
Subtyping First-Class Polymorphic Components

João Costa Seco and Lúıs Caires

Departamento de Informática
Universidade Nova de Lisboa

{Joao.Seco, Luis.Caires}@di.fct.unl.pt

Abstract. We present a statically typed, class-based object oriented
language where classes are first class polymorphic values. A main con-
tribution of this work is the design of a type system that combines first
class polymorphic values with structural equirecursive types and admits
a subtyping algorithm which is arguably much simpler than existing al-
ternatives. Our development is modular and can be easily instantiated
for either a Kernel-Fun or a F>≤ style of subtyping discipline.

1 Introduction

When one considers the essence of programming languages and especially of pro-
gramming languages with subtyping and equirecursive types the language that
comes to mind is F≤, the extension with subtypes of the polymorphic lambda
calculus introduced in [7]. When object-oriented programming is at stake, lan-
guages like the object calculus of Abadi and Cardelli [1] and Momi [15] are
good examples of how to express object-oriented mechanisms. However, the sub-
typing relations they use to relate classes, objects and mixins stays far behind
the flexible relation of F≤; both use invariant width subtyping relations and lim-
ited recursive subtyping relations. This expressiveness gap is due to unsoundness
problems when coding the self reference as a generic value parameter of methods.
In FJ [13], for instance, structural equivalence of types is traded by name-based
equivalence, which is convenient to overcome problems with the subtyping of re-
cursive types. In fact, structural equivalence of types, although adopted in some
experimental programming languages such as OCaml and Modula3, does not
seem to have had substantial impact in main-stream object-oriented languages.

Nevertheless, the increasing use of dynamic loading, late binding and mobile
code in general purpose programming frameworks raises the issue of finding more
flexible compatibility criteria between components. One reason is that name-
based extension and subtyping as it is implemented by modern object oriented
languages creates a rigid hierarchy of classes and interfaces based on their names.
This implies the usage of global name spaces and, for instance, disallows the com-
patibility of two classes that separately combine the same set of interfaces. This
problem can of course be diminished by explicitly using wrapper objects that
redirect method calls and therefore make compatible two otherwise incompatible
classes. But, structural equivalence would be the most natural solution to this
kind of problems.

In previous work we have presented an object oriented component calculus
that uses structural equivalence of types [18,19]. The calculus was ported into
an experimental language that is compiled to run on the Java framework, which
inherits the structural character of calculus’ type relations up to a certain level. In
this paper, we extract the essential aspects of the type system of the component
calculus into a core class-based language that manipulates classes as values and
uses second-order equirecursive types.

One of the main contributions of this paper is the presentation of a sub-
typing algorithm for second-order equirecursive types. Our approach is intuitive
and technically much simpler to define and prove correct than previous results,
such as [5]. It builds on the coinductive formulation of first-order type systems
with equirecursive types of Amadio and Cardelli [2], Brandt and Henglein [3],
and Gapeyev, Levin and Pierce [9,17]. The simplicity of the algorithm is directly
related to the nature of the elements the algorithm manipulates which are com-
plete judgments instead of pairs of types and to the termination conditions of
the coinductive algorithm, which uses permutation-based techniques. Moreover,
our development is modular, in the sense that it can be adapted to either a
Kernel-Fun or a F>

≤ subtyping discipline.
A further contribution is of this paper is the proposal of a simple composition

mechanism for classes that combines the usage of structural equivalence of classes
and objects with class extension mechanisms.

The remainder of the paper is structured as follows: section 2 describes the
class-based language and illustrates it using a small programming example; in
section 3 we define a type system for the language including the subtyping re-
lation and its properties; in section 4 we describe the algorithm that checks the
type of a language expression and enunciate its properties. Finally, in section 5
we propose a new composition mechanism for extending classes that is sound
under structural subtyping of classes and objects.

2 The programming language

In this section, we define a core class-based programming language whose val-
ues are classes and objects. Both objects and classes are runtime entities in our
language, the main goal is to study a type system for generic components (as
classes) and objects, where the polymorphic types of classes and equirecursive
types of objects are related structurally. We first introduce its syntax, which
is depicted in Fig. 1. It includes constructs for objects, classes, instantiation of
objects, method calls, local declarations, and recursion. Class expression com-
bines bounded type abstraction, and value abstraction over a name denoting the
object self. All other constructions are interpreted as shown in Fig. 2.

The evaluation relation of the language is defined by a big step semantics
e ⇓ v. Among these rules the evaluation of a new e expression deserves further
explanation: it relies on the evaluation of the subexpression e into a class value,
and closure under recursion of self . All other rules evaluate the corresponding

Types

τ ::= X (variable)
| Class[Xi ≤ τi

i∈1..n] I (class)
| I (interface)
| Top (top)

I :: = {mi(τji
ji∈1..ni) : τi

i∈1..n} (interface)
| µX.I (recursion)

Terms

e ::= x (variable)
| v (value)
| new e[τi

i∈1..n] (instantiation)
| e.m(ei

i∈1..n) (method call)
| let x = e in e (declaration)
| rec(x : τ) e (recursion)

Values

v ::= { mi(xji : τji
ji∈1..ni) : τi = ei

i∈1..n } (objects)
| class[Xi ≤ τi

i∈1..n](s) e (classes)

