P(z) in place of P,, as it is a more familiar

notation — it resembles process arguments.

2.2.4 Early Termination

A important feature in business processing is the possibility of terminating pro-
cesses before they have concluded their execution. For this reason we have in-
cluded in StAC two termination constructs. The early termination @ that forces
a process to terminate, and the termination scoping brackets {---} that delimit

the scope of the early termination. For example, the process
{P;0;Q1 R

will first execute P, then the early termination will force the process @, that
is within the braces, to terminate. The overall process will then continue by
executing the processes outside the braces. In the case of parallel processes, a
termination instruction within one of the parallel process also applies to the other

process. For example, in the process

{(P;o;:Q) | RY IS
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the early termination causes R to terminate. The early termination does not
cause S to terminate since S its outside the termination scope. Furthermore, it
may be the case that R does not terminate immediately on invocation of the early
termination but at some later stage. This is because termination of concurrent
processes would be implemented by sending messages to the processes instructing
them to terminate, and these messages will not be transmitted nor acted upon

instantaneously. The informal rules for the early termination are:

e Invocation of an early termination within a sequential process causes that

process to terminate immediately.

e Processes within the scope of an early termination that are running con-
currently to the early termination may continue to execute for several steps
after invocation of the termination instruction before terminating either

prematurely or to completion.

2.2.5 Compensation Operators

The next set of operators is related to the compensation concept. The compensa-
tion pair P + @) expresses that P is the primary process (or primary task) and @
is the compensation process (or compensation task). When a compensation pair
runs, it runs the primary task, and once the primary process has completed, the
compensation process is remembered. The compensation process is constructed

in the reverse order to the primary process execution, for example:
(A+ AN (B+B)

behaves as A; B and has the compensation task B’; A’. A compensation task can
be viewed as a stack where compensation processes are pushed into the top of
the stack.

The reverse operator X causes the compensation process to be executed. The

process
(A+A";(B+B');X

behaves as A; B, and then the X operator causes the compensation task to be ex-
ecuted, so the overall behaviour is (A4; B); (B'; A") which we write as A; B; B'; A'.
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The execution of parallel compensation pairs is interleaved, implying that the
execution of their compensation task should also be interleaved. The parallel

process
(A+A) || (B+B')

executes A and B concurrently and the resulting compensation process is A’ || B'.

The accept operator Mindicates that currently remembered compensations should
be cleared, meaning that after an accept the compensation task is set to null.

The process
(A+ AN (B+B); X

executes A and B, when the X operator is called the compensation task B’; A" has
already been cleared by the [ operator. Next we will consider the combination

of compensation with choice. The process
(A+-A)[](B+B)

behaves as either A or B, the choice between A and B is made by the environ-
ment. The compensation task in the case that A is chosen is A’ and in the other

case is B'.

The StAC language permits nested compensation pairs, meaning that compen-
sation can itself be compensated. The following process has two levels of com-

pensation:

A+ (B+0).

Initially the above process behaves as A and the compensation task B + C' is
remembered as the compensation for A. When the reverse operator is appended

to the previous process
(A+-(B+(0));KX

after the execution of activity A the reversal will cause compensation pair B = (C'
to be executed, by executing B and adding C to the compensation. Activity
C can be invoked later by a reversal to compensate for activity B. The nested

compensation pair states that A is compensated by B, and B is compensated
by C.
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2.2.6 Scoping of Compensation

The compensation scoping brackets [---]| are used to delimit the scope of the
acceptance and reversal operators. The start of scope creates a new compensation
task, and invoking a reversal instruction within that scope will only execute those
compensation activities that have been remembered since the start of the scope.

In the process
(A+ A [(B+ B); K],

the overall process would behave as A; B; B’. Compensation A’ is not invoked
because its outside the scope of the reversal instruction. An acceptance instruc-
tion, within a scope, will only clear the compensation activities that have been

recorded since the start of the scope. For example, the process:
(A+A)[(B+B);4];(C+C)

after A, B and C have been executed, has C’; A’ as compensation. Since the
acceptance instruction is inside the brackets, it just clears the compensation pro-
cess B’ that is within the brackets. Another feature of the compensation scoping
operator is that compensation is remembered if a reversal instruction is not per-

formed, as in the example:
(A+ AN [(B+B)];(C+C.

Here, the compensation process is C'; B'; A’, which includes the compensation
process B’ defined inside the brackets. B’ is retained because there is no accep-

tance instruction within the brackets.

2.3 StAC Examples

To illustrate and clarify the applicability of StAC, we present in this section a
few examples. The raffle example, is a simple example dealing with sequential,
parallel and compensation operators. The e-bookstore example illustrates the use
of compensation scoping, and the order fulfillment example illustrates the use of

early termination of concurrent processes.
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2.3.1 Raflle

In this example, raffle tickets are distributed by several agents. Each agent can
sell tickets until a predefined deadline. When that deadline is reached, in order
to perform the draw, the total amount of tickets sold by all agents must exceed
a defined threshold. In that case, the draw is performed and the prize delivered
to the winner. Otherwise, every ticket sold will be refunded by the agent where
the ticket was bought.

The top level process is defined as a sequence, first the tickets are distributed
and sold by several agents, then the raffle can be drawn or cancelled based on

the number of tickets sold.

Raffle = SellTickets; DrawOrCancel

To illustrate how the StAC processes and its associated B machine interact, we
will interleave the presentation of the raffle processes with the state and opera-
tions of the Raffle machine. The B machines of all the examples are described
in Appendix A. We will start by presenting the clauses that define the machine
state. The clause SETS presents the sets, AGENT and TICKET, used in the
machine. Set AGENT represents all agents that will be selling the raffle tickets,
and set TICKET represents all tickets available. The constant threshold de-
scribes the minimum number of tickets that have to be sold in order to perform
the draw. The clause VARIABLES names the variables of the abstract machine
such as sold, unsold, and winner. In the INVARIANT part we specify the types
of the variables introduced in the previous clause. The variables sold and unsold
are functions that for each agent return, respectively, the set of sold and unsold
tickets. The variable winner is defined as a set that after the draw will contain
the winner ticket. The last clause of the invariant states that the set winner
can either have a single element or be the empty set. We decided to model the
variable winner as a set because if the draw is cancelled, we can use the empty
set to model the fact that there was not a winning ticket. The INITTALISATTION
describes the initial values of the variables. Both variable sold and unsold are

initialised to the function that assigns to each agent an empty set of tickets.
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Variable winner is initialised to the empty set.

MACHINE Raffle

SETS
AGENT; TICKET

CONSTANTS
threshold

PROPERTIES
threshold € N

VARIABLES

sold, unsold, winner

INVARIANT
sold € AGENT — P(TICKET) A
unsold € AGENT — P(TICKET) A
winner C TICKET N

card(winner) <1

INITIALISATION
sold := Xagent . (agent € AGENT | () ||
unsold = Xagent . (agent € AGENT | 0) ||

winner = ()

In order to sell the raffle tickets, the tickets must be distributed among the agents.
After the tickets have been distributed, process SellTicketsAgent describes the
tickets being sold by each agent.

SellTickets = DistributeTickets; SellTicketsAgent

Notice that some processes are written with a bold font, e.g., DistributeTickets,
this means that those processes are activity labels, so they cannot be further de-

composed and will be specified as B operations in the Raffle machine.

In operation DistributeTickets the ANY expression selects a function f that
assigns to each agent a set of tickets, where all the tickets will be assigned to

some agent (union(ran(f)) = TICKET), but the same ticket cannot be assigned
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to different agents (Vay,a2 € AGENT . a1 # ay = f(a1) N f(a2) = 0).

DistributeTickets =
ANY f WHERE f € AGENT — P(TICKET) A
Vai,as € AGENT . a1 # a2 = f(a1) N faz) =0 A
union(ran(f)) = TICKET
THEN
unsold = f
END

Before presenting SellTicketsAgent process, we will introduced an abbreviation

for a construct frequently used in StAC processes, instead of
P=(Q;P))A
which executes process () until activity A occurs, we write
P=QxA

that can be described as “Q) until A”.

In the parallel process SellTicketsAgent each agent iteratively sells a single ticket

until activity timeOut is executed.
SellTicketsAgent = || acagent . SellOneTicket(a) » timeOut(a)

Operation timeOut? is used in process SellTicketsAgent to exit its recursive

definition, this operation does not need to perform any explicit action.

timeOut(a : AGENT) = skip

Process SellOneTicket is a generalised choice over the set of unsold raffle tickets
of agent a. The generalised choice describes the selection of a single ticket from
all unsold tickets. In the compensation pair that is inside the choice, the primary
activity sells a single ticket, with the compensation action being to refund the

value of that ticket. Note that parameters a and t are stored along RefundTicket

’In all B operations we will use the notation A(x : X)=S as an abbreviation for
A(z)2PREz : X THEN SEND.
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in the compensation.

SellOneTicket(a) = let U = unsold(a) in
[Jte v . (SellTicket(a,t) +~ RefundTicket(a,t))

Operation SellTicket removes ticket ¢ from the unsold tickets and puts it into
the sold tickets of agent a. It is not necessary to verify if ticket ¢ is an unsold
ticket of agent a, because this is guaranteed by the let statement. Operation
RefundTicket is similar, but instead it removes ticket ¢ from the sold tickets of

agent a and places t into the unsold tickets of a.

SellTicket(a : AGENT,t: TICKET) =
BEGIN
unsold(a) := unsold(a) — {t} ||
sold(a) := sold(a) U {t}
END

DrawOrCancel makes the choice of doing or cancelling the draw. If the number
of tickets sold exceeds the threshold, the process PerformDraw will be executed.

Otherwise, the reversal instruction is executed refunding all tickets sold.

DrawOrCancel = (overThreshold — PerformDraw)

(—overThreshold — X))

overThreshold is used as a guard of a conditional process, so it will be specified

in B as a boolean definition (process guards do not change the machine state).

overThreshold ==
card (| (agent) . (agent € AGENT | sold(agent))) > threshold

PerformDraw starts by doing the draw, followed by delivering the prize to the
raffle winner. After delivering the prize, the acceptance instruction is executed,

clearing all refunding information.

PerformDraw = Draw;DeliverPrize; ]

Operation Draw chooses nondeterministically a ticket from all the sold tickets,
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and this ticket is placed in the winner set.

Draw =
ANY a,t WHERE a € AGENT A te€ TICKET A t € sold(a) THEN
winner = {t}
END

Similarly to operation TimeOut, DeliverPrize does not perform any action —

it is used as an abstraction of delivering the prize to the winner.

DeliverPrize = skip

2.3.2 E-Bookstore

The e-bookstore is a typical example of an e-business and we will use it to illus-
trate nested compensation. In this example each client defines a limited budget
and has an e-basket where the selected books are kept. Every time the client
selects a book, the budget is checked to see if it was exceeded, in this case the
book is returned to the e-shelf. When the client finishes shopping s/he can either
pay or abandon the bookstore, in the later case all selected books have to be
returned to the shelf.

The e-bookstore is defined as a finite set of parallel Client processes:
Bookstore = || ce cLient . Client(c)

The set CLIENT represents all possible on-line clients. Since all instances of
on-line clients are run concurrently, each instance of process Client has an inde-

pendent compensation task:

Client(c) = Arrive(c);
ChooseBooks(c);
(Quit(c); X
[
Pay(c); 9);
Exit(c)
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The first activity in process Client is Arrive that creates and initialises the client
information, setting the budget to a value determined by the client. The next
process is ChooseBooks, followed by a choice between paying the books in the bas-
ket or abandoning the bookstore without buying any books. If the client chooses
to quit, the reverse instruction is invoked causing the return of all books in the
client’s basket to the shelf. If the client decides to pay for his/her order, the
accept instruction is executed and all compensation information is discharged.
The last process Exit finishes the on-line session with the bookstore, clearing all

the information related to that client.

To select books the client iterates over the selection of individual books (Choose-
Book) until Checkout is invoked:

ChooseBooks(c¢) = ChooseBook(c) » Checkout(c)

By using scoping brackets ChooseBook creates a new compensation process for

each book selected. This new compensation is only related to the selected book.

ChooseBook(c) = [JbeBook .[(AddBook(c,b) +~ ReturnBook(c, b));
overBudget(c) — K]

Within ChooseBook there is a compensation pair, AddBook compensated by
ReturnBook, and the compensation process is only executed if adding that
book to the basket exceeds the budget. In this case executing the compensation
task implies returning the book that has just been added to the basket, rather
than all books in the basket. If the budget is not exceeded, the compensation is
preserved. In process Pay the client’s card is processed and if the card is rejected,

the compensation is executed returning all selected books to the shelf:

Pay(c) = ProcessCard(c); accepted(c) — K

2.3.3 Order Fulfillment

To illustrate the use of early termination and compensation, we use an order ful-
filment example described in [CVGOla] and [CVG102]. ACME Ltd distributes
goods which have a relatively high value to its customers. When the company

receives an order from a customer, the first step is to verify whether the stock
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is available. If not available the customer is informed that his/her order can not
be accepted. Otherwise, the warehouse starts preparing the order for shipment,
and a courier is booked to deliver the goods to the customer. Simultaneously
with the warehouse preparing the order, the company does a credit check on the
customer to verify that the customer can pay for the order. The credit check is
performed in parallel because it normally succeeds, and in this normal case the
company does not wish to delay the order unnecessarily. If the credit check fails

the preparation of the order is stopped.

At the top level the application is defined as a sequence as follows:

ACME = AcceptOrder - RestockOrder;
FulfillOrder;
okFulfillOrder — 4

[
—okFulfillOrder — X

The first step in the ACMFE process is a compensation pair. The primary action
of this pair is to accept the order and deduct the order quantity from the in-
ventory database. The compensation action is simply to add the order quantity
back to the total in the inventory database. Following the compensation pair, the
FulfillOrder process is invoked. Finally if the order has been fulfilled correctly,

the order is accepted, otherwise the order is reversed.

The order is fulfilled by packaging the order at the warehouse while concurrently
doing a credit check on the customer. If the credit check fails, the FulfillOrder

process is terminated:

FulfillOrder = { WarehousePackaging ||
(CreditCheck; —okCreditCheck — ©) }

Notice the termination scope includes the WarehousePackaging process so that a
failed credit check results in a termination instruction being sent to that process.
This will cause WarehousePackaging to terminate eventually, possible before all

the items in the order have been packed.
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The WarehousePackaging process consists of a compensation pair in parallel with

the PackOrder process:

WarehousePackaging = (BookCourier + CancelCourier) | PackOrder

The compensation pair books the courier, with the compensation action being to
cancel the courier booking. CancelCourier results in a second message being
sent to the courier rather than reversing the send of the message which booked the
courier. The PackOrder process packs each of the items in the order in parallel.

Each PacklItem activity is reversed by a corresponding UnpackItem:

PackOrder = let O = order in ||ico . (PackItem(i) -~ UnpackItem(7))

In the case that a credit check fails, the FulfillOrder process terminates with
the courier possibly having been booked and possibly some of the items having
being packed. The reversal instruction will then be invoked and will result in
the appropriate compensation activity being invoked for those activities that did

take place.



Chapter 3

Extending StAC with Multiple

Compensation

In this section we present some extensions to the StAC language. The most
important of these extensions is that a process can have several simultaneous
compensation tasks associated with it. A process decides which task to attach
the compensation activities to, and each individual compensation task can be
reversed or accepted. This contrasts with the language presented in Chapter 2,
where scoping of compensation is hierarchical and each scope has a single implicit
compensation task. To distinguish different compensation tasks, the operators
that deal with compensation, 7.e., compensation pair, acceptance and reversal,
are indexed by the compensation task index to which they apply. The syntax of
StAC,; is presented in table 3.1.

The motivation for extending the StAC language was that StAC; had a clear
semantics for compensation and made it easier to describe parallel compensa-
tion. It is easier to define the operational semantics of multiple compensation
tasks, than a hierarchy of compensation scopes, because with multiple compen-
sation it is possible to refer directly to a compensation task by its index, while
with nested compensations this is not possible. Later, when applying StAC to
some case studies it emerged that some features that were difficult to model in
StAC could be easily modelled in StAC; using multiple compensation tasks. This

suggests that multiple compensation is a useful concept.

Utilising the facility of multiple interleaved compensation tasks, we introduce

39



Extending StAC with Multiple Compensation 40

Process = A (activity label)
| 0 (null)
| b— P (condition)
| rec(N) (recursion)
| P;Q (sequence)
| P @ (parallel)
| || eex. P, (generalised parallel)
| P[|Q (choice)
| [leex.Py (generalised choice)
| let X =ein Py (let)
O, (early termination)
| {P} (termination scoping)
| P+ Q (indexed compensation pair)
| X; (indexed reverse)
| (indexed accept)
| J>i (merge)

Table 3.1: StAC; Syntax

the mechanisms of multiple compensation: selective compensation and alterna-
tive compensation. With selective compensation, the reversal selects some activ-
ities to be compensated, while preserving the compensations for other activities.
With alternative compensation, several alternative compensation tasks may be
attached to an activity and the reversal selects one of these alternatives for in-
vocation. We illustrate selective compensation through a travel agency example,

and multiple compensation through a meeting scheduling example.

In the next section we describe informally the StAC; operators that deal with
multiple compensation. In the following sections we present the travel agency

and the arrange meeting examples.

3.1 Extended Compensation Operators

Most of the StAC; operators are retained from StAC without any alterations. The
new operators are operators that deal with compensation (written with bold font
in table 3.1), and reflect the extensions to the StAC language. In the extended
language, process P +; (Q has P as its primary process and, when P completes,

compensation () is remembered on compensation task i, where ¢ is an index.
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Note that compensation indices are constants and not expressions that can be
evaluated. The instruction to accept compensation task 7 is given by [4;, while
the instruction to reverse compensation task ¢ is given by X;. To help illustrate

indexed compensation, consider the process:
(A -1 AI), (B -2 B,), &1, (C -2 C,), X,.

This process will start by invoking A, followed by B and then the reversal causes
compensation A’ to be invoked. Compensation B’ will not be invoked at this
stage as it is on compensation task 2 and only compensation task 1 is invoked
by the first reversal operator. After the first reversal, activity C' is performed.
Reversal is then invoked on compensation task 2 which causes C' followed by B’

to be executed.

Informally it can be said that the compensation information of a process is main-
tained by a compensation function that for each compensation task index, returns
the associated compensation process. When the primary task of a compensation
pair concludes its execution, the compensation task is composed in sequence with

the original compensation process for that task.

An important operator in StAC; is the merge operator. The expression J > 7,
where J is a set of indices, merges all compensation tasks belonging to .J into the
compensation task 7. When merging compensation tasks, those tasks are merged

in parallel. In the process
(A1 A); (B2 B');{1,2} >3

the merge operator will compose in parallel the compensation task 1 (A’) with
compensation task 2 (B’), and add parallel process A’ | B’ to compensation task
3. Since the compensation task 3 is empty, the resulting compensation task 3 is
just A" || B'.

Consider the following process that uses three individual compensation tasks:

(A+1 A'); (B2 B'); (C+3C"); {1,2} > 3.
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Initially it executes A, B and C and then merges compensation tasks 1 and 2 into
compensation task 3. Joining compensation tasks 1 and 2 results in the parallel
process A’ || B', that will be put in front of the compensation task 3, giving

(A" || B"); C" as the resulting compensation for task 3.

The compensation scoping brackets [-- -] do not apply to the indexed compensa-
tion operators. The scoping brackets can be described by indexed compensation

tasks. For example, the StAC process
(A+A);[(B+ B);K; (C+ )]
can be represented in StAC; as
(A+1 A"); (B +2 B'); Xy (C = C"); {2} > 1

where the braces are represented as a “new” compensation task. When the
reversal instruction is invoked on compensation task 2 it will only execute B'.
Compensation process A’ that in StAC was outside the braces, in StAC; is in
a different compensation task, and does not get invoked. The merge is used to
preserve any compensations not reversed within the scoping brackets. In this
example, at the end of the scoping brackets, the compensation C’ has to be
preserved. This is done by merging compensation task 2 into task 1. In Section 4.6

we present a complete translation of StAC to StAC; terms.

3.2 Selective Compensation:

Travel Agency Example

The travel agency [LRO00] is a company that offers on-line trip reservation ser-
vices to its clients. A client can compose an itinerary with several flights, car
rentals, and hotel reservations. It is necessary to verify the client credit card’s
details before making the reservartions. If the credit card is accepted, the client
is asked to decide whether s/he wants to reserve his/her itinerary or to quit
the reservation. Once the client’s order has been confirmed, the reservations for
the flights, car rentals, and hotels are made. Since these reservations are inde-

pendent they are made in parallel to speed up the overall process. If all the
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reservations in the client’s itinerary are successful, the final itinerary is sent to
client, and this concludes the trip reservation process. Otherwise, if any of the
reservations failed, the client is contacted and given the choice of selecting an al-

ternative itinerary to substitute the failed reservation or aborting the reservation.

The travel agency handles trip reservations for several clients concurrently. A

client can request a trip reservation from the travel agency on-line site:
TravelAgency = || ce cLient . Request(c); TripReservation(c)

A trip is arranged by getting an itinerary, followed by verifying the client’s credit
card, and depending on whether the card is accepted or rejected the reservation

is continued or abandoned:

TripReservation(c) = Getltinerary(c);
VerifyCreditCard(c);
accepted(c) — ContinueReservation(c)

[

—accepted(c) — QuitReservation(c)

Getting an itinerary involves continually iterating over offering the client the
choice of selecting from a flight, a car or a hotel until EndSelection is invoked.
The Select Flight process selects a single flight using the SelFlight activity. The

car and hotel selection is defined similarly.

Getltinerary(c) = (SelectFlight(c) [| SelectCar(c) || SelectHotel(c))

*x EndSelection(c)
SelectFlight(¢) = [ rerricgar . SelFlight(c, f)
SelectCar(c) = [Jaccar . SelCar(c,a)
SelectHotel(¢) = [|nenoreL . SelHotel(c, h)

In process ContinueReservation the client is asked to decide whether to reserve

the itinerary or to abandon the reservation. If the client decides to reserve the
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itinerary, the reservations are made:

ContinueReservation(c) = ConfirmOrder(c); MakeReservation(c)

[

CancelOrder(c); QuitReservation(c)

In MakeReservation the flight, car and hotel reservations are made concurrently.
If any of the reservations failed, the client is then contacted, otherwise the process

ends:

MakeReservation(c) =
(FlightReservations(c) || CarReservations(c) || HotelReservations(c));
—okReservations(c) — ContactClient(c)

[

okReservations(c) — EndTrip(c)

The FlightReservations process reserves a single flight using the ReserveFlight
activity. The travel agency uses two compensation tasks: compensation task S,
representing compensation for reservations that have been booked successfully,
and compensation task F', representing compensation for reservations that have
failed. The choice between which task to add the compensation to is determined

by the outcome of the ReserveFlight activity.

Since we use two compensation tasks, instead of having a compensation pair
we have a compensation triple, with a primary process P and two compensations

@1 and 2. We model this triple with a construction of the form:

P; (e = (null +1 Q1)) [| (me = (null +2 Q1))

If P makes c true, this is equivalent to P +; ); with )1 being added to compen-
sation task 1. If P makes c false, this is equivalent to P +5 Q2 with ()5 being
added to compensation task 2. With this construction it is possible to organize
the compensation information into several compensations tasks, where each one

of those tasks can later be reversed or accepted independently.

