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Abstract

We discuss the tensions between intensionality and extensionality of spatial observations
in distributed systems, showing that there are natural models where extensional observational
equivalences may be characterized by spatial logics, including the composition and void
operators. Our results support the claim that spatial observations do not need to be always
considered intensional, even if expressive enough to talk about the structure of systems. For
simplicity, our technical development is based on a minimalist process calculus, that already
captures the main features of distributed systems, namely local synchronous communication,
local computation, asynchronous remote communication, and partial failures.

Introduction

Logical characterizations of concurrent behaviors have been introduced for a long time now. A
fundamental result in the field, due to Hennessy and Milner [12], is the characterization of behav-
ioral equivalence in process algebras as indistinguishability with respect to a modal logic. Such
results are important not only theoretically, but also because of their influence in the design of
practical specification languages for software systems. Hennessy-Milner logic (HML) adds to
propositional operators the action modality (\)A, allowing the logic to observe a grain of be-
havior: a process satisfies (\) A if it satisfies A after performing action A\. HML characterizes
behavioral equivalence in the sense that two processes are strongly bisimilar if and only if they
satisfy exactly the same formulas.

More recently, spatial logics for concurrency [6, 8, 4] have been proposed with the aim of
specifying distributed behavior and other essential aspects of distributed computing systems. In
general terms, these developments reflect a shift of focus in concurrency research, that has been
building up from the last decade on, from the study of centralized concurrent systems to the study
of general distributed systems. While centralized processes may be accurately modeled as pure
objects of behavior, in distributed systems many interesting phenomena besides pure interaction,
such as location dependent behavior, resource usage, and mobility, must be considered.

Present in all spatial logics for concurrency are the composition operator A | B and the void
operator 0 [4]. Intuitively, a system satisfies A | B if it can be decomposed in two disjoint
subsystems such that one satisfies A and the other satisfies B, while a system satisfies 0 if it is
the empty system. The guarantee (logical adjunct of the composition operator) A > B, introduced
in [8], allows the logic to talk about contextual properties. Namely, a process satisfies A > B if
whenever composed with a system that satisfies A, yields a (possibly larger) system that satisfies
B. Decomposition and composition of systems as mentioned here is generally interpreted up to



structural congruence, and thus structural congruence seems to play a key role in the semantics of
spatial logics.

Observation of features such as spatial separation are frequently considered intensional be-
cause they usually induce fine distinctions among processes that are not substantiated by purely
behavioral (extensional) observations. According to Sangiorgi [18], “A logic is intensional if it
can separate terms on the basis of their internal structure, even though their behaviors are the
same”. Moreover, in many situations, it turns out that the logical equivalence induced by a spa-
tial logic on processes, is not only strictly finer than behavioral congruence, but coincides with
structural congruence [18, 5, 10, 19].

These results contributed to widespread the impression that spatial observations, as those in-
duced by spatial connectives, are intrinsically intensional, imposed extraneously so to increase the
power of the observer. For example, Hirschkoff has shown [13] that if the so-called intensional
connectives composition and void are removed from a spatial logic for the pi-calculus, while re-
taining the guarantee, one obtains a logic whose separation power precisely coincides with strong
bisimulation and may then be considered extensional. The ability of the spatial connectives to
capture structural congruence is also attributed to their ability to count, separate, and express
arithmetical constraints, e.g., about the number of subsystems of a given system. The observa-
tional power of spatial logics may then sometimes appear a bit arbitrary, in the sense that structural
congruence does not have a canonical status among behavioral process equivalences, and is fre-
quently seen just as a technical convenience, with a syntactic flavor, to ease the presentation of a
calculus operational semantics.

On the other hand, it has been argued [4, 2, 3] that the intensional character of logical char-
acterizations of spatiality in distributed computation may be, at least in part, incidental, and does
not necessarily reflect the fundamental motivation for introducing spatial logics for concurrency.
Ideally, we would like spatial observations, as captured by spatial logics, to reflect natural distinc-
tions and similarities between distributed systems, in a context where spatial location is a relevant
observable, in parity with more standard behavioral observables. We expect spatial observations
of the sort, captured by spatial logic operators such as composition, to be taken modulo an in-
tended notion of equality of the observable space-time structure, independently on whether such
equality relation is technically defined using a notion of structural congruence. If certain spatial-
behavioral observations precisely capture the observable structure of a model in our sense, they
would have to be considered extensional, even if able to detect aspects of spatial structure.

In this paper, we pursue the informal discussion started above in technical terms. Namely, we
make precise the claim that spatial observations, including structural ones, may be understood as
purely extensional in fairly natural models of distributed systems. To discuss the several issues
of interest in a simplified setting, we consider a minimal distributed process calculus, obtained
by extending the smallest concurrent fragment of CCS with flat anonymous locations. Our model
can be seen as a general abstraction of the essence of distributed systems, already featuring all
the key ingredients present in distributed process calculi, although in a possibly less refined way.
Processes may synchronously communicate locally to a site through standard CCS-like synchro-
nization, and asynchronously communicate at a distance, by means of a migration primitive. We
also allow systems to nondeterministically exhibit partial failures, as in [1, 11]. Notice that it is
not our aim here to propose yet another distributed process calculus, but rather to set up a con-
venient setting to compare distributed system observational equivalences and their spatial logical
characterizations.

Our technical contributions may be summarized as follows. After introducing the process cal-
culus and its reduction semantics, we define observational equivalence by adopting the canonical
notion of reduction barbed congruence. Barbed congruence [16] and reduction barbed congru-
ence [15] are currently accepted as the standard approach to define reference behavioral equiv-



alences for general process calculi. After showing some basic properties of reduction barbed
congruence in our setting, we define strong bisimulation, an alternative coinductive characteri-
zation of observational equivalence, which is shown equivalent to reduction barbed congruence.
The interesting aspect of our definition of strong bisimulation is that it contains “intensional”
clauses (in the sense of [18]), namely a clause expressing separation, and a clause for observing
the empty system. We then use the characterization of reduction barbed congruence in terms of
strong bisimulation to identify a spatial logic characterization of both reduction barbed congru-
ence and strong bisimulation: our logic is an extension of HML with the composition and void
operators of spatial logic. The same line of development is also carried out for the weak case. In
this latter setting, we prove minimality of the logic, thus showing the essential role of all of the
logic operators, in particular of the spatial operators, in the intended expressive and separation
power. We can verify that in both the strong and weak cases the process equivalences induced by
the logics are coarser than structural congruence, and that the presence of the composition and
void operators, semantically interpreted in the standard way, do not carry any lack of extensional-
ity (with extensionality interpreted with reference to a standard observational equivalence), even
if the logics can express separation and counting constraints on the structure of systems.

1 A Simple Model of Distributed Systems

In this section we present the syntax and operational semantics of our distributed process calculus.
Assume given an infinite set A of names, ranged over by a, b, c.

Definition 1.1 (Actions, Processes and Networks) The sets A of actions, P of processes, and
N of networks are given by:

a,ﬁ:::a‘a‘T PQR—ml)P|Q‘aP‘gOP
N,M,0 _O‘N|M‘

For process actions we consider the output a, the input a and the internal computation 7. For
processes, we consider the smallest fragment of CCS featuring some form of concurrency, thus
we have inaction nil, parallel composition P | ), and action prefixing a.P. On top of this,
we introduce a notion of distribution by locating processes P inside sites of the form [P], and by
adding the migration capability go. P to processes. For the sake of simplicity, sites are not natively
named, so that the go. P primitive allows a process to non-deterministically migrate to some other
site. Thus, a distributed system is represented by a network consisting of a collection of sites
spread in space by means of spatial composition N | M. The empty network is represented by 0
Interaction through CCS-like channel synchronization is only possible locally to a site. Remote
communication between sites is then captured through the use of the migration primitive go.P.
We now present the operational semantics of our calculus, which is captured by the relations of
structural congruence and reduction.

Definition 1.2 (Structural congruence) Structural congruence, noted =, is the least congruence
on processes and networks such that

P|nil=P PlQ=Q|P P|(Q|R)=(P
N|0O=N N|M=M|N N|( |O)E(
P=Q = [P

Q)| R
M)| O

|
] =@Q]



Definition 1.3 (Reduction) Reduction, noted N — M, is the relation between processes induc-
tively defined as follows

[@.P|a.Q|R] — [P| Q]| R] (RedComm) [7.P|Q]— [P | Q] (Red Tau)
[go.P | Q] | [R] — [Q] | [P | R] (Red Go) [P] | N — 0 (Red Fail)
N — N’ N=N -M=M
NM = N | M (Red Cong) (Red Struct)

N —-M

The rule (Red Comm) specifies interaction between two processes through co-action synchroniza-
tion locally inside a site, while rule (Red Tau) specifies internal action of a process. Rule (Red
Go) specifies that a process prefixed by go may migrate to another site. Rule (Red Fail) expresses
that any non-empty network may fail, thus modeling fail-stop failure of an arbitrary subsystem.
We believe that this operational semantics abstracts in a sensible way the essential features of
any realistic distributed computing system: local synchronous communication and computation,
asynchronous remote communication, and partial failures.

Our aim now is to define a natural notion of observational equivalence on networks. To
that end, we adopt the canonical notion of barbed equivalence, according to which two systems
are observationally equivalent if no context can distinguish between them by detecting barbs.
Although we could have postulated a more refined notion of barb observation, we prefer to strictly
follow the standard definition [16], even if it assumes in a sense the existence of a global observer,
which is possibly debatable in the context of distributed systems. In our case, we restrict to one-
hole spatial contexts, as has been usually adopted in the case of many distributed process calculi,
e.g., 1, 11].

Definition 1.4 (Contexts) Contexts are defined as follows: C [e] ::= N | o.

Definition 1.5 (Barb) A network N exhibits barb a, noted N |, if there are P, Q, M such that
N=la.P|Q]| M.

Presence of a barb reflects the fact that any external observer can get to know that an input is
ready via some channel name, at some accessible site. Given barbs and contexts, the following
gives our reference observational equivalence relation.

Definition 1.6 (Strong reduction barbed congruence) Strong reduction barbed congruence, noted
~, is the largest symmetric relation R such that for all (N, M) € R we have

For all barbs a, if N |, then M |, (Barb closed)
If N — N’ then there is M' s.t. M — M’ and (N',M') € R (Reduction closed)
For all contexts C'[o], (C [N],C [M]) € R (Context closed)

We now establish some standard properties of strong reduction barbed congruence. Notice that
we just consider in this paper congruences under spatial (static) contexts (Definition 1.4). As
explained above, this does not carry a lack of generality, given the main motivations of our devel-
opment.

Proposition 1.7 =~ is a congruence. Moreover, = C .

Proof. The proof follows standard lines. To prove that = is strictly included in ~ we may show
that [a.nil | a.nil] >~ [a.a.nil] but [a.nil | a.nil] # [a.a.nil]. "

We use fin( P) to denote the set of free names of a process P, defined as usual, and the same for
a network V. To bring the presentation more readable, we introduce the following abbreviations
for certain collections of processes and sites.

[Le/Zi 2P| ... | Pwhere I ={1,...,1}
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j k
[Ties [Hieljpij} = [Hie[lpil] | [Hie[kpi } where J = {1,...,k}
NB.: If I = 0 then |[[,e;, PY| = [nil] and if J = 0 then [T | [Tie,, P/| = 0.
It follows from Proposition 1.7 that strong reduction barbed congruent networks compose to
yield strong reduction barbed congruent networks. In particular, we have:

Lemma 1.8 Let P’ and Q’ (i € J) be ‘collections of processes. If for all © € J we have [PZ] ~
[QZ], then also HjeJ [PJ] ~ HjEJ[QJ}.

Although observational equivalence (Definition 1.6) is defined in the standard way, with reference
to the global observation of barbs in networks, observations already leak some relevant informa-
tion about the distributed structure of systems, as an effect, in our case, of the combination of
migration capabilities with the failure model. Our next lemma states that strong reduction barbed
congruent networks always result from an underlying one-one and onto correspondence of strong
reduction barbed congruent sites. In particular, we conclude that strong reduction barbed congru-
ent networks always have the same number of sites.

Lemma 1.9 Let M, N be networks such that N = || ieJ [P7], where P7 (j € J) is a collection
of processes, and N ~ M. Then there is a collection of processes Q7 (j € J) such that M =
HjEJ[QJ] and for all j € J we have [P7] ~ [Q7].

