
Conversation Types

Luı́s Caires and Hugo Torres Vieira

CITI / Departamento de Informática, FCT Universidade Nova de Lisboa, Portugal

Abstract. We present a type theory for analyzing concurrent multiparty interactions
as found in service-oriented computing. Our theory introduces a novel and flexible type
structure, able to uniformly describe both the internal and the interface behavior of
systems, referred respectively as choreographies and contracts in web-services termi-
nology. The notion of conversation builds on the fundamental concept of session, but
generalizes it along directions up to now unexplored; in particular, conversation types
discipline interactions in conversations while accounting for dynamical join and leave of
an unanticipated number of participants. We prove that well-typed systems never violate
the prescribed conversation constraints. We also present techniques to ensure progress
of systems involving several interleaved conversations, a previously open problem.

1 Introduction
While most issues arising in the context of communication-based software systems do
not appear to be new when considered in isolation, the analysis of loosely-coupled
distributed systems involving type based discovery, and multiparty collaborations such
as those supported by web-services technology raises many challenges and calls for
new concepts, specially crafted models, and formal analysis techniques (e.g., [1–3, 6, 7,
12]). In previous work [19] we introduced the Conversation Calculus (CC), a π-calculus
based model for service-oriented computing that builds on the concepts of process del-
egation, loose-coupling, and, crucially, conversation contexts.

A key concept for the organization of service-oriented computing systems is the no-
tion of conversation. A conversation is a structured, not centrally coordinated, possibly
concurrent, set of interactions between several participants. Then, a conversation con-
text is a medium where partners may interact in a conversation. It can be distributed in
many pieces, and processes in any piece may seamlessly talk to processes in the same
or any other piece of the same conversation context. Intuitively a conversation context
may be seen as a virtual chat room where remote participants exchange messages ac-
cording to some discipline, while simultaneously engaged in other conversations. Con-
versation context identities can be passed around, allowing participants to dynamically
join conversations. To join an ongoing conversation, a process may perform a remote
conversation access using the conversation context identifier. It is then able to partici-
pate in the conversation to which it has joined, while being able to interact back with
the caller context through the access point. To discipline multiparty conversations we
introduce conversation types, a novel and flexible type structure, able to uniformly de-
scribe both the internal and the interface behavior of systems, referred respectively as
choreographies and contracts in web-services terminology.

We give substantial evidence that our minimal extension to the π-calculus is already
effective enough to model and type sophisticated service-based systems, at a fairly high
level of abstraction. Examples include challenging scenarios involving simultaneous
multiparty conversations, with concurrency and access to local resources, and conver-
sations with a dynamically changing and unanticipated number of participants, that fall
out of scope of other approaches for modeling and typing of service-based systems.

2 Luı́s Caires and Hugo Torres Vieira

1.1 Conversation Contexts and Conversation Types
We explain the key ideas of our development by going through a motivating example.
Consider the following composition of two conversation contexts, named Buyer and
Seller , modeling a typical service collaboration:

Buyer J [new Seller · startBuy⇐ buy!(prod).price?(v)] |
Seller J [PriceDB | def startBuy⇒ buy?(prod).askPrice�!(prod).

readVal�?(v).price!(v)]

Notice that in the core CC, the bounded communication medium provided by a con-
versation context may also be used to model a partner local context, avoiding the in-
troduction of a primitive notion of site. The code in Buyer starts a new conversation
by calling service startBuy located at Seller using the service instantiation idiom
new Seller · startBuy ⇐ buy!(prod).price?(v). The code buy!(prod).price?(v)
describes the role of Buyer in the conversation: a buy message is sent, and afterwards
a price message should be received. Upon service instantiation, the system evolves to

(νc)(Buyer J [c J [buy!(prod).price?(v)]] |
Seller J [PriceDB | c J [buy?(prod).askPrice�!(prod).

readVal�?(v).price!(v)])

where c is the fresh name of the newly created conversation (with two pieces). The code
buy?(prod).askPrice�!(prod).readVal�?(v).price!(v)

describes the participation of Seller in the conversation c: a buy message is received,
and in the end, price message should be sent. In between, database PriceDB lo-
cated in the Seller context is consulted through a pair of � directed message ex-
changes (askPrice and readVal). Such messages are targeted to the parent conversa-
tion (Seller), rather than to the current conversation (c).

In our theory, message exchanges inside and at the interface of subsystems are cap-
tured by conversation types, which describe both internal and external participation of
processes in conversations. The Buyer and Seller conversation is described by type

BSChat , τbuy(Tp).τprice(Tm)
specifying the two interactions that occur sequentially within the conversation c, first a
message buy and after a message price (Tp and Tm represent basic value types).

The τ in, e.g., τbuy(Tp) means that the interaction is internal. A declaration such
as τbuy(Tp) is like an assertion such as buy(Tp) : Buyer → Seller in a message
sequence chart, or in the global types of [12], except that in our case participant identi-
ties are abstracted away, increasing flexibility. In general, the interactions described by
a type such as BSChat may be realized in several ways, by different participants. Tech-
nically, we specify the several possibilities by a (ternary) merge relation between types,
noted B = B1 ./ B2, stating how a behavior B may be projected in two independent
matching behaviors B1 and B2. In particular, we have (among others) the projection

BSChat = ? buy(Tp).! price(Tm) ./ ! buy(Tp).? price(Tm)
The type ? buy(Tp).! price(Tm) will be used to type the Buyer participation, and
the type ! buy(Tp).? price(Tm) will be used to type the Seller participation (in
conversation BSChat). Thus, in our first example, the conversation type BSChat is
decomposed in a pair of “dual” conversation types, as in classical session types [10, 11];

Conversation Types 3

this does not need to be always the case, however. In fact, the notion of conversation
builds on the fundamental concept of session but extends it along unexplored directions,
as we now discuss. Consider a three-party variation (from [6]) of the example above:

Buyer J [new Seller · startBuy⇐ buy!(prod).price?(p).details?(d)] |
Seller J [PriceDB |

def startBuy⇒ buy?(prod).askPrice�!(prod).
readVal�?(p).price!(p).
join Shipper · newDelivery⇐ product!(prod)] |

Shipper J [def newDelivery⇒ product?(p).details!(data)]

The role of Shipper is to inform the client on the delivery details. The code is com-
posed of three conversation contexts, representing the three partners Buyer , Seller and
Shipper . The system progresses as in the first example: messages buy and price are
exchanged between Buyer and Seller in the fresh conversation. After that, Shipper is
asked by Seller , using idiom join Shipper · newDelivery ⇐ · · · , to join the ongoing
conversation (till then involving only Buyer and Seller). The system then evolves to

(νa)(Buyer J [a J [details?(d)]] |
Seller J [a J [product!(prod)] | . . .] |
Shipper J [a J [product?(p).details!(data)]])

Notice that Seller does not lose access to the conversation after asking service Shipper ·
newDelivery to join in the current conversation a (partial session delegation). In fact,
Seller and Shipper will interact later on in the very same conversation, by exchanging
a product message. Finally, Shipper sends a message details directly to Buyer . In
this case, the global conversation a is initially assigned type

BSSChat , τ buy(Tp).τ price(Tm).τ product(Tp).τ details(Td)

We decompose type BSSChat in three “projections” (Bbu , Bse , and Bsh), by means of
the merge ./, first by BSSChat = Bbu ./ Bss , and then by Bss = Bse ./ Bsh , where

Bbu , ? buy(Tp).! price(Tm).! details(Td)
Bss , ! buy(Tp).? price(Tm).τ product(Tp).? details(Td)
Bse , ! buy(Tp).? price(Tm).? product(Tp)
Bsh , ! product(Tp).? details(Td)

These various “local” types are merged by our type system in a compositional way,
allowing e.g., service startBuy to be assigned type !startBuy([Bss]), and the contri-
bution of each partner in the conversation to be properly determined. At the point where
join operation above gets typed, the (residual) conversation type corresponding to the
participation of Seller is typed τ product(Tp).? details(Td). At this stage, extru-
sion of the conversation name a to service Seller · newDelivery will occur, to enable
Shipper to join in. Notice that the global conversation BSSChat discipline will nev-
ertheless be respected, since the conversation fragment delegated to Shipper is typed
! product(Tp).? details(Td) while the conversation fragment retained by Seller
is typed ? product(Tp). Also notice that since conversation types abstract away from
participant identities, the overall conversation type can be projected into the types of
the individual roles in several ways, allowing for different implementations of the roles

4 Luı́s Caires and Hugo Torres Vieira

of a given conversation (cf. loose-coupling). It is even possible to type systems with an
unbounded number of different participants, as needed to type, e.g., a service broker.

Our type system combines techniques from linear, behavioral, session and spatial
types (see [4, 11, 13, 14]): the type structure features prefix M.B, parallel composi-
tion B1 | B2, and other operators. Messages M describe external (receive ? / send !)
exchanges in two views: with the caller / parent conversation (�), and in the current
conversation (�). They also describe internal message exchanges (τ). Key technical in-
gredients in our approach to conversation types are the amalgamation of global types
and of local types (in the general sense of [12]) in the same type language, and the
definition of a merge relation ensuring, by construction, that participants typed by the
projected views of a type will behave well under composition. Merge subsumes duality,
in the sense that for each τ -free B there are types B,B′ such that B ./ B = τ (B′),
so sessions are special cases of conversations. But merge of types allows for extra flex-
ibility on the manipulation of projections of conversation types, in an open-ended way,
as illustrated above. In particular, our approach allows fragments of a conversation type
(e.g., a choreography) to be dynamically distributed among participants, while statically
ensuring that interactions follow the prescribed discipline.

The technical contributions of this work may be summarized as follows. First, we
define the new notion of conversation type. Conversation types are a generalization of
session types to loosely-coupled, possibly concurrent, multiparty conversations, allow-
ing mixed global / local behavioral descriptions to be expressed at the same level, while
supporting the analysis of systems with dynamic delegation of fragments of ongoing
conversations. Second, we advance new techniques to certify safety and liveness prop-
erties of service-based systems. We propose a type system for assigning conversation
types to core CC systems. Processes that get past our typing rules are ensured to be free
of communication errors, and races on plain messages (Corollary 3.6): this also implies
that well-typed systems enjoy a conversation fidelity property (i.e., all conversations
follow the prescribed protocols). Finally, we present techniques to establish progress of
systems with several interleaved conversations (Theorem 4.4), exploiting the combina-
tion of conversation names with message labels in event orderings, and, more crucially,
propagation of orderings in communications, solving a previously open problem.

Additional examples, complete definitions and detailed proofs can be found in [5].

2 The Core Conversation Calculus
In this section, we present the syntax and operational semantics of the core Conversa-
tion Calculus (CC) [19]. The core CC extends the π-calculus [16] static fragment with
the conversation construct n J [P], and replaces channel based communication with
context-sensitive message based communication. For simplicity, we use here a monadic
version. The syntax of the calculus is defined in Fig. 1. We assume given an infinite set
of names Λ, an infinite set of variables V , an infinite set of labels L, and an infinite set
of process variables χ. The static fragment is defined by the inaction 0, parallel compo-
sition P | Q, name restriction (νa)P and recursion recX .P . The conversation access
construct n J [P], allows a process to interact, as specified by P , in conversation n.