All the flights reservations are made concurrently. The flight reservation and
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its associated compensations is defined as follows:

FlightReservations(c) = let R = flights(c) in
| re r . FlightReservation(c, f)
FlightReservation(c, f) =
ReserveFlight(c, f);
flightIsReserved(c, f) — (null =5 (CancelFlight(c, f)|| ClearFlight(c, f)))

[
—flightIsReserved(c, f) — (null +p() ClearFlight(c, f))

The ClearFlight activity removes flight f from the client’s itinerary, while the
CancelFlight activity cancels the reservation of flight f with the airline. If the
activity ReserveFlight is successful, then to compensate it one has to cancel the
reservation with the airline and also remove that flight from the client’s itinerary.
Otherwise, if the flight reservation fails its only necessary to remove the flight
from the client’s itinerary in order to compensate, it is not necessary to cancel
the flight reservation. The car and hotel reservations are defined similarly and

are omitted here.

The ContactClient process is called if some reservations failed. In this process

the client is offered the choice between continuing or quitting:

ContactClient(c) = Continue(c);Xp(; Getltinerary(c); MakeReservation(c)

[

Quit(c); QuitReservation(c)

In the case that the client decides to continue, reverse is invoked on compensation
task F'(c), the failed reservations. This has the effect of removing all failed
reservations from the client’s itinerary. Compensation task S is preserved as the
successful reservations may need to be compensated at a later stage. The client
continues by adding more items to the itinerary, which are then reserved. In
the case that the client decides to quit, reversal is invoked on both compensation
threads. This has the effect of removing all reservations from the client’s itinerary

and cancelling all successful reservations.

QuitReservation(c) = (Mg || Mr()); RemoveClient(c)
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Finally, a successful trip reservation is ended by accepting both compensation
tasks:
E'ndTrip(c) = [le(c) || [ZIF(c)

In [LROO] the authors describe the same travel agency example using a method
(spheres of compensation) that does not support multiple compensation, but the
resulting model has a different behavior. It is not possible to model the cancella-
tion of part of the itinerary, while maintaining the compensation information for
successful bookings with a single compensation task. This happens because the
aborting instruction (a instruction similar to the reversal) causes the cancellation
of the entire itinerary, so the client will have to choose the complete itinerary all

over again.

In general, by selective compensation, we mean that some compensation tasks
can be reversed back selectively, while the remaining compensations are main-
tained. We have modelled the selection criteria in the travel agency by using
two compensation tasks and deciding immediately when the primary process is
completed to which of these tasks to add the compensation. We then invoke the

compensations selectively by picking the appropriate compensation task.

An important feature of selective compensation is that those compensations that
are not selected for reversing are preserved. This feature makes it difficult to
model selective compensation in StAC (of Chapter 2) that does not support in-

terleaved compensation tasks.

3.3 Alternative Compensation:

Arrange Meeting Example

In this example, the goal is to select a date for a meeting for which everyone in
the team is available. Initially a set of possible dates is proposed based on the
availability of the meeting room. Every member of the team suggests possible
dates from the initially proposed set of dates. If an agreement is reached between

team members, the meeting is scheduled, otherwise it will be cancelled.

The top level process is defined as a sequence of three processes. First, a set
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of possible dates on which the room is available is selected. Next, the team
chooses possible dates for the meeting. Last, a date is selected for the meeting

and then the meeting is scheduled.
ArrangeMeeting = CheckRoom; CheckTeam; Decide

In this example compensation is used in a novel way. Instead of the usual use
of compensation when there is a failure or change of plan, here compensation is
used to perform a positive task. The arrange meeting application uses two com-
pensation tasks: CF and CL. Compensation task CF represents activities that
need to be confirmed, like the booking of the room or the date for the meeting,

while compensation task CL represents activities that need to be cancelled.

Process C'heck Room has a compensation pair within another compensation pair.
In practice, it means that the date selection has two compensation actions: com-
pensation ConfirmRoom in task CF and compensation CancelRoom in task
CL.

CheckRoom = (SelectAvailableDates = r ConfirmRoom) -+ CancelRoom

The Select AvailableDates activity chooses a set of dates where the meeting
room is available and temporarily books the room for those dates. The com-
pensation activity ConfirmRoom will confirm the booking of a single date
for the room and remove all the remaining dates. The compensation activity

CancelRoom will remove all the dates temporarily booked.

In process CheckTeam each member of the team concurrently suggests several

dates for the meeting:

CheckTeam = | te TEAM . (SuggestDates(t) +cr ConfirmDate(?))
+crCancelDates(?)

In the SuggestDates activity, the team member chooses from the possible dates
his/her available dates for the meeting, and those dates will be inserted in the
member’s diary. The compensation activity ConfirmDate confirms the final
date for the meeting and removes the remaining dates from the diary. The com-

pensation CancelDates cancels all dates for the meeting in the diary.
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The process Decide verifies if there is a date where all team members are avail-
able. If there is an agreement on the date of the meeting, the booking of the

meeting is confirmed, otherwise the meeting is cancelled:

Decide = —-emptyDates— SelectDate; X p

[

emptyDates —>Xq; Mop

When an agreement is not reached (emptyDates is true), the meeting has to be
cancelled. This is achieved by reversing the compensation task CL and accepting
compensation task CF. The reversal of compensation task CL will execute the
cancellations, removing the temporary bookings of the meeting room, and clear-
ing the suggested dates from the team member’s diary. When the members of
the team reach an agreement about the date for meeting (emptyDates is false),
reversal is invoked on compensation task CF. The reversal on CF will execute
the confirmations, confirming the booking of the room and the meeting date on
each member diary. Notice that no action is done on compensation task CL,
therefore the cancellations stored in CL are retained. Keeping the cancellations

might be useful later on, if the meeting has to be cancelled.

Alternative compensation allows the reversal of some processes while retaining
the others. This could not be achieved using a single compensation task because
the reversal would cause the execution of all stored processes. In the arrange
meeting example we used multiple compensation tasks to achieve a clear sep-
aration between the confirmation and cancellation compensation tasks. This
separation allows to reverse the confirmations while retaining the cancellations,

and use those cancellations further on.

The distinctive feature in alternative compensation is that activities can have
several alternative compensation activities remembered for them simultaneously.
Later a decision is made about which of the compensations attached to an activ-

ity should be invoked, or even more than one compensation could be invoked.

In this example, the compensation mechanism is used to perform a positive task
and not just a compensation task. All confirmations are performed by invoking

the reversal instruction on the compensation task CF. In this case, reversal is not
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invoked with the intention of correcting some failure, but to perform a positive
task.



Chapter 4
Semantics

This chapter starts by justifying the use of an operational approach to formalise
the semantics of StAC;. The operational semantics will be presented in two
phases: the first phase (Section 4.2) shows the operational rules for StAC with-
out considering early termination operators, and focusing on the interpretation
of the compensation; the second phase (Section 4.3) shows the rules for early
termination. The complete StAC; operational semantics is obtained by merging
the rules presented in those two phases. Section 4.4 discusses possible evolutions
of some StAC,; examples, where each example concentrates on a complex combi-
nation of StAC; operators, as for example, early termination and compensation.
Section 4.5 presents an animator for the StAC; language, which encodes the op-
erational rules into Prolog predicates. In Section 4.6 we define a translation from
StAC to StAC;, so the interpretation of a StAC process is given in terms of StAC;
by a translation function. Section 4.7 formally justifies the integration of a StAC
process with a B Machine containing the description its state and activities. In
Section 4.8 we discuss the use of other semantics models to formalise StAC;, and

compare those models with the operational approach we have use.

4.1 Introduction

There are several different techniques that could be used to formalised the seman-
tics of StAC;. The most important are the operational, denotational, axiomatic
and algebraic semantics. These different semantics complement each other, show-
ing a different perspective of a language. But depending on the purpose of the

semantics and the language features, one technique can be more appropriate than
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another.

We decided to describe StAC; using an operational approach. We have several
arguments in favour of an operational approach. First, an operational approach
is a more natural approach as our informal description of StAC; is quite opera-
tional. Second, StAC should be able provide precise answers to business processes
scenarios, and considering that the operational semantics gives an abstract im-
plementation for the language, those answers (besides being precise) detail the
steps taken to reach that answer. Third, the integration of StAC; with B can
be easily justified through an operational approach using the results presented in
[But00]. Last, it is easy to build an animator from the operational rules, and the

animator can help validating specifications.

At the moment, our approach to the refinement of StAC; specifications uses
the B refinement relation. To verify if a StAC; specification R is a refinement of
StAC; specification S we perform two steps. First, for each system specification
we combine the two parts of the specification in a standard B machine. Those
two parts are: the StAC; processes that describes the execution order of the ope-
rations and compensation information; the B machine that describes the state
of the system and its activities. Second, we verify if R is a refinement of S, by
using the B notion of system refinement. Since both machines are standard B
machines we can use a B tool to generate the appropriate proof obligations. This

is outlined in Chapter 5.

4.2 Operational Semantics for Compensation

This section presents the operational semantics for the StAC; operators exclud-
ing early termination. By excluding early termination in this first part of the
operational semantics we are avoiding the complexity introduced by its operators
and focusing on the formalisation of compensation. Although we are not consid-
ering termination, the results obtained through this section are still valid for the
complete StAC; language. In practice we are just dividing the presentation of
the semantics in two separated parts that can be combined to form the overall
StAC,; semantics.
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Plotkin [Plo81] describes how to use transition systems to define an operational
semantics; here a system is defined in terms of transitions rules between config-

urations. For the operational semantics of StAC; configuration is a tuple:
(P,C,0) € Process x (I = Process) x ¥

In the above tuple, C' is a function that for each task i returns the compensation
process C'(7). X represents the state of the B machine and it is necessary since

an activity may change the state variables. The labelled transition
(P, C, o) = (P!, C, o)

denotes that the execution of a basic activity A may cause a configuration tran-
sition from (P, C, o) to (P, C, ¢'). Notice that the execution of an activity
does not alter the compensation function, only the operators compensation pair,

merge, accept, and reverse may alter it.

4.2.1 Normalisation

This section presents a set of normalisation rules to simplify process expressions
that describe the same object. Essentially, the normalisation is introduced to deal
with terminated processes!. Executing process null; P is the same as executing
just process P. If the first process in the sequence has already terminated, then

the second process can be executed immediately.

The normalisation function has two arguments, the process to be normalised
and the current state, and it will return a normalised process. The current state
o is necessary to normalise conditional processes. This section describes the nor-
malisation for processes that do not include early termination, the rest of the

normalisation function will be presented in the section dedicated to termination.

The first set of normalisation rules are related to the composition of process

null with the sequential, choice and parallel operators. For example, rule N2

L'CSP uses the event v to deal with termination: a process has terminated when it pro-
duces v'.
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says that process null || P can be simplified to the normalisation of process P.

N1 norm(null; Pyo) = norm(P,o)
N2 norm(null || Pyo) = norm(P,o)
N3 norm(P || null,c) = norm(P,o)
N4 norm(null[| P,o) = norm(P,o)
N5 norm(P [ null,c) = norm(P,o)

An implication of N4 and N5 is the following process equality:
(Pl null);@Q = P;Q
which differs from the CSP interpretation of the skip operator [Ros98|:
(P [ skip); Q@ = Q N (P skip); @

that can nondeterministically offer () and ignore P. StAC null operator has a
similar interpretation to the CCS inactive agent 0, they both represent not per-

forming any action, while CSP uses skip to represent successful termination.

The following two rules are related to the conditional operator. Rule N6 says
that, if the boolean function b is evaluated to true in the current state o, then
the conditional process can be simplified to process norm(P, o). Otherwise, if the
boolean function b is evaluated to false, the conditional process can be simplified

to null.

N6 norm(b — P,o) = norm(P,0), ifb(o)=true
N7 norm(b— P,o) = null, if b(o) = false

Rule N8 and N9 normalise generalised operators. Both rules state that if X is an
empty set, the generalised process can be normalised to null. The last two rules

normalise generalised processes that have null as its internal process.

N8 norm(|| zc0.P(x),0) = null
N9  norm(]Jzeo.P(x),0) = null
N10 norm(|| zex.null,o) = null
N11 norm([Jeex.null,oc) = null
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The next set of rules show processes that are already in a normalised form.

N12 norm(A,o) = A

N13 norm(null, o) = null

N14 norm(X;, o) = K;

N15 norm(ig;, o) = [

N16 norm(Jr>i,0) = Jb>i
(

N17 norm(rec(N),0) = rec(N)

The following set of rules show how to normalise composite constructs, where
the previous rules could not be applied, e.g., for N19 we assume P # null and
Q # null, while N20 requires P # null and X # (). The normalisation rules are

recursively defined on the components of the operator.

N18 norm(P; Q,o0) = norm(P,o); norm(Q,o)
N19 norm(P || Q,0) = norm(P,0) || norm(Q, o)
N20 norm(||zex.P(z),0) = | zex.norm(P(z),0)
N21 norm(P[Q,0) = norm(P,0) [|norm(Q,o)
N22 norm([Jzex.P(z),0) = [zex.norm(P(z),o)
N23 norm(P +; Q,0) = norm(P,0) +; Q

Rule N24 states that in the normalisation of a let expression all occurrences of

X are replaced by the evaluation of e in the current state o.
N24 norm(let X =ein Px,0) = norm(Pe),0)

The rules presented in this section are not sufficient to normalise a process. When
applying the normalisation function norm to the example below it is obvious that

the resulting process is not yet normalised.
norm((false — A); B, o) = null; B

To overcome this problem we defined function normalisation that recursively

applies the function norm until a process is normalised.

P if normalised (P, o)

normalisation(P, o) = o '
normalisation(norm(P,o),0) otherwise



Semantics 55

The boolean function normalised verifies if a process is in its normal form or
not. The structure of this function is similar to the norm function and its not

presented here (function normalised is presented in Appendix B).

4.2.2 Operational Rules

In the beginning of Section 4.2 we said that the labelled transition (P, C, o) N

(P', C, o') represents a configuration transition caused by activity A. But in fact,

StAC operational rules will instead be transitions from normalised processes, i.e.,
(normalisation(P, o), C, o) == (P', C, o)

Until now we only used activities as transition labels, but all StAC; basic processes
may be used. As we will see next, most of the StAC; operational rules use the
transition label B, that denotes a basic process. The set B of all basic processes,
such that B € B, is defined as:

B = AU{%Z', X;, 4, J >, @}

where A represents the set of all activity labels and the remaining set represents
the labels of basic processes. In the compensation operators, ¢ an index, and .J is
a set of indices. The elements of B are called basic processes because they can not
be further decomposed. Although this section does not deal with termination, we
have included early termination in B because ® is a basic process. Also, exclud-

ing ® from B would reduce the applicability of the rules presented in this section.

Similarly to CSP we can define a trace of the behaviour of a StAC; process.
In StAC; the trace of a process describes the sequence of basic processes that

occurred. We will use the notation
(P, C, 0) == (Q, C", &)

to denote that process P evolves into process ) by executing the finite sequence

t of basic processes from set B.

The construction of StAC; traces has the following properties:
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1. The empty trace () states that no process has occurred and is represented

as:
(P,C,0) =% (P,C, o)

2. If process P evolves into process () by executing the transition B, followed
by the execution of trace ¢, then there must exist an intermediate process
P’ that satisfies the right side of the equality:

(P,C,0) g (P",C",0") = AP 0. (normalisation(P,o),C, o) N (P',C" o)
A\
(P/7 Cl,o.l) :t> (P”, C",U”)
where t € B*.

Properties 1 and 2 describe the way operational rules will be used: first, the
process to be executed is normalised; second, apply the operational rules to the

normalised process; third, repeat the first and second steps.

We do not distinguish internal and external choice in the semantics — there is
just one kind of choice. Nevertheless, we assume that the choice between enabled
transitions with different labels, e.g., (4; P) [ (B; @), is made externally by the
environment. Conversely the choice between enabled transitions with the same
label, e.g., (4; P)[] (4;Q), is made internally by the system.

Next, we give a set of operational rules for StAC; programs without taking into

account early termination.

Activity

We assume that an activity is a relation from states to states, and write o Ao
when o is related to o' by “4. The execution of an activity imposes a change in

the state, leaving the compensation function unchanged.

A !
o—0

R1 <
(A, C, o) — (null, C, o)

Condition

In the conditional process b — P the execution of P is guarded by a boolean

function b. As we have seen, the conditional process is either normalised to P or
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null, depending on the result of applying b to the current state.

Recursion

The recursive call of a process N (where N = P is an equation) will execute the

process obtained after normalising P:

N =P A (normalisation(P,0), C, o) N (P, C', o)

R2 =
(rec(N), C, o) — (P!, C", o)

This rule does not avoid badly defined recursions as P = P or P = () x A where
A is an initial activity of Q.
Sequence

This rule states that the sequence P;() imposes an order in the execution of

processes P and (Q: the activities within process P are executed first.

B / / /
R3 (P,C,O'):)(P,0,0')
—

(P;Q, C, o) (P;Q, ', o)
Parallel

The following two rules state that parallel processes can be executed in an arbi-

trary order.

- (P, C,0) 25 (P, C', &)
(P Q,C 0 2 (P Q,C, o)

P B Pl ! !

RS (P, C,0) — (P, C" o)

(QHP’O’U) — (Q“P,a C,val)
Note that the parallel process P || () terminates (i.e., reduces to null) when both
P and () terminate.
Generalised Parallel

The rule for the parallel operator is generalised over a set X. An instance of

process P, is chosen and executed, the result is composed in parallel with the
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remaining instances of P,.

(PIU Ca U)
(| cex . Py, C, 0)

(Pél’ Ola OJ) AN 1€ X
(| zex~far)). P) || Py, €', o)

B
—
R6 .
—

Choice

The next two rules state that in P[] @Q only one of the processes P or @ is

executed.

(P, C, o) 25 (P, C', o)

R _
(P]lQ, C, o) — (P, C" o)

P B P/ ! !

RS (P, C,0) — (P, C" o)

Q[P C o) =2 (P, C, o)
Generalised Choice

This operator extends choice over a set X. Only one instance of process P, is
chosen to be executed.
(P, C,0) 25 (P, C" o'y A 21€X

([eex. Py, C, 0) 25 (P, C", o)

R9

Compensation Pair

In the compensation pair where P is the primary process and () is the compen-

sation task, an evolution in process P does not alter process ().

R10

(P, C, o) 2 (P, C', o)
(P Q,C o) 2 (P =Q,C, 0o

The rule below adds the compensation process () to the compensation function C,
which only happens after process P has finished. The justification for defining
R11 as an observable transition, instead of being defined by normalisation, is
that R11 changes the compensation function C'. Because the normalisation only

changes the process being normalised, it does not change o, R11 had to be defined
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as a transition.

R11 =
(null +; @, C, o) — (null, Cli :== (Q;C(4))], o)

C[i :== @Q; C(i)] denotes that compensation task i is set to ) in sequence with the
previous compensation for task ¢. In this manner, the compensation process is
built in the reverse order of the execution of the primary processes.

Reverse

In the next rule, the operator X; causes the compensation task i to be executed,

and also resets that compensation task to null.

R12

(R;, C, o) — (C(i), C[i == null], o)

Note that compensation tasks do not store any state with them: if the state
changes between the compensation being stored and executed, the current state
is used.

Accept

The operator [J; clears the compensation task ¢ to null.

RI3 =
(&4;, Cy, o) — (null, Cli := null], o)

Merge

The operator J I> ¢ merges all compensation tasks of set J in parallel on to the

front of compensation task .

R14

(J>i, C, o) L2 (null, Cli = (||jes.C());C(5), ] == null], o)

In the above rule the expression J := null denotes attributing to all tasks of set

J the process null, i.e., {j :=null | j € J}. Set J must be disjoint from i.
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Discussion on the Operational Rules

At this point we will discuss some consequences of the rules for the compensation
pair operator. The operational rules R10 and R11 state that the compensation
process () will only be added to the compensation function C' after its primary
process P has finished. But rule R11 does not state when the update of the
compensation function will happen, allowing the occurrence of any concurrent
processes before that update. To illustrate what we have been discussing, we will

present a possible evolution for process:
(A= A || (B+; B

Instead of using the complete configuration, in the transitions below we are only

considering changes in the process and in the compensation function for task i.

(A=; A || (B = B'), C(i) = null) -2 ((null = A') || (B =; B), C(i) = null)
Ly ((null = A') || (null +; B'), C(i) = null)
~%  (null +; A", C(i) = B')
i (null = A, C(i) = A BY)

The first transition is caused by the occurrence of activity A, which leaves the
compensation task ¢ unchanged. In the second transition activity B occurs. Even
though the compensation process A’ has not yet been added to the compensation
task 7, B is allowed to occur because null +; A" is composed in parallel with
B-; B'. The third transition adds activity B’ to the compensation task ¢, and in
the last transition activity A’ is pushed into the top of the compensation task 7.
The above process evolution shows that for a parallel process the compensation is
remembered in a arbitrary order, which is what is expected in a parallel process.

For example, in process

(P+P) [ (Q+ Q)
the execution of P and () basic activities is interleaved, no order is imposed on
their execution. Similarly, compensation activities P’ and @)’ can be remembered

in any order. Nevertheless, the compensations will be remembered in some or-

der. A way to avoid this is to use an independent compensation task for each
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concurrent compensation pair, ¢.e.:

(P +; P) | (Q@+x @) {, k} > i

The merge will preserve the compensations of P and () in parallel, avoiding

imposing an order in the execution of compensations of concurrent processes.

4.3 Operational Semantics for Termination

To define the operational rules for termination, some extensions have to be made
to StAC;. These extensions guarantee the termination will only affect the in-

tended processes.

The early termination process forces all processes within its “nearest” termi-
nation block (or scope) to terminate. For example, in process (4.1) that has two
nested termination blocks, we want the early termination to only affect its closest
termination block. The early termination of (4.1) must not have any affect in
the outermost termination block. We are assuming that all processes have an
implicit outermost termination block, so if an early termination does not have a
surrounding termination scope, it will affect the overall process. For clarity, we

will represent in the examples the implicit outermost termination block.
{Al{B; o C}} (4.1)

The main difficulty in defining an operational interpretation for termination ope-
rators is to ensure that an early termination will only effect the appropriate ter-
mination block. Process (4.2) has two early termination instructions, the scope
of the first one is the outermost termination block, while the scope for the second
one is the innermost block. In order to guarantee that the second early termina-
tion will not interfere with outermost scope, we have to distinguish the two early
termination instructions and also define an explicit connection between each early

termination and its nearest termination block.
{4 o;B) [ {C;0; D} } (4.2)

In order to deal with the problems discussed we have made some extensions to
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StAC;. The connection between an early termination instruction and a compen-
sation scope will be done by labelling them with identical indices. For example,
Oy will affect termination block {- - - }; because that have the same index k. Until
now we have not considered the fact that after an early termination the processes
within the termination block may continue to execute for several steps. We will
represent this delay as a counter that is decreased every time an activity occurs,
where its initial value is nondeterministically selected. To represent the delay
counter we have extended the labelling of termination blocks to a tuple (v, k).
The first component can either be T the top element or a natural number, i.e.,
v: T|NAT. If vis T, it states that an early termination has not occurred; if not,
an early termination has happened and several concurrent activities (or other
basic processes) may be executed. The second component is an index from a
set of termination indices K. The early termination operator ® keeps the initial

labelling.