Proof. (Sketch, full proof in appendix) We consider a context of the form

Cle] £ [t.nil | [Lcso.(finil | [T iy fo-Sailnil)| | o

using names such that ({¢, fail} U{fi|i € J})Nfm(N | M) =0 and ({t, fail} U{fi|i € J})
are pairwise distinct. Context C [e] holds processes that may migrate and mark every site of N
with an input on the unique name f;. We make sure that every input is marking a different site by
equipping the migrating process with outputs on every other f;, and a continuation with an input
on fail to flag a possible synchronization. Since M behaves the same as N under C' [e], we are
sure there are at least #.J sites in M, and using the symmetric reasoning we obtain that M/ must
have #.J sites. Given this, we exploit failures in IV that leave only a single site active, being that
this behavior must be mimicked by failures in M that also leave just one site up. These singled
out sites are reduction barbed congruent, hence hold the same f; input, thus ensuring an unique
correspondence. We then consider another context that may garbage collect the marker and all the
other elements we introduced, which then allows us to conclude the sites were originally strong
reduction barbed congruent. ]

2 Strong Bisimilarity

Since strong reduction barbed congruence relies on universal quantification over all contexts, we
now propose a more manageable characterization of observational equivalence. More concretely,
we introduce a labeled transition system with the aim of capturing the contextual behavior of
the networks, by means of observing process commitments, in turn expressed by transition la-
bels. Building on such labeled transition system, a coinductive definition of bisimilarity is then
presented.

Definition 2.1 (Transition labels) The set L of transition labels, ranged over by A, is given by
LE2{a|aec A U{ld]]|a€ A}



Transition labels reflect internal computation (7), and output and input communication (a and
a). Notice that although communication is always local to a site, we must take into account that
processes may migrate to another site and then communicate locally. Thus we also consider [a]
transitions, that will be used to observe migration of processes to the external environment. This
turns out to be essential for covering the case of networks with a single site, since the enlargement
of the system with a new site gives processes intending to migrate a possible destination. Given
these ingredients, we define our labeled transition system as follows.

Definition 2.2 (Commitment) Commitment, noted N 2, M, is the relation on processes and
labels inductively defined as follows

[@.P|a.Q|R] — [P|Q]|R] (Comm)  [r.P|Q] = [P |Q] (Tau)

[@.P| Q] = [P | Q] (Out) [a.P| Q] = [P Q] (In)
[g0.P | Q] | [R] — [Q] | [P | R] (Go)
[P]| N - 0 (Fail) N 2 N | [anil] (Grow)
N 2 N N=N 2 M=M
(Cong) (Struct)

N| M2 N | M N M
As a sanity check, we ensure that 7 commitments match reductions and inversely.
Lemma 2.3 We have N — M if and only if N — M.

Notice that although e.g., the systems [nil] | [nil] and [7.nil] have exactly the same commit-
ment graph, they are not observationally equivalent in the light of Lemma 1.9. Thus, in order
to properly capture strong reduction barbed congruence, we include in the definition of strong
bisimulation two spatial clauses (referred to as “intensional clauses” in [18]). We then have

Definition 2.4 (Strong Bisimulation) A binary relation B C N x N is a strong bisimulation if
and only if it is symmetric and whenever (N, M) € B then

N=N'|N' = aM' M" . M=M|M"AN(N',M)e BAN(N'",M")e B
N=0 = M=0
NN = 3M .M -2 M A(N', M) e B
Notice that the second clause in Definition 2.4 is subsumed by the third one since (due to the (Fail)
transition) only void systems have no possible internal actions, however we prefer to include it in
the definition for the sake of uniformity with the corresponding weak version, and thus avoid some
extra incidentality. Notice also that the first clause properly distinguishes [7.nil] and [nil] | [nil],

because there is no way to split [7.nil] (up to =) in two components with some transition each.
We collect some basic results about strong bisimulation.

Proposition 2.5 Strong bisimulations are equivalence relations.
Proposition 2.6 Let S be a set of strong bisimulations. Then | S is a strong bisimulation.

We thus define

Definition 2.7 (Strong bisimilarity) Strong bisimilarity, noted ~, is the greatest strong bisimu-
lation.

Proposition 2.8 We have = C ~.

Proof. That = is contained in ~ follows by a standard coinductive argument. To see that the inclu-
sion is strict, notice that although [a.nil | a.nil] ~ [a.a.nil] it is not the case that [a.nil | a.nil] =
[a.a.nil]. L]



2.1 Full Abstraction

This section is devoted to proving that strong bisimilarity, as defined in Definition 2.7, character-
izes strong reduction barbed congruence in a fully abstract way. The proof builds on a series of
intermediate technical results.

Lemma 2.9 Let M be a network and P (j € J) a collection of processes where || jeJ [PI] ~
M. Then there is a collection of processes Q7(j € J) such that M = [] ieJ [Qj ] and for all

jed [P ~ Q7.
Proof. By induction on the size of .J, using the first two clauses in the definition of the strong
bisimulation. ]

The proof of the main result of this section (Theorem 2.14) is not technically involved, but
critically depends on next Lemma 2.10, that expresses a key compositionality principle of our cal-
culus. Notice that the basic building block of systems referred to in the statement of Lemma 2.10
is the process: since we have to take migration into account, it is essential to assure composition-
ality at the process level.

Lemma 2.10 Let J be a finite set and 1}, for all j € J, be a finite set. Let Pij and Qi be processes
such that for all j € J and i € I; we have [P]} ~ {Qﬂ Then

)

Hje.] [Hieljf)ij} ~ HjeJ [HiteQﬂ
Proof. (Sketch, full proof in appendix) By coinduction on the definition of strong bisimulation.
We sketch the proof for the interesting case of migration.

When considering that a migration may take place, originating in some Plk, we can induce a
grow transition [a] using fresh name a, being fresh in the sense that it does not occur in neither
one of the P/s and Q7s, after which we know that the migration may target the newly created
site. To mimic this behavior there must be two steps made by Qf, which we know to be bisimilar
to P}, being the first one the [a] transition that creates the site, and the second a 7 action after
which the sites that contain a must be bisimilar. This is so, because we can decompose and induce
a transition on a, and also obtain that the site’s contents is whatever process migrated from P/,
whose behavior must match the remaining content of the corresponding site. Notice that we can
not be sure that a migration on one side is always matched by a migration on the other, because
the migrating process can e.g., be inaction. In that case, a migration may be matched by an
internal computation step. To finish up, we can chose the destination of the migration to be any
m € J\{k} and be sure to obtain a collection of sites that respect the statement of the Lemma. m

Given the previous results we can now prove strong bisimilarity is a congruence.
Lemma 2.11 Strong bisimilarity is a congruence.

Proof. We use Lemma 2.9 to break two strongly bisimilar networks N and M down to bisimilar
sites. We then consider Lemma 2.10 that gives us that the composition of the bisimilar sites of
N and M with the structurally congruent sites, hence bisimilar sites, of the context results in
bisimilar networks, hence C' [N] and C' [M] are strongly bisimilar. L]

Using these results we prove the two parts of our full abstraction theorem.

Lemma 2.12 We have ~ C ~.

Proof. By coinduction on the definition of strong reduction barbed congruence. To prove that
~ is barb closed we exploit the input transitions, to prove reduction closure we exploit 7 tran-
sitions which coincide with reductions (Lemma 2.3), and to prove context closure we consider
Lemma 2.11. ]



Lemma 2.13 We have ~ C ~.

Proof. By coinduction on the definition of strong bisimulation. The separation clause follows
from Lemma 1.9 and Lemma 1.8 that allow us to decompose strong reduction barbed congruent
networks down to strong reduction barbed congruent sites and then compose them up to the
separation we require and obtain strong reduction barbed congruent networks. The emptiness
clause results immediately from Lemma 1.9. For the transition clause we consider the various
labels: either it is a 7 transition, and in that case we consider that 7 transitions match reductions
(Lemma 2.3), or it is either an input or output, in which case we devise a specially crafted context
that serves as a witness of the existence of that action, and finally the grow transition which is
immediate since we have context closure. ]

By Lemma 2.12 and Lemma 2.13,we can state our first main result
Theorem 2.14 (Full abstraction) We have ~ = ~.

In the next section, we build on the characterization of reduction barbed congruence in terms
of strong bisimulation stated in Theorem 2.14 to define a logical characterization of behavioral
equivalence.

2.2 Logical Characterization of Strong Bisimilarity
In this section, we characterize strong bisimilarity (and thus strong reduction barbed congruence)
in logical terms, using a simple spatial logic.
Definition 2.15 (Spatial logic L) Formulas are defined by the following syntax:
(Formulas) A, B,C ::= T ‘ A ‘ AAB ) 0 ‘ A|B ‘ (N A

Our logic, besides the usual action modality from HML, includes the composition and void op-
erators of spatial logics, interpreted in the standard way. For example, we may express property
“network has exactly one site” by the formula =0 A —=(—=0 | —0). The semantics of the logic is
given by the denotation of the formulas, i.e., a formula denotes the set of networks that satisfy it.

Definition 2.16 (Semantics of L;) A formula’s denotation is inductively given by
[T] 2N [2A] £ M\[A] [AAB] = [A]N[B] [0] ={N|N =0}
[A|B]£{N|3aN,N".N=N'|N'"AN'€[A]AN" € [B]}
[(NA] 2 {N|3N'. N 25 N' AN € [A]}
We write N = A to mean N € [A]. We say that networks M and N are logically equivalent
w.rt. Lg, written M =, N, if and only if they satisfy exactly the same formulas of £;, namely if
and only if, for any formula A of L, we have that M = A <= N = A. As with other spatial

logics, it is an immediate consequence of the definition that satisfaction is closed under structural
congruence.

Lemma 2.17 We have = C =_.

Proof. Standard, by induction on the structure of the formulas. ]

We now prove the implications that guarantee that =, _ characterizes ~.

Lemma 2.18 We have ~ C =,_.



Proof. Follows from a standard induction on the structure of the formulas. ]

Lemma 2.19 We have =, C ~.

Proof. (Sketch, full proof in appendix) By coinduction on the definition of strong bisimulation,
using the witness R = {(N, M) | N =, M}. Proof of the emptiness clause is immediate. For
both the separation and transition clauses we build on the fact that the image set of the transition
for the latter and of all possible decompositions for the former is finite (up to structural con-
gruence). We discuss here the more interesting case of decomposition. Given a decomposition
Ny, Ny of the network N(= N; | N2) we proceed, aiming at a contradiction, by assuming that
a logically equivalent network M has no decomposition M7, M> logically equivalent to Ny, No
(respectively). Hence, there is a formula that distinguishes N, N2 from all elements in the set of
decompositions of M. This means that for all decompositions M;, My of M there is either a for-
mula A’ for which V7 is a model and M is not, or a formula A” for which Ny is a model and My
is not. We collect this (finite) set of formulas and notice that IV satisfies (/A A’) | (A A”). Hence,
M must also satisfy it and thus there is a decomposition that satisfies all formulas which leads
to our intended contradiction. Thus, there exists a decomposition of M into logically equivalent
(hence bisimilar, by coinduction) networks. ]

By Lemma 2.18 and Lemma 2.19, we conclude

Theorem 2.20 (Logical Characterization of ~) We have ~ = = _.
Corollary 2.21 (Logical Characterization of ~) We have ~ = =,_.

We have concluded that the separation power of our spatial logic coincides with behavioral equiv-
alence, even if it includes the basic structural connectives of composition and void, allowing it to
e.g., express arithmetical constraints on the number of sites in a system. We may however ask
whether these structural operations are essential to characterize behavioral equivalence, in other
words, whether the logic is minimal in some sense. We will give a positive answer to this question
in the next section, in the more interesting case of weak behavioral equivalences.

3 Weak Bisimilarity

In this section we refine our previous results by considering a coarser observational equivalence,
disregarding internal action, adopting weak reduction barbed congruence as the reference obser-
vational equivalence. We denote by = the reflexive-transitive closure of reduction ( — ) and
define:

Definition 3.1 (Weak barb) A nerwork N weakly exhibits a barb a, noted N |, if there is N’
such that N = N' and N'|,.

Definition 3.2 (Weak reduction barbed congruence) Weak reduction barbed congruence, noted
2, is the largest symmetric relation R such that for all (N, M) € R we have

For all barbs a, if N |, then M |, (Barb closed)
If N — N’ then there is M' s.t. M = M’ and (N',M') € R (Reduction closed)
For all contexts C'[o], (C'[N],C [M]) € R (Context closed)

We establish a basic property of weak reduction barbed congruence, and relate it to the strong
reduction barbed congruence.



Proposition 3.3 = is a congruence.

Proof. The proof follows standard lines. ]

Lemma 3.4 We have ~ C =.

Proof. Proof of inclusion follows by a standard coinductive argument. To prove =~ is strictly
included in & we may show that [go.nil] = [nil] but [go.nil] % [nil]. ]

From Proposition 3.3 we obtain that reduction barbed congruence is closed under composi-
tion, which in particular for site composition gives us:

Lemma 3.5 Let P and Ql (i € J) be ‘collections of processes. If for all © € J we have [PZ] =
[QZ], then also HjeJ [PJ} ~ HjEJ[QJ}.

As for the strong case, weak reduction barbed congruence is already able to distinguish sys-
tems based on aspects of their structure, for instance, weak reduction barbed congruent networks
always have the same number of sites. Also, as stated in Lemma 3.6, weak reduction barbed
congruent networks weakly reduce to a one-one and onto correspondence of weakly reduction
barbed congruent sites.