Fig. 1. Types and terms

v ⇓ v (Value) e1 ⇓ v1 e2[x←v1] ⇓ v2

let x = e1 in e2 ⇓ v2
(Let) e[x← rec(x : τ) e] ⇓ v

rec(x : τ) e ⇓ v
(Fix)

(
o = {mi(xji : τji

ji∈1..ni) : τi = ei
i∈1..n}

I = {m(xji : τji
ji∈1..ni) : τi

i∈1..n}

)
e ⇓ class[Xi ≤ δi

i∈1..n](s) o rec(s : I) o ⇓ v

new e[τi
i∈1..n] ⇓ v

(New)

e ⇓ { . . . , m(xi : τi
i∈1..n) : τ = eb, . . . }

e′i ⇓ vi ∀i∈1..n eb[xi ← vi
i∈1..n] ⇓ v

e.m(e′i
i∈1..n) ⇓ v

(Call)

Fig. 2. Big step operational semantic rules

expressions as expected. Note that classes and objects are values and hence
evaluate to themselves by means of the rule (Value).

Types already appear in the syntax of expressions, are are also defined in
Fig. 1. We distinguish between two kinds of types: interface types and class
types. Type variables range over types of any kind. A class type Class[X ≤ τ] σ
is a polymorphic type corresponding to a F≤ bounded type quantification (cf.,
∀X≤τ .σ), but for convenience generalized to a list of type parameters. Interface
types can be defined recursively, using type recursion µX.I; our separation of
types in two categories τ and I is not essential, and only reflects the intended
type usage of the object-oriented language.

We illustrate our language with a very simple example that uses polymorphic
memory cells. Let C be the type defined as Class[X] µY.{set(X) : Y, get() : X},
and cell some class value of type C, and consider

φ ` � (E-φ)
∆ ` τ ok

∆, x : τ ` � (E-Var) ∆ ` τ ok

∆, X ≤ τ ` � (E-TVar)

∆ ` �
∆ ` X ok

(O-TVar) ∆, X ≤ Top ` I ok

∆ ` µX.I ok
(O-Recursive)

∆, Xj ≤ τj
j∈1..i−1 ` τi ok ∀i∈1..n ∆, Xi ≤ τi

i∈1..n ` I ok

∆ ` Class[Xi ≤ τi
i∈1..n] I ok

(O-Polymorphic)

∆ ` τji ok ∀ji∈1..ni ∀i∈1..n ∆ ` τi ok ∀i∈1..n

∆ ` {mi(τji
ji∈1..ni) : τi

i∈1..n} ok
(O-Interface)

Fig. 3. Well-formed types and environments

let d = class[Y](s){
test(c:C, v:Y):Y =
let o1 = (new c[Y]) in
let o2 = o1.set(v) in o2.get()

}
in let n = (new d[int]).test(cell,1)

Class d defines a method test that accepts two arguments: a class value (a
component) implementing memory cells c and another appropriate value v. The
method instantiates the memory cell class, stores the value v in the resulting
cell object, and finally retrieves the cell contents and returns it.

3 Type system

In this section we define the type system for our language. The type system
has two parts, a typing system for the language expressions, and a subtyping
system expressing the intended subsumption relation on types. Our presentation
will focus on the latter, concentrating on the development of our approach to
polymorphic recursive subtyping.

3.1 Typing Expressions

The typing of the expressions is given by the set of rules in Fig. 4, that proves
judgements of the form ∆ ` e : τ , where ∆ is the typing environment declaring
the types of the free value and type variables relevant for the expression e, and
τ is a type. Well-formed types and environments are also defined in Fig. 3, by
the judgement forms ∆ ` � and ∆ ` τ ok, as expected.

Most rules follow the usual pattern, we will discuss just the particularities
of our presentation. Although the abstract syntax in Fig. 1 is somewhat more
liberal, notice that rule (T-Class) enforces that only record expressions are ac-
cepted as a class body, consistently with our interpretation of polymorphic types

x : τ ∈ ∆

∆ ` x : τ
(T-Var) ∆ ` e : τ ′ ∆ ` τ ′ ≤ τ

∆ ` e : τ
(T-Sub)

∆, x : τ ` e : τ

∆ ` rec(x : τ) e : τ
(T-Fix)

(
c = {mi(xji : τji

ji∈1..ni) : τi = ei
i∈1..n}

I = {mi(τji
ji∈1..ni) : τi

i∈1..n}

)
∆, Xj ≤ δj

j∈1..m, xji : τji
ji∈1..ni , s : I ` ei : τi ∀i∈1..n

∆ ` class[Xj ≤ δj
j∈1..m](s) c : Class[Xj ≤ δj

j∈1..m] I
(T-Class)

(I = {mi(τji
ji∈1..ni) : τi

i∈1..n}) ∆, xji : τji
ji∈1..ni ` ei : τi ∀i∈1..n

∆ ` { mi(xji : τji
ji∈1..ni) : τi = ei

i∈1..n } : I
(T-Object)

∆ ` e : Class[Xi ≤ δi
i∈1..n] I ∆ ` τi ≤ δi[Xj ← τj

j∈1..i−1] ∀i∈1..n

∆ ` new e[τi
i∈1..n] : I[Xi ← τi

i∈1..n]
(T-New)

∆ ` e : {. . . , m(τi
i∈1..n) : τ, . . .}

∆ ` ei : τi ∀i∈1..n

∆ ` e.m(ei
i∈1..n) : τ

(T-Call) ∆ ` e1 : τ ∆, x : τ ` e2 : τ ′

∆ ` let x = e1 in e2 : τ ′
(T-Let)

Fig. 4. Typing rules

as polymorphic object-generating classes. The name s, whose scope is the class
body, typed with the type of the instances of the class, is our notation for self.
In the rule (T-New), the instantiation expression new is typed with a type con-
structed from the type declarations present in the class expression, given the
proper type substitution of the type parameters, and provided that the compat-
ibility of the type arguments with respect to the variable bounds holds.