When a termination operator ®; occurs within process { P}t xy, the tuple (T, k)
will be updated to (n, k), where n is a natural number nondeterministically se-
lected. The number n indicates how many remaining concurrent activities can
occur inside the brackets {---}. In the following we present valid tuple values for

a process {P}:

{P}ry — Process P can continue its execution, no termination instruction has

occurred.

{P}mr — A termination instruction was invoked, but n (for n > 0) activities of
process P can still be executed. This feature emulates the delay of sending

a termination message to a concurrent process.

{P}ox — A termination instruction has previously been executed, and process

P must terminate immediately.

We will use again process (4.2) to illustrate the labelling of termination operators.
In the resulting process, the two termination blocks have different labels. The
first early termination has index 1 since its closest termination block is labelled
(T,1). The second early termination has the same index as its closest termination
block.

{(4;01;B) || { C;09; D Y12y by



Semantics 63

We have defined a new function L that does the labelling of termination opera-
tors. This function is similar to the translation function T presented in Section
4.6. Function L only effects the termination block and the early termination in-
structions. For each termination block a “fresh” index (for example k) is selected
and the label (T, k) is attached to the termination block. Each early termina-
tion instruction is indexed with the index of the closest termination block. The

labelling function LL is described in detail in Appendix B.

We will discuss now some consequences of the interaction of early termination
with compensation pairs. Although the operational rules for termination opera-
tors have not yet been defined, we will discuss a possible evolution for process

(4.3) following the informal interpretation given to those operators.

{(A+A) ok (4.3)

After the occurrence of activity A and process ®1, process (4.3) can evolve into
(4.4). Taking into account that the interpretation given to a termination block
labelled (0, 1) is to terminate immediately, process null+; A’ will not be executed.
Consequently compensation activity A" will not be remembered, even though its

primary action has been executed.

The execution of process (4.3) we have discussed does not have the interpretation
we intended for compensation pairs, because the concept of compensation is built
on the assurance that if the primary process has occurred its compensation will
be remembered. To solve this problem we have created a new operator called
protected block, which guarantees that when a termination block reaches the la-
bel (0, k) any already started protected blocks will be allowed to continue their
execution. We refer to a protected block that has already started as ongoing.
This new operator could be used to protect the execution of any process, but
we are only going to use it in two StAC constructs. The first construct is the

compensation pair:
P+ Q)|

We are considering that a compensation pair always has an implicit protection
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block, so P +; @ is a notation simplification for |P =+; @|. The second construct

is the compensation triple, used in Section 3.2 to specify travel agency example:

|P; (¢ = (null +1 Q1)) [] (¢ = (null +5 Q9))|

that ensures that one of the compensations ), or (02 will be remembered.

Informally, we can say that if a process has a protection block it ensures that
once the process has started its execution it will be allowed to finish, even after
the occurrence of an exit. In order to know if a protected block started its exe-
cution or not, a boolean value will be attached to each block. The boolean value
will be initially false, and when the protected process executes a basic activity

the boolean value will be changed to true.

4.3.1 Normalisation

This section completes the definition of function norm by describing the nor-
malisation rules for termination. Rule N25 says that when the process inside a
termination block is the null process, the termination block has finished and it

can be simplified to null.
N25 norm({null}r,o) = null

Rule N26 says the invocation of a termination instruction within a sequential
process causes the sequential process to terminate immediately. The next rule

(N27) shows that early termination is already in a normalised form.

N26 norm(Gy;P,0) = O
N27 norm(®g, o) = O

The next rule shows how to normalise a termination block, assuming that P #
null and v # 0. In this case, the norm will normalise the process within the

termination block.

N28 norm({P}wr,0) = {norm(P,o)}
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Rule N29 states that a termination block indexed by the tuple (0, %) may still
continue its execution in order to finish all protected blocks already started.
Nevertheless, all processes outside an ongoing protected block will be immediately
terminated. The function that terminates those processes is called terminate and
it will be defined next.

N29 norm({P}ox,0) = {norm(terminate(P),o)}or
The last two rules show how to normalise protected blocks.

N30 norm(|nulll,,0) = null
N31 norm(|Pl,,0) = |norm(P)|,

Function terminate

Function terminate is only invoked within a termination block that is trying to
finish its execution, but before that happens all ongoing protected blocks must be
allowed to continue their normal execution. This function finishes all processes
that no longer can continue, and keeps the protected blocks that have already
started.

The first three definitions show processes that may continue running, as they
may contain a protected block. In the sequential process P; (), the second pro-

cess () can be eliminated because its execution only starts after P has finished.

terminate(P; Q) = terminate(P)
terminate(P || Q) = terminate(P) || terminate(Q)
terminate({P}urey) = {terminate(P)} gk

The next rule shows that a protected block that has not started its execution
(its label is false) is terminated immediately. The following rule states that a
protected block that has started its execution (its label is true) can continue
until it has finished.

terminate(|P|use) = null

terminate(|Plywe) = | Plirue
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The last rule states that a process, for which the previous rules could not be

applied, has to finish immediately:

terminate(P) = null

4.3.2 Operational Rules

This section concludes the presentation of StAC,; operational rules started in

Section 4.2.2, by defining the operational rules for the termination.

Protected Block

Rule R15 states that the occurrence of a basic process within a protected process
P will place the label true on the protection block. It is not necessary to distin-
guish whether the value v is initially true or false, in both cases the final label

will be true.

(P, C,0) 25 (P, C", o)
(|P|U’ C’ U) i) (|Pl|truea OI, OJ) N v E BOOL

R15

Termination Scoping

When an early termination occurs, the compensation function and the state re-
main unchanged. In conjunction with rule R17, this rule may cause a termination

block to terminate.

R16

(©r, C, 0) 25 (null, C, o)

The execution of the early termination instruction ®; causes the termination
block with the same index k& to change its label from (T, k) to (n, k), where n
is a natural number chosen nondeterministically. The new label denotes that n

activities within P’ can still be executed.

(P, C,0) 2 (P, C,0) A ne NAT

R17 >
{PYrm, Co) == ({ P Yoy C, 0)

When an early termination has not yet occurred, a termination block evolves

by executing basic processes of the process within the braces. In this case the
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execution of basic process does not cause any changes to the termination block
label, as long it is not an early termination with same index of the termination
block.

(P, C, o) 25 (P, C'", o) A B#oy
({P}irs, O, 0) 25 ({PYrmy, C, o)

R18

Here an early termination has occurred and n + 1 represents the number of basic
processes that may still occur inside the termination block. This rule states that
in P’ the number of basic processes that may be executed will be decreased to n,

if a basic process occurs within the termination block.

(P, C, o) 25 (P',C",0") A ne NAT
{PYnsisys G, 0) 2 ({PY gy, C', o)

R19

When a termination block reaches the label (0, k), the value 0 in the label states
that P must terminate. However, all termination blocks that have started their
execution must be allowed to finish, which is guaranteed by rule R20. This rule
only allows the execution of basic processes within ongoing protected blocks,
which is assured by the normalisation rules N29, N30, and N31. The processes
not allowed to run would have been cleared, because {P} is a normalised

process.

R20

(P, C, o) 2 (P, C', o)
({Powy. C. o) == ({Phowy. €', o)

4.4 Examples

Next we will present some St AC; examples, where each will focus on some complex
combination of StAC; operators, such as early termination combined either with
parallel or compensation pair operators. For each process a possible sequence
(or sequences) of process evolutions will be shown. The process evolutions are

obtained by applying the operational rules of previous sections. The transition:

p 4 P
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shows that the occurrence of activity A will cause the normalised process P to
evolve to process P’, omitting the state and compensation function. We do not
show in the above transition that this process evolution may be the result of
applying a sequence of operational rules. We will use the notation P ~~ @ to

describe the normalisation of P into ().

Termination and Parallelism

This example illustrates the use of termination blocks combined with the parallel

operator. The following process:
{Al(B;:C)} || D (4.5)

has a termination block in parallel with activity D, and inside the termination

block are two parallel processes.

The left expression in transition (4.6) is the result of applying the labelling func-
tion L (that labels termination blocks and early termination instructions) to
process (4.5). The transition (4.6) describes the process evolution when activity
B is executed. The occurrence of ®; (4.7) changes the label of the termination
block from (T, 1) to (1,1) and terminates immediately the remaining activity in
sequence with ®;. The first number in the label is chosen nondeterministically
and shows, in this case, that only one concurrent activity may occur inside the
termination block. Expression (4.8) describes the process evolution caused by
the execution of activity D. Because D is outside the termination block it does
not change the termination block label. In the last expression (4.9) activity A
occurs and it causes the termination block to end. As shown in (4.9), after the
execution of A, the termination block label becomes (0,1). There are several
possible process evolutions different from the one presented here: for example,

in (4.6) we could have chosen to execute A or D instead of B, or we could have
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chosen 0 instead of 1 as the first component of the termination block label.

{A(B;oC) Y [ D =5 {A| (null;0nC) by | D (4.6)
~ {A(©:0) }ry I D
=5 { A (null; C) Yy || D (4.7)
~ {A}(1,1) ||D
2y [ Aoy || null (4.8)
~ { A}y
A, {null }o1 (4.9)
~  null

Nested Termination Blocks

To illustrate the use of nested termination blocks we will use the following process:
{{ollA}[ol(B;C)} (4.10)

This example has an outermost compensation block that includes three parallel

processes. One of those processes is also a compensation block.

The first process in (4.11) shows that the early termination instructions have
the same index as the closest termination block. The transition (4.11) describes
the process evolution when ®, occurs. The exit (or early termination) operator
only affects the surrounding termination block with the same index, so the label
of the termination block {-- -} 2 will change to (2,2), where the first number
in the label is a number chosen nondeterministically. Notice that ®s does not
affect {-- -}y, because they have different indices. Next, activity B is executed
followed by the early termination instruction with index 1. This alters the label
of the outermost termination block to (1, 1), meaning that only one concurrent

activity may occur inside it. In the last transition, activity C' occurs and causes
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the outermost termination block to end.

{o2ll Ay 101 1(B; O}y == {{null || Ao | ©1 || (B; O)}eryy (4.11)
v~ H{AYea [0 (B;C) fry

= {{A}py |01 || (null;C) Yoy (412)
~ {{Aley o1 [ Clry

s {({ A} [ null || C Y (4.13)
~ {{Aley | Clay

= {{ A} [l null Jo (4.14)
~ null

Alternatively, after (4.13), activity A could be executed causing the following

process evolution:

5 { {null Y 1| C Yoy (4.14)

~ null

The execution of A causes the labels of both termination blocks to be decreased
by one, making the outermost block to terminate.

A different evolution for process (4.10) is described next. First ®; is executed
(4.15). This makes the label of the outermost termination block to evolve from
(T,1) to (2, 1), indicating that two concurrent instructions may still occur inside
it — again this number is chosen nondeterministically. The occurrence of A de-
creases the number of allowed instructions to one. When ®, occurs, it alters the
label of the outermost termination block to (0, 1), causing the termination block
to end.

HAl ©2} 2 Il ©1 1 (B5C) Feroay Ol [{A] @ Feroy [l null || (B; C) Fa,y (4.15)
~ {{A] @2} I (B;C) Yoy

s {{null | @2 }ra | (B;C) Yy (4.16)
~ {{®2 b [ (B;C) by

% {{null b | (B;C) Yo (4.17)

~  null
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Early Termination within Compensation

In process (4.18) the compensation for activity A is an early termination in-
struction. This compensation will be invoked later, and we will see next the

consequences of having an early termination within a compensation process.
{({A-0}; (Bl X)} (4.18)

After the execution of A (4.19), instruction @, will be inserted in compensation
task ¢ ending the termination block with label (T,2). Next, the instruction
reverse is executed (4.20) calling the early termination that is in compensation
task 7. The execution of instruction ®s does not interfere with the remaining
termination block, since they have different indices. Last, activity B occurs
ending the termination block.

{({A+iG oy BI) by o {{nullhra: B8y  (4.19)
~ (B ®) by
=5 {B ] O}y (4.20)
2 (B | null Yot (4.21)
~ {B }<T,1)
Ly {nudl Yoy (4.22)
~  null

If the compensation pair A +; ®; was not surrounded by the termination block
labelled (T, 2), the early termination would interfere with the outermost termi-

nation block (as they would have the same index).

4.5 Executable Semantics

We have implemented an animator for StAC; processes [LABT01] based on the
CSP(PL) animator described in [Leu01l]. The StAC; animator (Figure 4.5) was
developed in SICStus Prolog 3.8 and encodes the operational rules and the nor-
malisation functions into Prolog predicates (see Appendix C for the complete

prolog encoding). At the moment it supports step-by-step animation and back-
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StAC Animator: [raffle.st] =1ol =]
File

1affle = selTickets; drawOiCancel =
zellTickets = distributeTickets: assigndgent

assignéigent = || a:fal.a2.a3}. ticketbgent(a)

ticketdgent(a) = timeOut{a] [] [zel0neTicket(a); ticketbgent(a]]

selldneTicketfa) = [] b1 12,t3} . [sellTicket{at] (1] refundTicket{a,]

drawlrCancel = [overThreshold ; performDiraw] [] <*:(1)

performDiraw = drawv; deliverPrize; <»(1)

4] [ v[+]

Compensation Processes

1 - [refundTicket(a3.t2] : refundTicket[al.11]) -
B
Available Activities Hiztary
timeOut[al] = |time0ut[a3) =]
sellTicket(a1 k1) sellTicket[aZ.t2)
zellTicket(al t2] timeOut[a2]
sellTicket(al.t3] zellTicketal.11]
BACKTRACE distribute Tickets
- -

Figure 4.1: The StAC animator

tracking of StAC,; processes.

Although the StAC; configuration is a tuple with three elements (P,C, o), in
prolog we will not deal with the B part of the specification. Therefore, the
configuration in prolog will just have two first elements (P,C), which will be
represented as the predicate conf(P,C). The configuration transitions will be en-
coded as the predicate trans, where trans(conf(P,C),B,conf(P1,C1)) says that the
occurrence of the basic process B will cause the configuration conf(P,C) to evolve
into configuration conf(P1,C1). Having defined trans, we will illustrate how to
encode two of the operational rules in prolog. Rule R3 states that if the occur-
rence of B causes the configuration conf(P,C) to evolve to conf(P1,C1), then the
configuration conf(seq(P,Q),C) will evolve to conf(seq(P1,Q),C1), where seq(P,Q)

represents process P; ().

(R3)  trans(conf(seq(P,Q),C),B,conf(seq(P1,Q),C1)):-
trans(conf(P,C), B, conf(P1,C1)).
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Rule R17 describes the occurrence of an early termination, represented in prolog
as the predicate exit(l), within a termination block. Executing process exit(l) will
cause the configuration conf(block(P,true,l),C) to evolve into conf(block(P1,N,I),C),
if P1 is the process obtained after the occurrence exit(l) in P and N is an arbitrary
natural number. To encode rule R17 in prolog we have eliminated the nonde-
terministic choice of a natural number, and replace it with a randomly selected
natural number between 0 and 3. We have chosen number 3 as the upper limit
for N so that only a small number of basic processes should be allowed to occur
after an early termination. Assigning a big number to N reduces (or even elimi-
nates) the impact of an early termination within a process, because it can give

the process enough time to terminate all its activities.

(R17)  trans(conf(block(P,true,l),C), exit(l), conf(block(P1,N,I),C)) :-
trans(conf(P,C), exit(l), conf(P1,C)), random(0,3,N).

The animator has helped through the definition and validation of the operational
semantics, allowing variations between different operational semantics for StAC;
to be examined. But more important, it helps validating individual specifications,

e.g., the examples in Section 4.4 were developed using the animator.

4.6 Translation from StAC to StAC;

As mentioned before, in StAC; a process can have several simultaneous com-
pensation tasks, which extends the StAC concept of compensation scope with a
single implicit compensation task. So, instead of defining a semantics for StAC
language, we have defined a translation of StAC processes into StAC; processes.
The interpretation of a StAC process is given in terms of StAC; by the translation

function.

The translation function T converts a StAC process into a StAC; process:
T : L(StAC) x I — L(StAC;)

where L(StAC) and L(StAC;) represent StAC and StAC; languages and [ is a

infinite set of indices. The parameter I is necessary in order to define T recur-
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sively. To translate a process P we have to select an index ¢ from I, and T(P, i)

will construct a StAC; process.

The first set of rules show the processes that remain unchanged by function
T. Basic activities, null, invocation of a recursive process, and ® have the same
representation for StAC and StAC;.

T(A, 1) = A
T(null, i) = null
T(rec(N),i) = rec(N)
T(®,1) = O

The next two rules describe the translation of the acceptance and reversal in-
structions. The translation of acceptance within index 7, results in an acceptance
instruction for compensation task i. The translation of the reversal instruction
is defined similarly.

T(X,i) = K;

T(4,:) = &

The following rules show how to translate composite constructs. The translation
rules are recursively defined on the constituents of the constructor. For example,
the translation of a sequential process P;() with an index 7 is the sequential

composition of the translation of process P and () with the same index i.

T(b — P,1) = b— T(P,i)

T(P; Q, i) = T(Pi); T(Q, 1)
T(P[Q,19) = T(P,i) [ T(Q,1)
T([Jvex. Py, i) = [Jeex. T(P,1)
T(let X =ein Px,i) = let X =e in T(Px,1)
T P}rry, 1) = {T(P,9) }rm

T(P + Q,1) = T(Pyi) + T(Q,1)
T(|P|vai) = |T(Pa Z)|v

The following set of rules are more complex. The main difficulty comes from
parallel processes and their compensation information. Since we do not know
the order of execution of P || @, it implies that we also do not know in which

order their compensation should be executed. The solution is to create a new
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compensation task for each parallel process, so their compensation processes will
also be a parallel process: the parallel composition of the new compensation tasks.
We are assuming that new compensation tasks will be empty initially. Process P
and process () are translated using the compensation tasks j and k. The resulting
processes will be composed in parallel. Last, the new compensation tasks j and
k are merged into the initial task ¢, which means that the compensations of
the parallel processes are retained (unless they have been explicitly committed).
Notice that compensation tasks are merged in parallel, so the outcome of the
merge is process C(j) || C'(k), that will be pushed on top of C(7). The second

rule is a generalisation of the first rule over a set of parallel processes.

T(P || Q,4) (T(P, 5) || T(Q, k)); {5, k} > i
T(|| eex.Py,i) = (|| eex.T(Py,jz)); J > i

where j and k are new distinct indices, and J = {j, | z € X} is a set of new
indices such that x # 2’ = j, # jw. The final merge in the second rule means
that the compensations of the parallel processes are retained, they are merged in

parallel in front of compensation task %.

In the last rule we translate the compensation scoping [P]. The scoping bra-
ckets are translated to a new compensation task j, then process P is translated
using index j. Last, the compensation task j is merged into the initial index 7,
so all the compensation information that was not reversed or accepted can be

preserved by adding it to compensation task .
T((Pl, i) = T(P,j)i{j}>i

To clarify the translation rules described in this section, we will exemplify the
translation of the StAC process (A + A" || B+ B'); C into a StAC; process with

the same behaviour.

T(A+A"||B+B);C,i) = T(A+ A" || B+ B,i);T(C,i)
T(A+ A" j) || T(B + B, k)); {j,k} > i;C
A+ A" || B+ B'); {j,k} > i;C

~—~~
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The first rule applies the function T to both sequential processes A+ A’ | B+ B’
and C'. To translate the parallel process it is necessary to create a new index for
each parallel process. After the translation of both parallel processes using the

new indices 7 and k, those indices are merged into the initial index 7.

4.7 Integration of StAC, and B

The operational semantics rules presented in Sections 4.2 and 4.3 allow us to
consider a process as an LTS as in [Plo81]. Furthermore, [But00] shows how a
B machine can be viewed as an LTS. For those reasons, the semantics of the

integration of StAC; and B will be based on the operational semantics.

A B machine can be viewed as an LTS, where the state space is represented
by the cartesian product of the types of state of the machine variables; labels are
represented by the operations names and the transitions are represented by the

operations.

The semantics of B operations is given in terms of weakest preconditions. For
a statement S and postcondition @, [S]@ represents the weakest precondition

under which S is guaranteed to terminate in a state satisfying Q).

In order to define when a transition is allowed by a B operation, we use the

notion of conjugate weakest precondition defined as follows:
(9)Q = ~[5]-Q.

(SYQ represents the weakest precondition under which it is possible for S to
establish @ (as opposed to the guarantee offered by [S]@). Rules for [S] and (S)
for a subset of B constructors are shown in Figure 4.1.

Suppose the B machine represents activity A with an operation of the form
A=S,

where A is the operation identifier and S is a B AMN statement on the machine

state o, then the transition

A
o—0
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[z:=E|Q — substitute E for z in Q
[CHOICE S OR T END] = [S]QA[T]Q

[ANY + WHERE P THEN S END|Q = Ve (P = [S]Q)
[SELECT P THEN S END] Q = P=[S]Q

(r:=E)Q = [z:=E]Q
(CHOICE S OR T END) = (S)YQV (T)Q

(ANY » WHERE P THEN S END)Q = Jze(PA(S)Q)
(SELECT P THEN S END) Q = PAS)Q

Figure 4.2: [S] and (S) rules

is possible provided

[v = o] ((S)(v=0")) (4.23)

Here v represents the variables of the state machine. For example, when S is the

following B statement,
S = SELECT z =0 THEN z :=1 END

the transition o 2> ¢’ is possible if it satisfies the (4.23) condition:

[z :=0] ((S) (x =0"))
= [z:=0] (S LECTx—OTHENx—lEND)( = 0o'))
= [z:=0](x=0A (z:=1)(z =0))
— [1‘ o’]( :0/\1—0)
= o=0AN1=0

So o & o may happen provided that c =0 A ¢’ = 1.

A parameterised B operation of the form
Alz) =S

represents a set of activity definitions with labels of the form A.i, and the ope-
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ration corresponding to activity A.; is given by the statement z := 7;S. We
have not described output parameters since an activity in StAC; does not have
outputs. In StAC instead of having outputs parameters, an output is assign to a
variable. An illustration of this approach is presented in the e-bookstore example
(see Appendix A.2 for a complete description), where operation ProcessCard
sets the variable accepted to either TRUE or FALSE instead of returning that
same value. Later the variable accepted is inspected by process Pay to deter-

mine whether to execute the compensation process or not.

As in Butler [But92|, we have considered the use of output parameters in StAC,
but it raises problems when the output is chosen nondeterministically. In that
case, the resulting LTS will have one transition for each output value, causing ex-
ternal choice on the LTS. For example, from the operation A? (4.24) with output

parameter y, where y is chosen nondeterministically,
y < A=y:€{0,1} (4.24)

represents a set of unparameterised activities A.7, where 7 belongs to the set of

possible output values:

init skip

4.25
A.i = SELECT i € {0,1} THEN skip END ( )

As we discussed before, operation A.; introduces external choice. An alternative
definition for A.i that would solve the limitations of (4.25) is presented in (4.26).
In this approach, the value of 7 is set in advance by a local variable. The local
variable z is assigned a value from the set of possible output variables, which
introduces internal choice. When A.i is invoked, the value of 7 is already defined
by .

var

init = :€ {0,1} (4.26)

A.i = SELECT i = ¢ THEN z :€ {0,1} END

We decided to use the method of assigning outputs to variables for two main

reasons. First, it avoids the external choice caused by approach (4.25), and the

2The operation definition y + A = --- denotes that y is an output parameter of A.
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complexity of approach (4.26). Second, it is a convenient way of representing

process outcomes, where that outcome may be consulted by several processes.