Lemma 3.6 Let M be a network and P? (j € J) a collection of processes such that [ | jed [Pj ] ~

M. Then there is a collection of processes Q7 (j € J) such that M = HjeJ [QJ] and for all

j € J we have [Pj] ~ [Qj].

Proof. (Sketch, full proof in appendix) The general idea is similar to that in the proof of Lemma 1.9.
However, since now we may only weakly observe a barb, a different trick must be used to make

sure that the migration of all the mark-placing processes has already occurred. We thus exploit the

failure behavior of the context at a chosen point, avoiding in this way any chance for the migratory
processes to postpone their choice of target, thus ensuring an unique correspondence. |

3.1 Weak Bisimilarity

As for the strong case, we now propose a coinductive characterization of weak reduction barbed
congruence. We start by defining

Definition 3.7 (Weak commitment) Weak commitment, noted N 2 N , is the relation on pro-
T

cesses and labels defined as N ——" M’ Ny (N N' for A\ # 7 or N = N'ifx=r.

Given this we define weak bisimulations adapting the labeled transition and separation clauses to
the weak case.

Definition 3.8 (Weak Bisimulation) A binary relation B C N x N is a weak bisimulation if
and only if it is symmetric and whenever (N, M) € B then

N=N|N' = 3IM ,M".M= M'|M'A(N',M')e BA(N",M") € B
N=0 = M=0
NN = 3M . M= M'A(N',M')eB

We have the usual properties one would expect of weak bisimulations.

Proposition 3.9 Weak bisimulations are equivalence relations.
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Proposition 3.10 Let S be a set of weak bisimulations. Then | ) S is a weak bisimulation.

We can now define weak bisimilarity.

Definition 3.11 (Weak bisimilarity) Weak bisimilarity, noted =, is the greatest weak bisimula-
tion.

Next Lemma 3.12 clarifies the relation between strong and weak bisimilarity.
Lemma 3.12 We have ~ C ~.

Proof. The proof of inclusion follows by a standard coinductive argument. To prove strict inclu-
sion we may show that [go.nil] ~ [nil] but [go.nil] /¢ [nil]. L]

3.2 Full Abstraction

In this section, we prove that weak bisimilarity characterizes weak reduction barbed congruence
in a fully abstract way, proof of which builds on the following results.

Lemma 3.13 Let M be a network and P7 (j € J) a collection of processes such that [Les [PI] ~
M. Then there is a collection of processes Q7 (j € J) such that M = [] jeJ [Qj ] and for all

jed [P~ Q]
Proof. By induction on the size of .J, using the separation and emptiness clauses. |

Lemma 3.14 is the cornerstone for proving full abstraction (Theorem 3.18). As for the strong
case we must ensure compositionality at the process level due to process mobile capability, as
their migration to sites results in the inner site composition of processes.

Lemma 3.14 Let J be a finite set and 1;, for all j € J, be a finite set. Let Pl-j and Qg be two
collections of processes such that for all j € J and i € I; we have [P.j ] R [Qf } Then also

()

[Les [Hie[j Pij} ~ [Lies [Hiefj Qﬂ

Proof. By coinduction on the definition of strong bisimulation. The proof follows the lines given
for Lemma 2.10, with several adaptations needed for the weak case. Interesting to notice, in the
strong case a migration of the inaction process could be mimicked by an internal computation,
whilst here it can be mimicked by the empty sequence of internal actions (we no longer distinguish
[go.nil] from [nil]). L]

Given these results we can now prove that weak bisimilarity is a congruence.
Lemma 3.15 Weak bisimilarity is a congruence.

Proof. By Lemma 3.13 and Lemma 3.14, along the lines of Lemma 2.11. ]

Using these results we prove the implications that provide with full abstraction.
Lemma 3.16 We have that ~ C =.

Proof. Analogous to Lemma 2.12. ]

Lemma 3.17 We have that = C =~.

Proof. Analogous to Lemma 2.13. |

By Lemma 3.16 and Lemma 3.17 we can now state

2

Theorem 3.18 (Full abstraction) We have that ~ =
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3.3 Logical Characterization of Weak Bisimilarity

As for the strong case, we may characterize weak bisimilarity (and thus weak reduction barbed
congruence) using a simple spatial logic, building on full abstraction of weak bisimilarity.

Definition 3.19 (Spatial Logic £,,) Formulas are defined by the following syntax:
(Formulas) A, B,C =T ’ -A ‘ ANDB ‘ 0 ‘ Al B ‘ (M)A

We adapt both the composition operator and the action modality to the weak case, while we leave
the void operator with it’s usual interpretation (notice that N = 0 is a trivial condition, due to the
failure behavior).

Definition 3.20 (Semantics of £,,) A formula’s denotation is inductively given by

[T] 2N [2A] £ M\[A] [AAB] £ [A]N[B] [0] ={N|N =0}
[A1 Bl £ {N|3N',N".N= N'| N" AN € [A]AN" € [B]}
[AVA] 2 {N |3N'. N = N’ AN’ € [A]}

We have that satisfaction is closed under structural congruence.
Lemma 3.21 We have = C = .

Proof. By induction on the structure of the formulas. ]

We now prove both inclusions for our main full abstraction result.
Lemma 3.22 We have ~ C =, .

Proof. Follows from a standard induction on the structure of the formulas. ]

Lemma 3.23 We have =, C ~.

Proof. Analogous to Lemma 2.19. n

By Lemma 3.22 and Lemma 3.23, we conclude

Theorem 3.24 (Logical Characterization of ~) We have ~ = = .
Corollary 3.25 (Logical Characterization of =) We have = = = .

By Corollary 3.25 the separation power of £,, precisely coincides with weak reduction barbed
congruence, even if it includes the spatial operators composition and void. At this point, we may
ask, as at the end of Section 2.2, whether the spatial operators are essential to the characterization.
We may verify that T can be expressed as (7))0, and ((7))A as A 1| 0. Thus let £7" be the
(T, (7)) A)-free fragment of L,,. We may show that L7" is as expressive as L, and moreover
that all of its connectives are essential for its expressiveness.

Theorem 3.26 (Minimality) The logic L™ is minimal. Moreover, the operators composition
and void are essential to characterize weak barbed congruence.

Proof. (Sketch, full proof in appendix) We show that any logic obtained from £7" by removing
each connective is strictly less expressive.
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e (—A) We show that in the —-free fragment, for any N such that N # 0 we have N = A if
and only if N | [nil] = A. Hence we are not able to express property 1 = {N | 3P . N =
[P]}, nor distinguish [nil] | [nil] from [nil].

e (AN DB) We show that in the A-free fragment, if N | [nil] |= A then either N | [nil] | [nil] |=
Aor N = A. Hence we cannot express property 1.

e (0) We show that in the O-free fragment we have that 0 = A if and only if [nil] = A.
Hence we can no longer express property {N | N = 0}, nor tell 0 and [nil] apart (while

0 % [nil)).

e (A 1| B) We show that in the 1| -free fragment we have that [nil] = A if and only if
[nil] | [nil] = A. Hence we can neither express property 2 = {N | 3P,Q . N = [P] | [Q]}
nor separate [nil] | [nil] from [nil] (while [nil] | [nil] % [nil)).

o ({(a)A, a = a,a) The ((a))-free fragment does not separate [cv.nil] and [nil].

o ({([a])A) The (([a])-free fragment does not separate [go.b.nil] and [nil].

4 Concluding Remarks

We have studied observational equivalences in a distributed computation model, having obtained
spatial logic characterizations of observational congruence in both the strong and weak cases.
Taking as reference semantics for observational congruence the standard reduction barbed con-
gruence, we have derived equivalent characterizations of observational congruences in terms of
co-inductively defined bisimilarities. The logics considered are natural extensions of HML with
spatial operators, interpreted in the standard way. We have thus shown, in a precise sense, that
spatial logics, in particular the structural operators they offer, are not necessarily intensional, and
may offer adequate expressive power for logically characterizing distributed behavior. We have
also concluded, in the case of the specific process model here considered, that the composition
operator A | B is essential to capture (extensional) observational equivalence. Intuitively, such
structural observations do not violate extensionality because distributed process behavior already
has a related observational power, due to migration behavior and failures.

Observational equivalences of distributed systems have been studied extensively in the con-
text of CCS-like models; a comprehensive survey may be found in [9]. However, it seems that
logical characterizations have not been much discussed, and the distributed process equivalences
proposed were technically defined by means of location or history-sensitive transition systems,
where the use of location names plays a key role, both in the dynamic and static cases. Here, we
build on a more abstract notion of spatial observation, avoiding the use of location names, and
consider a calculus with anonymous sites and migration primitives, in the spirit of more recent
proposals of calculi for distribution and mobility [7, 17].

Our adoption of the simplest fail-stop failure model was motivated by the belief that it already
captures the key consequences of failure, cf., the folklore slogan that in a distributed system one
cannot distinguish a failed system from a system that will respond (much) later. The fail-stop
model has been frequently adopted in formalizations of failure since [1], even if recent related
works prefer to trigger failure by means of an explicit “kill” primitive [11]. Failures play an
essential role in our results. However, it is conceivable that other notions of failure, and a differ-
ent set of spatial behaviors and spatial observations, may lead to results comparable to the ones
reported in this paper.
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It is interesting to compare our results with those of [13], where an extensional spatial logic
(for the m-calculus) is considered. In that work, extensionality is obtained by removing the com-
position and void operators, while retaining the guarantee, whereas here we obtain extensionality
by retaining the composition and void operators, while doing without the guarantee. We believe
that the guarantee could be added to our developments, without breaking the results. Then, it
would be instructive to see how to capture indirectly the action modalities, as in [14]. It would be
certainly important to assess how to extend the general approach presented here to richer models,
with name restriction, name passing, and full computational power.
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A Proofs of section 1 and section 2

A.1 Proofs of strong reduction barbed congruence properties
Proof of Lemma 1.8

Let P’ and Q° (i € J) be collections of processes. We prove that if for all i € .J we have

[Pi] ~ [Qi], then also HjeJ[Pj} ~ HjGJ[Qj].

Proof. By induction on #.. Trivial for cases #J = 0 and #J = 1. For #J = k + 1 by in-
duction hypothesis on J\{1} we obtain that [ ], /13 [PI] ~T] jeN {1} [@7]. Since ~~ is context

closed from [P'] ~ [Q'] we get that [P'] | HjeJ\{l}[Pj] ~ [Q'] | HjeJ\{l}[Pj] and from
[Lieogy [P7] = [jen 1y [Q7] weconclude that [Q'] | TTic p 1y [P7] = [Q'] | TLjen 1y [@7]

and hence, noting that we have [P'] | TT;c j\ 1y [P7] = [Q'] | TTieny [P7] = (@] | TLjeo 1y [@7],
we obtain [P'] | HjeJ\{l}[Pj] ~ [Q'] | HjEJ\{l} [Q7]. =

Proof of Lemma 1.9

Let M, N be networks such that N = [T, ;[P7], where P7 (j € J) is a collection of processes,
and N ~ M. We prove that there is a collection of processes Q7 (j € J) such that M =
HjeJ[Qj] and for all j € J we have [P7] ~ [Q7].
Proof. Let us consider context

Cle] 2 [t.nﬂ | Tle 0. (fimil | T iy fe- fau.nﬂ)} e
with ({¢, fail} U{fi|i € J})Nfm(N | M) = 0and ({t, fail} U{f; | i € J}) pairwise distinct.
We can derive that B

C [Myes [P7]] =#741 Ty [P7 1 £y mi | Tl gy i fail.nil
where fail will never be observed as a barb and  is no longer exhibited. Since [, ; [PI] ~ M
we have that C [M] —#7+1 M’ and

e [PJ‘ | f;.nil | erj\{j}fk.fail.nil} ~ M
and hence for all ¢ € J it is the case that M| s, and also fail will never be exhibited and ¢ is no
longer observed. This can only be so, attending to the fact that we have exactly #.J + 1 reductions

and since we know that they are due to the migration of the processes containing the f;s and to
the failure of the site containing ¢, if there is M and {@’ | j € J} such that

M =L, [QJ | il | T ) o faz'l.nil} | M
Since ~~ is symmetric we have that M = 0 since otherwise following the same reasoning we
would get a contradiction to our initial condition that in [ | jed [PJ] there are #.J sites. We can at

this point conclude that M =[], [Q7].
We know that for all m € J we can derive

e [Pj | il | [Tge e fail.nil} 5 [Pm | il | TTpe s ) fi-Failonil
and since [ [, ; [Pj | f;mil | HkEJ\{j}fk.fail.nil} ~ M’ we get that there exists M,, such that

M' — M,, and [Pm | frn-nil | erj\{m}fk.fail.nil} ~ M,,, which, since ~ identifies systems
with the same number of sites as we proved before and recalling that it is barb closed, gives us
that M,, = [Qm | il | T oy Fi fail.nil].