3.2 Subtyping

Some approaches to the problem of defining a first-order subtyping relation be-
tween recursive types exist for quite a while [2,3,17].

Intuitively, the intended subsumption relation between recursive types corre-
sponds to the usual inclusion of infinite (regular) trees, the difficulty in the poly-
morphic case arises due to the presence of binding occurrences of type variables
on types, due to presence of type quantifiers. Usually, even for recursive types,
subtyping relations have been expressed by means of inductive proof systems,
where the coinduction principle appears embedded in various explicit ways [2,3].
Apart from these, the main proof rules we might expect for such a subtyping
system are the ones depicted in Fig. 5. These include the usual relationships:
maximality of Top, reflexivity, transitivity, width and depth record subtyping,
and unfolding of recursive types. For comparing polymorphic types, we adopt
a Kernel-Fun style rule, since the more general F≤ style subtyping is known to
be undecidable even in the absence of recursion [16]. In any case, our approach
applies equally well to Kernel-Fun and to variants such as F>

≤ .

∆ ` τ ≤ Top ∆ ` τ ≤ τ
∆ ` τ ≤ σ X ≤ τ ∈ ∆

∆ ` X ≤ σ

∆, Xi ≤ δi
i∈1..n ` I ≤ I ′

∆ ` Class[Xi ≤ δi
i∈1..n] I ≤ Class[Xi ≤ δi

i∈1..n] I ′

n′ ≤ n ∆ ` τi ≤ τ ′i ∀i∈1..n′ ∆ ` τ ′ji
≤ τji ∀ji∈1..ni∀i∈1..n′

∆ ` {mi(τji
ji∈1..ni) : τi

i∈1..n} ≤ {mi(τ ′ji
ji∈1..ni) : τ ′i

i∈1..n′}

∆ ` I ≤ J [α←µα.J]

∆ ` I ≤ µα.J

∆ ` I[α←µα.I] ≤ J

∆ ` µα.I ≤ J

Fig. 5. Subtyping inductive rules

Unfortunately, the adoption of these rules results in an incomplete type sys-
tem, that does not seem to easily lead to a terminating algorithm, as remarked
in [11], although a rather complex subtyping algorithm following this approach
was already developed in [5]. In fact, our difficulties in getting a clear under-
standing of this work lead us to attempt a different approach, leading to the
presentation in this paper. We then follow essentially the development of [9] for
first-order types, and extend it in a natural way to polymorphic types. There-
fore, we start from a coinductive definition of the subtyping relation, presented
below.

Let D denote the set of all well-formed environments and T the set of all
well-formed types. We also denote by J the set D × T × T of all subtyping
judgements (represented as tuples).

Definition 3.1. The subtyping generating function is the mapping S ∈ P(J)→
P(J) defined by:

S(R) = {(∆; τ ; τ) | τ ∈ T and FV (τ) ⊆ Dom(∆)}
∪ {(∆; τ ;Top) | τ ∈ T and FV (τ) ⊆ Dom(∆)}
∪ {(∆;X;σ) | (∆; τ ;σ) ∈ R and X ≤ τ ∈ ∆}
∪ {(∆;Class[Xi ≤ δi

i∈1..n] I;Class[Xi ≤ δi
i∈1..n] I ′) |

(∆, Xj ≤ δj
j∈1..n; I; I ′) ∈ R}

∪ {(∆; I;µX.J) | (∆; I; J [X←µX.J]) ∈ R }
∪ {(∆;µX.I; J) | (∆; I[X←µX.I];J) ∈ R and J 6≡ µX.J ′ }
∪ {(∆; {mi(τji

ji∈1..ni) : τi
i∈1..n}; {mi(τ ′ji

ji∈1..n′i) : τ ′i
i∈1..n′}) |

n′ ≤ n and n′i = ni ∀i∈1..n′ and
(∆; τi; τ ′i) ∈ R ∀i∈1..n′ and (∆; τ ′ji

; τji) ∈ R ∀ji∈1..ni∀i∈1..n′}.

We can verify that the mapping S is monotonic. Therefore, there exists its great-
est fixed point νS ∈ P(J). We then define the subtyping relation as follows

Definition 3.2. ∆ ` τ ≤ σ , (∆, τ, σ) ∈ νS.

The relation thus defined enjoys the basic properties of weakening, substitution
of type variables, equivariance, narrowing and transitivity which are essential

to prove the type safety of the language (Theorem 3.10) and the correctness of
the subtyping algorithm (Theorem 4.10). In general, these kind of results are
proved by somewhat involved inductions on derivations; in our setting, due to
the natural definition of subtyping as a greatest fixed point, we may handle
them by quite standard coinductive proof techniques. We start by considering
the weakening property in νS.