4.8 Discussion

In this section we discuss alternative approaches to the formalisation of StAC
semantics. We consider algebraic and denotational semantics, and the use of

bisimulation to determine process equivalence.

We could have built an algebraic semantics for StAC;, and defined a set of axioms
for process equality. However, the nature of the operators supported by StAC;,
like compensation and particularly early termination, eliminates any “relevant”
algebraic laws. For example, law (4.27) states that the behaviour of two compen-
sation pairs composed in parallel should be the same as the behaviour of a single
compensation pair, where: its primary process is the sequential composition of
the primary processes P and (); and its compensation is the sequential compo-
sition of compensations )" and P’ (compensations are composed in the reverse

order of the primary processes).
(P+1P); (Q@+1Q) = (P;Q)+ (@ P) (4.27)

With our operational approach, it can be proved that the law (4.27) is true if
all processes in the equation (P, @), P', and Q)') are basic activities. In general

equation (4.27) is false, as P and ) may have nested compensation pairs.

Although we have not defined a denotational semantics for StAC;, we could have
used the method described by Roscoe [Ros98] where a denotational semantics for
CSP is deduced from its operational semantics. More specifically, Roscoe shows
how to extract a process’s traces, failures, and divergences from its operational
execution. It seems feasible to extend Roscoe’s method to deal with StAC; spe-
cific operators, as compensation and termination operators. Still this does not
help to prove algebraic laws of operations. To define a denotational semantics,
e.g. trace semantics, it would be difficult, because we cannot defined the be-
haviour of, e.g. X, without knowing the context in which it appears, as this

determines which compensations should be executed. We would have to include
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compensation tasks in the semantic model, which is not an abstract approach.

Milner [Mil89] defines the semantics of CCS through an operational approach.
He proceeds to define an equivalence relation between processes, which he calls
bisimulation. The (weak) bisimulation relation determines if two processes are
observation equivalent, i.e., the environment with which they interact can not
distinguish them. This equivalence relation can be used to verify if a process
is an implementation of another process. We could have followed Milner’s ap-
proach and define a bisimulation relation between StAC; processes. The difficulty
of using bisimulation lies in the method used to prove bisimilarity between pro-
cesses: one has to find a binary relation that relate those processes and satisfies
the bisimulation conditions. We use instead a state machine representation of
the specification, which allows the application of model checking or refinement to
verify if one process is an implementation of another process. It could be argued
that the determination of a bisimulation relation is similar to the determination of
a refinement invariant. The advantage of refinement, when using the B method,

is the tool support.



Chapter 5
Refinement

In this chapter we explore the refinement of StAC specifications. With refinement
the development of a system can start with a very abstract view of the system
and gradually add details into the abstract model. The abstract specification
will be connected to the “more concrete” specification (that has more details)
by a refinement relation that guarantees the concrete specification can replace
the abstract specification without the user noticing any change. With this ap-
proach a system development is a sequence of specifications, that starts with a
very abstract specification and may end with an implementation. Furthermore,
because all the steps in the sequence are proved correct, one can be certain that

the implementation has the same behaviour as the initial abstract specification.

Notice that the refinement strategy presented in this chapter is not intended
as a general refinement method for StAC specifications, our purpose is to study
the applicability of refinement in the context of compensation by applying it to

a case study.

The next section presents some possible approaches to StAC refinement. Sec-
tion 5.2 studies a possible strategy to system refinement. In Section 5.3 we apply

the strategy described in Section 5.2 to the refinement of the e-bookstore example.

5.1 Refinement Approaches

Taking in account that StAC specifications have two parts, a set of StAC processes

and a B machine, the following alternative approaches could be applied to the

81
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refinement of StAC:
e Develop a set of structural refinement rules for StAC.

e Refine the B machine that describes the StAC activities while maintaining

the StAC processes unaltered.

e Combine the two parts of the StAC specification in a standard B machine

and apply the B notion of system refinement.

From all the possible approaches to StAC refinement, the structural refinement
is the method who has the most advantages. To prove a StAC refinement using a
set of structural rules, would involve the verification of some well defined proper-
ties. For example, a structural rule could state that a parallel process @ || R is a
refinement of process P, if it is possible to establish property C'. Unfortunately,
it would be very difficult to devise those rules for StAC. The main difficulty lies
in the fact that StAC has to implicitly maintain multiple compensation tasks,
and that the contents of those compensation tasks is only determined at execu-
tion time. For that reason we have decided to choose a different approach to the

refinement of StAC processes.

The second method for the refinement of StAC specifications is too limited as it
does not allow the refinement of StAC processes, only the activities are further
refined. Also, because StAC processes may access the B machine variables, this
may impose restrictions on the refinement of those variables. In this approach
the B machine that contains the system state and activities (which is a standard

B machine) can be refined by using the B refinement notion.

In the last method the two parts of a StAC specification are combined into a
standard B machine. With this approach the behavioral information defined in
the StAC processes will be embedded in the resulting B machine. The fact that
StAC has specific operators to deal with compensation makes the “translation”
of StAC into a standard B machine a complex task. Compensation tasks and
operators like accept, reverse and compensation pair have to be explicitly rep-
resented in B. Given that the resulting B machine is standard B, it enables the
use of the B refinement relation to verify refinement between StAC specifications.
Although the embedding of StAC into B is complex, we have decided to follow
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this method as it allows StAC processes and activities to be refined simultane-

ously.

The remainder of this chapter explores a possible approach to the embedding
to StAC into standard B, where some restrictions were imposed on the type of

processes supported. Later this strategy is applied to a case study.

5.2 StAC Refinement

The strategy we have defined for refinement of StAC specifications is described
in Figure 5.1, and it is based on the csp2b [But00] approach. The first step (a)
extracts a State Transition Diagram (STD) from a set of StAC process, where
the resulting STD describes the order of execution of the activities. The con-
struction of a state transition system (either in a textual or diagrammatic form)
is necessary to determine the execution order of the operations. We decided to
use a diagrammatic form instead of a textual one because we believe that the
diagrammatic form is easier to understand. Besides, in our experience, having a
STD helped the determination of the invariant as it is possible to visualise the

evolution of both the abstract and refined system.

In the second step (b) the information of the STDs is explicitly included in the
original B specifications, where the resulting Mg and Npg specifications are stan-
dard B machines. With this approach, to prove that N is a refinement of M, it
is necessary to build both Mg and N machines and prove within the B method
that Np is a refinement of Mg. Because the resulting B machines are standard B
we have used Atelier-B to generate the proof obligations and its prover to assist

in proving those obligations.

It would be difficult to capture the StAC operational semantics into B. The
difficulty lays in the fact that the compensation function stores arbitrary com-
plex processes, and that those processes are constructed at “run-time”. To deal
with the storage of arbitrary compensation processes, one would have to repre-
sent StAC processes as abstract data types, and because B is not well suited for
the representation of abstract data types this would be a difficult task. Even if

one could represent arbitrary compensation processes in B, the resulting B ma-
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StAC + B M C N | StAC+B

(2) (a)

y v
STD +B STD + B

(b)

(b)
B M, = N, B

Figure 5.1: StAC refinement

chine would be a complex machine making it difficult to use any of the B tools
as we have used to prove the refinement of the e-bookstore case study. For these
reasons we imposed some restrictions to the types of processes supported by the
embedding of StAC into B defined in Figure 5.1:

e Compensation pairs must be formed by basic activities, i.e., in process
A-=+; D both A and D must be basic activities. We imposed this limitation
because compensation processes are built at run time, and to support arbi-
trary complex compensation processes we would have devise a way to store
in B such processes, which would be a difficult task. As we intend to use
Atelier-B to prove refinement, it is important that the extended machine is

not a complex machine, which would make the refinement proofs difficult.

e Parallel processes are supported only at the outermost level. As is men-
tioned in Section 7.2.3, this limitation could be overcome (partially) by
using the method proposed in [SZ02] for translating statecharts into B,
which supports the translation of arbitrary parallel processes at any level.
Nevertheless, we still would have to restrict the use of generalised parallel
processes to the outermost level, as the set used for indexing a generalised

process may be an infinite set.

e Early termination is not considered, because at the time the StAC refine-

ment was studied the language did not include termination operators.
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5.2.1 Embedding StAC into B

This section describes in detail how to embed the StAC behavioural and compen-
sation related information into a standard B machine. But, before getting into
the details, we will use a simple example to illustrate how the StAC embedding

into B works in practice.

Counter Example

In here we will use a counter example to illustrate how the extended B machine
will be built. Our counter starts by increasing a counter. Next the system ver-
ifies if the counter has reached its maximum value, in this case the counter has
to be restored to an acceptable value, otherwise the current value of the counter

is accepted.

The first process in Counter is a compensation pair, the primary task inc in-
creases the counter by one, while the compensation task dec decreases the counter
by one. The second process is a choice guarded by the boolean function isMazx. If
1sMax evaluates to true, then the reversal is invoked. Otherwise, the acceptance

is called.
Counter = inc =+ dec; (isMax — X [| ~isMax — M)

Figure 5.2 presents the STD for the Counter process, which was obtained after
applying the rules that will be described later in Section 5.2.1.1. The transition
label inc = dec states that operation inc will be executed, and simultaneously
dec is stored as the compensation for inc. The guarded transition from state S2
to S4 shows that the accept operator may be executed if isMax is false. The
reversal has a more complex representation, because it has to invoke sequentially
the activities in the compensation. In the general form, X; is represented by the
following STD:

[size(C(j)) > 1] first(C(j))
. [size(C(j)) = 0]
=)o {5 2

[size(C(j)) = 1] first(C())

where C' € INDEX — seq(ACTIVITY) is the compensation function that for

each task index returns a sequence of compensation activities. The occurrence of
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&)

inc dec

[ isMax | M

[size(C) > 1]
first(C)

[size(C) = 1]
first(C)

Figure 5.2: STD for Counter

X, causes the state to evolve from X1 to X2. In state X2 only one of the three
transitions will be enabled, depending on the number of compensation activities
on task j. If compensation task j is empty, the STD will evolve to X3 without
performing any action. If the compensation task 7 has a single compensation ac-
tivity, that activity will be executed and the STD will evolve to X3. Otherwise,
the compensation activities will be executed sequentially until a single activity

remains.

Because Counter has a single compensation task, in the STD of Figure 5.2 the
expression C(7) necessary to deal with multiple compensation tasks was replaced
by C'. The STD could be further simplified because we know that the size of C
in state s3 (after the occurrence of the reversal) will be one, but we decided to

use the general rule for reversal.

Machine Counterp shows both the original B machine (called Counter) and the
extensions necessary to deal with compensation. The original machine has a
constant max, a variable ctr, and operations inc and dec that will increase and
decrease the ctr variable. The extended machine has two new sets: STATE con-
tains the STD states; while ACTIVITY has the names of the B operations that
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correspond to compensation activities in the Counter StAC process!. Besides
the new states, there are also two new variables, state and C, that contain re-
spectively, the machine current state and a sequence of compensation activities
currently stored. In the initialisation, state is s1 and the compensation function

is empty.

MACHINE Counterpg
CONSTANTS maz
PROPERTIES max € N

SETS

STATE = {51, s2, 3, s4 };
ACTIVITY = {dec}
VARIABLES

DEFINITIONS

isMax == ctr = max

INVARIANT
ctr € N A
state € STATE A

C € seq(ACTIVITY)
INITIALISATION

ctr :€ 1..(max —1) A
state := sl A
Ci=]

In the initial B machine Counter, operation inc? had a single statement where the
value of ctr is increased by one. Because inc is the primary task of inc = dec, the
extended operation has a SELECT statement that will store the compensation

dec at the front of the compensation whenever inc is executed. Besides that, the

!Because there is a single compensation activity in Counter, the set ACTIVITY could
be removed. We decide to keep this set to illustrate how a more complex machine could be
constructed.

2The expression e — s represents prepending element e to sequence s.
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state is updated to s2.

inc =

SELECT state = s1 THEN
C:=dec— C ||
state 1= s2

END

|
BEGIN cir := ctr +1 END

Assuming that an activity A is described as the B operation A=(), we have

defined that the extended B operation would have the form:
SELECT G THEN P END | @ (5.1)

in order to maintain a clear separation between the original operation definition
and the StAC extensions. Alternatively, we could have defined the extended

operation in the following way:
SELECT G THEN P || @ END (5.2)

Because we are assuming the () is non-aborting, i.e., it is either a SELECT or
an ANY statement, the statements 5.1 and 5.2 are equivalent. Both 5.1 and 5.2
are enabled, if G and the guard of P are also enabled.

Operation dec is not invoked directly, it will be called after the reversal is in-
voked. This operation will be enabled if the current state is s3, the size of
sequence C' is greater than one, and the compensation operation at the top of
sequence C is dec. If all conditions are met, the first element of compensation is

removed. Furthermore the state variable is updated when the compensation is

empty.
dec =
SELECT state = s3 A size(C) > 1 A first(C) = dec THEN
C:=tail(C) ||
IF size(C) = 1 THEN state := s4 THEN
END

|
BEGIN ctr := ctr — 1 END
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Reverse is new operation added to the initial Counter machine. This operation

only updates the current state of the machine.

Reverse =
SELECT state = s2 A isMax THEN
state := s3

END

Again, Accept is a new operation to be added to the original machine. This
operation updates the current state of the machine and clears the compensation

information by setting C to the empty sequence.

Accept =
SELECT state = s2 AN —~isMaxr THEN
C:=1[] |
state := s4
END

After extending the initial machine Counter as we have shown, the resulting
machine (Counterp) will contain, in addition to the system state and activities,

the behavioural and compensation information described in process Counter.

5.2.1.1 From StAC to STDs

Here we will describe how to construct an STD from a StAC specification, by
giving each StAC operator a correspondent representation in STDs. From a set
of StAC processes, one can construct a STD that defines the order of execution of
the system activities and compensation operators. Starting with basic activities,

they cause an evolution in the state:

A

The null operator does not cause any transition in the state of the system:

null S1 ]

The sequential process P; (@ is represented by a STD with two state transitions:
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The above diagram raises two problems. The first problem arises when processes
P or () are not basic processes. In this case the transition labels P and ) do
not represent transitions, they represent a nested STD. Therefore, from now on,
we will use the transition label STD(P) to describe that a transition contains a
nested STD — the STD for process P that has to the unfolded. To unfold a STD
one has to replace each transition labelled STD(P) by a graph describing the
STD for process P. The second problem arises from the sequential composition
of STDs and how to connect the final state of the STD for P to the initial state of
the STD for process (). A way to solve this problem is to consider that the final
state of P is the initial state of (). This approach overcomes the need of a special
transition label to represent the conclusion of the first process in the sequence,
but still guarantees that process P has to finish before process () starts. At the
end of this section a small example with sequencing will be presented illustrating
how to build a STD from a set of StAC processes. The “correct” STD for process
P; @ is presented next, where the final state of process P (S52) is used as initial

state of process (Q:

The conditional expression b — P is described as a guarded transition. If the

condition b holds, the occurrence of process P will cause a transition in the state.

b p E} [b] STD(P) @j

If the conditional process b — P does not have an alternative process, i.e., is

not a part of a process with a structure (b — P)[J(=b — @), it is necessary to
extend b — P to process (b — P)[J(-b — null). The justification for adding
an alternative branch to each conditional process arises from a difference in the
interpretation of conditional processes with a false guard by StAC and STDs:
in StAC a false guard is the same as null (the process terminates immediately),
while in STDs the transition will not occur with a false guard (the process dead-
locks), causing the STD to halt. To solve this problem the STD will have an

extra guarded transition:
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[b] STD(P)

-
(b— P) [ (=b — null) @ 52 j
- [ ]

A recursive process is represented by a loop transition, as mentioned before the
transition labelled P has to be extended to include the STD for process P:

rec(N) S1 D STD(P) where N = P is an equation

The choice between two processes is represented by alternative P and () transi-

tions between the initial and final state.
~ STD(P)

PlQ S1 S2 j
C STD(Q)

The generalised choice was introduced in the StAC language to avoid deal-

ing with process parameters. Instead StAC has alternative processes for each
value of the variable, i.e., [[zex . P(x) describes choosing one of the processes

P(z1),---, P(x,). The generalised choice is represented as a guarded transition:

perey () EENSTEO) ()

We have not defined a STD for the let statement let X = e in Py, instead

every occurrence of X will be replaced by the state expression e. The let state-

ment was created so that generalised parallel processes would always have a fixed
set, of indices, but as we are only considering generalised processes at the outer-
most level, this implies that their indices will always be a fixed set and that let

statements will not be used.

We restricted the compensation pair operator so that both primary and com-
pensation tasks are basic activities. The resulting STD for the process A +; D
has a single transition with the special label A+; D. The STD for the accept and
merge operators is similar to the compensation pair STD, they only differ on the
transition label. In page 85 we present a small example that illustrates how the

information contained in the STD will transposed into B.
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DB E} AsD B,/ j>i @j

To represent the reverse operator in STDs we are assuming that the compen-
sation information is maintained as a function from compensation task indices
to sequences of operations, i.e., C' € INDEX — seq(ACTIVITIES). After the
occurrence of X; there are three alternative transitions. The choice of one of them
depends on the size of compensation task i: when it is empty, the STD evolves
to state S3 (the final state of the STD for the reversal); if it has a single activity,
it will execute the last activity and evolve to the final state; if it has more than
one activity, it will execute the activity at the front of the sequence and continue
in state S2.

[size(C(7))=0]

[size(C(i))=1] first(C(7)) (
= (= J—g f (=]

[size(C(2))>1] first(C

Because items on the compensation stack are always basic activities and not com-

plex processes, those transitions are not expanded further.

One of the restrictions of the embedding of a StAC process into B is that parallel
processes are only supported at the outermost level. The parallel process P || @
is represented as a state with two concurrent substates, the STDs for P and Q).
With this approach the activities of both P and () can be interleaved. We will

follow a similar notation and interpretation to the statecharts.

Pl Q STD(P) | STD(Q)

The generalised parallel process is represented, similarly to the binary parallel
process, as a composition of several identical STDs being executed concurrently.

For example, the process

| w€ tarwaan} . (Az) | B(z)); C(x)
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will be represented by n identical concurrent STDs:

:
26

Ax) | | B(x)

~

A(x,) l B(x,)

S2

A(x,) || B(x,)

Y

C(x) C(x,)

S S

@4
@4

-

5.2.1.2 Building the integral B machine

This section describes how to embed in the system’s original B machine the
behavioural and compensation related information, described in the associated
STD. To achieve that we will add state variables to deal with the STD states and
the compensation tasks. Furthermore, the operators accept, reverse and merge
will be added to the machine as new operations (only if they are used in the StAC
specification) and the original operations will be altered to explicitly handle the

STD states and compensation.

State Variables

The boxed elements in Figure 5.3 are the additional sets and variables that need
to be included into the original B machine. STATE represents the set of states
of the STD build from the StAC processes, INDEX is the set of all compensation
tasks indices, and ACTIVITY represents the set of names of the B operations
that are used as compensation tasks. The variable state describes in which STD
state the machine is. In the initialisation clause we are assuming that there is a
single initial state (s1) in the STD, otherwise the variable would be initialised to

any of the initial states.

The compensation function C' associates to each task a sequence of activities,
which implies that the compensation cannot be an arbitrary StAC process. An-

other restriction is that compensation will be represented as a stack of activities,
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thus invoking the reversal operator will execute those activities in the reverse
order they were placed in the compensation. A consequence of representing com-
pensation tasks as stacks is that the resulting B machine will be more determinis-
tic than the original StAC specification: the resulting machine imposes an order
in the execution of the compensation activities where that order may not have
existed in the original StAC specification. Alternatively, the compensation tasks
could be represented as a set of activities, entailing a parallel composition of the
compensation activities. Using this alternative representation causes the resulting
B machine to be less deterministic than its associated StAC specification. This

is not viable as any ordering imposed on the compensation activities will be lost.

MACHINE Mp

SETS

S
STATE = {s1,82," " ,8n}
INDEX = {i1 i, ,ig}
ACTIVITY = {Dy,Ds,--- , D}

VARIABLES

v, [saie, 0

INVARIANT
IAN

state € STATE N
C € INDEX — seq(ACTIVITY)

INITIALISATION
init ||
state 1= s1 ||

C := XNindex.(index € INDEX | ()

Figure 5.3: State of the integral B machine

If a system is specified as a generalised parallel process || zex.P(x), then it
will be represented by n (where n is the number of elements of X) identical
STDs evolving concurrently. The variable state of Figure 5.3 has to be extended

to a function that associates a state to each STD:

state € X — STATE
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Compensation activity arguments Compensation activities with arguments
are supported as long as they have the same number and type of arguments.
Assuming that the compensation activities have two arguments of type ARG,

and ARG, the compensation function has the following representation in B:
C € INDEX — seq(ACTIVITY x ARG; x ARG,)

To overcome this limitation on the arguments of compensation activities, one
would have to extend B to include disjoint union (or coproducts). Then it would
be possible to have a set ARG which could be defined as the coproduct of all

types of compensation activities arguments:
ARG = ARG; + ARG, + --- + ARG,

Here ARG is used as a polymorphic argument that can be cast to a specific ar-
gument type. This would allow compensation activities to have different number
and type of arguments. The next clause defines a general compensation function

that does not impose restrictions on the arguments of the compensations:
C € INDEX — seq(ACTIVITY x seq(ARG))

Given that the arguments of a compensation activity are defined as sequence of

type ARG, they can be any size and type.

Operations

Each operation in the initial B machine has to be extended to include the informa-
tion of its associated STD. In all the diagrams of this section we are considering
that activity A is described as the B operation A = () where () is an AMN state-
ment, and for simplicity we are not considering operation arguments. The first
diagram shows that activity A may occur when the system is in state s1 and that
the execution of A causes the state to evolve from sl to s2. The operation A will
be extended with a SELECT statement, that ensures A will be not enabled if the
condition state = s1 does not hold. One has to take into account that () can also
be a guarded statement, in this case A will be enabled when both state = s1 and
the guard of @ holds3.

3This is valid provided @ is non-aborting [But00], which is an assumption that we make.
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[ A 4=
S1 j—‘@j SELECT state = s1 THEN state := s2 END ||
Q

The following STD has a transition A guarded by b, therefore operation A will
be extended with a SELECT statement with the additional condition b:

[b] A 4
S1 S2 SELECT state = s1 A b THEN state := s2 END ||
Q

When a STD has a transaction labelled with a compensation pair A +; D, it
describes the execution of A, and the inclusion of D in the compensation task 7.
Operation A will be guarded by the state variable, and when the machine is in
state s1, statement ) will be executed (assuming that @ is enabled) and simul-
taneously the label D will be pushed on top of the compensation task i.