Communication is expressed by the guarded choice construct Σi∈I αi.Pi, meaning
that the process may select some initial action αi and then progress as Pi. Communi-

Conversation Types 5

a, b, c, . . . ∈ Λ (Names) d ::= � | � (Directions)
x, y, z, . . . ∈ V (Variables)
n, m, o . . . ∈ Λ ∪ V α, β ::= ld!(n) (Output)
l, s . . . ∈ L (Labels) | ld?(x) (Input)
X ,Y, . . . ∈ χ (Process Vars) | this(x) (Conversation Awareness)

P, Q ::= 0 (Inaction) | recX .P (Recursion)
| P | Q (Parallel Composition) | X (Variable)
| (νa)P (Name Restriction) | Σi∈I αi.Pi (Prefix Guarded Choice)
| n J [P] (Conversation Access)

Fig. 1. The core Conversation Calculus.

cation actions are of two forms: ld!(n) for sending messages and ld?(x) for receiving
messages. Message communication is defined by the label l and the direction d. There
are two message directions: � (read “here”) meaning that the interaction should take
place in the current conversation or � (read “up”) meaning that the interaction should
take place in the enclosing (caller) conversation. To lighten notation we omit the � in
the �-directed messages without any ambiguity. A basic action may also be of the form
this(x), allowing a process to dynamically access the name of the current conversation.
Notice that message labels (from l ∈ L) are not names but free identifiers (cf. record
labels or XML tags), and therefore are not subject to fresh generation, restriction or
binding. Only conversation names (in Λ) may be subject to binding, and freshly gener-
ated via (νa)P . The distinguished occurrences of a, x, x andX are binding occurrences
in (νa)P , ld?(x).P , this(x).P and recX .P , respectively. The sets of free (fn(P)) and
bound (bn(P)) names, free variables (fv(P)), and free process variables (fpv(P)) in a
process P are defined as expected. We implicitly identify α-equivalent processes.

The operational semantics of the core CC is defined by a labeled transition system.
For clarity, we split the presentation in two sets of rules, one (in Fig. 3) containing
the rules for the basic operators, another (in Fig. 4) grouping the rules specific to the
conversations. A transition P λ−→ Q states that process P may evolve to process Q by
performing the action represented by the transition label λ. Transition labels (λ) and ac-
tions (σ) are defined in Fig. 2. An action τ denotes an internal communication, actions
ld!(a) and ld?(a) represent communications with the environment, and this represents
a conversation identity access; these correspond to the basic actions a process may per-
form in the context of a given conversation. To capture the observational semantics of
processes [19], transition labels register not only the action but also the conversation
where the action takes place. So, a transition label λ containing c σ is said to be lo-
cated at conversation c (or just located), otherwise is said to be unlocated. In (νa)λ the
distinguished occurrence of a is bound with scope λ (cf., the π-calculus bound output
actions). For a communication label λ we denote by λ the dual matching label obtaining
by swapping inputs with outputs, such that ld!(a) = ld?(a) and ld?(a) = ld!(a). By
na(λ) we denote the free and bound names and by bn(λ) the bound names of λ.

Transition rules presented in Fig. 3 closely follow the ones for the π-calculus [18]
and should be fairly clear to a reader familiar with mobile process calculi. For exam-
ple, rule (opn) corresponds to the bound output or extrusion rule, in which a bound
name a is extruded to the environment in an output message λ: we define out(λ) = a

6 Luı́s Caires and Hugo Torres Vieira

σ ::= τ | ld!(a) | ld?(a) | this (Transition Labels) λ ::= c σ | σ | (νa)λ (Actions)

Fig. 2. Transition Labels and Actions.

ld!(a).P
ld!(a)−→ P (out) ld?(x).P

ld?(a)−→ P{x/a} (inp)
αj .Pj

λ−→ Q j ∈ I

Σi∈I αi.Pi
λ−→ Q

(sum)

P
λ−→ Q a = out(λ)

(νa)P
(νa)λ−→ Q

(opn)
P

λ−→ P ′ Q
λ−→ Q′

P | Q
τ−→ P ′ | Q′

(com)
P

(νa)λ−→ P ′ Q
λ−→ Q′

P | Q
τ−→ (νa)(P ′ | Q′)

(clo)

P
λ−→ Q a 6∈ na(λ)

(νa)P
λ−→ (νa)Q

(res)
P

λ−→ Q

P | R
λ−→ Q | R

(par)
P{X/recX .P} λ−→ Q

recX .P
λ−→ Q

(rec)

Fig. 3. Operational Semantics: Basic Operators (π-calculus).

P
λ�
−→ Q

c J [P]
λ�
−→ c J [Q]

(her)
P

λ�
−→ Q

c J [P]
c·λ�
−→ c J [Q]

(loc)
P

a λ�
−→ Q

c J [P]
a λ�
−→ c J [Q]

(thr)

P
τ−→ Q

c J [P]
τ−→ c J [Q]

(tau) this(x).P
c this−→ P{x/c} (thi)

P
c this−→ Q

c J [P]
τ−→ c J [Q]

(thl)

P
σ−→ P ′ Q

c σ−→ Q′

P | Q
c this−→ P ′ | Q′

(tco)
P

σ−→ P ′ Q
(νa)c σ−→ Q′

P | Q
c this−→ (νa)(P ′ | Q′)

(tcl)

Fig. 4. Operational Semantics: Conversation Operators.

if λ = ld!(a) or λ = c ld!(a) and c 6= a. We discuss the intuitions behind the rules
for conversation contexts (Fig. 4). In (her) an � directed message (to the caller conver-
sation) becomes � (in the current conversation), after passing through the conversation
access boundary. We note by λd a transition label λd containing the direction d (�, �),
and by λd′

the label obtained by replacing d by d ′ in λd (e.g., if λ� is askPrice�?(a)
then λ� is askPrice�?(a)). In (loc) an unlocated � message (in the current conver-
sation) gets explicitly located at the conversation c in which it originates. Given an
unlocated label λ, we represent by c · λ the label obtained by locating λ at c (e.g., if λ�

is askPrice�?(p) then c · λ� is c askPrice�?(p)). In (thr) an already located com-
munication label transparently crosses some conversation boundary, and likewise for a
τ label in (tau). In (thi) a this label reads the conversation identity, and originates a
c this label. A c this labeled transition may only progress inside the c conversation,
as expressed in (thl), where a this label matches the enclosing conversation. In (tco)
and (tcl) an unlocated communication matches a communication located at c, originat-
ing a c this label, thus ensuring the interaction occurs in the given conversation c, as
required. The reduction relation of the core CC, noted P → Q, is defined as P