Proposition 3.3 (Weakening). For all typing environments ∆, ∆′ ∈ D, and
types τ, σ, δ ∈ T , if ∆, ∆′ ` τ ≤ σ, X 6∈ Dom(∆, ∆′), and Delta ` δ ok then
∆, X ≤ δ,∆′ ` τ ≤ σ.

Proof. Consider the following set:
W , {(∆, X ≤ δ,∆′; τ ;σ) | (∆, ∆′; τ ;σ) ∈ νS and

X 6∈ Dom(∆, ∆′) and FV (δ) ⊆ Dom(∆)}.
By case analysis in the definition of S we prove W to be S-consistent, W ⊆ S(W),
thus by the coinduction principle we have that W ⊆ νS. ♦

We use the same coinductive technique to prove that the substitution of
type variables is sound, and that the subtyping relation is closed under name
permutation.

Proposition 3.4 (Substitution of type variables). For all ∆, ∆′ ∈ P(J),
and τ, σ, δ, δ′ ∈ T , if ∆, X ≤ δ,∆′ ` τ ≤ σ and ∆ ` δ′ ≤ δ then we have
∆, ∆′[X←δ′] ` τ [X←δ′] ≤ σ[X←δ′].

Proposition 3.5 (Equivariance). For all ∆ ∈ P(J), τ, σ ∈ T , if ∆ ` τ ≤ σ
then ∆[X ↔ Y] ` τ [X ↔ Y] ≤ σ[X ↔ Y].

We now prove that νS is transitive by considering a combined property where
transitivity is expressed together with narrowing. We start by defining narrowing
of typing environments, and then closure of νS under narrowing.

Definition 3.6. For all ∆, ∆′ ∈ D, we have that ∆ is narrower than ∆′ with
relation to R ∈ P(J), written ∆ vR ∆′, where the relation vR is inductively
defined by letting ∅ vR ∅ and

Γ,X ≤ γ vRΓ ′, X ≤ γ′ if Γ vRΓ ′ and (∆, γ, γ′) ∈ R.

Definition 3.7. For all n ∈ N we inductively define the sets Nn as follows:

N0 , νS

Nn , {(∆, τ, σ) | (Γ, τ, σ) ∈ Nn−1 and ∆ vNn−1Γ}.

We then define the transitive closure of νS, and prove that νS is closed under
transitivity. Instead of a more direct definition, for technical convenience we
present the transitivity relation based on chains of tuples with finite length.

Definition 3.8 (Extended Transitive Closure of νS).

T , {(∆, α0, αn) | ∃n∈N.∃α0..αn∈T .∀i∈0..n−1.(∆, αi, αi+1) ∈ Nn }

Notice that T includes the transitive closure of νS (n = 2), and closure under
narrowing (n = 1). We can then state and prove

Proposition 3.9 (Transitivity). If ∆ ` τ ≤ σ and ∆ ` σ ≤ γ then ∆ ` τ ≤ γ.

Proof. We show that T ⊆ S(T), using an inner induction on the number of tuples
and by case analysis on the last rule used on the first tuple of a chain in T. We
then conclude T ⊆ νS by the coinduction principle. ♦

An interesting fact about our proof is that it exposes the loss of transitivity
elimination pointed out in Ghelli’s inductive system [11]. In the particular case
of the variable transitivity, a tuple of T supported by a chain of tuples in νS is
supported in S(T) by a longer chain of tuples. Which nevertheless leads to the
conclusion that the tuple is in the greatest fixed point of S.

3.3 Type safety

We can now state and prove subject reduction for our class based programming
language, that can then be used to show that well typed programs “don’t go
wrong” along usual lines.

Theorem 3.10 (Subject Reduction). If ∆ ` e : τ and e ⇓ v then ∆ ` v : τ ′

where ∆ ` τ ′ ≤ τ .

Proof. By induction on the length of the typing derivations and by case analysis
on the last rule used. We also use in several parts the fact that all valid subtyping
judgments are supported in νS. ♦

As a result of this section we obtain declarative type and subtype systems
whose implementability and decidability is far from being obvious (full detailed
proofs for the results in this paper can be found in [20]). In the next section, we
define and explain two simple algorithms that implement them.

4 Typing algorithm

We define a type checking algorithm for our type system, thus proving that it
is decidable. The algorithm is composed by two procedures: a typing algorithm
that given an environment and a typable expression returns its the minimal type,
and a subtyping algorithm, that is called by the typing procedure to verify the
subtyping relations.