We now consider context

Cle] 2 [r.nil | £0.(frunil | [Tpe o) Ji- faiz.nﬂ)} B
with r & {t, fail} U{f; | i € J}Ufn(N | M). We can derive that

C Hpm | frm-nil | erJ\{m}fk'fail'nilH —2x#J [P | [r.ail] — [P™)]
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which gives us that

C @ | funbil | Tlie oy fi- failomil]| | —@#41 [
and [P™] ~ [@Q™] thus completing the proof. (]

A.2 Proofs of strong bisimilarity properties
Proof of Lemma 2.9

Let M be a network and P7(j € .J) a collection of processes such that [ jeJ [PI] ~ M. We
prove there is a collection of processes Q7 (j € .J) such that M = [] jeJ [Qj ] and for all j € J,
[P7] ~ [Q7].

Proof. By induction on #.J. Trivial for case #.J = 0. For #J = 1 aiming at a contradiction let
us assume that there is no ) such that M = [Q] which can only be so if either M = 0 or there
exist @1, Q2, M’ such that M = [Q1] | [Q2]| M'. Let us first consider M = 0 from which, since
M ~ [P'], we obtain that [P'] = 0, which gives us our intended contradiction. Let us now
consider that there exist Q1, Q2, M’ such that M = [Q1] | [Q2]| M’ which since M ~ [P']
gives us that there exist Ny, Nz such that [P'] = Ny | Ny and [@1] ~ Ny and [Q2] | M’ ~ Na.
Since [Pl] = Nj | Ny we have that either N; = 0 or N = 0 which leads to a contradiction
since N7 ~ [Q1] and Ny ~ [Q2] | M’ gives us that [Q1] = 0 or [Q2] | M’ = 0. Thus there is Q
such that M = [Q)].

For #J = k + 1 from HjeJ[Pj] = [P'] | [Tjen [P7] and HjeJ[Pj} ~ M we get that
there exist My, My such that M = M, | M, and [Pl] ~ My and Hjej\{l} [Pj] ~ M>. From
[Pl] ~ M7 we have that there exists Q' such that M7 = [Ql] and by induction hypothesis on
[jenm [P7] ~ Mj we have that there exists {QY \ J € J\{1}} such that My = [[;c 1y [Q7]
and for all j € J\{1} itis the case that [P?] ~ [Q?] which completes the proof. ]

Proof of Lemma 2.10

Let J be a finite set and I}, for all j € J, be a finite set. Let Pz»j and Qg be processes such that for
all j € Jandi € I; we have {Pf} ~ [Q‘Z] We prove that [ [ ; [HitePﬂ ~ HjeJ{HiteQg]'

Proof. We abbreviate [ [ ; [Hle I Pij } and [, [Hze I Q{ ] with N7/ and M, respectively, and
proceed by coinduction on the definition of strong bisimulation.

Let us consider that there exist N, N” such that N/ = N’ | N”. We know that there exists
J C J such that N/ = N’ and N/\/ = N”. We also know that M’ = M7 | M7\/. Since

J C J we have that forall j € Jandi € I j it is the case that [sz } ~ [Qf } which gives us that
(N7, M7) € B and also since forall j € J\.J and i € I; it is the case that [Pf] ~ [Qﬂ from

which we get that (NJ\j, MJ\j) € B, thus proving the first clause.
Now consider that N’ = 0 which gives us that #.J = 0 and hence we directly have that
M’ = 0, thus proving the second clause.

Let us now consider that there exists A\, N’ such that N/ 2, N'. We know that this transition
can either be triggered by an unique site or else be a migration of a process from one site to another
or else be due to a grow transition or finally be due to a failure.

(Transition triggered by a single site)

If a site triggers the transition, this can be due either to a firing of an action that can either be an
input or an output or an internal action, due to either a synchronization between processes internal
to one of the P/s or to a T prefix, or else to a synchronization between two distinct P/s. Hence
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we can write that there exist j € J and n,m € I; and 15;2 , ]575,; such that either [P,];] A, [15,2] ,
with A = a, or {P3|P5} N {]55|]53]

(case of N7 25 N/\i} | [H el \{n}P |P7JL] =)

We know that [P] ] = [P] } which since [P] ] ~ [Q] } gives us that there exists M’ such
that [Qﬂ — M’ and [P] } ~ M’ which, considering Lemma 2.9, leads to there exists Qn such
that M’ = {QJ}

Hence we can derive M7 — M7/\U} | [H el {n}Q | Qn:| which along with

(N [Hie[;\{n}Pi] | P%}MJ\{]} | {Hie[;\{n}Qg | Q%})

since {Pﬂb} ~ [Q%] , completes the proof for this case.

(case OfNJ — NJ\{E} | [Hzelg\{n,m}‘Pz] | P7JL | Pﬂ%})

Since a synchronization can take place we know that there exists a such that either P =)

a.Ry | Ry and Pﬂl =, a.R3 | Ry or with the qction and coaction placgd the other way
around, being the proofs analogous. Considering P, =, a.R1 | Re and P, =, a.Rs | R4

we have that [Pﬂ %, [Ry | Ro] and [PZ;} %, [Ry | Rd] being that [R | Ro] [Pﬂ}

and [R3 | R4] = [Pﬂ Since [Pﬂb} ~ [Qﬂ we obtain that [Q%] 2, M’ and { }

M’ which, considering Lemma 2.9, leads to there exists Q{; such that M’ = [Qﬂ Also

since [Pg@} ~ [Q?ﬂ} we get that [Q;n] = M" and []5,%} ~ M" from which, considering
Lemma 2.9, we obtain that there exists Qj such that M" = [Qﬂ . Hence we can derive that
M7 M [Ty, \{nm}Q | Q% | @), which along with
(NN et guamy P 1P P MG | i gy @ | G | Qha]) € B
since [Pﬂ} ~ [Q%} and [P,ﬂ ~ [Qﬁn], completes the proof for this case.
(Transition triggered by a migration)

We now consider that a migration takes place, for which we know that there are at least two
sites involved, the origin and destination of the migrating process, hence we have that #.J > 2.

We also know that there exist 7,7 such that PiJ =, g0.Ry | R; from which we can obtain,

considering a ¢fn([ } | [Q]}), that [Pg] 1, [Pf] | [@nil] = [Ry] | [anil | Ry].

Since [P{ } ~ {Qg} we get that there exists M’ such that {Qﬂ R {Qﬂ | [amil] — M’
and [R;] | [amil | Re] ~ M/, from which we can derive that there exist M, M such that
M' = M/ | M} and [Ry] ~ M} and [a.nil | Rs] ~ M which, noting that a ¢ ﬁq([Qﬂ) and
considering Lemma 2.9, leads to there exist R3, R4 such that M| = [Rs] and M} = [a.nil | Ry).
From [a.nil | Ry] ~ [a.nil | Ry and [a.nil | Ry] — [Ry] we get that [a.nil | Ry] — [R4] and
[Ra] ~ [Rd]. )

So we have that there exists [ € J such that B

NJ T NG {H‘e[ i B | Rl} | [HieI[Pj | Rg}.

Also from [QJ } 1, [QJ } | [a.nil] — [R3] | [a.nil | R4] we can derive that
M7 o MANGD | | Tiep Q| Ba | |TLicy @) | Ral.
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which along with )
( NG | Hiefj\{Z}Pi] | Ry | Hz‘ell—Pil | Rz,

MG | Tlier @ | Rs| | |[TLier, @) | Ra|) € B
since [R1] ~ [Rs3] and [R2] ~ [R4], completes the proof for this case.

(Transition triggered by a grow transition)

We have that N/ 1 N7 | [a.nil] and we can directly derive that M SGRSYE, | [a.nil]

which along with (N | [a.nil], M7 | [a.nil]) € B, since [a.nil] ~ [a.nil], completes the proof
for this case.

(Transition triggered by a failure) )

We have that there exists J CJ such that N J T, N7\ We can directly derive that
M7 s M7\ which along with (N7\/, M7\’) € B completes the proof for this case and also
for this clause. ]

Proof of Lemma 2.11

We prove strong bisimilarity is a congruence.

Proof. We know that there exist .J and {P7 | j € J} such thgt N =1les [P7] which considering
that N' ~ M and Lemma 2.9 gives us that there exists {Q7|j € J} such that M = [, ,[Q’]
and for all j € J we have that [P/] ~ [@Q7]. Also we know that there exists C' such that
C[N]= N | Cand C[M] = M | C which, along with the fact that there exist [ and {R’ | i €
I} such Fhat C = Hz‘el [R'], gives us that C'[N] = HjeJ[Pj] | Hz‘e[ [RY] aqd CIM] =
Ijes [Q7] | TLics[R'], which along with for all j € J it is the case that [P?] ~ [@Q7] and for all
i € I itis the case that [R'] ~ [R'] and considering Lemma 2.10 gives us that C [N] ~ C [M].
n

A.3 Proofs of full abstraction (~ = ~)
Proof of Lemma 2.12

We prove ~ C ~.
Proof. We proceed by coinduction on the definition of reduction barbed congruence. Let us
consider N, M such that N ~ M.

Consider now that there exists a such that N |,. This means that there exist P;, P>, N’ such
that N = [a.P; | P5] | N’ from which we can derive N —%» [Py | P,] | N’ and hence, since
N ~ M, we have that there exists M such that M —%+ M and [P} | P»] | N’ ~ M. This gives
us that there exist Q1, Q2, M’ such that M = [a.Q1 | Q2] | M’ hence M |,, and completes the
proof for the first clause.

Let us now consider that there exists N’ such that N — N’. We can derive that N —— N’
which, since N ~ M, gives us that there exists M’ such that M — M’ and N’ ~ M’. From
M - M’ we get that M — M’ which along with N’ ~ M’ completes the proof of the second
clause.

Lemma 2.11 directly gives us C'[N] ~ C' [M] thus proving the third clause. L]

Proof of Lemma 2.13

We prove >~ C ~.
Proof. We proceed by coinduction on the definition of strong bisimulation. Let us consider N, M
such that N ~ M.
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Consider now that there exist N', N’ such that N = N’ | N”. We know that there exist
Jand {P7 | j € J} such that N = [];.;[P?] and also that there exists J C J such that
N' = Hjej[Pj] and N = HjeJ\j[Pj}‘ From N = HjeJ[Pj} and N ~ M, considering
Lemma 1.9, we have that there exists {7 | j € J} such that M = [[,.;[Q’] and for all
j € Jitis the case that [P7] ~ [Q7]. We can now write that M = [],.7[Q7] | Hjej\j[Qj]‘
From the fact that for all j € .J it is the case that [Pj] ~ [Qj] and for all j € J\J it is
the case thgt [PJ] o~ [QJ].’ considering Lemma 1.8, we obtain || je j[PJ] o~ Hje j[QJ] and
II jeI\T [PJ] ~ 1] JENT [Q] } , which completes the proof for this case.

Now consider that N = 0. Lemma 1.9 provides directly that M = 0.

Consider now that there exist A, N’ such that N A, N'. We have that )\ is either T, or else
there exists a such that A\ = a or A = a or finally that there exists a such that A = [a]. If A =7
we have that N — N’ and since N ~ M we get that there exists M’ such that M — M’, hence
M - M’, and N’ ~ M’ which completes the proof for this case.

If there exists a such that A = a we have that there exist Py, Py, N” suchthat N = [a.P; | P5] | N”
and N’ = [P, | P;] | N”. Let us consider context

C'[o] £ [t.nil | go.a.(fnil | fnil)] |e
with ¢, f € fn(N | M) and t # f. We can easily derive that

C[N] — [a.(fnil | fail) | @.P; | P] | [tnil] | N —
la.(fmil | fil) | @.Py | o] | N” — [fail | fail | Py | P] | N” — [Py | P2] | N”

which, since N ~ M, gives us that C' [M] —* M’ and [P | P;] | N” ~ M’. Since barb
f is observed only after three steps, and recalling that f ¢ fn(M ), and barb ¢ is observed only
up to one step we obtain that there exist Qq,Q2, M"” such that M = [a.Q1 | Q2] | M" and
M’ = [Q1 | Q2] | M" which gives us that M —*» M’ and since N’ ~ M’ the proof is complete,
being the proof for A = a analogous.

If A = [a] we have that there exists N’ such that N 1 N and N = N | [a.nil]. Since

we know N is not empty we also know that M is not empty and hence we have that M ﬂ

M | [a.nil] and since ~ is context closed we have N | [a.nil] ~ M | [a.nil], thus completing the
proof. ]

A.4 Proofs of logical characterization of ~
Proof of Lemma 2.18

We prove ~ C =,_.
Proof. We prove that if N ~ M then for all Aif N = Athen M = A (the symmetric is
analogous to prove) and we do so by induction on the structure of formula A.

If A=Tthen M | A.

If A = —B we have that N [~ B. Let us supose, aiming at a contradiction, that M = B
which, by induction hypothesis, gives us N |= B which is a contradiction and hence M [~ B and
M &= -B.

If A= BAC then N = Band N |= C from which, by induction hypothesis, we obtain
M = Band M = Chence M = BAC.