A=
SELECT state = sl

A= D THEN
S1 j—l@j C@i) =D = C@) |

state := s2
END ||

Q

Compensation activity D may be invoked in a later stage if the reversal for
task 7 is invoked. Assuming that the reversal for task 7 is invoked in state s; (see
STD for reversal in page 92) the compensation operations will be invoked in state
sj41. The SELECT statement added to operation D will be enabled when the
system is on state s;4; and D is the activity on the top of the compensation task.
The execution of operation D removes the label D from the top of compensation
task 7 and executes its original statement R. If D was the last activity in the

compensation task, the execution of the compensation task has finished and the
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system will evolve to a new state.

D =
SELECT state = sj11 A first(C(i)) = D A size(C(i)) > 1
THEN
C(7) := tail(C(3)) ||
IF size(C(i)) = 1 THEN state := sj;o END
END ||
R

It may be the case that the STD has several transitions labelled X;, consequently
operation D must have alternative SELECT statement for each invocation of .
In the last diagram of this section (page 98) we describe how to represent in B

the fact that the same operation is used as a label of several transitions.

When the overall STD of a system has a transition labelled X;, a new opera-
tion Reverse has to added to the machine. The Rewverse will be enabled when

the system is on state s1 and the parameter index is i (i € INDEX).

Reverse(index : INDEX) =

o1 X, - SELECT state = sl A index =i THEN
state := s2

END

The Accept operation will clear the compensation task ¢ by assigning to it the
empty sequence:
Accept(index : INDEX) =
SELECT state = s1 A index =i

[, THEN
S1 S2
C j C(i) =[] 1|

state := s2
END

The Merge* operation places the compensation task j on front of the compensa-

tion task 7, and at the same time clear task j:
Merge(indexj : INDEX ,index; : INDEX) =
SELECT state = s1 A index; = j A index; =i

Jj D> THEN
S1 S2
j C=C<a{j=[lLimCEH CH}

state := s2
END

4The expression s~ t represents the concatenation of sequences s and t.
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We are limiting the merge operator to a single task j instead of a set J of tasks.
Representing the general merge operator is problematic because the tasks of set .J
have to be composed in parallel on top of compensation task 7, and we only allow
sequential composition of compensation activities. To overcome this restriction
one could represent parallel composition of the set of tasks .J as the nondeter-
ministic interleaving of C'(j) for every j € J. The problem with this approach is
that it does not follow the StAC interpretation of parallel composition. Take for
example process A || B (A and B are basic activities), in StAC this process is
the same as (A4; B) [ (B; A), while the nondeterministic interleaving of A and B
is equivalent to (A; B) M (B; A), where 1 is the CSP internal choice operator.

When the same operation label is used in several transitions of the STD, the
operation will be extended with a SELECT statement that has an alternative
branch for each one of those transitions. In the diagram bellow A is used in two
transitions, as a result operation A will have an additional SELECT statement

with two branches that will enable the operation in state s; and sg:

A .
E] o j Y
SELECT state = s; THEN state := s;4

WHERE state = s, THEN state := sg41

A END ||
()

Similarly if the labels X;, [4;, J >4 appear in several transitions, they will have an
alternative SELECT branch for each of those transitions. Furthermore, when X);
appears in several transitions, besides affecting its own definition it also affects
every compensation activity of compensation task i. Each compensation activity

of task 7 will have an alternative branch for every X; transition.

5.2.2 Refinement in B

The B notion of system refinement applies the standard technique of data refine-
ment to the state of the abstract system. In data refinement an abstraction invari-
ant is used to connect the abstract variables to the concrete variables, and each

operation of the abstract system is refined by the correspondent concrete ope-
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ration. The following definitions of system refinement where taken from [But02a].

If S is a statement over the abstract variables a, T is a statement over the

concrete variables ¢, and Al is an abstraction invariant, we will write
S Car T

to denote that S is refined by 7" under the abstraction invariant AI.

Definition 1 (Data Refinement) S C,; T if the following condition holds:
Al = [T](S) AI

Which states that if Al s true, then T is guaranteed to terminate in a state where

S either fails to terminate or terminates in state satisfying Al.

Definition 2 (B Refinement) A system M is refined by a system N under ab-
straction invariant Al, if N has an operation N.a corresponding to each operation
M.a, such that:

M.a Tar Noa

Definition 3 (Refinement - Internal operations) Fach internal operation N.i

of the concrete system N must be such that
skip Car N

Although the standard B notion of system refinement does not support internal
operations, this can be overcome by adding skip operations to the abstract system
for each internal operation introduced in the refined system. This allows the
use of a B tool to verify refinements with internal operations. To achieve that,
both B tools (Atelier-B and B-Toolkit) start by generating the proof obligations
necessary to validate the refinement, and then provide a theorem prover to assist

the user in proving the obligations.

5.3 Case Study

The e-bookstore example (see Section 2.3.2) will be used to study the applicability

of the refinement strategy of embedding StAC processes into the original B ma-
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chine. We will start by defining a more abstract specification of the e-bookstore
that provides a simplified functionality of the system without using compensa-
tion. This specification captures the basic properties that must be preserved by
the system. Some of these properties are: a client cannot exceed his/her prede-
fined budget; books are transferred from the shelf to the basket; transactions can
be accepted or rejected; if rejected, books are returned to the shelf. From now on,
the abstract e-bookstore will be called Bookstore( while the concrete e-bookstore

specification will be renamed Bookstorel. Ultimately we want to prove that
Bookstore0 T Bookstorel

by using the B notion of system refinement.

Abstract model

The abstract e-bookstore is defined as an infinite set of parallel Client processes:
Bookstore0) = || ce crient . Client0(c)

Process Client0) is a sequential process, which starts with activity Arrive that
initialises the client information. The next activity is Checkout, which repre-
sents a client choosing simultaneously all the books s/he wants to buy. Activity
Checkout is followed by a choice between paying for the books or abandoning
the bookstore without buying any books. The Pay activity verifies whether the
card of the client is accepted and if the card is rejected the books in the basket
will be returned. In the Quit activity the client’s basket and its content will be
returned to the shelves. The last process Exit represents the packaging of the
all books in the client’s basket.

Client0(c) = Arrive(c); Checkout(c); (Pay(c) [] Quit(c)); Exit(c)

The state of the Bookstore( machine has two sets: CLIENT that represents all
clients that can be on-line simultaneously; and BOOK that represents all books
available in the bookstore. Variables basket, budget, and accepted are partial
functions that return for each client, respectively, the selected books, the allowed
spending money, and the card status. These functions have the same domain,

which represents the set of clients accessing on-line the bookstore. The variable
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shelf returns for each book its availability, and price contains the price of each
book. The first clause in the invariant states that if a client is on-line, then s/he
must have a basket, a budget, and a credit card status. The second clause states

that every on-line client must keep his/her basket within the predefined budget.

MACHINE Bookstore0
SETS CLIENT, BOOK
VARIABLES basket, budget, accepted, shelf , price

DEFINITIONS
overBudget(c) == Y_b.(b € basket(c) | price(b)) > budget(c);
inBudget(s,c) ==Y b.(b€ s | price(b)) < budget(c);
inStock(s) =={b|be&s A shelf(b) >1} = s
INVARIANT
basket € CLIENT - F(BOOK) A
budget € CLIENT -+ N; A
accepted € CLIENT - BOOL A
shelf € BOOK — N A
price € BOOK — N; A
dom(basket) = dom(budget) = dom(accepted) A
Vee CLIENT . ¢ € dom(basket) = —overBudget(c)

Next, we will describe in detail most of the Bookstore() operations. If client ¢ is

not already on-line, Arrive will initialise the new client’s information.

Arrive(c: CLIENT) =
SELECT c ¢ dom(basket) THEN
ANY ¢ WHERE ¢ € N} THEN
basket := basket U {c — 0} ||
budget := budget U {c — a} ||
accepted = accepted U {c — FALSE}
END
END

Checkout® is enabled for clients that are already on-line, and it chooses non-
deterministically a set of books that are within the client’s budget and in stock,
and puts them in the basket. This operation gives a very simplified view of

choosing books in a bookstore, usually a client would want to choose the books

5The expression r; <t ry represents overriding of r; by r.
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him /herself.

Checkout(c: CLIENT) =
SELECT c € dom(basket) THEN
ANY books WHERE books C BOOK A inStock(books) A inBudget(books, c)
THEN
basket(c) := books ||
shelf := shelf < A(book).(book € books | shelf (book) — 1)
END
END

Operation Pay describes the payment of the books at a very abstract level. Pay
performs two actions, verifying the client’s card and returning the books in the

basket to the shelves, if the card is rejected.

Pay(c: CLIENT) =
SELECT c € dom(basket) THEN
CHOICE
accepted(c) := TRUE
OR
accepted(c) := FALSE ||
basket(c) :=0 ||
shelf := shelf < A(book).(book € basket(c) | shelf (book) + 1)
END
END

Quit represents the client leaving the bookstore without buying any books, so it
just returns the books in the client’s basket to the shelf. The last operation Exit

does not alter any state variable it just assigns the basket to an output variable.

Concrete Model

The specification of the e-bookstore presented here differs slightly from the one on
Section 2.3.2. First of all, the specification used in this section is written in StAC;
using explicitly several compensation tasks, while the specification presented in
Section 2.3.2 was written in StAC. Second, the e-bookstore specification has been

updated several times, and the version used in this chapter was the one we have
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used during the refinement work.

Bookstorel = || ceclients . Client1(c)
Client1(c) = Arrive(c); ChooseBooks(c);

(Quit(c); X,

[

Pay(c); (—acceptedl(c) — X.));

Exit(c)
ChooseBooks(c¢) = Checkout(c) [| (ChooseBook(c); ChooseBooks(c))
ChooseBook(c) = [|beBook .(AddBook(c, b) +, ReturnBook(c,b));

(overBudget(c) — K.i); cl> ¢

The main difference between the abstract and concrete specifications is that each

abstract operation corresponds to a sequence of concrete operations:

e Process ChooseBooks is a recursive process that selects individually each
book, and for each book added to a basket, the budget is verified and if

exceeded that book is returned to the shelves.

e The concrete process Quit returns the books in the basket one at the time
by invoking the reversal instruction, as opposed to the abstract process

Quit which returns immediately all books in basket.

e The abstract activity Pay is replaced by a sequential process that starts
by invoking the concrete Pay, which will choose to assign the value TRUE
or FALSE to the variable acceptedl. If the card is rejected, the reversal
instruction will be invoked causing the books in the basket to be returned

in the reverse order they where selected.

The state of Bookstorel is similar to the abstract state (each abstract variable v
will be replaced by a concrete variable v1), so we will only describe the concrete
activities that are not identical to their abstract representations. In operation
AddBook the SELECT construct enables the operation if ¢ is a on-line client,
and book b is not already in the basket of the client. If all conditions are met,

book b is added to the basket of client ¢. The operation ReturnBook has similar
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enabling conditions, but instead it removes a book from the client’s basket.

AddBook(c: CLIENT,b: BOOK) =
SELECT c € dom(basketl) A b ¢ basketl(c) N shelfl(b) >0
THEN
basket1 (c) := basket!(c) U {b} ||
shelf1 (b) := shelf1 (b) — 1
END

Checkout is used in process ChooseBooks to exit its recursive definition, so
it does not need to perform any explicit action. Operation Quit is similar to
operation Checkout. Quit is used to determine which action the client wants

to perform, quit the bookstore or pay the books.
Checkout(c: CLIENT) = SELECT c € dom(basketl) THEN skip END

Both acceptedl and overBudget are used as guards of conditional processes,
so they are specified in B as boolean expressions: acceptedl is a boolean state

variable; overBudget is a B definition (see machine Bookstore() on page 101).

Operation Pay is described as a choice between attributing the value TRUE
or FALSE to the variable acceptedl depending on the card being accepted or
rejected. This is a simple abstraction of the real processing which may involve

getting authorisation from a credit card company.

Pay(c: CLIENT) =
SELECT c € dom(basketl) THEN
CHOICE acceptedl (c¢) := TRUE OR accepted! (c¢) := FALSE END
END

The next sections describe the steps needed to be done in order to prove that

Bookstorel refines Bookstore(.

5.3.1 Dealing with Single Clients

Both abstract and concrete e-bookstore are generalised parallel processes, execut-
ing concurrently all clients accessing on-line the bookstore. Therefore, to simplify
the determination of the gluing invariant, we decided to deal first with a single

client and later extend the invariant for any number of concurrent clients.
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Figure 5.4: STD for Client0

5.3.1.1 Constructing the Client0p machine

To prove that Clientl refines Client0) we will follow the steps described in Fig-
ure 5.1. The first step is to extract a STD from the processes for Client( using
the rules of Section 5.2.1.1. The resulting STD for the Client0 process (see Fig-

ure 5.4) describes the execution order of its activities.

Next, we extend the Client0 machine to include the behavioural information
of its associated STD. The extended machine ClientOg has two additional com-
ponents, a set STATE that contains the states of the STD and a variable state
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that will keep track of the machine current state:

MACHINE ClientOp

SETS
BOOK;
STATE = {al, a2, a3, a4, a5 }|

VARIABLES basket, budget, accepted, shelf, price,

INVARIANT
basket C BOOK A
budget € N A
accepted € BOOL A
shelf € BOOK — N A
price € BOOK — N; A
‘ state € STATE ‘ A
Y (book).(book € basket | price(book)) < budget

The last clause in the invariant guarantees the initial requirement of the client
buying within the budget: the cost of all the books in the basket must not exceed
the predefined budget.

Because process Client() does not deal with compensation, we only have to ex-
tend each operation with a SELECT statement that ensures the operation will be
executed in the order defined by the STS of Fig. 5.4. In Checkout the SELECT
statement enables the operation when the system is on state a2. The remaining

operations are extended in a similar way.

Checkout =
| SELECT state = a2 THEN state := 3 END| ||
ANY books WHERE books C BOOK A inStock(books) A inBudget(books)
THEN
basket := books ||
shelf := shelf < A(book).(book € books | shelf (book) — 1)
END

5.3.1.2 Constructing the Client! 5 machine

Figure 5.5 shows the STD extracted from the Clientl StAC specification. In

state c3, after adding a book, the system verifies whether the budget was exceed
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Arrive [overBudget] X1,

ReturnBook(b)

[ acceptedl] X,

cs [size(C(1)) > 1]
ReturnBook(b)

[accepted]] [size(C(1)) = 0]

[size(C(1)) = 1]
ReturnBook(b)

Exit

Cll

Figure 5.5: STD for Client1

or not, in the former case the reverse will be invoked on compensation task z1
(we have changed the compensation task identifier ¢1 and ¢ to il and i to avoid
confusion with the STD concrete states). Notice that the transition after the
reversal, from state c4 to ¢5, does not follow the rules we presented on Section
5.2.1.1 on how to construct a STD. In addition to those rules we have used specific
information about this example to simplify its STD. First, the transitions that
occur after the reversal (starting from ¢4 and ¢8) invoke directly the operation
ReturnBook instead of the general expression C(j), this simplification can be
done because ReturnBook is the only operation name in both compensation

tasks. Second, in state ¢4 we know that the sequence that represents task i1 has
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exactly one element and that this element is ReturnBook, therefore state c4 has
a single transition that causes the last book added to the basket to be returned
to the shelf.

Now that we have the STD for the Clientl process, the next step is to merge it
into the Client! machine. Two new sets and variables where added to the state
of Client1 machine. The set STATE1 has the states used in the STD and the
set INDEX has the compensation task indices used in the e-bookstore processes.
Given that ReturnBook is the only compensation operation in the system we
only need to “store” in C the value of the argument of ReturnBook. When
the primary activity of the compensation pair AddBook(b) +;; ReturnBook(b)
occurs, its necessary to keep the value of b stored so that if a reversal occurs

ReturnBook will be invoked with the correct argument.

REFINEMENT Clientl g
REFINES ClientOp

SETS
STATE1 ={cl, ¢2,---, cl0, c11 };
INDEX = {i,il}
VARIABLES basketl, budgetl, acceptedl, shelfl, pricel,
INVARIANT

basketl C BOOK A

budgetl € N A

accepted] € BOOL A

shelfl € BOOK — N A

pricel € BOOK — N; A
statel € STATEI N
C € INDEX — seq(BOOK)

The concrete operation Checkout is used to exit the recursive process of adding
single books to the basket, and it becomes enabled in state ¢2 and its execution
causes the state to evolve to c6.

Checkout =
‘ SELECT state = ¢2 THEN state := c¢6 END ‘

The operation Quit is similar to Checkout, as it does not perform any action

besides changing the state.
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The extensions to operation AddBook are more complex, because AddBook is
the primary task of AddBook(b) +;; ReturnBook(b). Therefore, the parame-

ter b has to be added to compensation task i1 whenever AddBook is executed.

AddBook(b : BOOK)=

SELECT state = c2 THEN
state :=¢3 ||
C(il) := b — C(il)
END

|
SELECT b ¢ basketl A shelf1(b) >0 THEN

basketl := basketl U {b} ||
shelf1 (b) := shelf1 (b) — 1
END

Operation ReturnBook is a compensation action, so it will be invoked after the
occurrence of the reversal in states ¢4 and ¢8. In state ¢4 the operation is called
after the reversal of task ¢1, and it will enabled if the parameter b is equal to the
book on top of C(:1)%. In state ¢8 the operation ReturnBook is successively

invoked until the compensation task 7 is empty.

ReturnBook(b: BOOK)=
SELECT statel = c4 A size(C(il)) =1 A first(C(i1)) = b THEN
C(il) :=tail(C(:1)) ||
statel := ¢b
WHERE statel = c8 A size(C(i)) > 1 A first(C(i)) = b THEN
C(i) := tail(C(z)) ||
IF size(C(i)) = 1 THEN statel := ¢10 END
END
I
SELECT b € basketl THEN
basketl := basketl — {b} ||
shelf1 (b) := shelf1 (b) + 1
END

The Reverse, Merge and Null are new operations to be added to Clientip

machine. The Reverse may be invoked in three different states, ¢3, ¢7, and ¢9.

6C(i1) does not need to be a sequence as it contains at most one element.
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In each of one this states the reversal will cause the state to evolve to a new state.

Reverse(indez : INDEX) =
SELECT statel =c3 A index=il A overBudget(basketl) THEN statel :=c4
WHEN statel = c7 A index =1 THEN statel := c8
WHEN statel =9 A index =1 A —acceptedl THEN statel := ¢8
END

The Merge is enabled on state ¢b if applied with the expected task indices.

Merge will put compensation task 21 on top of task ¢ and clear task i1.

Merge(indezl : INDEX ,index2 : INDEX) =
SELECT indexl =11 A index2 =1 N statel = ¢b

THEN
C = {index2 — C(index1)” C(index2), indexl — []} |
statel := c2

END

The Null operator is used when the STD has unlabelled guarded transitions.
The STD for Client1 has two empty transitions, one from state ¢3 to ¢b and
another from 9 to cl0. In state ¢3 the empty transition occurs when the book
added to basket by AddBook keeps the basket within the budget, no action has
to be done and the client may continue choosing books. In state ¢9 the client
has decided to pay for the books and his/her card was accepted, again no further

action needs to be done and the state evolves to ¢10.

Null =
SELECT statel = ¢3 A —overBudget(basketl) THEN statel := ¢b
WHEN statel =9 A acceptedl THEN statel := c10
END

5.3.1.3 Devising an Abstraction Invariant

We need to devise an invariant [ that relates the variables of the abstract system

to those of the refined system:

Abstract basket budget  accepted  shelf  price state
Concrete basket! budget! acceptedl  shelfl pricel statel C

Atelier-B was used to generate the proof obligations and to help construct most

of the invariant clauses in a incremental way. We will explain next how we used
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Atelier-B to help us construct the final invariant.

When applying the Atelier-B automatic prover to a refinement (or machine)
there are two possible outcomes, all proofs are proved (the specification is proven
correct) or there are some proof obligations left unproved. When the automatic
prover fails to prove an obligation, the user has to examine each failed proof

obligation and determine the reason for that failure:
1. The proof obligation is too complex to be done automatically.

2. The proof obligation is impossible to prove with the present invariant

clauses.
3. The proof obligation is false, so the refinement claim is invalid.

In the first case, the user has to assist the automatic prover in its demonstration,
by using a set of interactive commands provided by Atelier-B. In the second case,
the invariant is too weak as its clauses are not sufficient to prove all proof obli-
gations. This can be solved by strengthen the invariant with new clauses. With
some specifications, the clauses to be added can be extracted almost directly
from unproved obligations. This is what we called earlier “Atelier-B helping to
construct the invariant” which is done by strengthening the invariant with the
failed proof obligations. In the last case, either the specification or the refinement

(or both) have to change.

We are going to follow the incremental approach of building the invariant pre-
sented on [But02b]. Initially we just added the clause C; to the invariant, stating
that the concrete variables pricel, budgetl and acceptedl are equal to the corre-

spondent abstract variables’.
Cq pricel = price A budgetl = budget N acceptedl = accepted

After using the automatic prover on Clientlg with the clause C; several proof
obligations where left unproved. Figure 5.6 shows Atelier-B interactive prover

applied to one of those unproved obligations, where the user is asked to help the

"This is generated automatically by Atelier-B if abstract and concrete variables have the
same name.
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Cwrrent Goal:

not{amount = 03 & B

statel$l = cl &

"*Check operation refinement - ref 4.4, 5,57" &

=

state = al

7

Mo current PO -
FRI > Mo current PO
PRI > gofArrive,1}

"*Local hypothezes"" &

amounty IMTEGER &

O<=amount &

notCamount. = 0 &

statel$l = cl &

"“Check operation refinement - ref 4,4, 5,57" &

=

state = al
PRI > T

7

Figure 5.6: AtelierB interactive prover

automatic prover discharging the proof obligation Arrivel. This proof obliga-
tion corresponds directly to Cs ;. The other unproved obligations corresponded
to the remaining clauses of Cy. The clauses C, relate the abstract variable state
to the concrete variable statel. Those clauses could be deduced directly from
analysing both the abstract and concrete STD. For example, in any of the states
{c2,¢3,c4,chb} the transition Arrive has occurred and the only external opera-
tion that may occur next is Checkout, which are the incoming and outgoing

transitions of a2.

Co1 statel = cl = state = al

Cao statel € {c2,¢3,cd,cb} =  state = a2
Cos statel = c6 = state = a3

Coy statel € {c7,¢8,¢9,c10} = state = a4
Cas statel = cll = state = ab

The invariant C3 describes in which states both abstract and concrete baskets
have the same books. Clause C3; was not constructed directly by Atelier-B, but

it was introduced in the process of interactively proving the proof obligation for
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Checkout. C3; shows that after Checkout both systems baskets are identical,
because in the concrete system the client has finished choosing individually each
book of basket! and in the abstract system a set of books was placed in basket.
Also in the final state both baskets must have the same books. Clause Cz5 was
constructed by Atelier-B and it shows that if the client’s card was accepted, both

baskets must have the same books.