τ−→ Q.
Using conversation contexts and the basic message based communication mecha-

nisms, useful programming abstractions for service-oriented systems may be idiomati-
cally defined in the core CC, namely service definition and instantiation constructs (re-
dundantly introduced as primitives in [19]) and also a new conversation join construct,

Conversation Types 7

def s ⇒ P , s?(x).x J [P] new n · s ⇐ Q , (νc)(n J [s!(c)] | c J [Q])

join n · s ⇐ Q , this(x).(n J [s!(x)] | Q)

Fig. 5. Service Idioms.

as shown in Fig. 5. The def form publishes a service definition. There are two ways
of using such a service definition: either by the new form, which establishes a fresh
conversation between client and server; or by the join form which instead passes to the
service provider the identity of the current conversation, allowing parties to ask other
service providers to join in on ongoing conversations. Both usages refer the service
name s and the conversation n where the service is available at, thus service definitions
must be located in order to be instantiated (as e.g., methods must reside in objects).

3 Type System

In this section we formally present our type system for the core CC. As already mo-
tivated in the Introduction, our types specify the message protocols that flow between
and within conversations. The syntax for the types is shown in Fig. 6. Typing judgments
have the form P :: T , where T is a process type. Intuitively, a type judgement P :: T
states that if process P is placed in an environment that complies with type T , then the
resulting system is safe, in a sense to be made precise below (Corollary 3.6). In general,
a process type T has the form L | B, where L is a located type and B is a behavioral
type. An atomic located type associates a conversation type C to a conversation name
n. Conversation types C are given by [B], where B specifies the message interactions
that may take place in the conversation. Behavioral types B include the branch and
the choice constructs (Ni∈I{Mi.Bi} and ⊕i∈I{Mi.Bi}, respectively), specifying pro-
cesses that can branch in either of the Mi.Bi behaviors and choose between one of the
Mi.Bi behaviors, respectively. Prefix M.B specifies a process that sends, receives, or
internally exchanges a message M before proceeding with behavior B. We also have
parallel composition B1 | B2, inaction 0, and recursion. Message types M are specified
by a polarity p (either output !, input ? or internal action τ), a pair label-direction ld,
and the type C of the name communicated in the message. For typing purposes, we split
the set of message labels L into shared L? and plain Lp labels (plain labeled messages
will be used linearly, and shared labeled messages will be used exponentially). Notice
that a message M may refer to an internal exchange between two partners, if it is of the
form τ l�(C). The unlocated part B of a process P type L | B specifies the behavior of
P in the current conversation (taking place in the context where P resides).

We introduce some auxiliary notations and notions. We abbreviate both ⊕{M.B}
and N{M.B} with M.B. We write M for M.0, and p l(C) for p l�(C). An important
auxiliary notion is the projection d(B) in direction d of a behavioral type B. It consists
in the selection of all messages that have the given direction d while filtering out ones
in the other direction, offering a partial view of behavior B from the d viewpoint. For
instance, if B , ! buy(Tp).? askPrice�(Tp).! readVal�(Tm).? price(Tm) then
� (B) = ! buy(Tp).? price(Tm) and � (B) = ? askPrice�(Tp).! readVal�(Tm).
We also write, e.g., �B for �(B), to lighten notation. Informally, we refer to �B as the
“here interface” of B, and likewise for �B as the “up interface”. If p is a polarity (!, ?,
τ), we denote by p(B) the projection type that selects all messages that have polarity p.

8 Luı́s Caires and Hugo Torres Vieira

B ::= B1 | B2

˛̨
0

˛̨
recX .B

˛̨
X

˛̨
⊕i∈I {Mi.Bi}

˛̨
Ni∈I{Mi.Bi} (Behavioral)

M ::= p ld(C) (Message) p ::= !
˛̨

?
˛̨

τ (Polarity) C ::= [B] (Conversation)

L ::= n : C
˛̨

L1 | L2

˛̨
0 (Located) T ::= L | B (Process)

Fig. 6. Syntax of Types.

recX .T ≡ T{X/recX .T} (1) n : [B1 | B2] ≡ n : [B1] | n : [B2] (2)

M.B1 | B2 <: M.(B1 | B2) (M # B2) (3) � B | � B <: B (4)

Mi.Bi <: M ′
i .B

′
i (i ∈ I)

⊕i∈I{Mi.Bi} <: ⊕i∈I{M ′
i .B

′
i}

(5)
Mi.Bi <: M ′

i .B
′
i (i ∈ I) I ⊆ J

Ni∈J{Mi.Bi} <: Ni∈I{M ′
i .B

′
i}

(6)

Fig. 7. Selected Subtyping Rules.

P :: L | B

n J [P] :: (L ./ n : [�B]) | loc(�B)
(piece)

P :: L | B1 | x : [B2] (x 6∈ dom(L))

this(x).P :: L | (B1 ./ B2)
(this)

Pi :: L | Bi | xi : Ci (xi 6∈ dom(L))

Σi∈I ldi ?(xi).Pi :: L | ⊕i∈I {!ldi (Ci).Bi}
(inp)

P :: L | B

ld!(n).P :: (L ./ n : C) | ?ld(C).B
(out)

P :: T | a : [B] (closed(B), a 6∈ dom(T))

(νa)P :: T
(res)

P :: T1 Q :: T2

P | Q :: T1 ./ T2
(par)

0 :: τ (L)
(stop)

P :: LM | B〈X 〉
recX .P :: ?LM | recX .B〈X 〉 (rec) X :: X (var)

T <: T ′ P :: T ′

P :: T
(sub)

Fig. 8. Typing Rules.