If A = B | C then there exist N, N” such that N = N’ | N” and N’ = Band N” = C.
From N ~ M we get that there exist M’, M" such that M = M’ | M"” and N’ ~ M’ and
N" ~ M" from which, by induction hypothesis, we obtain M’ = B and M” = C hence
MEB|C.

If A = (\)B we have that there exists N’ such that N 2, N’ and N’ = B. From N ~ M
we get that there exists M’ such that M 2, M’ and N’ ~ M’ which, by induction hypothesis,
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gives us that M’ |= B hence M = (\)B. L]

Proof of Lemma 2.19

We prove =, C ~.
Proof. We prove that R = {(N, M) | N =, M} is a strong bisimulation by coinduction on the
definition of strong bisimulation.

Let us consider that there exist N’, M’ such that N = N’ | N”. Let us consider I =
{1,2,...,k}and {M], M/ | i € I} such that for all M’, M" such that M = M’ | M" then there
exists ¢ € I such that M’ = M/ and M"” = M/'. Aiming at a contradiction, let us now assume that
for all ¢ € I it is either the case that N" #,_ M/ or N” %, M/ from which we can derive that
there exists { A;, B; | i € I} such that for all ¢ € I itis either the case that N’ |= A; and M/ [~ A,
or N" |= B; and M;" |~ B;. We can now write that N |= (A,c; 4i) | (A;e; Bi) and since
N =g, M we have that M |= (A\,c; Ai) | (A;er Bi) which gives us that there exist M’, M"
such that M = M’ | M" and M’ |= (\;c; As) and M" |= (\,;c; Bi). We also know that there
exists j € [ such that M’ = M} and M" = M}’ from which follows that M} = (/\;c; Ai) and
M} | (A\;e; Bi) which provides with the intended contradiction since M (= A; or M} (= Bj.
We can therefore conclude that there exists ¢ € I such that N' = M/ and N” =, M/, which
completes the proof.

Now let us consider that N = 0. We know that N |= 0 from which, since N =,_ M, we get
that M = 0 hence M = 0.

Let us now consider that there exist N/, A such that N — N, hence N |= (\)T which
since N =, M gives us that M = (AT and thus there exists M’ such that M 2 M. Let
us consider I £ {1,2,...,k} and {M] | i € I} such that for all M’ such that M 2, M’ then
there exists ¢ € I such that /" = M. Aiming at a contradiction, let us now assume that for all
i € I itis the case that N’ . M/ which gives us that there exists {A4; | ¢ € I} such that for all

i € I itis the case that N' = A; and M/ [~ A;. We can now write that N' = (A\)(/\;c; Ai) and
since N =, M we have M |= (A\)(/\;c; Ai) from which we obtain that there exists M’ such

that M — M’ and M’ = Aier Ai- We also know that there exists j € I such that M’ = M
which gives us M J’ = Aicr Ai which contradicts M j/ ¥~ A;, hence there exists ¢ € I such that
N’ =, M/ which completes the proof. ]

B Proofs of section 3

B.1 Proofs of weak reduction barbed congruence properties
Proof of Lemma 3.5

Let P’ and Q° (i € J) be collections of processes. We prove that if for all i € .J we have
[P'] = [Q"], then also HjeJ[Pj] ~ HjGJ[Qj].

Proof. By induction on J. Trivial for cases #J = 0 and #J = 1. By induction hypothesis on
J\{1} we obtain that J [ ;¢ y\ (13 [PI] =~ [Lienm [@7]. Since = is context closed from [P'] ~
[Q'] we have that [P] | [enm [P1] = [Q'] | [Tienm [P7] and from [Liengy [P7]
HjeJ\{l}[Qj] we conclude that [Ql] | HjeJ\{l} [PJ'} ~ [Ql] | HjeJ\{l} [Qj] and hence,
noting that we have [P'] | T;c p iy [PY] 2 [Q'] | TLieny [P'] = [Q | TLen oy @]
we obtain [P] | [Tje oy [P7] 2 [Q'] | TLje sy (@] "

1
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Proof of Lemma 3.6

Let M, N be networks such that N = ] jed [Pj ], where P7 (j € J) is a collection of processes,
and N = M. We prove that there is a collection of processes Q7 (j € .J) such that M =
HjeJ[Qj] and for all j € J we have [Pj] ~ [Qj].
Proof. Let us consider context

Clo] 2 [t.nil | TTie 0. (fimil | TTie iy fe- fail.nil)} B
with ({¢t, fail, U{fi |i € J})Nm(N | M) =0 and ({t, fail} U{fi | i € J}) pairwise distinct.
We can derive that

C [[yes [P7]] =#741 Ty [P 1 f0i | Tlie g5y - failonil
where fail will never be observed as a barb and ¢ is no longer exhibited. Since ||
we have that C' [M] =#7/*1 M’ and

HjEJ[PJ | f;.nil | erj\{j}fk.faiz.nil} ~ M
and hence for all ¢ € J it is the case that M'|,, and also fail will never be exhibited and ¢
is no longer observed. This can only be so, attending to the fact that sites can not be created in
a sequence of reductions and also regarding that migrations that originated from the considered

context have already occurred (barbs f; will be available) since the site has failed (¢ is no longer
observable), if there exist M and {R’ | j € J} such that

M =T, J[Rj | il | T ) o faz'z.nil} | M
Since = is symmetric we have that M initially has #.J sites since otherwise following the
same reasoning we would get a contradiction to our initial condition that [];. ;[P7] has #.J

jes [Pl =M

sites, hence we can conclude that M = 0.
We know that for all m € J we can derive that

1, J[Pj | il | [Tge e faz'l.nil} = [Pm | il | Tl oy Fi fail.nil}
and since [ [, ; [Pj | f;.mil | erJ\{j}fk.fail.nil} ~ M’ we get that there exists M, such that

M' = M,, and [Pm | frn-mil | erj\{m}fk.fail.nil} ~ M,,, which, since = identifies systems
with the same number of sites as we proved before and recalling that it is barb closed, gives us
that there exists Q™ such that M,,, = [Qm | frn-nil | HkGJ\{m}fk.faz’l.nil]

We now consider context

Cle] 2 [r.nﬂ | £0.(fonmil | Tl oy Ji- f&iz.nﬂ)} B
withr & {t, faily U{fi | i € J} Ufu(N | M). We can derive that

C Hpm | frm-nil | erJ\{m}f_k-fail_ni]H —2x#J [pm] | [rail] — [P™]
which gives us that there exists " such that

C HQm | fr-nil | erj\{m}fk.fail.nilﬂ — (2x#J)+1 Q™
and [P™] = [Q™] thus completing the proof. L]

B.2 Proofs of weak bisimilarity properties
Proof of Lemma 3.13

Let M be a network and P/ (j € J) a collection of processes such that [],;[P’] ~ M. We
prove there is a collection of processes Q7 (j € J) such that M = [, ;[Q’] and forall j € J,
[P7] ~ [@7].

Proof. By induction on #.J. Trivial for case #.J = 0. Case #.J = 1 we have that [P] ~ M.
Aiming at a contradiction let us assume that there exists no @) such that M = [Q] which can only
be so if either M = 0 or there exist Q1,Q2, M’ such that M = [Q1] | [Q2]| M’. Let us first
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consider M = 0 from which, since M =~ [P], we obtain that [P] = 0, which gives us our intended
contradiction. Let us now consider that there exist Q1, Q2, M’ such that M = [Q41] | [Q2]| M’
which since M = [P] gives us that there exist N, Ny such that [P] = N; | Ny and [Q1] = N}
and [Q2] | M’ = Ns. Since [P] = Np | N2 and attending to the fact that sites can not be created
in a sequence of reductions we have that either N; = 0 or No = 0 which leads to a contradiction
since N1 =~ [@Q1] and N2 ~ [Q2] | M’ gives us that [Q1] = 0 or [Q2] | M’ = 0. Thus there exists
@ such that M = [Q)].

From ngJ[ 7] = [P | jenm [P7] and [Tics [P7] ~ M we get that there exist
My, My such that M = My | M5 and [P'] ~ M; and HjeJ\{l} [P7] ~ M,. From [P'] ~ M,
and considering case #.J = 1 we have that there exists Q! such that M; = [Ql] and by induction
hypothesis on []; y\ (11 [P’] ~ Ma we have that there exists {Q7 | j € J\{1}} such that

My = Hje.]\{l} [Q7] and for all j € J\{1} it is the case that [P/] ~ [Q’] which, since
M= [Q'] | H]GJ\{l}[Q |, completes the proof. "

Proof of Lemma 3.14

Let J be a finite set and [;, for all j € J, be a finite set. Let Pl-j and Q{ be two collec-
tions of processes such that for all j € J and i € I; we have [P.j } ~ [Qf } We prove that

7
[Lies [Hieljp‘]] ~ HjeJ[Hz‘e[.Q]']-
Proof. We abbreviate [ [, [HZE I, } and [[;c; [Hle 1. Q! ] with N7/ and M, respectively, and

proceed by coinduction on the deﬁmtlon of weak bisimulation.
Let us consider that there exist N’, N” such that N7 = N’ | N”. We know that there exists
J C J such that N7 = N’ and N‘]\J = N”. We also know that M7 = M7 | M7\7. Since

J C J we have that for all j € J and i € I; it is the case that [PZJ } = [Qf } which gives us that
(N7,M7) € B and also since for all j € J\.J and i € I; it is the case that [Pf} A {Qﬂ we

have (NJ\j, M‘]\j) € B thus proving the first clause.
Now consider that N’ = 0, which gives us that #J = 0 and hence we directly have that
M’ = 0 thus proving the second clause.

Let us now consider that there exist A and N’ such that N/ —5 N’. We know that this
transition can either be triggered by an unique site or else be a migration of a process from one
site to another or else be due to a grow transition of finally be due to a failure.

(Transition triggered by a single site)

If a site triggers the transition, this can be due either to a firing of an action that can either be an
input or an output or an internal action, due to either a synchronization between processes internal
to one of the Pj s or to a T prefix, or else to a synchronlzatlon between two distinct P] Hence

we can write that there exist j € J and n,m € I; and P,JL, P,Jn such that either [PT]L] [Pﬂ;] ,
with A = a, or [Pﬂ; | Pgl} SN [PZ | Pﬂ_n]

(case of N7 = N\ | [Hie[i\{n}})ij | Pﬂ} ,A=a)

We know that [Pg] 2, [Pﬂ;}, which since [Pg] ~ [Qﬂ gives us that there exists M’ such
that [Qﬂ 2. M’ and [Pg] ~ M’ which, considering Lemma 3.13, leads to there exists Qf;
such that M’ = [Q%]

Hence we can derive M7 =25 M7\ | [Hze 15\ {n}Qg | QH , which along with
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(NP | [ Micp oy B | PJ M7 | [Ty @11 Q3)) € B.
since {]5] } ~ {Qy ] completes the proof for this case.
(case of N7 —» N/\U} | [H GI\{nm}P] | P |P]}

Since a synchromzatlon can take place we know that there exists a such that either P =,
a.Ry | Rg and P, =, a.R3 | R4 or with the action and coaction placed the other way
around, being the proofs analogous. Considering Pl =, a.R, | Ry and Pl = =, a.R3 | Ry

a

we have that {Pﬂl} — [Ry | R2] and [P%l} —% [R3 | Ry] being that [R; | Ry] {Pﬂ

and [R3 | R4] = [PZJ Since {Pﬁ} ~ [Qﬂ we obtain that [Q%] % M’ and {Pﬂ ~
M’ which, considering Lemma 3.13, leads to there exists Qf; such that M’ = [Qﬂ Also
since [P,];L} R~ [Q;n} we get that [Q,J_n] =% M" and [Pﬂ}} ~ M" from which, considering
Lemma 3.13, we obtain that there exists Qf_n such that M = [QH . Hence we can derive that
MY s MG | [Hie @ Q4 | Q;}} which along with
(NN Tt gy P 1P P MG | (i gy @ | Gh | Qha]) € B
since [Pﬂ ~ [Qﬂ and []5%} =3 [Q;n], completes the proof for this case.
(Transition triggered by a migration)

We now consider that a migration takes place, for which we know that there are at least two
sites involved, the origin and destination of the migrating process, hence we have that #.J > 2.

We also know that there exist j, 7 such that Pg =, g0.Ry | Ry from which we can obtain, consid-
ering a ¢ fin( [PJ] | [Q”] ), that [PJ] 1, [PJ} | [anil] — [R1] | [a.nil | Ra). Since [P]} ~

[Qﬂ we get that there exist M, M such that [Qﬂ 19, 37 s M7 and [R1] | [amil | Ro] ~ M,
from which we can derive that there exist M/, M such that M' = M/ | M} and [Ry] =~ M|
and [a.nil | Re] ~ M) which, considering Lemma 3.13, leads to there exist R3, R4 such that
M| = [R3] and M} = [Ry4]. From [a.nil | Ry] ~ [R4] and [a.nil | Ry] —% [Ry] we conclude
that there exists R} such that [Ry] == [R/] and [Rs] ~ [R)]. This allows us to conclude, since
a ¢ fu( [Qg} ), that [Ry] = [a.nil | R)].