Cs1 statel € {c6,c10} = basketl = basket
Cso statel =9 A acceptedl = TRUE = basketl = basket

Clause C4; was added in order to prove clause Cs; and it says that the abstract
basket will be empty after the occurrence of Quit, while the concrete basket still
has all the books chosen by the client. The clause C,5 was constructed directly
by Atelier-B, and it states that after Pay and if the client’s card was not accepted
the abstract basket will be empty, because operation Pay removes the books from
the basket at the same times the card is rejected. The concrete system operation
Pay just verifies the card maintaining all the books in the basket, as they will

be removed by invoking the reversal.

Cua statel € {c7,c8} = basket =)
Cuo statel = c9 A acceptedl = FALSE = basket =)

The clauses Cj relates the compensation tasks to the concrete basket. Clauses Cs 1
and Cs say that each book on the basket must be in one of the compensation

tasks but not in both. The last clause is necessary to prove the two previous

clauses.
Cs.1 ran(C(il)) Uran(C(i)) = basketl
Cs.2 ran(C(il)) Nran(C(i)) = 0
Cs.3 statel € {c2,¢6,¢7,¢8,c9} = C(il) =[]

Although in the abstract system the value of the books in the basket is always
within the budget, in the concrete system after the operation AddBook the
basket may exceed the budget, and as a result the last book added to basket
must be returned. The fact that there are states in the concrete machine where
the budget is exceeded does not breach the abstract invariant, because this only
happens with internal operations that are not visible to the abstract machine.

Clause Cg asserts that before adding a new book to the basket (state ¢2) and
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after returning the last book added if the budget was exceeded (state ¢5), the
basket is within the budget. Clauses Cg5 and Cg 3 where directly constructed by
Atelier-B after we added clause Cg ;. These two clauses show that if the budget
was exceeded after the occurrence of AddBook, this was caused by adding the
last book to the basket.

Ce.1 statel € {c2,¢b} = inBudget(basketl)

Cs.2 statel = ¢3 A over Budget(basketl) =
inBudget(basketl — { first(C(il))}

Ce3 statel = c4 = inBudget(basketl — { first(C(il))})

The last clause of the invariant (C;) says that each book in the abstract and
concrete system are either in basket or in the shelf, although the abstract and
concrete values may not agree. For example, a book might be in the shelf in the

abstract system and in the basket in the concrete system.

Cy Y book . book € BOOK = shelf (book) + inBasket(book, basket) =
shelf1 (book) + inBasket(book, basket1)

Proving the Refinement

We have proved using Atelier-B that the clause C; A Co A --- A Cr is a glu-
ing invariant for the refinement of ClientOp by Clientlg. The total number of
proof obligations adds up to 202, of those 171 where automatically proved by the
prover of Atelier-B. From the remaining 31 proofs, 13 of those where fairly easy
to prove by interaction with the prover. For the remaining 18 unproved obliga-
tions it was necessary to define a user rule file to assist the automatic prover.
The user rules are necessary when the prover rule database does not have rules
to deal with a specific type of proof. Most of our rules where concerned with
sequences or lambda expressions, for which the rule database had a very limited

set of rules. Even with the user rules 4 proofs where difficult and time consuming.

Proving the refinement for a single client was very useful, because it allowed
us to develop a gluing invariant in a incremental way. The Atelier-B prover
constructed most of the invariant clauses and by attempting to prove proof obli-
gations for weak gluing invariants we have constructed some invariant clauses

needed to prove other proof obligations.
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5.3.2 Dealing with Multiple Clients

In this section we show how to generalise the gluing invariant for a single client
to deal with any number of concurrent clients.

5.3.2.1 Alterations on both B Machines

In the machine and refinement the variables associated to the client were extended
to partial functions, where the domain of those functions describe the clients

currently on-line.

MACHINE BookstoreOp REFINEMENT Bookstorel g

SETS REFINES BookstoreOg
CLIENT; SETS
BOOK; STATEL = {cl,¢2, --- , 10, c11 };
STATE = {al, G,Q, Cl?), CL4, CLS} INDEX = {Z, Z].}

INVARIANT INVARIANT
basket € CLIENT -» F(BOOK) A basket! € CLIENT + F(BOOK) A
budget € CLIENT - N A budgetl € CLIENT - N A
accepted € CLIENT - BOOL A accepted] € CLIENT - BOOL A
state € CLIENT + STATE A statel € CLIENT -+ STATE1 A
shelf € BOOK — N A C € CLIENT + (INDEX — seq(BOOK)) A
price € BOOK — N shelfl € BOOK — N A

pricel € BOOK — N;

Each operation of the abstract and concrete system will have an extra parameter,
the client that is invoking the operation. As an example, we present the abstract
operation Quit of the Bookstorelg:
Quit(c: CLIENT) =
SELECT state(c) = a3 THEN state(c) := a4 END ||
SELECT c € dom(basket)
THEN
basket(c) :=10 ||
shelf := shelf < A(book).(book € basket(c) | shelf (book) + 1)
END
All the remaining abstract and concrete operations have to be extended in a

similar way to include the parameter c.
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5.3.2.2 Alterations on the Abstraction Invariant

The gluing invariant Iz for the bookstore refinement will be similar to the client
invariant /. Although the invariant /g needs an extra clause asserting that the
domains of the variables related to the bookstore clients are the same. This clause
implies that if a client has a basket, s/he must also have a budget, a compensation
function, etc.. The last conjunction of the clause By states that the set of clients

on-line in the abstract and concrete system must be the same.

By dom(basketl) = dom(budgetl) A dom(basketl) = dom(acceptedl) A
dom(basketl) = dom(statel) A dom(basketl) = dom(threadl) A
dom(basketl) = dom(basket)

As we said I is similar to I and, with the exception of By, all the clauses of
Iz were obtained by generalising each I clause for a set of clients. The gluing

invariant /g is defined as the following conjunction:
Ip = By A Cy A By A---A B,

The clause (] stays unaltered, because generalising it over a set of clients does
not alter the original clause. We will describe in more detail the clauses B, and
Bs.

Clause By universally quantifies clause C4; over the set of on-line clients. A
client is on-line if it is defined for the partial function statel. It is not neces-
sary to verify the other client functions, because By says they all have the same

domain. All the clauses from B, to Bg were generalised similarly.

By V client . client € dom(statel) A
statel(client) € {c7,c8} = basket(client) = ()

Clause By states the same property of clause Cy7, that a book can either be in the
shelf or in the basket, although in the former clause one has to consider that a

book might be in basket of several clients.

B Y book . book € BOOK = shelf (book) + booksSold(book, basket) =
shelf1 (book) + booksSold(book, basketl)
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where booksSold is the following B definition:

booksSold(b,t) == card({client | client € dom(t) A b € t(client)}).

Proving the Refinement

The fact that almost every clause of the invariant has a universal quantification
increased considerably the complexity of the proof obligations. The total number
of proofs amounts to 250 and only 93 where automatically proved by the Atelier-
B prover. From the remaining 157 proofs, 100 of those where time consuming
but not difficult because we replicated the strategies used in the refinement of
the single client system. Of the other 57 proofs, 45 where fairly difficult, and the
last 12 proof obligations where extensive and difficult to prove. Nevertheless, all

were proved.

5.4 Discussion

Our initial experience of applying the StAC refinement approach to the bookstore
example was that it is a difficult process. That view changed when we tried to
prove the refinement of a single client, as most of the invariant clauses where
constructed by the Atelier-B prover and it was possible to check informally if the
proof obligations where provable or not. We can conclude that the difficulty level
of applying the StAC refinement strategy depends significantly on the system
under study. The difficulty level was reasonable for the single client system, but
too high for the bookstore system. We believe that the complexity in proving the
invariant for the bookstore refinement was the result of the universal quantifica-
tion on the clauses of the invariant. Those clauses where necessary because the
bookstore was defined as a generalised parallel process. Considering that for the
case study presented in this chapter the invariant for the refinement of a single
process was easily extended to a set of parallel processes, possibly this tactic

could be used for other systems defined as generalised parallel processes.

An alternative to refinement would be to develop a model checker for StAC
processes. A model checker would allow the verification of several types of pro-
perties, as for example invariants — which are properties that must be preserved

by the specification at all times, and assertions — which are properties that are
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expected to be preserved at the specific point where they were written. In [AB02]
the authors explore the use of two existing system, the model checker SPIN and

the verification framework STeP, to verify StAC specifications.



Chapter 6

Extending UML for Modelling
St AC Specifications

This chapter describes how to extend UML so it can be used as a modelling
tool for StAC. The processes of a StAC specification can be modelled with an
extended version of activity diagrams, and the data part can be modelled with
class diagrams. We will model some of the examples presented in Chapter 2 and
3 with the extended version of UML. In the last section we discuss some possible

alterations to the extensions we have proposed for UML activity diagrams.

6.1 Introduction

UML as become the universal modelling language used across a wide range of
domains. One of the reasons that contributed to UML’s success is that it allows
users to adapt the UML language to domain specific models. UML has three
extension mechanisms: stereotypes, constraints and tagged values. We will use
stereotypes to extend the activity diagrams with a notation for compensation
and early termination. This extension of the activity diagrams will be called

from now on compensation activity diagrams.

A UML class diagram describes the static structure of a system, containing classes
and associations. A class describes a set of objects with a common structure in a
system, and it is represented by a rectangle with three sections (see classes A and
B in Figure 6.1): the class name, a list of attributes, and a list of operations. The

associations describe the static relationships that exist between classes, they are

119
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Class A Class B
Attributes of A ’O'Z A" Attributes of B
..n
Operations of A Operations of B

Figure 6.1: Class structure and associations between classes

represented as paths or lines connecting two classes. In Figure 6.1 we show an
association connecting classes A and B: the arrow indicates the direction in which
to read the association; the label role A indicates the behaviour or role expected
of class A within the association; the label 0..n is called role multiplicity, and it
says that each instance of class A is related to a set of instances of class B. The
multiplicity indicates the lower and upper bounds for the number of instances
that can participate in an association, common values are 0..1, %, 1..n, and 0..n.
For example, 0..1 describes either none or one instance, and 0..n describes a set

of instances, the lower bound 0 implies that that set may be empty.

/ _ AdviyA [ State B ] | |

: L .

Figure 6.2: State hierarchy in activity diagrams

|
|
L

Activity diagrams where already briefly described in Section 1.2.2.2, but state
hierarchy was not explained then. By state hierarchy we mean nested activity
diagrams, where a state may have an activity diagram within itself. In Figure 6.2
the state B contains a nested activity diagram. The subdiagram becomes ac-
tive when state B is active, and conversely state B finishes when its subdiagram
reaches the final state. Although not represented in Figure 6.2, and not used in
any of StAC examples modelled with activity diagrams, one can also have several

transitions going directly into, or out of, a subdiagram. When modelling StAC
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processes with activity diagrams we will consider that states contain a nested
activity diagram and that activities are basic states that cannot be further de-

composed.

The U2B [SBO01] is a tool that translates Rational Rose UML Class Diagrams
into B machines. In the latest version of U2B [SB01] a separate machine is cre-
ated for each class, containing a set of all instances of that class and a variable
with the subset of its current instances. Definitions of sets and constants can be
described in the class documentation box, since any text in it will be copied to
the machine associated to the class. Associations and attributes are converted
to variables whose type is a function from the current instances of the associ-
ated class or attribute. The behaviour of the class operations is described in a
textual format as annotations in the text boxes provided by Rational Rose for
the pre-conditions and semantics of the operations. One can say that the U2B
tool reorganises and processes the information described in a class diagram and

converts that information into a B machine.

6.2 Representing StAC in UML

UML can be used as a modelling language for StAC specifications, where the
data is described using UML class diagrams and the behaviour is described using
extended activity diagrams. Both class and activity diagrams will be annotated
with B following the approach described in [SBO1]. Although a tool was not
developed for dealing with the proposed extensions, we will show through this
chapter that an implementation of a translator similar to the U2B tool is feasible.
The StAC translator would generate a B specification plus a set of StAC processes
from the UML class and activity diagrams.

6.2.1 Representing Data

The data for a StAC specification will be described as a class diagram, composed
of classes and associations. To model the StAC specification data, one has to
define the system classes, their attributes and the associations between those
classes. It is not necessary to connect the StAC activities to particular classes

(as their operations), as StAC specifications have a global state and all activities
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may access it without restrictions.

6.2.2 Representing Behaviour

To represent StAC processes, activity diagrams have to be extended with graph-
ical representations for the compensation operators and early termination. The
generalised parallel and choice operators can be represented as a normal activity
diagram state with annotations describing their multiplicity. The compensation
activity diagrams used through this chapter where initially devised by Muan Yong
Ng (of the DSSE group at the University of Southampton) based on the BPBeans
graphical notation. We have contributed with some alterations to Ng’s notation,

and added B statements to the diagram activities.

The remaining StAC operators can be represented with the standard activity
diagram components. A sequential process can be represented by a sequence of
transitions between states, and a conditional process is described as a guarded
transition. A parallel process is represented by an activity diagram that starts
with a fork with several concurrent paths and ends with a join, ensuring that
a parallel process only terminates when all of its concurrent processes have ter-
minated. The choice operator is represented by a state with several outgoing

transitions that describe alternative paths.

Activity

A StAC activity is represented by an activity in the context of activity diagrams.

‘ P The diagram activities are decorated with AMN statements, so

\_ SELECT G THEN Q END /

activity P is described by a SELECT statement, but other AMN statements

could be used instead.

they correspond almost directly to B operations. In the above

Compensation Pair

The compensation pair is represented by a state divided by a dashed line. This
state has two substates, the substate above the dashed line is the pri-
mary process and the substate beneath the dashed line is the compen-

sation process.
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Acceptance and Reversal

Following the BPBeans notation, the acceptance and reversal operators are

\/ X stereotypes states represented, respectively, by a box with a tick

and a box with cross. When modelling an example in StAC; (with
multiple compensation tasks) both operators need to be labelled with a task in-

dex.

Early Termination

The early termination operator is defined as stereotype state represented by a
@ circle with an exclamation mark. The termination scoping brackets are

not explicitly represented, instead we assume that the scoping of an early
termination is its surrounding state. If an early termination is defined in state
P, then its scope will be state P and all of P substates.

Generalised Parallel

The generalised parallel operator is defined as a state with a multiplicity marker
©[xx3 in the right-upper corner. This feature is known as dynamic

concurrency in UML and it indicates that a state will have
multiple parallel instantiations. Similarly to the StAC interpretation of the par-
allel operator, a dynamic concurrent state finishes when all its components have
finished. To model generalised parallel processes, the concurrent state has to be
extended with a note that defines the set of indices used to distinguish each of

its parallel instances.

Generalised Choice

The generalised choice operator is modelled in a similar manner to the gene-
[xx3 ralised parallel operator, and although the marker 1 is not
supported by the activity diagrams notation it can be defined

as a stereotype state.
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Let

The let statement will not have a graphical representation, instead we consider

that a diagram for a generalised process that uses a state expression:

N

P(x)

is a notation simplification for the StAC expression let X =e in || zex. Px.

Merge

The merge operator is supported implicitly by the compensation activity dia-
grams. When using either a parallel operator or a compensation scoping in StAC,
there is an implicit merge at the end of those processes. There is no necessity
to provide an explicit notation for the merge operator, as this operator was only

defined for translating StAC processes into StAC; processes.

6.3 Examples

This section shows the UML description of several examples, where each of the
examples illustrates different features of StAC and StAC; languages. The first
example focuses on multiple compensation, while the last two examples focus on

implicit compensation tasks and early termination.

6.3.1 Arrange Meeting

The UML description presented here extends the arrange meeting example of
Section 2.3.2 to consider not just a single team, but several teams trying to
schedule different meetings. Figure 6.3 shows the class diagram for the arrange
meeting data. The class diagram has four classes, PERSON, TEAM, ROOM,
and DATE and six associations between those classes. The association members
relates each team to a set of persons that belong to the team, the association
multiplicity 1..n indicates that each team has to have at least a member. The
class TEAM has two other associations, selectedDate that shows the final date
(if it exists) for a meeting, and availableDates that contains a subset of the
dates for which the room is available. The class PERSON has two associations

with the class DATE, diary that contains all the previous bookings for each
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PERSON

\
1..n |[+members

+possibleDates +diary
1 \/0..n 0..r\1/
TEAM +selectedDate DATE
0.1
+availableDates
0..n/

0..n | +bookings

ROOM

Figure 6.3: Class diagram for the arrange meeting example

team member, and possibleDates that represents a set of dates where the team
member is available for the meeting. More specifically, the set possibleDates is
extracted from the set of availableDates excluding the dates already booked in
the member’s diary. The association bookings describes the bookings (final and
intermediate) for the meeting room. Next, we present the B machine that could

be extracted from the class diagram of Figure 6.3 following a similar approach to
the U2B tool:
MACHINE ArrangeMeeting
SETS PERSON; TEAM; ROOM; DATE (1)
VARIABLES members, selectedDate, availableDates, diary, possibleDates, bookings (2)
INVARIANT

members € TEAM — P1(PERSON) A (3)
selectedDate € TEAM - DATE A (4)
availableDates € PERSON — P(DATE) A (5)
diary € PERSON — P(DATE) A (6)
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[ * | AN
¢
CheckRoom(t)
CheckTeam(t)
Decide(t)
\

Figure 6.4: Activity diagram for process ArrangeMeeting
possibleDates € PERSON — P(DATE) A (7)
bookings C DATE A (7)
inter(ran(members)) = 0 A union(ran(members)) = PERSON (8)

INITIALISATION

members : (members € TEAM — P1(DATE) A inter(ran(members)) = ()

A union(ran(members)) = PERSON) || (9)
selectedDate : (selectedDate € TEAM —+ DATE) || (10)
availableDates : (availableDates € TEAM — P(DATE)) || (11)
diary : (diary € PERSON — P(DATE)) || (12)
possibleDates : (possibleDates € PERSON — P(DATE)) || (13)
bookings :€ P(DATE) (14)

Each class corresponds to a set in the B machine. For each association a B

variable is created, where its type is extracted from the multiplicity information

attached to the association. The variable diary (6) is defined as a total function
from PERSON to a subset of DATE, which was retrieved from the multiplicity

0..n of the association diary. The variable members needs two clauses in the

invariant, clause (3) and (8). The additional clause (8) arises from the extra mul-

tiplicity 1 at the beginning of the association arrow, that states that each person

can only belong to a single team. In the initialisation the variables are assigned

arbitrary functions, with the exception of bookings that is assigned a subset of

DATE.
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SelectAvailableDates(t)

ANY dates WHERE dates DATE - bookings
THEN

availableDates(t) := dates

bookings := bookings  dates

D

<<tCF>> / <<t.CL>>
ConfirmRoom(t) CancelRoom(t)

bookings := \ bookings := bookings - availableDates(t)
(bookings - availableDates(t)) { selectedDate(t) }

Figure 6.5: Activity diagram for process CheckRoom

The behaviour of the arrange meeting example is described in StAC as the process
ArrangeMeeting = || te TEam . CheckRoom(t); CheckTeam(t); Decide(t).

This process is represented in activity diagrams as a concurrent state over the set
of teams. Each team will execute the sequential diagram inside the concurrent
state that starts with the state CheckRoom, followed by CheckTeam and finishes
with the state Decide. Each of these states includes a nested activity diagram,

only activities are not decomposable.

The process CheckRoom is a compensation pair with two compensation actions,

that is represented as a nested compensation pair:

CheckRoom(t) = (SelectAvailableDates(t) +¢r(;) ConfirmRoom(t))
+cr(1) CancelRoom(t)

In compensation activity diagrams a compensation pair is represented by a com-
pensation state, where the primary process is above the dashed line and the
compensation processes are placed beneath the dashed line. Figure 6.5 shows
that CheckRoom has as its primary action the activity SelectAvailable Dates, that
is described by an ANY statement that chooses nondeterministically a set of
dates where the room is not booked. The diagram shows that there are two
compensation actions: ConfirmRoom which is the compensation action for task

CF (the compensation tasks are represented in the diagram as a stereotype); and
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[ = emptyDates(t) ] . [ emptyDates(t) ]

SelectDate(t)

| ANY date WHERE date intersectionDates(t) |
| THEN |

selectedDate(t) := date
END

Y
v'|tcF

E)'ﬂ tCF tCL

N W
,@‘

Figure 6.6: Activity diagram for process Decide

CancelRoom that is the compensation action for task CL. From this diagram it
is possible to extract almost directly a B operation from each annotated activity.
In the activities of the CheckRoom diagram, and in all activities of the examples,
for simplicity we have omitted a condition specifying that ¢ is in set TEAM. The
typing of variable ¢ could be extracted from the diagram of process ArrangeMeet-
ing (Figure 6.4), where ¢ was introduced. For example, from activity CancelRoom

we can extract the following B operation:

CancelRoom(t : TEAM) =
BEGIN
bookings := bookings — availableDates(t)
END

The diagram for the CheckTeam is not going to be presented here (see Appendix D
for a complete description of the arrange meeting example) as it is similar to the

CheckRoom diagram. The process Decide is described as a choice that depends
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on the outcome of the boolean function emptyDates:

Decide(t) = —emptyDates(t) — SelectDate(t); X oy ()

[

emptyDates(t) — Nepq); Mopg).-

Figure 6.6 shows process Decide modelled as a compensation activity diagram.
The StAC choice is describe in the diagram as two outgoing transitions from
the initial state, both transitions are guarded by the outcome of emptyDates. If
its outcome is false (the team members have agreed on a set of dates for the
meeting), the activity SelectDate will nondeterministically choose a date from
the previously agreed dates. After selecting the date the reversal is invoked on
the C'F task for team t. If the outcome of emptyDates is true, the next state is
the acceptance of task C'F, followed by the reversal of task C'L.

From the UML description of the arrange meeting example it is possible to ex-
tract both the B machine containing the system state plus the activities, and the
StAC processes that describe the system behaviour. The B machine state can be
generated from the class diagram, while the operations can be extracted from the
activities annotated with AMN statements. Given that all basic components of
activity diagrams correspond to some StAC operator, the generation of a StAC

process from an activity diagram seems feasible and fairly simple.

6.3.2 E-Bookstore

This section presents the activity diagrams for two processes of the bookstore
specification, ChooseBooks that uses recursion and ChooseBook that uses com-
pensation scoping and implicit compensation tasks. The remaining processes in
the bookstore use features either already presented or that will be described in

the next section.

ChooseBooks is described in StAC as a recursive process:

ChooseBooks(c) = ChooseBook(c) » Checkout(c).
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Checkout(c)
SELECT ¢ dom(basket) THEN

‘ ChooseBook(c) ENSSip

\ J i
®

Figure 6.7: Activity diagram for process ChooseBooks

\ 4

The above process is described by the cyclic diagram presented in Figure 6.7.
From the initial state there are two alternative outgoing transitions, leading ei-
ther to ChooseBook or Checkout. Selecting the transition that leads to Choose-
Book, will cause the diagram to return to the initial state. Otherwise, the activity
Checkout will terminate the ChooseBooks state.