4.1 Typing expressions

Typing of expressions is implemented by interpreting a set of rules bottom up:
this defines a procedure that given a typing environment and a language ex-
pression returns a type. The new algorithmic rules are shown in Fig. 6, to these
rules we must add (T-Var), (T-Let), (T-Fix), and (T-New), which are exactly

(
c = {mi(xji : τji

ji∈1..ni) : τi = ei
i∈1..n}

I = {mi(τji
ji∈1..ni) : τi

i∈1..n}

)
∆, Xj ≤ δj

j∈1..m, xji : τji
ji∈1..ni , s : I `a ei : τ ′i ∆ ` τ ′i ≤ τi ∀i∈1..n

∆ `a class[Xj ≤ δj
j∈1..m](s) c : Class[Xj ≤ δj

j∈1..m] I
(A-Class)

∆, xji : τji
ji∈1..ni ` ei : τ ′i ∆ ` τ ′i ≤ τi ∀i∈1..n

∆ ` { mi(xji : τji
ji∈1..ni) = ei

i∈1..n } : {mi(τji
ji∈1..ni) : τi

i∈1..n} (A-Object)

∆ `a e : γ ∆ ` γ ⇑ γ′ (τ, τi
i∈1..n) = lookup(m, γ′)

∆ `a ei : τ ′i ∆ ` τ ′i ≤ τi ∀i∈1..n

∆ `a e.m(ei
i∈1..n) : τ

(A-Call)

X ≤ σ ∈ ∆ ∆ ` σ ⇑ τ

∆ ` X ⇑ τ
(X-Var) τ 6∈ Dom(∆)

∆ ` τ ⇑ τ
(X-Default)

Fig. 6. Algorithmic typing rules

as in Fig. 4. The resulting proof system is algorithmic because in all rules the
resulting types are constructed either from the expression itself or from the types
resulting from typing strictly smaller subexpressions. Notice that not every rule
in Fig. 4 has a corresponding rule here; the (T-Sub) rule is not used in the
algorithm as it depends on an unknown type that cannot be obtained neither
from the expression nor from the types of the subexpressions, we replace it by
subtyping verifications in rules (A-Class), (A-Object), and (A-Call). Moreover,
we use an auxiliary function lookup to find a method in an interface and the
judgment ∆ ` τ ⇑ σ, defined by the rules (X-Var) and (X-Default), to access
the structure of type variables.

4.2 Subtyping algorithm

We now present and prove correct our subtyping algorithm for deciding member-
ship of a tuple t ∈ J in the greatest fixed point νS. The algorithm is defined by
the recursive procedure shown in Fig. 7, and closely follows existing approaches
for first-order equirecursive types [2,3,9]. Briefly, these algorithms progress by
computing, given a pair of types to be checked for subsumption, a consistent
set of pairs that includes it: by the coinduction principle, all the pairs in the
set belong to the greatest fixed point. The consistent set is built by saturating
the current approximation through backward rule application, and accumulat-
ing pairs of types, until a terminal case, corresponding to the application of an
axiom, or an already visited pair is found.

We naturally extend those approaches building on the generating function
in Definition 3.1, by defining an algorithm that manipulates judgments instead
of pairs of types; this turns out to lead to a remarkably simple way of dealing
with the binding information of the type variables. Notice that environments
grow as a result of comparing polymorphic types, and, due to α-equivalence, the

Subtyping(A, (∆, τ, σ)) =
if (∆, τ, σ) ∈' A then A
else let A0 = A ∪ {(∆, τ, σ)} in
if τ ≡ σ then A
else if σ ≡ Top then A
else if τ ≡ X then Subtyping(A0, (∆, ∆(X), σ))
else if τ ≡ µX.τ ′ then Subtyping(A0, (∆, τ ′[X←τ], σ))
else if τ 6≡ µX.τ ′ and σ ≡ µX.σ′ then Subtyping(A0, (∆, τ, σ′[X←σ]))

else if τ ≡ {mi(τji
ji∈1..ni) : τi

i∈1..n} and σ ≡ {mi(τ
′
ji

ji∈1..ni) : τ ′i
i∈1..n′} then

A`
n`

where ∀i∈1..n (Ai
0 = Subtyping(Ai−1

mi−1 , (∆, τi, τ
′
i)) and

∀j∈1..ni Ai
j = Subtyping(Ai

j−1, (∆, τ ′ji
, τji)))

with A0
n0 = A0

else if τ ≡ Class[Xi ≤ δi
i∈1..n] I and σ ≡ Class[Xi ≤ δi

i∈1..n] I ′ then
Subtyping(A0, (∆, Xi ≤ δi

i∈1..n; I; I ′))
else fail

Fig. 7. Subtyping algorithm

greatest fixed point νS is closed under renaming (Proposition 3.5). Moreover,
in our setting, the number of tuples reachable from a given tuple are finite up
to such renaming and pruning of useless variables (Lemma 4.5). Therefore, our
algorithm checks for membership of a tuple in the current approximation modulo
a similarity relation on tuples that includes renaming, and allows us to detect
cycles at the level of similarity equivalence classes, instead of expecting the exact
tuple to reappear in the sequence of calls.

Definition 4.1 (Similarity). Similarity is the binary relation ' on J defined
by: (∆, τ, σ) ' (∆′, τ ′, σ′), if there are two typing environments Γ ⊆ ∆ and
Γ ′ ⊆ ∆′ with Γ ` τ ok, Γ ` σ ok, and Γ ′ ` τ ′ ok, Γ ′ ` σ′ ok, and a bijection
ρ : Dom(Γ)→ Dom(Γ ′) such that ρ(Γ) = Γ ′, ρ(τ) = τ ′, ρ(σ) = σ′.