So we have that there exists [ € .J such_that

N7 s NG | [HEP\{;}PZJ | B | [IT

Z'EIl’Pil | R2:| .

Also from [QJ } [R3] | [a-nil | R}j] we can derive that
M7 o MO | iy @ | Bs] | | [Tier, @11 BY.
which along with )
( NJ\{jJ} | Hielj\{E}Pi] | Ry | Hz‘ell—Pil | Ry y
MG | Hie[ \{;}Q] | Rs| | Hzel Ql | Ry|) €

since [R1] ~ [R3] and [Rg] [R),], completes the proof for this case.
(Transition triggered by a grow transition)

We have that N7 1% N7 | [a.nil] and we can directly derive that M“ SOV | [a.nil]
which along with (N7 | [a.nil], M/ | [a.nil]) € B, since [a.nil] ~ [a.nil], completes the proof
for this case.

(Transition triggered by a failure)
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We have that there exists JCJ such that N 7 T, NI\ We can directly derive that
M7 s M7\ which along with (N7\/, M7\’) € B completes the proof for this case and also
for this clause. ]

Proof of Lemma 3.15

We prove weak bisimilarity is a congruence.

Proof. We know that there exist .J and {P? | j € J} such that N = [] jeJ [P7] which considering
that N ~ M and Lemma 3.13 gives us that there exist M’ and {Q’ | j € J} such that M =
M = HJEJ[Qj] and for all j € J it is the case that [Pj] ~ [Qj]. Also we know that there
exists C' such that C [N] = N | C and C [M] = M | C which, along with the fact that there exist
I'and {R' | i € I} such that C' = [[;;[R’], gives us that C [N] = [[;c;[P’] | [1;;[R’] and
C M =Tles[@Q7] | Tlies [R'], which along with for all j € J it is the case that [P7] ~ [Q’]
and for all 7+ € I it is the case that [RZ] R [R’] and considering Lemma 3.14 gives us that
C[N]~ C[M').

Let us now prove that B £ {(C'[N],C[M]) | N ~ M} is a weak bisimulation by coinduc-
tion on the definition of weak bisimulation. Consider that there exist N, N such that C'[N] =
N1 | No. We know that there exists M’ such that M = M’ and C [N] ~ C [M’]. From C [N] =~
C'[M’] we have that there exist M{, M} such that C' [M'] = M | M} and N; ~ M and
Ny ~ MJ. From M = M’ we can derive that C [M] = C [M'] and hence C [M] = M | M}
which completes the proof for the first clause. Now let us consider that C'[N] = 0. We know
that there exists C' such that C [N] = N | C and since C' [N] = 0 we have that C' = 0 and
N =0. From N = 0and N =~ M we have that M = 0 and since C' = 0 we get C' [M] = 0 thus

proving the second clause. Now consider that there exist A and N such that C [N] 2, N. Again
we know that there exists M’ such that M = M’ and C' [N] ~ C' [M']. From C [N] ~ C [M']
and C'[N] > N we have that there exists M such that C'[M'] =% M and N ~ M. From
M = M’ we have that C' [M] = C[M’] and since C [M’| =, M we obtain C[M] 2 M
which completes the proof for the third clause. ]

B.3 Proofs of full abstraction (~ = =)
Proof of Lemma 3.16

We prove ~ C =.
Proof. We proceed by coinduction on the definition of weak reduction barbed congruence. Let us
consider N, M such that N ~ M.

Consider now that there exists a such that N |,. This means that there exist P, P>, N’ such
that N = [a.P; | P»] | N’ from which we can derive N — [Py | P;] | N’ and hence, since
N ~ M, we have that there exists M such that M == M and [P, | P»] | N’ ~ M. This gives us
that there exist My, M5 such that M = M, 2, My = M from which we have that there exist
Q1,Q2, M’ such that M7 = [a.Q1 | Q2] | M’ hence M; |, and finally M |, which completes the
proof of the first clause.

Let us now consider that there exists N’ such that N — N’. We can derive that N —— N’
which, since N ~ M, gives us that there exists M’ such that M == M’ and N’ ~ M’. From
M == M’ we get that M = M’ which along with N’ ~ M’ completes the proof of the second
clause.

Lemma 3.15 directly provides with the third clause. ]
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Proof of Lemma 3.17

We prove = C ~.
Proof. We proceed by coinduction on the definition of weak bisimulation. Let us consider N, M
such that N = M.

Consider now that there exist N', N” such that N = N’ | N”. We know that there exist
Jand {P7 | j € J} such that N = [] je 7[P?] and also that there exists J C J such that
N' = [l [P’] and N" = [];cp 7[P’]. From N = [];c;[P’] and N = M, considering
Lemma 3.6, we have that there exists {7 | j € J} such that M = [1;c ;1@Q?] and for all
j € J itis the case that [P?] = [Q’]. We can now write that M = Hjej[Qj] | HjeJ\j[Qj]-
From the fact that for all j € J it is the case that [P/] = [@Q’] and that for all j € J\J it is
the case thgt [PI] =~ [QY ]? considering Lemma 3.5, we obtain [ ], 7P = ;e 71@7] and
[Tjens [PI] =] jeng [@7], which completes the proof for this case.

Now consider that N = 0. Lemma 3.6 provides directly that M/ = 0.

Consider now that there exist A and N’ such that N A, N’. We have that ) is either 7, or
else there exists a such that A = @ or A = a or finally that there exists a such that A = [a]. If
A = 7 we have that N — N’ and since N & M we get that there exists M’ such that M = M’,
hence M == M’, and N’ = M’ which completes the proof for this case.

If there exists a such that A\ = @ we have that there exist P, P, N” suchthat N = [a.P; | P»] | N”
and N’ = [Py | P2] | N”. Let us consider context

C'[o] £ [tnil | go.a.(f-nil | fnil)| | e

witht, f & fn(N | M) and t # f. We can easily derive that

C[N] = [a.(fnil | fail) | @.P; | P] | [tnil] | N" —
la.(fmil | fil) | @.Py | ] | N” — [fmil | fail | Py | P | N” — [P | P2] | N”

which, since N & M, gives us that C [M] =% M’ and [P, | P»] | N” = M’. Since barb f
can be observed at some point but M’ does not exhibit it, and recalling that f ¢ fn(M) we can
conclude that there exist Q1, Qo, M" such that M = [a.Q1 | Q2] | M" - [Q1 | Q2] | M" =

M’ which gives us that M == M’ which, since N’ & M’ completes the proof for this case,

being the proof for A = a analogous.

If A\ = [a] we have that there exists N’ such that N M N and N = N | [a.nil]. We also

know that M -2 M | [a.nil] and hence M SNy | [a.nil] which given that = is context closed

directly gives us NV | [a.nil] & M | [a.nil] and completes the proof. (]

B.4 Proofs of logical characterization of ~
Proof of Lemma 3.22

We prove =~ C =, .
Proof. We prove thatif N ~ M thenVA. N = A = M [ A (the symmetric is analogous to
prove) and we do so by induction on the structure of formula A.

If A=Tthen M = A.

If A = =B we have that N [~ B. Let us supose, aiming at a contradiction, that M | B,
which, by induction hypothesis, gives us N = B which is a contradiction and hence M [~ B and
M = —-B.

If A= BACthen N = Band N |= C from which, by induction hypothesis, we obtain
M = Band M = Chence M = BAC.

If A= B 1 C then there exist N', N” such that N = N’ | N” and N’ |= Band N |= C.
From N ~ M we get that there exists M such that M = M and N’ | N” ~ M which gives us
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that there exist M’, M" such that M = M’ | M"” and N’ ~ M’ and N” ~ M" from which, by
induction hypothesis, we obtain M’ = B and M” |= C and hence M = B || C.

If A = ((\)) B we have that there exists N’ such that N =2 N’ and N’ E B. From N ~ M

we get that there exists M’ such that M 2. M’ and N’ ~ M’ which, by induction hypothesis,
gives us that M’ = B hence M = (\)B. "

Proof of Lemma 3.23

We have =, C ~.
Proof. We prove that R 2 {(N, M) | N =, M} is a weak bisimulation by coinduction on the
definition of weak bisimulation.

Let us consider that there exist N’, M’ such that N = N’ | N”. Let us consider I £
{1,2,...,k},{M], M | i € I} such that for all M’, M" such that if M = M’ | M" then there
exists ¢ € I such that M’ = M/ and M" = M]'. Aiming at a contradiction, let us now assume
that for all ¢ € I itis the case that N" #, M/ or N #, M/ from which we can derive there
exists {A;, B; | @ € I} such that for all ¢ € I it is the case that either N |= A; and M| £ A,
or N” = B; and M;" = B;. We can now write that N |= (A,c; 4i) 11 (A\;e; Bi) and since
N =, M we have that M = (A;.; Ai) 11 (e Bi) which gives us that there exist M’, M"
such that M = M’ | M" and M’ = (\,c; Ai) and M" = (\,c; Bi). We also know that there
exists j € I such that M’ = M} and M" = M from which follows that M |= (/\;c; 4;) and
M} = (Aie; Bi) which provides with the intended contradiction since M} = A; or M} = B;.
We can therefore conclude that there exists ¢ € I such that N’ =, M/ and N” =, M/, which
completes the proof.

Now consider that N = 0, hence N = 0 from which we obtain M = 0 (N =, M) thus
M =0.

Let us now consider that there exist N’ and \ such that N — N’, hence N = (A) T which
since N =, M gives us that M = ((A\))T and thus there exists M’ such that M =25 M. Letus

consider I = {1,2,...,k},{M/ | i € I} such that for all M’ such that if M 25 M’ then there
exists ¢ € I such that M’ = M. Aiming at a contradiction, let us now assume that for all i € T
it is the case that N’ #,, M/ which gives us that there exists {A; | ¢ € I} such that for all ¢ € T
it is the case that N’ |= A; and M; [~ A;. We can now write that N |= ((A)) (/\;c; Ai) and since
N =, M we have M = (\))(A;c; Ai) from which we obtain that there exists M’ such that

M =2 M’ and M’ = Aicr Ai- We also know that there exists j € I such that M’ = M which
gives us M} = A\;c; A; which contradicts M [~ Aj, hence 3;efN' =¢,, M, which completes
the proof. ]

C Auxiliar Lemmas to the proof of minimality (Theorem 3.26)

Lemma C.1 Forall A such that A is a minimal spatial logic formula not containing ~B we have
that for all N such that N # 0 and N |= A then N | [nil] E A.

Proof. We proceed by induction on the structure of formula A.

e (Case BAC)Wehavethat N = B and N |= C hence, by induction hypothesis, N | [nil] |=
Band N | nil] = C thus N | [nil] = BAC.

e (Case 0) Since N # 0 we have N [~ 0.
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e (Case B 1| C) We have that there exist N, N” such that N = N’ | N” and N’ E B
and N” |= C. Since N | [nil] — N we can derive that N | [nil] = N’ | N” and hence
N | il E B C.

e (Case ((w)B) We have that there exists N’ such that N == N’ and N’ = B. Since
N | [nil] — N we can derive that N | [nil] == N’ hence N | [nil] = (w)B.

Lemma C.2 Forall A such that A is a minimal spatial logic formula not containing —B we have
that for all N such that N | [nil] = A then N | A.

Proof. Similar to the proof of Lemma C.1 ]

Lemma C.3 For all A such that A is a minimal a spatial logic formula not containing B N\ C we
have that for all N such that N | [nil] |= A then either N | [nil] | nil] = A or N |= A.

Proof. We proceed by induction on the structure of formula A.

e (Case =—B) We have that N | [nil] = B and hence by induction hypothesis we obtain
that either N' | [nil] | [nil] = B or N = B which give us N | [nil] | [nil] | =B or
N = —--B.

e (Case —0) We have that N | [nil] = =0 and N | [nil] | [nil] = —0.

e (Case (B 1| C)) We have that there exist no M’, M" such that N | [nil] = M’ | M" and
M’ = B and M" |= C'. Let us assume, aiming at a contradiction, that N |= B || C hence
there exist O’, 0" such that N = O’ | O” and O’ = Band O” |= C. Since N | [nil] - N
we have that N | [nil] = O’ | O” which gives our intended contradiction. We conclude

N E~(B10).

e (Case —(((w)) B)) We have that there exists no M’ such that N' | [nil] == M’ and M’ = B.
Let us assume, aiming at a contradiction, that N |= ((w)) B hence there exists O’ such that
N =% O’ and O’ |= B. Since N | [nil] — N we derive that N | [nil] == O’ which gives
our intended contradiction. We conclude N = —({w))B).

e (Case 0) We have that N | [nil] % 0.

e (Case B 1| C') We have that there exist M’, M"” such that N | [nil] = M’ | M” and M’ |=
Band M" = C. Since N | [nil] | [nil] — N | [nil] we derive that N | [nil] | [nil] =
M' | M" thus N | [nil] | [nil] = B 1] C.

e (Case ((w)) B) We have that there exists M’ such that N | [nil] == M’ and M’ |= B. Since
N | [nil] | [nil] — N | [nil] we derive that N' | [nil] | [nil] == M’ thus N | [nil] | [nil] =
(W) B.