Types are related by the subtyping relation <:, for which we depict a selection of
rules in Fig. 7. The subtyping rules express expected relationships of types, such as the
commutative monoid rules for (− | −,0), congruence principles, and the split rule (2).
For types T1 and T2 we write T1 ≡ T2 if T1 <: T2 and T2 <: T1. A key subtyping
principle is (4), that allows a behavioral type to be decomposed (in the subtype) in its
two projections according to the message directions � and �. Another important sub-
typing principle is (3), that allows a message to be serialized (in the supertype). Notice
we do not allow width subtyping in choice type (5). Essentially we can not forget some
choices in the choice type, as this would allow undesired matches between choice and
branch types: if the environment expected by a process does not fully reveal the choices
it may take, then placing the process in such environment may lead to unexpected (not
described by the type) behaviors (cf., [7], where a related issue is addressed).

We may now present our typing rules in Fig. 8. They rely on several auxiliary opera-
tions and predicates on types. The key ones are predicate apartness T1#T2 and relation
merge T = T1 ./ T2. Intuitively, two types are apart when they may type subsystems
that may be safely composed without undesirable interferences. Apartness is defined
by checking disjointness of sets of message labels, more precisely it asserts disjoint-
ness of plain (“linear”) types, and consistency of shared (“exponential”) types, w.r.t.
conversations. The merge relation relates two types T1 and T2 to some composition, so
that if T = T1 ./ T2 then T is a particular behavioral combination of the types T1 and

Conversation Types 9

T2. Merge is defined not only in terms of spatial separation, but also, and crucially, in
terms of synchronization / shuffle of behavioral traces. Notice that there might not be
T such that T = T1 ./ T2. On the other hand, if such T exists, we use T1 ./ T2 to
non-deterministically denote any such T (e.g., in conclusions of type rules). Intuitively,
T = T1 ./ T2 holds if T1 and T2 may safely synchronize or interleave so as to produce
behavioral type T . We formally define merge and apartness in the Appendix, but this
informal understanding already allows us to explain the key typing rules.

Rule (piece) types a (piece of a) conversation. Process P expects some located be-
havior L, and some unlocated behavior B in the current conversation. The type in the
conclusion is obtained by merging the type L with a type that describes the behavior of
the new conversation piece, in parallel with the type of the toplevel conversation, the
now current conversation. Essentially, the type of the projections in the two directions is
collected appropriately: the “here” projection �B is the behavior in conversation n, and
the “up” projection � of P becomes the “here” behavior at the toplevel conversation,
via loc(�B) which sets the direction of all messages to �. Rule (this) types the conver-
sation awareness primitive, requiring behavior B2 of conversation x to be a separate (in
general, just partial) view of the current conversation. This allows to bind the current
conversation to name x, and possibly sent to other parties that may need to join it.

In rule (inp) the premise states that processes Pi require some located behavior L,
some current conversation behavior Bi, and some behavior at conversation xi (dom(L)
denotes the set of conversation identifiers of located type L). Then, the conclusion states
that the input summation process is well-typed under type L, with the behavior inter-
face becoming the choice of the types of the continuations prefixed by the messages
! ldi (Ci), where the output capability ! corresponds to the message capability expected
from the external environment (as well as the choice that also refers to the capability of
performing a choice expected from the external environment). In rule (out) notice that
the context type is a separate ./ view of the context, which means that the type being
sent may actually be some separate part of the type of some conversation, which will be
(partially) delegated away. This mechanism is crucial to allow external partners to join
in on ongoing conversations in a disciplined way. The behavioral interface of the output
prefixed process is an input type, as an input is expected from the external environment.

In rule (res) we use closed(B), to avoid hiding conversation names where un-
matched communications still persist (necessary to ensure deadlock absence). closed
behavioral types characterize processes that have matching receives for all sends.

Definition 3.1. A behavioral type B is closed, noted closed(B), if the polarities of
message types in B are only τ messages or outputs ! on shared labels.

In rule (rec) we denote by B〈X 〉 a behavioral type with a single occurrence of X . We
use ?M as an abbreviation of rec X .M.X . Then, by LM we denote a located type of
the form n1 : [M1] | . . . | nk : [Mk], and by ?LM we denote n1 : [?M1] | . . . | nk :
[?Mk]. The rule states that the process is well typed under an environment that persis-
tently offers messages Mi under conversations ni, and persistently offers behavior B
in the current conversation. The message types Mi must be defined with shared labels
with polarity ?. We now present our main soundness results. Subject reduction is de-
fined using a notion of reduction on types, since a reduction step at the process level
may require a modification in the type. Fig. 9 shows a selection of type reduction rules.

10 Luı́s Caires and Hugo Torres Vieira

τ l�(C).B → B
T1 → T2

T1 | T3 → T2 | T3

T1 → T2

n : [T1] → n : [T2]

Fig. 9. Type Reduction Selected Rules.

Theorem 3.2 (Subject Reduction). Let P be a process and T a type such that P :: T .
If P → Q then there is T ′ such that T → T ′ and Q :: T ′.

Our safety result asserts that certain error processes are unreachable from well-typed
processes. To define error processes we introduce static process contexts.

Definition 3.3 (Static context). Static process contexts, noted C[·], are defined as:
C[·] ::= (νa)C[·]

∣∣ P | C[·]
∣∣ c J [C[·]]

∣∣ recX .C[·]
∣∣ ·

We also use w(λ) to denote the sequence c ld of elements in the action label λ, for
example w((νa)c ld!(a)) = c ld and w((νa)ld!(a)) = ld.

Definition 3.4 (Error Process). P is an error process if there is a static context C
with P = C[Q | R] and there are Q′, R′, λ, λ′ such that Q

λ−→ Q′, R
λ′

−→ R′ and
w(λ) = w(λ′), λ 6= λ′ and w(λ) is not a shared label.

A process is not an error only if for each possible immediate interaction in a plain
message there is at most a single sender and a single receiver.

Proposition 3.5 (Error Freeness). Let P be such that P :: T . Then P is not an error.