In the sequel we will use the following abbreviation t ∈' A , ∃u ∈ A.t ' u, in
particular in the first clause of the subtyping algorithm. Notice that similarity
is decidable, it can be checked by matching the structure of the types, modulo
bijective renaming of their free type variables, and recursively checking if the
corresponding bounds are similar. All unused variables are discarded from the
comparison as it goes through the structure of types and bounds of relevant type
variables in the environments. For instance, the following two tuples are similar:
(X ≤ {m(τ):τ}, Y ≤ X;µZ.{m(X):Z};X) ' (Z ≤ {m(τ):τ};µX.{m(Z):X};Z)
Notice the redundancy of Y, and that the tuples are similar with the permutation
[X ↔ Z].

An important fact is that the subtyping relation νS is closed under similarity.

Definition 4.2 (Closure under similarity). For any R ∈ P(J) we define its
closure under similarity, noted R∗, as follows:

R∗ , {t′ | t′ ∈ J and t ∈ R and t′ ' t}.

Lemma 4.3. νS is closed under similarity (νS∗ = νS).

Proof. By substitution of type variables (Proposition 3.4), equivariance (Propo-
sition 3.5) and then by weakening (Proposition 3.3). ♦

We now prove the correctness and decidability of the subtyping algorithm. We
first show that the algorithm terminates on all inputs. This is done by showing
that the search space of the algorithm is finite in some sense. To characterize
such search space we introduce the following reachability relation:

Definition 4.4 (Reachability). Reachability is the binary relation on J , noted
t >> t′, inductively defined as follows:

1. (∆, τ, σ) >> (∆, τ, σ)
2. if (∆, τ, σ) >> (∆′, X, σ′) then (∆, τ, σ) >> (∆′,∆′(X), σ′)
3. if (∆, τ, σ) >> (∆′,Class[Xi ≤ δi

i∈1..n] I;Class[Xi ≤ δi
i∈1..n] I ′)

then (∆, τ, σ) >> (∆′, Xj ≤ δj
j∈1..n; I; I ′)

4. if (∆, τ, σ) >> (∆′; I;µX.J) then (∆, τ, σ) >> (∆′; I; J [X←µX.J])
5. if (∆, τ, σ) >> (∆′;µX.I; J) then (∆, τ, σ) >> (∆′; I[X←µX.I]; J)
6. if (∆, τ, σ) >> (∆′; {mi(τji

ji∈1..ni) : τi
i∈1..n}; {mi(τ ′ji

ji∈1..n′i) : τ ′i
i∈1..n′})

then (∆, τ, σ) >> (∆′; τi; τ ′i) ∀i∈1..n′

and (∆, τ, σ) >> (∆′; τ ′ji
; τji

) ∀ji∈1..ni
∀i∈1..n′

We let Reach(t) , {t′ | t >> t′}. We have the following

Lemma 4.5. Reach(t)/' is finite.

Proof. We prove by induction on the reachability relation that all types occurring
in reachable tuples are subexpressions of the initial tuple and that the number
of relevant type variables in those tuples, both in the environments and in the
type expressions, decreases with relation to the initial tuple. We then prove by
contradiction that these two results support the fact that the set of reachable
tuples, Reach(t), is finite modulo similarity. ♦

It is important to remark that the finite reachability property of Lemma 4.5
holds both for Kernel-Fun and F>

≤ style subtyping, although in the first case
the proof is slightly more involved (see [20]). The proof also enlightens why the
same result cannot be extended to F≤.

Theorem 4.6. For all A ∈ P(J), and t ∈ J , Subtyping(A, t) terminates.

Proof. By induction using a measure that represents the number of non-visited
equivalence classes of reachable tuples of t. Since the algorithm always increases
the visited tuples with a tuple reachable from t, the measure decreases in all
cases. Hence, the algorithm terminates. ♦

To prove that our algorithm is sound and complete, it is technically conve-
nient to follow the approach of [9] and introduce a function gfp that allows us to
characterize νS in a form both suitable for the correctness proofs and for estab-
lishing the correspondence between the algorithm and the extensional definition
of the subtyping relation. Moreover, unlike the analogous notion in [9], instead
of accumulating tuples, our gfp function works with ' equivalence classes.

Definition 4.7. Let gfp be the partial function P(J)× J → P(J) defined by:

gfp(A, t) = if {t}∗ ⊆ A then A
else if support(t) is undefined then undefined
else let {t1, . . . , tn} = support(t) in
let A0 = A ∪ {t}∗ in
let A1 = gfp(A0, t1) in
. . .
let An = gfp(An−1, tn) in An.

We prove next that gfp indeed characterizes the subtyping relation.

Lemma 4.8 (Correctness of gfp). For all t ∈ J , and A ∈ P(J),

1. if gfp(∅, t) = A then t ∈ νS.
2. if gfp(∅, t) is undefined then t 6∈ νS.

Proof. 1. By induction in the definition of gfp to prove the following more general
property: for all A,A′ ∈ P(J), and t ∈ J , if A∗ ⊆ A and gfp(A, t) = A′

then A ⊆ A′, A′
∗ ⊆ A′, {t}∗ ⊆ A′, and A′ ⊆ S(A′) ∪ A. We then conclude by

considering A = ∅. 2. Also by induction on the definition of gfp. ♦

Knowing that gfp correctly checks if any tuple belongs to the subtyping relation
νS, we prove that gfp and the subtyping algorithm Subtyping are equivalent.
Since the algorithm terminates on all inputs (Theorem 4.6), we can show that
it is sound and complete.