Lemma C.4 For all A such that A is a minimal spatial logic formula not containing 0 we have
that if [nil] = A then 0 = A.

Proof. We abbreviate [ [, ;la;.nil] | [],c; [nil] with Z (/L) to simplify presentation. We con-
sider T as our primitive formula and we proceed by showing that for all index sets J, L if
mil] | ZzL) = A then Z(/L) |= A and we do so by induction on the structure of formula
A.
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e (Case T) We have [nil] | Z(/'F) |= T and Z/F) = T.
e (Case —T) We have that [nil] | Z(/1) (£ —T.

e (Case ——B) We have [nil] | Z(//) = B and hence by induction hypothesis Z(/'1) = B
which gives us Z(/'L) = —-B.

e (Case ~(B A C')) We have that [nil] | Z(1) = =(B A C) and hence [nil] | Z(/1) = =B
or [nil] | Z(»1) |= =C. The former implies, by induction hypothesis, that Z(/L) = —B
while the latter implies, by induction hypothesis, that Z(/:L) = —C hence we can conclude
that either Z(»1) = =B or Z(J1) = =C and thus Z("1) = ~(B A C).

e (Case ~(B 1| C)) We have that there exist no N’, N” such that [nil] | Z(/2) = N’ | N”
and N’ = B and N” |= C. Let us assume, aiming at a contradiction that there exist
M’, M" such that Z('F) = M’ | M” and M’ = B and M” = C. Since [nil] | Z(/1) —
ZUL) we can derive that [nil] | Z(1) = M’ | M" which provides with our intended
contradiction. Hence there exist no M’, M” such that Z(/"L) = M’ | M" and M’ = B
and M" |= C so ZUWL) = <(B 1 O).

e (Case =({(w)) B)) We have that there exists no N’ such that [nil] | Z(/£) =5 N’ and N’ |=
B. Let us now assume, aiming at a contradiction, that there exists M’ such that Z (/L) =%
M’ and M’ = B. Since [nil] | Z(/F) — Z(/L) we can derive that [nil] | Z(/F) =% M’
which leads to our intended contradiction. So we conclude that there exists no M’ such that

ZL) 2o M’ and M/ = B hence ZL) E = ({w)B).

e (Case B A C) We have that [nil] | Z(Y) = B A C and hence [nil] | Z/1) = B
and nil] | Z(/1) = C which by induction hypothesis gives us that Z(*1) |= B and
ZL) = C and hence Z(1) |= B A C.

e (Case B ]] C') We have that [nil] | Z(/') |= B 1] C which gives us that there exist N’, N"/
such that [nil] | Z(/X) = N’ | N” and N’ = B and N” |= C. We know that there
exist J/,J” C Jand L',L” C L such that J’NJ” = P and L'’ N L” = () and either
N’ = [nil] | ZU°E) and N” = 2U"L") or N = ZUL) and N” = [nil] | ZU"E") or
finally N’ = Z("L) and N” = ZUU"L") We derive that Z(/1) = z(J"L) | Z(J".L")
For the first case we obtain by induction hypothesis that Z(/ L) = B and we have that
AL = C whilst for the second case we have that Z(/ L) = B and by induction
hypothesis we obtain that Z(/ L) = C or finally for the third case we have that Z (/L) =
Band Z/""L") = C, so we conclude Z(1) = B | C.

e (Case (b)) B) We have that [nil] | Z(/'1) = (b)) B hence there exists N such that [nil] | Z(/:L) N
N’ and N’ = B. We know that there exists ¢ € J such that b = a; so we have that there
exist J/ C J\{i} and L' C L U {k}, for k ¢ L, such that either N" = [nil] | Z(/"F") or
N’ = ZU'E) and we also know that Z(/F) =% Z(J.L')_ For the first case by induction
hypothesis we obtain that Z(/"-L) = B and for the second case we have that Z(/ L) = B,
so we conclude Z(/1) = (b)) B.

e (Case (b)) B) We have that [nil] | Z(/'2) b= (b)) B.

e (Case (([b])B) We have that [nil] | Z(/1) |= (([b]) B hence there exists N’ such that
il] | Z(/E) L N and N = B. We know that considering J” such that J N .J” = ) and
{a;j |7 € J"} = {b} (note that we just separate the index set to simplify presentation, we do

not enforce any conditions on b) we have that there exist J' C JUJ” and L’ C L such that
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either N’ = [nil] | Z/"L) or N’ = Z/"L) and we also know that Z (/L) SNy
For the first case by induction hypothesis we obtain that Z(/ L) = B whilst for the second
case we have that Z(/""L') |= B, so we have that Z("1) |= (([b])) B.

Lemma C.5 For all A such that A is a minimal spatial logic formula not containing 0 we have
that if 0 = A then [nil] E A.

Proof. Similar to the proof of Lemma C.4. ]

Lemma C.6 For all A such that A is a minimal spatial logic formula not containing B | C we
have that if [nil] | (nil] = A then [nil] = A.

Proof. We abbreviate [ [, ;[a; nil] | [[;c,[nil] with Z (/.L) to simplify presentation. We proceed
by showing that for all index sets .J, L if [nil] | [nil] | Z(/%) |= A then [nil] | Z("1) = A and we
do so by induction on the structure of formula A.

e (Case ——B) We have [nil] | [nil] | Z(/X) = B and hence by induction hypothesis
mil] | Z(>L) = B which gives us [nil] | Z(/1) = ——B.

e (Case =(BAC)) We have that [nil] | [nil] | Z(/"%) |= =(BAC) and hence [nil] | [nil] | Z(/1) =

—Bor nil] | mil] | ZJL) = —C. The former implies, by induction hypothesis, that
mil] | Z(1) = =B while the latter implies, by induction hypothesis, that [nil] | Z(/1) |=
—C hence we can conclude that either [nil] | Z(/2) = =B or [nil] | Z(/'F) = =C thus
mil] | ZUL) = ~(B A C).

e (Case —0) We have that [nil] | [nil] | Z(/2) = =0 and [nil] | Z(/5) = —o0.

e (Case —({(w))B)) We have that there exists no N’ such that [nil] | [nil] | Z(/L) =% N’
and N’ |= B. Let us now assume, aiming at a contradiction, that there exists M’ such
that [nil] | Z(J1) =% M’ and M’ |= B. Since [nil] | [nil] | 25D — [nil] | Z(F)
we can derive that [nil] | [nil] | Z(/£) =% M’ which leads to our intended contradiction.
So we conclude there exists no M’ such that [nil] | Z(/"Y) =5 M’ and M’ |= B hence
mil] | 208 | ~((w) B).

e (Case BAC) We have that nil] | [nil] | Z(//) = BAC and hence [nil] | [nil] | Z(/1) = B

and [nil] | [nil] | Z(/"1) |= C which by induction hypothesis gives us that [nil] | Z(/"L) |=
B and [nil] | Z(2) = C and hence [nil] | Z("1) = B A C.

e (Case 0) We have that [nil] | [nil] | Z(/"2) |~ 0.

e (Case ((b))B) We have that [nil] | [nil] | Z(/L) |= (b)) B hence there exists N’ such that

mil] | [nil] | 20D =% N’ and N’ = B. We know that there exists i € J such that
b = a; so we have that there exist J' C J\{i} and L' C L U {k}, for k ¢ L, such that
either N/ = [nil] | [nil] | Z/"E) or N’ = [nil] | ZUE) or N’ = Z7"L) and we also
know that [nil] | Z(E) =% il | Z7L) and [nil] | 22 =% Z(E). For the first
case by induction hypothesis we obtain that [nil] | Z(/"Z") |= B and for the second case
we have that [nil] | Z(/"%') |= B and also for the third case we have that Z(/"L') = B, so
we conclude [nil] | Z(/F) = (b)) B.

o (Case (b)) B) We have that [nil] | [nil] | Z('E) j£ (b)) B.

30



e (Case (([b]) B) We have that [nil] | [nil] | Z(/1) = ([b])) B hence there exists N’ such that

nil] | [nil] | Z(/5) L N and N7 = B. We know that considering J” such that JNJ" =

0 and {a; | j € J"} = {b} (note that we just separate the index set to simplify presentation,
we do not enforce any conditions on b) we have that there exist J/ C JU J"” and L' C L
such that either N = [nil] | [nil] | 2/ or N’ = [nil] | 2/ or N’ = z("L)

and we also know that [nil] | 20 2% il | 2L and [nil] | 200 2 Z070),

For the first case by induction hypothesis we obtain that [nil] | Z(/2) = B whilst for

the second case we have that [nil] | Z(/"%") |= B and also for the third case we have that
7z = B, so we conclude [nil] | Z(5) = ([b])B.

Lemma C.7 For all A such that A is a minimal spatial logic formula not containing B | C we
have that if nil] = A then [nil] | nil] = A.

Proof. Similar to the proof of Lemma C.6 |

Lemma C.8 For all A such that A is a minimal spatial logic formula not containing (b)) B we
have that if [a.nil] |= A then [nil] = A.

Proof. We abbreviate [, ;[a;.nil] with Z 7 to simplify presentation. We proceed by showing
that for any index set .J if [a.nil] | Z/ |= A then [nil] | Z/ |= A and we do so by induction on the
structure of formula A.

e (Case ~—B) We have [a.nil] | Z/ = B and hence by induction hypothesis [nil] | Z” = B
which gives us [nil] | Z7 = ——B.

e (Case ~(B A C)) We have that [a.nil] | Z7 = (B A C) and hence [a.nil] | Z/ = -B
or [a.nil] | Z7 |= =C. The former implies, by induction hypothesis, that [nil] | Z7 |= -B
while the latter implies, by induction hypothesis, that [nil] | Z/ = —C hence we can
conclude that either [nil] | Z” |= =B or [nil] | Z/ = ~C thus [nil] | Z/ = ~(B A O).

e (Case ~0) We have that [a.nil] | Z/ = =0 and [nil] | Z”/ = —0.

e (Case —(B 1| C)) We have that there exist no N’, N” such that [a.nil] | Z7 = N’ | N”
and N/ = B and N” = C, hence for all N', N” such that [a.nil] | Z/ = N’ | N”
either N’ = =B or N” = =C. We know that for all M’, M" such that [nil] | Z/ =
M’ | M" we have that either M’ = [nil] | Z/" and M" = Z’" or M' = Z/' and
M" = [nil] | 27" or finally M’ = Z/" and M” = Z’". For the first case since we have
that [a.nil] | Z7 = [amil] | Z7° | Z7" we obtain that if [a.nil] | Z/" |= —B then by
induction hypothesis we have that [nil] | Z7' = =B and if Z’" |= =C then the result is
immediate. For the second case since we have that [a.nil] | Z7 = Z7' | [a.nil] | Z7" we
obtain that if Z”' }= =B then the result is immediate and if [a.nil] | Z7" = —C then by
induction hypothesis we have [nil] | Z/" = =C or finally for the third case since we have
that [amil] | Z7 = 27" | 27" if either Z/' |= —B or Z'" = —C the result is immediate.
We conclude [nil] | Z7 |= =~(B 1 O).

e (Case —({{w)B)) We have that there exists no N’ such that [a.nil] | Z/ =% N’ and
N’ |= B, hence for all N’ such that [a.nil] | ZJ, =% N’ it is the case that N’ = —B.
If w = b then we have that [nil] | Z/ = —({(b))B) since there are no outputs in the

network. If w = [b] we know that for all M’ such that [nil] | Z”/ L M7 we have that
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considering J” such that J N J” = 0 and {a; | j € J"} = {b} (note that we just separate
the index set to simplify presentation, we do not enforce any conditions on b) there exists
J' C J U J” such that either M’ = [nil] | Z7" or M’ = Z’". For the first case since

we know that [a.nil] | Z”/ LN [a.nil] | Z7" and [anil] | Z7" }= =B then by induction
hypothesis we obtain that [nil] | Z7' = =B whilst for the second case since we know

[a.nil] | Z7 L 27 we have that 2”7’ = =B and the result is immediate. So we conclude

mil] | Z7 {= ~({[o]) B).

e (Case B A C) We have that [a.nil] | Z/ = B A C and hence [a.nil] | Z/ = B and
[amil] | Z/ = C which by induction hypothesis gives us that [nil] | Z/ = B and
mil] | Z’ |= C and hence [nil] | Z/ = BAC.

e (Case 0) We have that [a.nil] | Z”7 [~ 0.

e (Case B || C) We have that [a.nil] | Z7 = B || C which gives us that there exist N’, N
such that [a.nil] | Z/ = N’ | N” and N’ = B and N” = C. We know that there
exist J/, J"” C J such that J' N J” = ) and either N’ = [a.nil] | Z7 and N = 727"
or N' = Z” and N” = [amil] | Z/" or N' = Z/" and N” = Z7". For the first case
we obtain by induction hypothesis that [nil] | Z”' = B and we have that Z”/" = C' which
along with [nil] | Z7 = [nil] | Z”" | Z”" completes the proof for this case. For the second
case we have that Z/' |= B and we obtain by induction hypothesis that [nil] | Z7" = C
which along with [nil] | Z7 = Z”" | [nil] | Z/" completes the proof for this case. Finally
for the third case since [nil] | Z7 = Z7" | Z7" the result is immediate. So we conclude
mil | Z/ = B C.

e (Case ((b))B) We have that [a.nil] | Z” [~ (b)) B.

e (Case ({[b]))B) We have that [a.nil] | Z7 = (([b]))B hence there exists N’ such that

[a.nil] | Z7 L N and N = B. We know that considering J” such that J N J"” = ()
and {a; | j € J"} = {b} (note that we just separate the index set to simplify presentation,
we do not enforce any conditions on b) we have that there exists J' C J U J” such that
either N’ = [a.nil] | Z”" or N’ = Z”'. For the first case we obtain by induction hypothesis

! b U
that [nil] | Z/° = B which since [nil] | Z”/ LN mil] | Z7" completes the proof for this
b ’
case. For the second case since [nil] | Z”/ % 77" the result is immediate. We conclude

mil] | 27 = (([b]) B-

Lemma C.9 For all A such that A is a minimal spatial logic formula not containing {(b)) B we
have that if [nil] |= A then [a.nil] = A.