The StAC process ChooseBook is complex process that uses generalised choice

and compensation scoping:

ChooseBook(c) = [JbeBook .[(AddBook(c,b) +~ ReturnBook(c, b));
overBudget(c) — K]

In Figure 6.8 the outermost state of the diagram has the multiplicity marker 1
that represents a generalised choice over the set BOOK. Within this state there
exists an implicit compensation scope, so the compensation pair and the reversal
within that state will just affect the new compensation task. The innermost state
is a sequential process that starts with a compensation pair, and depending on
the outcome of overBudget it can either invoke the reversal or do nothing. The
compensation pair primary action is the activity AddBook, and its compensation
action is the activity ReturnBook. Notice that neither the compensation activity
nor the reversal have references to compensation task identifiers. Since this ex-
ample is specified in StAC the compensation tasks are implicit. As expected an
example modelled using compensation activity diagrams can be described using

either implicit or explicit compensation tasks, but not both.
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/ 1\ *************** @

AddBook(c,b)

SELECT ¢ dom(basket) b ¢ basket(c)
THEN

basket(c) := basket(c) u {b}
END

ReturnBook(c,b)

SELECT ¢ dom(basket) b e basket(c)
THEN

basket(c) := basket(c) - {b}
END

[ overBudget(c) ]

x [ ~overBudget(c) ]

Figure 6.8: Activity diagram for process ChooseBook

6.3.3 Order Fulfillment

This section presents the activity diagram for the process FulfillOrder of the order

fulfillment example. This process focuses on parallel and early termination:

FulfillOrder = { WarehousePackaging ||
(CreditCheck; —okCreditCheck — ©) }

The parallel process is represented in the diagram of Figure 6.9 as a fork with two
parallel threads: the thread on the right leads to the WarehousePackaging state
and then finishes; the thread on the left leads to the CreditCheck activity and
depending on its outcome the variable okCreditCheck will be either set to true or

false. If the variable okCreditCheck is set to false, the early termination will be
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CreditCheck
WarehousePackagin
9ing CHOICE creditStatus := TRUE OR creditStatus := FALSE END

[ 7 okCreditCheck ]

[ okCreditCheck ]

Figure 6.9: Activity diagram for process FulfillOrder

invoked causing all the activities within the current state to terminate (with an
indeterminate delay). In this diagram the early termination will only affect the
WarehousePackaging state. We decided not to represent termination scopes in
the compensation activity diagrams, instead the scope will be implicitly defined

as the state surrounding the early termination.

6.4 Discussion

This chapter proposes an approach to extending UML activity diagrams for mod-
elling StAC specifications. This approach has a strong emphasis on the B nota-
tion, as the activities in the diagrams are annotated with AMN statements. The
UML/StAC models can provide a “common ground” between formal and non-
formal methods users. Nevertheless, some might claim that the emphasis on the
B notation is too strong, making it difficult for non-formal methods users to fully
understand a system modelled with compensation activity diagrams. Also, within
the UML community [SWO01] it is argued that UML extensions should conform
with the UML standard, avoiding creating yet another UML dialect. Following

this view we have started studying the development of compensation activity di-
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agrams where the activities annotations are Object Constraint Language (OCL)
[WK99] expressions. At the moment we have only specified the arrange meeting

example with OCL annotations, but this work is still on its early stages.



Chapter 7

Discussion

7.1 Conclusions

The starting point for this thesis came from a collaboration with IBM concerning
the ABC business process modelling tool. Our main contribution was to give a
clear meaning to compensation, especially the one of parallel processes. To for-
malise the concept of compensation a process language called StAC [BF00] was
defined. The StAC language was based on the ABC notation and it formalises
the ABC concepts. Similarly to ABC, StAC allows parallel and sequential com-
position, and provides compensation and termination constructs. StAC extends
the ABC compensation constructs, because its compensations can be an arbi-
trary complex process. Conversely, ABC imposes some restrictions on the type
of processes allowed in a compensation. An example of these restrictions is that,

in ABC, compensations cannot have nested compensations.

Chapter 3 presents the StAC; language that was originally developed to des-
cribe effectively the semantics of StAC. The extended language StAC; allows a
process to have several simultaneous compensation tasks that can be indepen-
dently reversed or accepted. We have called the simultaneous compensation tasks
of StAC; multiple compensation. The fact that compensation tasks can be iden-
tified by their indices means that StAC; has a clear semantics for compensation.
Also, it makes it easier to describe parallel compensation, because a different
compensation task can be used for each parallel process. Later, when applying
StAC to a few case studies it emerged that the concept of nested compensation

was too limited to specify a relevant range of examples. For instance, in the

134
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travel agency example when some trip reservations fail, we only want to reverse
the compensations for the reservations that failed, the remaining compensations
(related to the successful reservations) should be maintained. Although the travel
agency could be modelled in StAC, the specification would be complex and diffi-
cult to understand. It became apparent that the StAC; language could overcome
this limitation by using two independent compensation tasks: one for successful
reservations and another for failed reservations. We called this compensation
mechanism selective compensation. Alternative compensation is another com-
pensation mechanism introduced within multiple compensation, whereby several

alternative compensations may be attached to a primary task.

In Chapter 4 we present an operational semantics for StAC;. The fact that StAC;
(and StAC) is a very specialised language with unusual operators had clear con-
sequences in the semantics. Although, the formalisation of the compensation was
fairly straightforward, it required an additional element in the configuration tuple
(besides the current process and its state). This additional element is the com-
pensation function that relates each task index to the associated compensation
process. When later we introduced termination in the language, the complexity
of the formalisation increased considerably. To deal with nested termination we
labelled both early termination and termination scoping. These labels are used
to ensure that an early termination will only affect the termination block with an
identical index. The main hazard of having both termination and compensation
is that the occurrence of a termination within a process could prevent a process
from saving its compensation. To avoid this problem, we introduced the protected
block construct that ensures that a process, within such a block, will be allowed
to continue its normal execution after the occurrence of an early termination. We
have implemented an animator for StAC; by encoding the operational rules in
Prolog. The animator allows the user to explore the behaviour of a StAC; speci-
fication. The semantics of the StAC language was defined through a translation
from StAC to StAC; terms, by indexing explicitly the hierarchical compensations
of StAC. We have used the results presented in [But00] to formally justify the
integration of StAC with B by using an operational approach.

In Chapter 5 we explored a strategy for the refinement of StAC; specifications.

Several restrictions were imposed to the type of processes supported, for exam-
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ple, termination and complex compensation tasks were not considered. We have
devised a way to combine a system of StAC; processes and its associated B ma-
chine into a standard B machine. The result of this combination is a machine
that deals explicitly with compensation, and contains variables that represent
the implicit states and the compensation function of the StAC; processes. The
fact that the resulting machine is a standard B machine allows the use of the B
notion of system refinement to validate refinement between StAC; specifications.
To verify the applicability of this strategy we used the e-bookstore example and
defined two specifications for this example: the abstract specification presents
a very simplified view of the bookstore and it does not use compensation; the
concrete specification replaces each abstract operation by a sequence of concrete
operations including compensation operators. We used Atelier B to help con-
struct the gluing invariant for the bookstore refinement, and its automatic prover

to help prove the proof obligations.

The last chapter describes an approach to using UML to model StAC specifica-
tions. The motivation for this work was to make StAC accessible to non-formal
methods users. In UML, the specification state can be represented with class di-
agrams and the specification behaviour with activity diagrams. To represent the
compensation and termination operators, the activity diagrams were extended
with graphical notations for those operators. Also, the diagram activities (that
are the graphical representation for StAC activities) were annotated with AMN
statements. Although a tool was not developed, it would be possible to auto-
matically generate from the UML model the correspondent StAC processes and

B machine.

7.2 Related Work

In this section we compare our work with related work comprising three different
areas: first, with languages that support compensation; second, with other com-
binations of the B method with process algebras or other temporal ordering of
B operations; and last, with other approaches for representing formal languages
in UML.
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7.2.1 Compensation

The concept of compensation was introduced in transaction processing as a way
of recovering from failure. Several models within transaction processing and
business processing support some kind of compensation. Yet, most approaches
to compensation are quite limited, requiring a compensation to be atomic (it
cannot be further decomposed), and imposing the invocation of compensations
to be based on system failure. Only ConTracts (see Section 1.2.4) have a struc-
tured approach to compensation in some ways similar to StAC. Recently, IBM,
Microsoft, and BEA have been developing a business process language called
Business Process Execution Language (BPEL) [CGK™]. Although some features
are not yet fully developed, the first public draft of BPEL was already released.
Document [CGK™] describes the language current features, and discusses nec-
essary extensions to the language. In BPEL a process can be described either
as an executable process or as an abstract process. While the former is an im-
plementation, the latter describes the processes visible behaviour. There can
be several executable processes for an abstract process. The language supports
similar operators to StAC, such as compensation, concurrency, and sequencing.
An advantage of BPEL is that it supports both synchronous and asynchronous

communication, while in StAC communication is done by shared global variables.

Next, we summarise the StAC extensions the concept of compensation [CVGT02],
and at the same time emphasise the distinctions between StAC and other lan-
guages that support compensation. We will focus the comparison on the Con-
Tracts and BPEL, as they are the models with most similarities with StAC.

Nested compensations In StAC, a compensation can be any StAC process,
and this allows for the definition of nested compensations. In both BPEL and
Con'Tracts, compensation can be a complex process, but nested compensations

are not permitted.

Compensation invocation In StAC the invocation of compensation is done
by the system, instead of being based on the occurrence of a system failure. Al-
though in ConTracts the invocation of compensation can be done by the system,
it has to be made explicitly within a conditional instruction (if the outcome of

a step is false, then the compensation is executed), because ConTracts do not
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have equivalent instructions to the StAC acceptance and reversal. In BPEL, the
invocation of compensation is done by the system, and the language has similar

instructions to the acceptance and reversal of StAC.

Multiple compensation The most distinctive feature in StAC is multiple
compensation, which allows a process to have several independent compensation
tasks. Neither ConTracts nor BPEL covers multiple compensation. Although
more restricted than multiple compensation, BPEL intends to support nested
scopes of compensation. These scopes will have identifiers so they can be explic-

itly invoked, yet a reversal cannot invoke a compensation outside its scope.

Formalisation The StAC language, to the best of our knowledge, is the only
language that formalises compensation. In Korth et al. [KL.S90], a compensation
is formalised in terms of the properties it has to guarantee. Yet, their approach
does not provide a language as StAC does, instead focusing on properties of
compensation. BPEL is layered on top of XML (its processes and data are
specified in the BPEL dialect of XML), and at the moment BPEL does not have

a formal semantics.

7.2.2 Combining B with Process Algebras

There are several methods for combining B with process algebras. We discuss
here two of those methods (both combine CSP and B) that are closest to our
approach of combining StAC and B. One of the methods, developed by But-
ler [But00] was already presented in Section 1.2.3.1. We have followed Butler’s
approach of proving the integration of CSP and B to justify the integration of
StAC and B. A different method for combining B and CSP was defined by Tre-
harne & Schneider [TS00, ST02]. The authors propose a method of using CSP
to control the behaviour of a B machine, where the consistency of a combined
specification is based on the CSP failures-divergences semantics. The advan-
tage of Treharne & Schneider approach is that the two parts of a specification
can be verified and refined separately, while in our approach the StAC processes
are explicitly embedded in the original B machine. But, StAC does not have a

failures-divergences semantics.

Papatsaras & Stoddart [PS02], describe a railway case study that combines event
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B and state machines. The authors present two specifications for the railway
system: one has a global model, and another has several communicating compo-
nents. Each component will have a machine that describes its event, and possibly
several state machines that describe potential event evolutions. The information
contained in those state machines will be explicitly included in the machine. The
main result of this work is that it allows a component to be described with a single
machine and to be used in different scenarios. Although there are some similari-
ties between Papatsaras & Stoddart’s work and our embedding of a STD into a
B machine, these works have different aims. While Papatsaras & Stoddart deal

with distribution and scalability, we are essentially concerned with compensation.

7.2.3 Representing Formal languages in UML

There are several approaches involving formal languages and UML, most of these
focus either on formalising a UML notation or producing a formal specification
from a UML model. Our work is more related to the latter, as our aim is to use
UML as a graphical representation for StAC specifications, and to generate StAC
specifications from those graphical models. Other work with a similar perspective
is that of [SB01], [SZ02], and [NB02]. In [SB01], Snook & Butler describe the
U2B tool that we already discussed.

Sekerinski & Zurob [SZ02] present a translation from the UML statecharts to
B AMN. This translation supports hierarchy, concurrency, and communication.
There are not many common points between our UML work and the Sekerinski
& Zurob work, nevertheless we could use their translation method to improve our
embedding of STDs into a B machine. Sekerinski & Zurob’s approach supports
arbitrary parallel processes at any level, while we only support the translation of

parallel processes as the outermost process.

In [NB02], Ng & Butler present a method for graphically describing CSP in
UML: state diagrams are used to model the dynamic behaviour of a system; and
class diagrams are used to model the static relationships between the CSP pro-
cesses and refinement assertions. Also, the method is supported by a tool that
generates CSP, which can be output to FDR. Ng & Butler’s work has the advan-

tage supporting the representation of refinement.
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Last, we compare our UML work with the precise UML (pUML) approach [EK99].
The goal of pUML is to develop a precise semantics for UML, and Evans & Clark
in [EK99] discuss the use of denotational semantics as a way to formalise some
core elements of UML. Our work has different aims from pUML, we use UML as
a graphical modelling language for StAC, we do not intend to formalise UML.

7.3 Future Work

In its present state the StAC animator has a restricted functionality, as it only
animates the behavioural part of the StAC specification. We would like to evolve
the animator in two ways. First, to support the evaluation of the state and of
the B AMN expressions that describe the activities. Second, to include a model

checker for StAC processes that could verify invariants and assertions.

Continuing the collaboration with IBM, we intend to adapt the compensation
activity diagrams to support the use of OCL expressions (instead of B expres-
sions) as the activity annotations. We intend to develop a tool to automatically

generate a StAC specification from the UML model.

Also in collaboration with IBM, we will study and formalise the BPEL language
through StAC. Our language is appropriate for the formalisation of BPEL be-
cause both languages have similar constructs (e.g., compensation, termination,
and concurrency), and StAC can abstract the implementation details included in
BPEL.
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Examples

A.1 Raffle

StAC
Raffle = SellTickets; DrawQOrCancel
SellTickets = DistributeTickets; SellTicketsAgent
SellTicketsAgent = || ac AGENT . SellOneTicket(a) x timeOut(a)

SellOneTicket(a) = let U = unsold(a) in
[Jte U.(SellTicket(a,t) ~ RefundTicket(a,t))

DrawQOrCancel = overThreshold — PerformDraw

[

—overThreshold - X

PerformDraw = Draw;DeliverPrize; 1

B Machine

MACHINE Raffie

SETS
AGENT;
TICKET

CONSTANTS
threshold

PROPERTIES
threshold € N

141
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VARIABLES

sold, unsold , winner

DEFINITIONS
overThreshold == card (|J (agent).(agent € AGENT | sold(agent))) > threshold

INVARIANT
sold € AGENT — P(TICKET) A
unsold € AGENT — P(TICKET) A
winner C TICKET

card(winner) <1

INITIALISATION
sold := Xagent . (agent € AGENT | 0) ||
unsold = Xagent . (agent € AGENT | () ||

winner = ()

OPERATIONS

DistributeTickets =
ANY f WHERE f € AGENT — P(TICKET) A
Vai,ap € AGENT . a1 # ag = f(a1) N faz) =0 A
union(ran(f)) = TICKET
THEN
unsold = f
END:;

timeOut(a : AGENT) = skip;

SellTicket(a : AGENT, ¢ : TICKET) =
BEGIN
unsold(a) := unsold(a) — {t} ||
sold(a) := sold(a) U {t}
END

RefundTicket(a : AGENT,t: TICKET)=
BEGIN
unsold(a) := unsold(a) U {t} ||
sold(a) = sold(a) — {t}
END
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Draw =
ANY a,t WHERE a € AGENT A t€ TICKET A t€ sold(a) THEN
winner = {t}
END

DeliverPrize = skip

END
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A.2 E-Bookstore

StAC

Bookstore = || ce cLient . Client(c)
Client(c) = Arrive(c);
ChooseBooks (c);
(Quit(c); X
[
Pay(c); H);
Exit(c)
ChooseBooks(c) = ChooseBook(c) * Checkout(c)
ChooseBook(c) = [Jbe Book .[(AddBook(c,b)+ReturnBook(c,b));
overBudget(c) — K|
Pay(c¢) = ProcessCard(c); ~accepted(c) — X

B Machine

MACHINE Bookstore

SETS
CLIENT;
BOOK

VARIABLES
basket, budget, accepted, price

DEFINITIONS
overBudget(c) == >_(b). (b € basket(c) | price(b)) > budget(c)

INVARIANT
basket € CLIENT - P(BOOK) A
budget € CLIENT - Ny A
accepted € CLIENT - BOOL A
price € BOOK — Ny A
dom(basket) = dom(budget) A dom(basket) = dom(accepted)
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INITIALISATION
basket := () ||
budget := 0 ||
accepted = ) ||
price : (price € BOOK — Ny)

OPERATIONS
Arrive(c: CLIENT) =
SELECT c ¢ dom(basket) THEN
ANY ¢ WHERE « € N} THEN
basket := basket U {c— 0} ||
budget := budget U {c— a} ||
accepted = accepted U {c — FALSE}
END
END;

AddBook(c : CLIENT,b: BOOK) =
SELECT c € dom(basket) A b ¢ basket(c) THEN
basket(c) = basket(c) U {b}
END:

ReturnBook(c: CLIENT,b: BOOK) =
SELECT c € dom(basket) A b€ basket(c) THEN
basket(c) := basket(c) — {b}
END:

ProcessCard(c: CLIENT) =
SELECT c € dom(basket) THEN

CHOICE

accepted(c) := TRUE
OR

accepted(c) := FALSE
END

END;
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Checkout(c: CLIENT) =
SELECT c € dom(basket) THEN skip END;

Quit(c: CLIENT) =
SELECT c € dom(basket) THEN skip END;

Exit!(c: CLIENT) =
SELECT c € dom(basket) THEN
basket := {c} < basket ||
budget := {c} < budget ||
accepted = {c} <9 accepted
END

END

!The expression s < r represents anti-restriction of r by s, also known as domain subtrac-
tion.
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A.3 Order Fulfillment

StAC
ACME = AcceptOrder - RestockOrder;
FulfillOrder;
okFulfillOrder —
[

—okFulfillOrder — X
FulfillOrder = { WarehousePackaging

|
CreditCheck; (—okCreditCheck — ©) }

WarehousePackaging = (BookCourier + CancelCourier) || PackOrder

PackOrder = let O = order in || ic o . PackItem(i) ~ UnpackItem(7)

B Machine

MACHINE ACME

SETS
ITEM
ORDER

VARIABLES

stock, order, courier Booking, creditStatus, packaging

DEFINITIONS
inStock (i) == {item | item € i A stock(i) > 0} = i;
okFulfillOrder == creditStatus;
okCreditCheck == creditStatus

INVARIANT
stock € ITEM — N A
order € P(ITEM) A
courier Booking € BOOL A
creditStatus € BOOL A
packaging € order — BOOL
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INITIALISATION
stock : (stock € ITEM — N) A
order := () A
courier Booking := FALSE A
creditStatus := FALSE A
packaging = ()

OPERATIONS

AcceptOrder =
ANY items WHERE items C ITEM A inStock(items) THEN
stock := stock < X (item) . (item € items | stock(item) — 1) ||

order := items ||
packaging = X (item) . (item € items | FALSE)
END:
RestockOrder =
BEGIN
stock := stock < X (item) . (item € items | stock(item) + 1)
END;

CreditCheck =
BEGIN
CHOICE
creditStatus := TRUE
OR
creditStatus := FALSE
END
END;

BookCourier =
BEGIN
courier Booking := TRUE
END;
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CancelCourier =
BEGIN
courier Booking := FALSE
END;

PackItem(i : ITEM) =
BEGIN
packaging(i) := TRUE
END;

UnpacklItem(i : ITEM) =
BEGIN
packaging(i) := FALSE
END

END
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A.4 Travel Agency

StAC

TravelAgency = || ce cLienT . Request(c); TripReservation (c)

TripReservation(c) = Getltinerary(c);
VerifyCreditCard(c);
accepted(c) — ContinueReservation(c)

[

—accepted(c) = QuitReservation(c)
Getltinerary(c) = (SelectFlight(c) || SelectCar(c) [| SelectHotel(c)) + EndSelection(c)
SelectFlight(c) = || feFLicHT . SelFlight(c, f)
SelectCar(c) = [Jaccar . SelCar(c,a)
SelectHotel(c) = [[ne HOTEL . SelHotel(c, h)

ContinueReservation(c) = ConfirmOrder(c); MakeReservation (c)

[

CancelOrder(c); QuitReservation(c)
MakeReservation(c) =

(FlightReservations(c) || CarReservations(c) || HotelReservations(c));
—okReservations(c) — ContactClient(c)

[

okReservations(c) — EndTrip(c)
FlightReservations(c) = let R = flights(c) in || fe R . FlightReservation(c, f)
FlightReservation(c, f) =

ReserveFlight(c, f);
flightIsReserved(c, f) — (skip +g(.) (CancelFlight(c, f) || ClearFlight(c, f)))

[
—flightIsReserved(c, f) — (skip +p(.) ClearFlight(c, f))

CarReservations(c) = let C = cars(c) in |lac ¢ . CarReservation(c,a)

CarReservation(c,a) =
ReserveCar(c, a);

carIsReserved(c,a) — (skip +g() (CancelCar(c,a) || ClearCar(c,a)))

[

—carIsReserved(c,a) — (skip +p() ClearCar(c,a))
HotelReservations(c) = let H = hotels(c) in ||he H . HotelReservation(c, h)
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HotelReservation(c,h) =
ReserveHotel(c, h);
hotellsReserved (c, h) — (skip +g(,) (CancelHotel(c,h) | ClearHotel(c,h)))

[

—hotellsReserved(c, h) — (skip +p () ClearHotel(c,h))
ContactClient(c) = Continue(c); Xp(; Getltinerary(c); MakeReservation (c)
[
Quit(c); QuitReservation(c)
QuitReservation(c) = (Mg() || Mp()); RemoveClient(c)
EndTrip(c) = Mg || Mp(e

B Machine

MACHINE TravelAgency

SETS
CLIENT;
FLIGHT:
CAR,;
HOTEL:

CARD = {visa, mastercard, switch,none}

VARIABLES
clients, flights, cars, hotels, creditCard , accepted,,

flightReservations, carReservations, hotelReservations

DEFINITIONS
okReservations(c) ==
flights(c) C {f|f € FLIGHT A c € flightReservations(f)} A
cars(c) C {a|a € CAR A c € carReservations(a)} A
hotels(c) C {h|h € HOTEL A c € hotelReservations(h)};
flightIsReserved(c, f) == c € flightReservations(f);

carlsReserved(c,a) == c € carReservations(a);

hotellsReserved(c,h) == c € hotelReservations(h);
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INVARIANT
clients C CLIENT A
flights € clients — P(FLIGHT) A
cars € clients — P(CAR) A
hotels € clients - P(HOTEL) A
creditCard € clients - CARD N
accepted € clients - BOOL A
flightReservations € FLIGHT — P(CLIENT) A
carReservations € CAR — P(CLIENT) A
hotelReservations € HOTEL — P(CLIENT) A

INITIALISATION
clients := 0 ||
flights := 0 ||
cars := 0 ||
hotels := 0 ||
creditCard = 0 ||
accepted := ()
flightReservations :== \f.(f € FLIGHT | () ||
carReservations := Aa.(a € CAR | 0) |
hotelReservations := Ah.(h € HOTEL | ()