Lemma 4.9 (Correctness of Subtyping). For all t ∈ J , A,A′ ∈ P(J),

1. Subtyping(A, t) = A′ iff gfp(A∗, t) = A′
∗.

2. Subtyping(A, t) = fail iff gfp(A∗, t) is undefined.

Proof. By induction on the recursive calls of Subtyping. ♦

Theorem 4.10 (Correctness of Subtyping). For all ∆ ∈ D, and τ, σ ∈ T ,

Subtyping(∅, (∆, τ, σ)) = A iff ∆ ` τ ≤ σ

Proof. It follows directly from Lemmas 4.8 and 4.9. ♦

To summarize, we conclude that the type system defined in section 3 is
decidable and that our typing and subtyping algorithms are sound and complete.

5 Composition of classes

We have presented a language that treats classes as first class values but that
lacks class composition operations, so that no new class values can be actually
created at runtime. In this section, we discuss an interesting and possible ex-
tension of this object language so to include class manipulation mechanisms,

(
π = [X ′

i ← γi
i∈1..n′] π′ = [X ′′

i ← γ′i
i∈1..n′′]

I = {mi(
�
σ π) : τiπ

i∈I−J , mi(
�
σ′ π′) : τ ′iπ

′ i∈J })

)
∆ ` e1 : Class[X ′

i ≤ δ′i
i∈1..n′] {mi(

�
σi) : τi

i∈I} ∆ ` γi ≤ δ′i ∀i∈1..n′

∆ ` e2 : Class[X ′′
i ≤ δ′′i

i∈1..n′′] {mi(
�
σ′i) : τ ′i

i∈J } ∆ ` γ′i ≤ δ′′i ∀i∈1..n′′

∆ ` mix[Xi ≤ δi
i∈1..n](e1[γi

i∈1..n′] / e2[γ′i
i∈1..n′′]) : Class[Xi ≤ δi

i∈1..n] I(
π = [s←s(mi↔m′

i
i∈I∩J)] (m′

i fresh) π′ = [X ′
i ← γi

i∈1..n′][X ′′
i ← γ′i

i∈1..n′′]

v = {mi(
�
σi) : τi = eiπ

i∈I−J , mi(
�
σ′i) : τ ′i = e′i

i∈J , m′
i(

�
σi) : τi = eiπ

i∈I∩J }

)
e1 ⇓ class[X ′

i ≤ δ′i
i∈1..n′](s) {mi(

�
σi) : τi = ei

i∈I}

e2 ⇓ class[X ′′
i ≤ δ′′i

i∈1..n′′](s) {mi(
�
σ′i) : τ ′i = e′i

i∈J }
mix[Xi ≤ δi

i∈1..n](e1[γi
i∈1..n′] / e2[γ′i

i∈1..n′′]) ⇓ class[Xi ≤ δi
i∈1..n](s) vπ′

e ⇓ v

e(m↔m′) ⇓ v(m↔ m′)

∆ ` e : τ

∆ ` e(m↔m′) : τ(m↔ m′)

Fig. 8. Typing and evaluation for mix.

similar to inheritance or mixin application. As an alternative, we propose a gen-
eral mechanism of class composition which combines two classes without any of
them having to be developed with extension in mind. The composition mecha-
nism is expressed as follows:

mix[Xi ≤ δi
i∈1..n](e1[γi

i∈1..n′] / e2[γ′i
i∈1..n′′])

It takes two class values, e1 and e2, and produces a new class value, param-
eterized by a fresh set of type parameters, containing the methods in e1 and e2

and where name clashes are resolved in favor of e2. This is apparent in the rules
in Fig. 8 which must be added to the type and evaluation systems to extend the
initial language. Notice that for a mix to be well typed e1 and e2 must denote
class values, and that the arguments γi

i∈1..n′ and γ′i
i∈1..n′′ must be compatible

with the bounds of each class value.
It is well known that extending a class by simply replacing the methods of one

class with methods of another easily generates type inconsistencies (e.g. see [1,6]).
To avoid this, we maintain the local coherence of the subsumed class, which in
this case is e1, by means of an explicit permutation of method names, e(m↔m′).
This corresponds to the run-time permutation of method names between m and
m′ and τ(m↔ m′) has the same meaning but for type expressions. The typing
and evaluation rules for this expression are also depicted in 8.

So, whenever s, now replaced by s(mi↔m′
i

i∈I∩J), is evaluated in the body of
a method of e1, the methods in s are switched back to the subsumed methods
of e1 that were hidden under a different name. The evaluation of such methods
and possibly of other methods using the self reference passed by a method of e1

is type preserving, and thus the core language extended with mix can be shown
to enjoy a subject reduction property [20].