Proof. Analogous to the proof of Lemma C.8. ]

Lemma C.10 For all A such that A is a minimal spatial logic formula not containing <<5>>B we
have that if [a.nil] = A then nil] = A.

Proof. We abbreviate [, ;[a; nil] | [[;c,[nil] with Z (/.L) to simplify presentation. We proceed
by showing that for all index sets J, L if [@.nil] | Z("1) |= A then [nil] | Z(/'X) = A and we do
so by induction on the structure of formula A.

e (Case ~—B) We have [@.nil] | Z(/'1) |= B and hence by induction hypothesis [nil] | Z(/L) |=
B which gives us [nil] | Z(/"1) = --B.
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e (Case ~(BAC)) We have that [a.nil] | Z(/'F) = =(BAC) and hence [a.nil] | Z(/1) = =B
or [a.nil] | Z'1) |= =C. The former implies, by induction hypothesis, that [nil] | Z(:L) |=
- B while the latter implies, by induction hypothesis, that [nil] | Z(**L) = —C hence we
can conclude that either [nil] | Z(/"X) = =B or [nil] | Z/1) |= =C thus [nil] | 20 =
—(BAC).

e (Case —0) We have that [@.nil] | Z(/"%) |= -0 and [nil] | Z(/"2) = 0.

e (Case ~(B ]| C)) We have that there exist no N, N” such that [a.nil] | Z(/1) = N’ | N”
and N’ |= B and N |= C, hence for all N’, N such that [a.nil] | Z(/1) = N’ | N” ei-
ther N’ |= =B or N” = —~C. We can derive that for all M’, M" such that [nil] | Z(/L) =
M’ | M" it is either the case that M’ = [nil] | ZU"L) and M" = ZU"L") or M =
ZUSL) and M7 = [nil] | 2" or finally M’ = Z(%L) and M7 = ZU"LY),
If M = [nil] | ZU°E) and M” = ZU"L") since we know that [a.nil] | Z(/D) =
[@nil] | Z(5L) | 2U"LY) e have that either [@.nil] | Z(/"L) = =B or 2" = —C.
The former gives us by induction hypothesis that [nil] | Z(/"%) |= =B while the latter im-
mediately provides with the result. If M’ = Z(/"L) and M” = [nil] | Z/"-L") since we
know that [@.nil] | Z(/F) = Z2UL) | [@nil] | Z(7"L") we have that either Z(/"2) = - B
or [a.nil] | Z(/""L") = =C. The former immediately provides with the result while the
latter gives us by induction hypothesis that [nil] | Z(/"-L") = -C. 1f M’ = Z(/"1) and
M" = ZU"L") since we know that [a.nil] | Z(P1) = z(UWL) | 2L we immedi-
ately have that either Z(/"I) |= =B or ZUU":L") |= —~C. We conclude [nil] | Z(}1) |=
~(B1C).

e (Case —({{w))B)) We have that there exists no N’ such that [a.nil] | Z(/1) =5 N’ and
N’ |= B, hence for all N’ such that [@.nil] | Z(/1) =5 N’ it is the case that N’ |= —B.
If w = b and for all ¢ € J it is the case that b # a; then we immediately have that
mil] | ZL) = —((b)B) since the transition can not occur. If w = b and there exists

i € J such that b = a; then we know that for all M’ such that [nil] | Z(/F) L M
we have that there exist J' C J\{i} and L' C L U {k}, for k ¢ L, such that either
M = [nil] | 2V or M = ZUSE) . For M’ = nil] | 2L since we know
that [a.nil] | Z(°D) =% [anil] | ZUL) and [a.nil] | Z7"L) |= —B we obtain by in-
duction hypothesis that [nil] | Z(/"2) = =B. For M’ = Z/"L) since we know that
[@nil] | Z(H0) =L ZU'L) we immediately have that Z(/"%) = —B. We conclude
nil] | 21 |= =((b) B).

If w = [b] then we know that for all M’ such that [nil] | Z(/%) L a1 and considering

J" such that J N J” = () and {a; | j € J'} = {b} (note that we just separate the index
set to simplify presentation, we do not enforce any conditions on b) we have that there
exist J/ C JUJ” and I’ C L such that either M’ = [nil] | ZU"E) or M’ = ZU1),
For M’ = [nil] | Z"L) since we know that [@.nil] | Z(/L) N [@nil] | 2L and
[anil] | Z("L) = ~B we obtain by induction hypothesis that [nil] | Z(/"L) |= =B. For
M’ = ZU"L) since we know that [a.nil] | ASED) ﬁ> Z7L) we immediately have that
ZJ%L) = = B. We conclude [nil] | Z"1) = =(([b])B).

e (Case B A C) We have that [a.nil] | Z(1) = B A C and hence [a.nil] | Z(/1) = B and
[@nil] | Z('1) = C which by induction hypothesis gives us that [nil] | Z(**%) = B and
nil] | Z(>1) = C and hence [nil] | Z(1) = B A C.

e (Case 0) We have that [a.nil] | Z(/1) (£ 0.
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e (Case B 1| C) We have that [a.nil] | Z(/F) = B 1| C which gives us that there exist
N’ N" such that [a.nil] | Z(F) = N’ | N” and N’ |= B and N” |= C. We know that
there exist J', J” C Jand L', L” C L suchthat J'NJ” = () and L' N L” = () and either
N’ = [anil] | 2% and N” = 272" or N = 2L and N” = [a.nil] | Z7"E")
or finally N’ = Z/"L) and N” = ZU" L") 1f N’ = [anil] | 2/"L) and N = Z2(/".L")
then by induction hypothesis we obtain [nil] | Z(/"%) = B and we have ZU/"-I") = C
which along with [nil] | Z(/'F) = [nil] | Z("L) | ZU"L") completes the proof for this
case. If N' = Z(/"L) and N” = [anil] | Z/">L") then we have Z(/"L) |= B and by
induction hypothesis we obtain [nil] | Z(/"2") = C which along with [nil] | Z(/F) =
ZUWED | mil) | Z2U"E") completes the proof for this case. Finally if N/ = z(/.L)
and N” = ZU"L") then we have Z(/"L) |= B and Z(/"-L") \= C which along with
mil] | ZzWUE) = zUWED | zU"LY) completes the proof for this case. We conclude
mil) | ZH0) = B C.

e (Case ((b)B) We have that [a.nil] | Z(/'L) |= (b)) B hence there exists N’ such that

[@nil] | Z(/F) ~%. N’ and N’ = B. We know that there exists ¢ € J such that b = q;
so we have that there exist J' C J\{i} and L' C L U {k}, for k & L, such that either
N’ = [anil] | ZU5E) or N = 2U5E) 1t N’ = [anil] | Z(/"L)) we obtain by induction
hypothesis that [nil] | Z(/"L) = B which along with [nil] | Z(*L) =% [nil] | Z(/"-L)
completes the proof for this case. If N = Z(/"L) since we know that [nil] | Z(/F) N
Z"L') the result is immediate. We conclude [nil] | Z(/1) = (b)) B.

e (Case (([b])) B) We have that [a.nil] | Z(/1) = (([b])) B hence there exists N’ such that

[@nil] | Z(D) L N and N’ = B. We know that considering J” such that J N J" = ()
and {a; | j € J"} = {b} (note that we just separate the index set to simplify presentation,
we do not enforce any conditions on b) we have that there exist J' C JUJ” and L’ C L such
that either N’ = [a.nil] | Z/°F) or N' = 210 1f N’ = [anil] | Z/"1) we obtain
by induction hypothesis that [nil] | Z/"%) |= B which along with [nil] | Z(/2) 4%
mil] | ZzV L) completes the proof for this case. If N’ = Z(/"L) since we know that

nil] | Z(L) L 70" the result is immediate. We conclude mil] | 25 = ([b]) B.

Lemma C.11 For all A such that A is a minimal spatial logic formula not containing <<B>>B we
have that if [nil] |= A then [a.nil] = A.

Proof. Analogous to the proof of Lemma C.10. |

Lemma C.12 For all A such that A is a minimal spatial logic formula not containing (([a])) B
we have that if [go.b.nil] = A then [nil] = A.

Proof. We proceed by induction on the structure of the formula A.

e (Case ——B) We have that [go.b.nil] = B and hence by induction hypothesis we obtain
[nil] = B and thus [nil] = —-—B.

e (Case =(B A C)) We have that [go.b.nil] = —(B A C) and hence [go.b.nil] = =B or
[go.b.nil] = —C'. The former implies by induction hypothesis that [nil] = —B and the latter
implies by induction hypothesis that [nil] = —C' hence either [nil] = —B or [nil] = —~C
thus [nil] = —(B A C).
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e (Case —0) We have that [go.b.nil] = —0 and [nil] = —0.

e (Case —~(B 1| C)) We have that [go.b.nil] = =(B || C) and hence there exist no N, N”
such that [go.b.nil] = N’ | N” and N’ = B and N” = C, which amounts to say that
for all N/, N” such that [go.b.nil] = N’ | N” it is the case that either N’ = —B or
N" = —=C. We have that for all M’, M" such that [nil] = M’ | M" either M’ = [nil]
and M"” = 0or M’ = 0and M” = [nil] or finally M’ = 0 and M"” = 0. For M’ = [nil]
and M"” = 0 we know that [go.b.nil] = [go.b.nil] | O and either [go.b.nil] = —B or
0 = —C. If [go.b.nil] = =B then by induction hypothesis we have that [nil] = =B and
if 0 = —C then the result is immediate. For M’ = 0 and M"” = [nil] we know that
[go.b.mil] = 0 | [go.b.nil] and either 0 = —B or [go.b.nil] = —~C. If 0 = —B then
the result is immediate and if [go.b.nil] = —C then by induction hypothesis we have that
nil] = —C'. Finally for M’ = 0 and M"” = 0 we know that [go.b.nil] = 0 | 0 and either
0 = B or 0 |= —C hence the result is immediate. We conclude [nil] = =(B 1| C).

e (Case —~({(w)) B)) Since there are no transitions (recall that [a] is not observable) we imme-
diately have that [go.b.nil] = —({(w))B) and [nil] = =({w)) B).

e (Case BAC) We have that [go.b.nil] = BAC and hence [go.b.nil] = B and [go.b.nil] = C
which by induction hypothesis gives us that [nil] = B and [nil] = C and hence [nil] =
BAC.

e (Case 0) We have that [go.b.nil] |~ 0.

e (Case B 1| C) We have that IN’, N” such that [go.b.nil] = N’ | N” and N’ = B and
N" = C. We know that either N’ = [go.b.nil] and N = 0or N’ = 0 and N” = [go.b.nil]
or finally N’ = 0 and N” = 0. If N’ = [go.b.nil] and N” = 0 then by induction hypothesis
we obtain [nil|] = B and we have that 0 |= C' which along with [nil] = [nil] | 0 completes
the proof for this case. If N’ = 0 and N” = [go.b.nil| then we have that 0 = B and by
induction hypothesis we obtain [nil] = C' which along with [nil] = 0 | [nil] completes the
proof for this case. If N = 0 and N” = 0 then since [nil] = 0 | O the result is immediate.
We conclude [nil] = B || C.

e (Case ((w))B) We have that [go.b.nil] [~ ((w)) B, since there are no possible transitions.
Note that since [a] is not observable the migration can not occur.

Lemma C.13 For all A such that A is a minimal spatial logic formula not containing (([a])) B
we have that if nil] = A then [go.b.nil] = A.

Proof. Analogous to proof of Lemma C.12 |
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