By subject reduction (Theorem 3.2), we conclude that any process reachable from a
well-typed process is not an error. We note by ∗→ the reflexive transitive closure of →.

Corollary 3.6 (Type Safety). Let P be a process such that P :: T for some T . If there
is Q such that P

∗→ Q, then Q is not an error process.

Our type safety result ensures that, in any reduction sequence arising from a well-typed
process, for each plain-labeled message ready to communicate there is always at most a
unique input/output outstanding synchronization. More: arbitrary interactions in shared
labels do not invalidate this invariant. Another consequence of subject reduction is that
any message exchange inside the process must be explained by a τM prefix in the
related conversation type (via type reduction), thus implying conversation fidelity, i.e.,
all conversations follow the protocols prescribed by their types. In the expected polyadic
extension of core CC and type system we would also exclude arity mismatch errors.

Before closing this section, we show the types of the Buyer -Seller -Shipper exam-
ple (BuySys) of the Introduction, assuming the expected typing for process PriceDB .

Bss , ! buy(Tp).? price(Tm).τ product(Tp).? details(Td)
Bsh , ! product(Tp).? details(Td) Bdb , τ askPrice(Tp).τ readVal(Tm)

BuySys :: Seller : [τ startBuy([Bss]).Bdb] | Shipper : [τ newDelivery([Bsh])]

4 Progress
In this section, we develop an auxiliary proof system to enforce progress properties
on systems. As most traditional deadlock detection methods (e.g., see [9, 15, 17]), we

Conversation Types 11

(`(d).li.(y)Γ ′
i⊥Γ) ∪ Γ ′

i{y/xi} `` Pi

Γ `` Σi∈I ldi ?(xi).Pi
(inp)

Γ `` P

Γ \ a `` (νa)P
(res)

(`(d).l.(x)Γ ′⊥Γ) `` P Γ ′{x/n} ⊆ (`(d).l.(x)Γ ′⊥Γ)

Γ `` ld!(n).P
(out)

Γ `(`(�),n) P

Γ `` n J [P]
(piece)

Fig. 10. Selection of Proof Rules for Progress.

build on the construction of a well-founded ordering on events. In our case, events are
message synchronizations occurring under conversations. Thus the ordering must relate
pairs (conversation identifier,message label), which allows us to cope with systems with
multiple interleaved conversations, and back and forth communications between two
or more conversations in the same thread. Since references to conversations can be
passed in message synchronization, the ordering also considers for each message the
ordering associated to the conversation which is communicated in the message. These
ingredients allow us to check that all events in the continuation of a prefix are of greater
rank than the event of the prefix, thus guaranteeing the event dependencies are acyclic.

The proof system, for which we depict a selection of rules in Fig. 10, is presented
by means of judgments of the form Γ `` P . The judgment Γ `` P states that the
communications of process P follow a well determined order, specified by Γ . In such a
judgment we note by Γ an event ordering: a well-founded partial order of events. Events
consist of both a pair (name,label) ((Λ∪V)×L) and an event ordering abstraction, i.e., a
parameterized event ordering, noted (x)Γ (where x is a binding occurrence with scope
Γ), which represents the ordering of the conversation which is to be communicated
in the message. We range over events with e, e1, . . . and denote by n.l.(x)Γ an event
where n is the conversation name, l is the message label and (x)Γ is the event ordering
abstraction. In Γ `` P , we use ` to keep track of the names of the current conversation
(`(�)) and of the enclosing conversation (`(�)); if ` = (n, m) then `(�) = n and
`(�) = m. We define some operations over event orderings Γ . The event ordering Γ \n
is obtained from Γ by removing all events that have n as conversation name, while
keeping the overall ordering. By e1 ≺Γ e2 we denote that e1 is smaller than e2 under
Γ , and by dom(Γ) we denote the set of events which are related by Γ .

Definition 4.1. Given event e and event ordering Γ such that e ∈ dom(Γ) we define
e⊥Γ as the subrelation of Γ where all events are greater than e, as follows:

e⊥Γ , {(e1 ≺ e2) | (e1 ≺Γ e2) ∧ (e≺Γ e1)}

We briefly discuss the key proof rules of Fig. 10. Rules (inp) and (out) ensure commu-
nications originating in the continuations, including the ones in the conversation being
received/sent, are of a greater order. In rule (inp) the event ordering considered in the
premise is such that it contains elements greater than `(d).li.(x)Γ ′, the event associated
with the input, enlarged with the event ordering abstraction (x)Γ ′ of the event associ-
ated with the input, where the bound x is replaced by the input parameter xi. In rule
(out) the event ordering considered in the premise is such that it contains elements
greater than `(d).l.(x)Γ ′, the event associated to the output. Also the premise states
that the event ordering abstraction (x)Γ ′ of the event associated to the output is a sub-
relation of the event ordering Γ , when the parameter x is replaced by the name to be
sent in the output (n). We may now present our progress results.

12 Luı́s Caires and Hugo Torres Vieira

Theorem 4.2 (Preservation of Event Ordering). Let P be a well typed process P :: T
and Γ an event ordering such that Γ `` P . If there is Q such that P → Q then Γ `` Q.

We define finished processes so to distinguish stable from stuck processes.

Definition 4.3 (Finished Process). P is finished if for any static context C and process
Q such that P = C[Q] then Q has no immediate output (λ = ld!(a)) transitions.

Finished processes have no reductions and also have no pending requests (outputs),
hence are in a stable state, but may have some active inputs (e.g., persistent definitions).

Theorem 4.4 (Progress). Let P be a well typed process such that P :: T , where
closed(T), and Γ an event ordering and a, b names (a, b 6∈ fn(P)) such that Γ `(a,b) P .
If P is not a finished process then there is Q such that P → Q.

Theorem 4.4 ensures that well-typed and well-ordered processes never get stuck on an
output that has no matching input. This property entails that services are always avail-
able upon request and protocols involving interleaving conversations never get stuck.
In the light of these results, given we can show that the Buyer -Seller -Shipper exam-
ple of the Introduction has such an event ordering, we can assert it enjoys the progress
property. Notice that Seller leaves and reenters the received conversation, to consult
PriceDB ; such a scenario is not in the scope of other progress techniques for sessions.