OPERATIONS

Request(c: CLIENT) =

SELECT c € clients THEN
clients = clients U {c} ||
flights := flights U {c— 0} ||
cars = carsU{c~ 0} ||
hotels := hotels U {c+— 0} ||
creditCard := clients U {c — none} ||
accepted := clients U {c — FALSE}

END;
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VerifyCreditCard(c: CLIENT) =
SELECT c € clients THEN
ANY cc WHERE cc € CARD — {none} THEN
creditCard(c) := cc ||
accepted(c) := bool(cc # switch)
END
END:

SelFlight(c : CLIENT, f : FLIGHT) =
SELECT c € clients N f & flights(c) THEN
flights(c) := flights(c) U{f}
END:
SelCar(c: CLIENT,a: CAR) =
SELECT c € clients A a & cars(c) THEN
cars(c) = cars(c) U{a}
END:

SelHotel(c : CLIENT,h: HOTEL) =
SELECT c € clients N h ¢ hotels(c) THEN
hotels(c) := hotels(c) U {h}
END:
ReserveFlight(c: CLIENT, f : FLIGHT) =

SELECT c € clients A f € flights(c) A
¢ & flight Reservations(f) THEN

CHOICE

flightReservations(f) := flightReservations(f) U {c}
OR

flight Reservations(f) := flightReservations(f)
END

END;
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ReserveCar(c: CLIENT,a: CAR) =
SELECT c € clients A a € cars(c) A
¢ & car Reservations(a) THEN
CHOICE
car Reservations(a) := flight Reservations(a) U {c}
OR
carReservations(a) := flight Reservations(a)
END
END;

ReserveHotel(c: CLIENT,h : HOTEL) =
SELECT c € clients A h € hotels(c) A
¢ & hotel Reservations(h) THEN
CHOICE
hotel Reservations(h) := hotel Reservations(h) U {c}
OR
hotel Reservations(h) := hotel Reservations(h)
END
END:

ClearFlight(c : CLIENT, f : FLIGHT) =
SELECT c € clients A f € flights(c) THEN
flights(c) := flights(c) —{f}
END:
ClearCar(c: CLIENT,a: CAR) =
SELECT c € clients A a € cars(c) THEN
cars(c) := cars(c) — {a}
END:

ClearHotel(c: CLIENT,h: HOTEL) =
SELECT c € clients A h € hotels(c) THEN
hotels(c) := hotels(c) — {h}
END:
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CancelFlight(c: CLIENT, f : FLIGHT) =
SELECT c € flightReservations(f) THEN
flightReservations(f) := flightReservations(f) — {c}
END;

CancelCar(c: CLIENT,a: CAR) =
SELECT c € carReservations(a) THEN

car Reservations(a) := car Reservations(a) — {c}
END;

CancelHotel(c: CLIENT,h: HOTEL) =
SELECT c € hotel Reservations(h) THEN
hotel Reservations(h) := hotel Reservations(h) — {c}
END;

ConfirmOrder(c: CLIENT) =
SELECT c € client THEN skip END;

CancelOrder(c: CLIENT) =
SELECT c € client THEN skip END;

RemoveClient(c: CLIENT) =
SELECT c € client THEN

clients = clients — {c} ||
flights = {c} < flights ||
cars = {c} Qcars ||

hotels := {c} <4 hotels ||
creditCard = {c} < clients ||

accepted = {c} < clients
END;

EndSelection(c: CLIENT) =
SELECT c € clients THEN skip END;

Quit(c: CLIENT) =
SELECT c € clients THEN skip END;

Continue(c: CLIENT) =
SELECT c € clients THEN skip END

END
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A.5 Arrange Meeting

StAC

ArrangeMeeting = CheckRoom; CheckTeam; Decide
CheckRoom = (SelectAvailableDates +r ConfirmRoom)

+ 1, CancelRoom

CheckTeam = || te TEAM . (SuggestDates(t) +cr ConfirmDate(t))
+¢1, CancelDates(?)

Decide = —emptyDates— SelectDate; X r

[

emptyDates —X; Deop

B Machine

MACHINE Meeting

SETS
TEAM;
DATE

VARIABLES

diary, available Dates, selected Date, bookings

DEFINITIONS
inter Dates == () (member).(member € TEAM | diary(member))

INVARIANT
diary € TEAM — F(DATE) A
availableDates C DATE N
selectedDate € DATE N
bookings € F(DATE)

INITIALISATION
diary = Ateam.(team € TEAM | () ||
availableDates := () ||
selectedDate : (selectedDate € DATE) ||
bookings : (bookings € F(DATE))
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OPERATIONS
Select AvailableDates =
ANY dates WHERE dates C DATE — bookings THEN
availableDates = dates ||

bookings := bookings U dates
END;

BookRoom =
BEGIN

bookings := (bookings — availableDates) U {selected Date}
END;

CancelRoom =
BEGIN
bookings := bookings — availableDates
END;

SuggestDates(m : TEAM) =
ANY dates WHERE dates C availableDates THEN
diary(m) := dates
END;

ConfirmDate(m : TEAM) =
BEGIN
diary(m) := {selectedDate}
END:;

CancelDates(m : TEAM) =
BEGIN
diary(m) = 0
END;
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SelectDate =
SELECT interDates # () THEN
ANY date WHERE date € DATE A date € inter Dates THEN
selectedDate := date
END
END

END
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Semantics - Auxiliary Functions

B.1 Labelling Function

Function LL labels the compensation block and the early termination instruction.

L(A k) = A

L(null, k) = null

L(b — P, k) = b— L(Pk)
L(rec(N), k) = rec(N)

L(P; Q. k) = L(Pk); L(Q,F)
L(P || Q. k) — L(PK) | L@, R
L(|| zex . Py, k) = || sex . L(Py, k)
L(PQ, k) = L(PK)[L(Q, k)
L([eex.Py,k) = [Jeex.L(Py, k)
L(let X =ein Px,k) = let X =ein L(Px,k)
L(®, k) = O

L({P}, k) = {L(P,I) }ryy where [ isa “fresh” index
L(P+; Q,k) = L(Pk) + L(Q,k)
L(gz ) = K,

L(E;, k) = 0

L(J >, k) = J>i

L(| Py, k) = [L(P k)]
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B.2 Normalisation Functions

B.2.1

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10
NI11
N12
N13
N14
N15
N16
N17
N18
N19
N20
N21
N22
N23
N24
N25
N26
N27
N28
N29
N30
N31

norm

norm(null ; P,o)

norm(null | P, o)

norm(P || null, o)

nor

m

m Pﬂnull o)

norm(b — P, o)

norm(b — P, o)

HxE@ Pm, )

| ze X .null, o)

[|2eX.null,o)

o)

null, o)

X;, o)
i, o)
Jr>1i,0)

rec(N),
PQ,)

PHQ, o)

I:IxeX Px,U)

letX—emPX, o)

Ok )

Ok, )

norm({ P}k,

norm({P} ),

m(|null|,, )

(
(
(
(
(
(
(
(
(
(4,
(
(
(
(
m(
(
(
(
(
(
(P
(
(
(
(
(
(
(
(

norm(|P|,, o)

o)

o)

, if b(o) = true
(0) = false

J >

rec(N)

norm(P, o) ; norm(Q,o), if P # null A P # O
norm(P, o) || norm(Q, o), if P # null A Q # null
| ze x .norm(Py, o), if X # 0 A P, # null
norm(P, o) [| norm(Q, o), if P # null A Q # null
Jzex.norm(Py,0), if X # 0 A\ Py # null

norm(P, o) +; Q, if P # null
norm(Pyqy,0), if Px # null
null

Ok

Ok

if P#£nullANv#0
y, if P # null

{norm(P, o)} k)
{norm(terminate(P), o)}

null

|[norm(P)|,, if P # null
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B.2.2 normalised
normalised(A) = true
normalised(null) = true
normalised(b — P) = false
normalised(rec(N)) = true
normalised(X;) = true
normalised(C;) = true
normalised(J > i) = true
normalised(P ; Q) = mnormalised(P) A normalised(Q) A
P #null N P # O
normalised(P || Q) = mnormalised(P) A normalised(Q) A
P #null A Q # null
normalised(|| e X . Py, 0) = normalised(Py) N X #0 N P, # null
normalised(P[|Q) = mnormalised(P) A normalised(Q) A
P #null A Q # null
normalzsed(ﬂzex Py) = normalised(Py) N X #0 N P, # null
normalised(P ) = normalised(P)
normalised(let X = ein Px) = false
normalised(®g ) = true
normalised({ P}, 1) = normalised(P) AN P # null ANv # 0
normalised({ P} ry) = normalised(P) A terminate(P) =P A
P # null
normalised(|P|y) = normalised(P) \ P # null
B.2.3 terminate
terminate(P; Q) = terminate(P)
terminate(P || Q) = terminate(P) || terminate(Q)
terminate({ P} y) = {terminate(P)} k)
termz'nate(|P|false) = null
terminate(|Plyue) = |Plirue
terminate(P) null, otherwise
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StAC Animator

C.1 Operational Rules

/* R1

/* R2

/* R2

/* R3

/* R4

/* RS

*/

*/

*/

trans (conf (act(A),C), act(A), conf(null,C)).

trans(conf (rec([N|ListV]),C), B, conf(P1,Cl1)) :

equation([N|ListV],P),
normalisation(P,Pi),

trans(conf (Pi,C), B, conf(P1,C1)).

trans (conf (rec([N|ListV]),C), B, conf(P1,Cl1)) :

equation([N|List],P),

List \== ListV,
normalisation(P,Pi),
instantiate(Pi,List,ListV,Pj),
trans(conf (Pj,C), B, conf(P1,C1)).

trans(conf (seq(P,Q),C), B, conf(seq(P1,Q),C1)) :

trans(conf (P,C), B, conf(P1,C1)).

trans (conf (par(P,Q),C), B, conf(par(P1,Q),C1)) :

trans(conf (P,C), B, conf(P1,C1)).

trans (conf (par(Q,P),C), B, conf(par(Q,P1),C1)) :

trans(conf (P,C), B, conf(P1,C1)).
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/*

/*

/*

/*

/*

/*

/*

R6 */ trans(conf(gpar(V,X,P),C), B, conf(par(gpar(V,X1,P),Pr),C1))
member (E,X), select(E,X,X1),
instantiate(P, [V], [E],Pi),
trans(conf (Pi,C), B,conf(Pr,Cl)).

R7 */ trans(conf(choice(P,_),C), B, conf(P1,C1)) :-
trans(conf (P,C), B, conf(P1,C1)).

R8 */ trans(conf(choice(_,P),C), B, conf(P1,C1)) :-
trans(conf (P,C), B, conf(P1,C1)).

R9 */ trans(conf(gchoice(V,X,P),C), B,conf(Pr,C1)) :-
member (E,X),
instantiate(P, [V], [E],Pi),
trans(conf (Pi,C), B,conf(Pr,Cl)).

R10 */ trans(conf(pair(P,Q,I),C), B, conf(pair(P1,Q,I),C1)) :-
trans(conf (P,C), B, conf(P1,C1)),
P1 \== null.

R11 */ trans(conf(pair(null,Q,I,_),C), pairT(I), conf(null,R)) :-
push_comp(C,I,Q,R).

R12*/ trans(conf (compensate(J),C), compensate(J), conf(P1,C1)) :-
comp_seq(C,J,P1),
clear_comp_1(C,J,C1).

R13*/ trans(conf(commit(J),C), commit(J), conf(null,Cl)) :-
clear_comp_1(C,J,C1).

R14 */ trans(conf (merge(J,I),C), merge(J,I), conf(null,C2)) :-
merge_par(C,J,P1), clear_comp_1(C,J,C1),
push_comp(C1,I,P1,C2).

R15 */ trans(conf(protected(P,_),C), B, conf(protected(P1,true),Cl)) :

trans(conf(P,C), B, conf(P1,C1)).
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/* R16 */ trans(conf(exit(I),C), exit(I), conf(null,C)).

/* R17 */ trans(conf(block(P,true,I),C), exit(I), conf(block(P1,N,I),C)) :-
trans(conf (P,C), exit(I), conf(P1,C)),
random(0,3,N) .

/* R18 */ trans(conf(block(P,true,I),C), B, conf(block(P1l,true,I),Cl)) :-
trans(conf (P,C), B, conf(P1,C1)),
B \== exit(I).

/* R19 */ trans(conf(block(P,N,I),C), B, conf(block(P1,M,I),C1)) :-
trans(conf (P,C), B, conf(P1,C1)),
N \== true, M is N-1, M @>= 0.

/* R20 */ trans(conf(block(P,0,I),C), B, conf(block(P1,0,I),Cl)) :-
trans(conf(P,C), B, conf(P1,C1)).

C.2 Normalisation Functions

C.2.1 normalisation

normalisation(P,P) :- normalised(P).
normalisation(P,Pr) :- \+(normalised(P)),
norm(P,Pi),

normalisation(Pi,Pr).

C.2.2 norm

norm(seq(null,P),Pr) :- norm(P,Pr).
norm(par (null,P),Pr) :- norm(P,Pr).
norm(par (P,null),Pr) :- norm(P,Pr).
norm(choice(null,P),Pr) :- norm(P,Pr).
norm(choice(P,null) ,Pr) :- norm(P,Pr).

norm(gpar(_,_,null) ,null).
norm(gchoice(_,_,null) ,null).
norm(cond(true,P),Pr) :- norm(P,Pr).

norm(cond(false,_) ,null).
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norm(gpar(_,[],_),null).
norm(gchoice(_,[],_),null).
norm(act (A) ,act(A)).
norm(null,null).
norm(compensate (J) ,compensate(J)).
norm(commit (J) ,commit (J)) .
norm(merge (J,I) ,merge(J,I)).
norm(call(N),call(N)).
norm(seq(P,Q) ,seq(Pr,Qr)) :-

P \== null, P \= exit(_), norm(P,Pr), norm(Q,Qr).
norm(par(P,Q) ,par(Pr,Qr)) :-

P \== null, Q \== null, norm(P,Pr), norm(Q,Qr).
norm(gpar(V,X,P),gpar(V,X,Pr)) :-
X \==[1, P \== null, norm(P,Pr).

norm(choice(P,Q),choice(Pr,Qr)) :-

P \== null, Q \== null, norm(P,Pr), norm(Q,Qr).
norm(gchoice(V,X,P),gchoice(V,X,Pr)) :-

X \==[]1, P \== null, norm(P,Pr).
norm(pair(P,Q,J),pair(Pr,Q,J)) :- norm(P,Pr).
norm(block(null,_,_) ,null).
norm(seq(exit(I),_),exit(I)).
norm(exit (I),exit(I)).
norm(block(P,N,I),block(Pr,N,I)) :-

P \== null, N @= 1, norm(P,Pr).
norm(block(P,0,I),block(Pr,0,I)) :-

P \== null, terminate(P,Pi), norm(Pi,Pr).
norm(protected(null,_ ) ,null).
norm(protected(P,V) ,protected(Pr,V)) :- norm(P,Pr).

C.2.3 normalised

normalised(seq(null,_)) :- fail.
normalised(par(null,_)) :- fail.
normalised(par(_,null)) :- fail.
normalised(choice(null,_)) :- fail.
normalised(choice(_,null)) :- fail.
normalised(gpar(_,_,null)) :- fail.

normalised(gchoice(_,_,null)) :- fail.
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normalised(cond(true,_)) :- fail.
normalised(cond(false,_)) :- fail.
normalised(gpar(_,[],_)) :- fail.
normalised(gchoice(_,[],_)) :- fail.
normalised(act(_)) :- true.
normalised(null) :- true.
normalised(compensate(_)) :- true.
normalised(commit(_)) :- true.
normalised(merge(_,_)) :- true.
normalised(call(_)) :- true.
normalised(seq(P,Q)) :-

P \== null, P \= exit(_),

normalised(P), normalised(Q).
normalised(par (P,Q)) :-

P \== null, Q \== null,

normalised(P), normalised(Q).
normalised(gpar(_,X,P)) :- X \== [], P \== null, normalised(P).
normalised(choice(P,Q)) :-

P \== null, Q \== null,

normalised(P), normalised(Q).

normalised(gchoice(_,X,P)) :- X \== [], P \== null, normalised(P).

normalised(pair(P,_,_,_)) :- normalised(P).
normalised(block(null,_,_)) :- fail.
normalised(seq(exit(_),_)) :- fail.
normalised(exit(_)) :- true.

normalised(block(P,N,_)) :- P \== null, N @>= 1, normalised(P).

normalised(protected(null,_)) :- fail.

normalised(protected(P,_)) :- P \== null, normalised(P).

C.2.4 terminate

terminate(seq(P,_) ,Pr) :- terminate(P,Pr).

terminate (par(P,Q) ,par(Pr,Qr)) :- terminate(P,Pr), terminate(Q,Qr).

terminate (block(P,N,I),block(Pr,N,I)) :- terminate(P,Pr).
terminate (protected(_,false) ,null).
terminate (protected(P,true) ,protected(P,true)).

terminate (_,null).
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Examples modelled in UML

D.1 Arrange Meeting

D.1.1 Class Diagram

PERSON

1..n |+members

TEAM

+possibleDates

|0.n 0.n

+selectedDate

+diary

DATE

+availableDates

0.1

167

0.n

/N
0..n | +bookings

ROOM
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D.1.2 Compensation Activity Diagrams

‘ ArrangeMeeting Process ‘

ArrangeMeeting = || te TEaAM . CheckRoom(t); CheckTeam(t); Decide(t)

!

Y
‘ CheckRoom(t) ‘
o %
§ y =
e N
CheckTeam(t)

o %
~ vy -
e N
\ Decide(t) \
N J

| |
O

‘ CheckRoom Process ‘

CheckRoom(t) = (SelectAvailableDates(t) +¢p(;) ConfirmRoom(t))
+cr()CancelRoom(t)
SelectAvailableDates(t)
ANY dates WHERE dates DATE - bookings
THEN
availableDates(t) := dates
bookings := bookings  dates
<<t.CF>> <<t.CL>>
ConfirmRoom(t) ( CancelRoom(t) \
\\ /
bookings := bookings := bookings - availableDates(t)
(bookings - availableDates(t)) { selectedDate(t) }
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‘ CheckTeam Process ‘

CheckTeam(t) = let M = member(t) in
| mem. (SuggestDates(t,m) +¢p(;) ConfirmDate(t,m))
+cr(+)CancelDates(t,m)

*
SuggestDates(t,m) @

ANY dates WHERE dates  availableDates(t) - diary(m)
THEN

possibleDates(m) := dates

diary(m) := diary(m) dates
END

<<t.CF>> <<t.CL>>
ConfirmDate(t,m) CancelDates(t,m)
| | |

\  diary(m) := (diary(m) - possibleDates(m))  / : = di _ :
{ selectedDate(t)} \dlary(my diary(m) possmIeDates(m)/

‘ Decide Process ‘

Decide(t) = -—emptyDates(t)— SelectDate(t); X¢p

[

emptyDates(t) —Xep; Mepy

[ = emptyDates(t) ] . [ emptyDates(t) ]

SelectDate(t)

(
| ANY date WHERE date intersectionDates(t
| THEN |

selectedDate(t) := date
END

A 4

[X t.CF X|tcL
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D.2 E-Bookstore

D.2.1 Class Diagram

CLIENT BOOK
EZlaccepted : Boolean +basket T e —
BEEbudget : Integer 0.n | Eprice : Integef

D.2.2 Compensation Activity Diagrams

‘ Bookstore Process ‘

Bookstore = || ce cLIENT . Client(c)

N
Client(c) c: CLIENT,

‘ Client Process ‘

Client(c) Arrive(c); ChooseBooks(c); ((Quit(c); X) [| (Pay(c); )); Exit(c)

!

Arrive(c)

/ SELECTc dom(basket) THEN \

| ANY a WHERE a NAT1 THEN |

| basket := basket {c HI

‘\ budget :=budget {c a}|| |

\ accepted := accepted {c FALSE} |
END /

END

‘e N
4& ChooseBooks(c) ’7
-

Quit(c)
SELECTc  dom(basket) THEN [ Pay(c) ]
skip
END

[X] V]

/ Exit(c) \

\
| SELECTc dom(basket) THEN |
e

| basket := basket « { ¢ } || D
\ budget := budget <« {c } || /‘
\ accepted := accepted < {c } /

END
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‘ ChooseBooks Process ‘

ChooseBooks(c) = ChooseBook(c) * Checkout(c)

A4

Checkout(c)
N\ SELECTc  dom(basket) THEN

ChooseBook(c) ENSEI)(iID

\ J i
U

Y

.

‘ ChooseBook Process ‘

ChooseBook(c) = [|beBook .[(AddBook(c,b) +~ ReturnBook(c,b));

overBudget(c) — K]

AddBook(c,b)

SELECT ¢ dom(basket) b ¢ basket(c)
THEN

basket(c) := basket(c) u {b}
END

ReturnBook(c,b)

SELECT ¢ dom(basket) b € basket(c)
THEN

basket(c) := basket(c) - {b}
END

[ overBudget(c) ]

Ij)zl [ ~overBudget(c) ]
\ —— @ Y,

/ 1\ ———————————— @
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‘ Pay Process ‘

Pay(c) = ProcessCard(c); ~accepted(c) — X

ProcessCard(c)

SELECT c dom(basket) THEN
CHOICE accepted(c) := TRUE OR accepted(c) := FALSE END
END

[ "accepted(c) ]

x [ accepted(c) ]

-
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D.3 Order Fulfillment

D.3.1 Class Diagram

ORDER
EXcourierBooking : BOOL ITEM
%creditstatus : BOOL +order - Estock : _NAT
[EXokCreditCheck : BOOL i E¥lpackaging : BOOL
E-okFulfillOrder : BOOL "

D.3.2 Compensation Activity Diagrams

\ ACME Process‘

ACME = AcceptOrder = RestockOrder; FulfillOrder;
okFulfillOrder —

I
—-0kFulfillOrder — X

AcceptOrder

ANY items WHERE items ITEM inStock(items) THEN
stock := stock < A(item).(item items | stock(item) - 1) ||
order := items ||
packaging := packaging < A(item).(item items | FALSE)

END

RestockOrder

stock := stock < A(item).(item items | stock(item) + 1)

,,7"7,,
[ OkFulfillOrder ] " \ [ "OKFulfillOrder |
FulfillOrder

. s
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‘ FulfillOrder Process ‘

FulfillOrder = { WarehousePackaging || (CreditCheck; —~okCreditCheck — ©)}

I

Y

CreditCheck
WarehousePackagin
9ing CHOICE creditStatus := TRUE OR creditStatus := FALSE END

[ = okCreditCheck ]

[ okCreditCheck ]

L)

WarehousePackaging Process‘

WarehousePackaging = (BookCourier + CancelCourier) || PackOrder

RS

BookCourier
courierBooking := TRUE v

___________ PackOrder

CancelCourier

courierBooking := FALSE

N
N
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‘ PackOrder Process ‘

PackOrder = let O = order in | ico . PackItem(:) ~ UnpackItem(i)

< Packltem(i) > """""""" i : order

packaging(i) := TRUE

Unpackltem(i)
packaging(i) := FALSE
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