5 Related Work
Behavioral Type Systems As most behavioral type systems (see [8, 13]), we describe a
conversation behavior by some kind of abstract process. However, fundamental ideas
behind the conversation type structure, in particular the composition / decomposition of
behaviors via merge, as captured, e.g., in the typing rule for P | Q, and used to model
delegation of conversation fragments, have not been explored before.

Binary Sessions The notion of conversation originates in that of session (introduced
in [10, 11]). Sessions are a medium for two-party interaction, where session partici-
pants access the session through a session endpoint. On the other hand conversations
are also a single medium but for multiparty interaction, where any of the conversation
participants accesses the conversation through a conversation endpoint (pieces). Ses-
sion channels support single-threaded interaction protocols between the two session
participants. Conversation contexts, on the other hand, support concurrent interaction
protocols between multiple participants. Sessions always have two endpoints, created
at session initialization. Participants can delegate their participation in a session, but the
delegation is full as the delegating party loses access to the session. Conversations also
initially have two endpoints. However the number of endpoints may increase (decrease)
as participants join in on (leave) ongoing conversations. Participants can ask a party to
join in on a conversation and not lose access to it (partial delegation). Since there are
only two session participants, session types may describe the entire protocol by describ-
ing the behavior of just one of the participants (the type of the other participant is dual).
Conversations types, on the other hand, describe the interactions between multiple par-
ties so they specify the entire conversation protocol (a choreography description) that
decomposes in the types of the several participants (e.g., Bt = Bbu ./ Bse ./ Bsh).

Conversation Types 13

Multiparty Sessions The goals of the works [2, 12] are similar to ours. To support
multiparty interaction, [12] considers multiple session channels, while [2] considers a
multiple indexed session channel, both resorting to multiple communication pathways.
We follow an essentially different approach, by letting a single medium of interaction
support concurrent multiparty interaction via labeled messages. In [2, 12] sessions are
established simultaneously between several parties through a multicast session request.
As in binary sessions, session delegation is full so the number of initial participants
is kept invariant, unlike in conversations where parties can keep joining in. The ap-
proach of [2, 12] builds on two-level descriptions of service collaborations (global and
local types), first introduced in a theory of endpoint projection [6]. The global types
mention the identities of the communicating partners, being the types of the individual
participants projections of the global type with respect to these annotations. Our merge
operation ./ is inspired in the idea of projection [6], but we follow a different approach
where “global” and “local” types are treated at the same level in the type language and
types do not explicitly mention the participants identities, so that each given protocol
may be realized by different sets of participants, provided that the composition of the
types of the several participants produce (via ./) the appropriate invariant. Our approach
thus supports conversations with dynamically changing number of partners, ensuring a
higher degree of loose-coupling. We do not see how this could be encoded in the ap-
proach of [12]. On the other hand, we believe that core CC with conversation types can
express the same kind of systems as [12].

Progress in Session Types There are a number of progress studies for binary ses-
sions (e.g., [1, 3, 9]), and for multiparty sessions [2, 12]. The techniques of [2, 9] are
nearer to ours as orderings on channels are imposed to guarantee the absence of cyclic
dependencies. However they disallow processes that get back to interact in a session af-
ter interacting in another, and exclude interleaving on received sessions, while we allow
processes that re-interact in a conversation and interleave received conversations.

6 Concluding Remarks
We have presented a core typed model for expressing and analyzing service and com-
munication based systems, building on the notions of conversation, conversation con-
text, and context-dependent communication. We believe that, operationally, the core
CC can be seen as a specialized idiom of the π-calculus [18], if one considers π ex-
tended with labeled channels or pattern matching. However, for the purpose of studying
communication disciplines for service-oriented computing and their typings, it is much
more convenient to adopt a primitive conversation context construct, for it allows the
conversation identity to be kept implicit until needed.

Conversation types elucidate the intended dynamic structure of conversations, in
particular how freshly instantiated conversations may dynamically engage and dismiss
participants, modeling in a fairly abstract way, the much lower level correlation mecha-
nisms available in Web-Services technology. Conversation types also describe the infor-
mation and control flow of general service-based collaborations, in particular they may
describe the behavior of orchestrations and choreographies. We have established sub-
ject reduction and type safety theorems, which entail that well-typed systems follow the
defined protocols. We also have studied a progress property, proving that well-ordered

14 Luı́s Caires and Hugo Torres Vieira

systems never get stuck, even when participants are engaged in multiple interleaved
conversations, as is often the case in applications. Conversation types extend the no-
tion of binary session types to multiple participants, but discipline their communication
by exploiting distinctions between labeled messages in a single shared communication
medium, rather than by introducing multiple or indexed more traditional session typed
communication channels as, e.g., [12]. This approach allows us to unify the notions of
global type and local type, and type highly dynamic scenarios of multiparty concurrent
conversations not covered by other approaches. On the other hand, being more abstract
and uniform, our type system does not explicitly keep track of participant identities. It
would be interesting to investigate to what extent both approaches could be conciliated,
for instance, by specializing our approach so as to consider extra constraints on projec-
tions on types and merges, restricting particular message exchanges to some roles.

Acknowledgments We thank IP Sensoria, CMU-PT and anonymous referees. We also
thank Mariangiola Dezani-Ciancaglini and Nobuko Yoshida for insightful discussions.

References

1. L. Acciai and M. Boreale. A Type System for Client Progress in a Service-Oriented Calculus.
In Concurrency, Graphs and Models, vol. 5065 of LNCS, pp. 642–658. Springer, 2008.

2. L. Bettini, M. Coppo, L. D’Antoni, M. De Luca, M. Dezani-Ciancaglini, and N. Yoshida.
Global Progress in Dynamically Interleaved Multiparty Sessions. In CONCUR ’08, 19th Int.
Conf. on Concurrency Theory, vol. 5201 of LNCS, pp. 418–433. Springer, 2008.

3. R. Bruni and L. G. Mezzina. Types and Deadlock Freedom in a Calculus of Services, Ses-
sions and Pipelines. In AMAST ’08, vol. 5140 of LNCS, pp. 100–115. Springer, 2008.

4. L. Caires. Spatial-Behavioral Types for Concurrency and Resource Control in Distributed
Systems. Theoretical Computer Science, 402(2-3):120–141, 2008.

5. L. Caires and H. T. Vieira. Conversation Types. UNL-DI-3-08, Departamento de Informática,
Universidade Nova de Lisboa, 2008.

6. M. Carbone, K. Honda, and N. Yoshida. Structured Communication-Centred Programming
for Web Services. In ESOP ’07, vol. 4421 of LNCS, pp. 2–17. Springer, 2007.

7. G. Castagna, N. Gesbert, and L. Padovani. A Theory of Contracts for Web Services. In 35th
Symposium on Principles of Programming Languages, POPL ’08, pp. 261–272. ACM, 2008.

8. S. Chaki, S. K. Rajamani, and J. Rehof. Types as models: Model Checking Message-Passing
Programs. In POPL ’02, pp. 45–57. ACM, 2002.

9. M. Dezani-Ciancaglini, U. de’ Liguoro, and N. Yoshida. On Progress for Structured Com-
munications. In TGC ’07, vol. 4912 of LNCS, pp. 257–275. Springer, 2008.

10. K. Honda. Types for Dyadic Interaction. In CONCUR ’93, 4th Int. Conf. on Concurrency
Theory, vol. 715 of LNCS, pp. 509–523. Springer, 1993.

11. K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type Discipline for
Structured Communication-Based Programming. In 7th European Symposium on Program-
ming, ESOP ’98, vol. 1381 of LNCS, pp. 122–138. Springer, 1998.

12. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In 35th
Symposium on Principles of Programming Languages, POPL ’08, pp. 273–284. ACM, 2008.

13. A. Igarashi and N. Kobayashi. A Generic Type System for the Pi-Calculus. Theoretical
Computer Science, 311(1-3):121–163, 2004.

14. N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the Pi-Calculus. In 23rd Sym-
posium on Principles of Programming Languages, POPL ’96, pp. 358–371. ACM, 1996.

Conversation Types 15

15. N. Lynch. Fast Allocation of Nearby Resources in a Distributed System. In 12th Symposium
on Theory of Computing, STOC ’80, pp. 70–81. ACM, 1980.

16. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Part I + II. Information
and Computation, 100(1):1–77, 1992.

17. N. Kobayashi. A New Type System for Deadlock-Free Processes. In CONCUR ’06, 17th
Int. Conf. on Concurrency Theory, vol. 4137 of LNCS, pp. 233–247. Springer, 2006.

18. D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes. Cambridge
University Press, 2001.

19. H. T. Vieira, L. Caires, and J. C. Seco. The Conversation Calculus: A Model of Service-
Oriented Computation. In ESOP ’08, vol. 4960 of LNCS, pp. 269–283. Springer, 2008.

Appendix
In this appendix, we group the detailed definition of key technical notions, namely
apartness, merge, and conformance. We denote by LabelsL(B) the set of message types
with labels in L occurring in behavioral type B, and by LLabelsL(B) the set of directed
labels (ld) from L of a behavioral type B. For example, given some behavioral type B,
LabelsLp

(B) is the set of all plain (from Lp) message types (p ld(C)) occurring in B.
Given behavioral types B1 and B2, we let B1 � B2 state that message types with
shared labels occur in both B1 and B2 with identical argument types.

Definition 6.1. The conformance relation B1 � B2 on behavioral types is defined as:

B1 � B2 , if (p1 ld(C1)) ∈ LabelsL?
(B1) and (p2 ld(C2)) ∈ LabelsL?

(B2) then
C1 ≡ C2 and either p1 = p2 =?, p1 = p2 = τ or pi = ! and pj = τ

Notice that two message types defined on shared labels and polarity ! are not confor-
mant: this allows us to disallow composition of processes that are listening on the same
shared message (expecting !), thus ensuring a unique handling principle.

Definition 6.2. The apartness relation B1 # B2 on behavioral types is defined as:
B1 # B2 , B1 � B2 and LLabelsLp

(B1) ∩ LLabelsLp
(B2) = ∅

Definition 6.3. The merge relation B = B1 ./u B2 on behavioral types is defined as:

B{? ld(C)/τ ld(C)} | ? ! ld(C) = B ./u ? ! ld(C) if l ∈ L? (1)

Π.⊕i∈I {τ l�i (Ci).Bi} = Π.⊕i∈I {! l�i (Ci).B+
i } ./u Ni∈I{? l�i (Ci).B−

i } (2)

if l ∈ Lp and Π # ?l�i (Ci).B−
i and Bi = B−

i ./u B+
i

recX .B = recX .B+ ./u recX .B− if B = B− ./u B+ (3)

B1 | B2 = B+
1 | B+

2 ./u B−
1 | B−

2 if B1 # B2 and Bi = B−
i ./u B+

i (4)

X = X ./u X (5) B = B ./u 0 (6) B = 0 ./u B (7)

We denote by ./ the congruence closure extension of ./u to both located and behavioral
types. In (1) we denote by B{? ld(C)/τ ld(C)} the type obtained by replacing all
occurrences of ? ld(C) by τ ld(C) in B. Shared labels synchronize and leave open the
possibility for further synchronizations, expecting further outputs from the environment
– rule (1). Instead, plain message synchronization captures the uniquely determined
synchronization on that plain label – rule (2). Also, through (2), it is possible to hoist a
sequence of messages Π , where Π abbreviates M1.(. . .).Mk, by interleaving with the
continuation, if Π is apart from the behavior to be placed in parallel.