6 Related work and concluding remarks

It is known that the type system of F≤ is not decidable [12,16] and that its
extension with recursive types is non-conservative [11]. Simpler versions were
proposed but even so, not free from problems: system F>

≤ , proposed by Castagna
and Pierce, is decidable revealed to lack the minimal typing property [4] and the
approach to subtyping in Kernel Fun extended with recursive types by Colazzo
and Ghelli [5] results in a fairly complex algorithm; it uses a labeling mechanism
to identify cycles in derivations and stop the unfolding process. The authors show
that the use of renaming of type variables results in an divergent algorithm
and that this labeling technique is sound. However, the algorithm only stops
unfolding a given pair of types the third time it occurs. The reasons for this fact
are far from intuitive. On the contrary, our approach and algorithm are a natural
extension of well known techniques for first-order types. Alan Jeffrey defines
in [14] a notion of simulation for higher order types using a symbolic labeled
transition systems, and uses it to define a (non decidable) subtyping relation
in µF≤, there is then some connection between his approach and the general
coinductive techniques we have presented here. An efficient algorithm to unify
two recursive second-order types was proposed by Gauthier and Pottier in [10].
It relies on an encoding of second-order type expressions into first-order trees,
and on the application of standard first-order unification algorithms for infinite
trees. We have no perspective on how this may be adapted to the subtyping
problem.

On the other hand, we present a subtyping algorithm for second-order sys-
tems with equirecursive types which is an uniform extension of existing work
on first-order equirecursive types by Amadio and Cardelli [2], Brandt and Hen-
glein [3]. In particular, we build on the coinductive presentations of first-order
type systems with recursive types of Gapeyev, Levin, and Pierce [9,17]. Our
treatment of reachability modulo a similarity relation that includes equivariance
(Lemma 3.5) is inspired on notions by Gabbay and Pitts [8]. Our definition and
correctness proof is, from our point of view, much simpler than the ones of the
algorithms referred above. Our proofs are modular, in the sense that they can
be applied to any polymorphic type system with recursive types that satisfies
a certain finite reachability condition up to a notion of similarity that includes
equivariance. In particular, they suggest an interesting decidable fragment of
F≤, defined by restricting the subtype rule for ∀X ≤ τ.σ types to just compare
bounds with the same free type variables, we leave this topic for future work.

Given these results, we develop a class based language and discuss a possible
extension of it that allows combination of classes with a mixin like construct,
while avoiding the unsoundness problems of subsumption and class extension
often found in object calculi.

We would like to thank Dario Colazzo and the reviewers for their com-
ments on a preliminary version of this work. This work is partially supported by
FCT/MCES.

References

1. Martin Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.
2. Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Trans-

actions on Programming Languages and Systems, 15(4):575–631, 1993.
3. Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive type

equality and subtyping. In Roger Hindley, editor, Proc. 3d Int’l Conf. on Typed
Lambda Calculi and Applications (TLCA), Nancy, France, April 2–4, 1997, volume
1210, pages 63–81. Springer-Verlag, 1997.

4. Giuseppe Castagna and Benjamin Pierce. Corrigendum: Decidable bounded quan-
tification. In Proceedings of the Twenty-Second ACM Symposium on Principles of
Programming Languages (POPL), Portland, Oregon. ACM, January 1995.

5. Dario Colazzo and Giorgio Ghelli. Subtyping recursive types in Kernel Fun. In
14th Symp. on Logic in Computer Science (LICS’99), pages 137–146, 1999.

6. William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is not sub-
typing. In C. A. Gunter and J. C. Mitchell, editors, Theoretical Aspects of Object-
Oriented Programming: Types, Semantics, and Language Design, pages 497–518.
The MIT Press, Cambridge, MA, 1994.

7. Pierre-Louis Curien and Giorgio Ghelli. Coherence of subsumption, minimum typ-
ing and type-checking in F≤. In Theoretical aspects of object-oriented programming:
types, semantics, and language design, pages 247–292. MIT Press, 1994.

8. M. Gabbay and A. Pitts. A New Approach to Abstract Syntax with Variable
Binding. Formal Aspects of Computing, 13(3–5):341–363, 2002.

9. Vladimir Gapeyev, Michael Levin, and Benjamin Pierce. Recursive subtyping re-
vealed. In Proc. of the Intl. Conference on Functional Programming (ICFP), 2000.

10. Nadji Gauthier and François Pottier. Numbering matters: First-order canonical
forms for second-order recursive types. In Proc. of the 2004 ACM SIGPLAN Intl.
Conference on Functional Programming (ICFP’04), pages 150–161, 2004.

11. Giorgio Ghelli. Recursive types are not conservative over F≤. In M. Bezem and
J. F. Groote, editors, Typed Lambda Calculus and Applications, volume 664 of
Lecture Notes in Computer Science. Springer-Verlag, March 1993.

12. Giorgio Ghelli. Divergence of F≤ type checking. Theoretical Computer Science,
139(1-2):131–162, 1995.

13. Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A
minimal core calculus for Java and GJ. In Loren Meissner, editor, Proc. of the 1999
ACM SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages &
Applications (OOPSLA‘99), volume 34(10), pages 132–146, N. Y., 1999.

14. Alan Jeffrey. A symbolic labelled transition system for coinductive subtyping of
Fµ≤. In 16th Annual IEEE Symposium on Logic in Computer Science, June 2001.

15. Betti Venneri Lorenzo Bettini, Viviana Bono. Subtyping mobile classes and mixins.
In FOOL 10, 2003.

16. Benjamin C. Pierce. Bounded quantification is undecidable. In C. A. Gunter and
J. C. Mitchell, editors, Theoretical Aspects of Object-Oriented Programming: Types,
Semantics, and Language Design, pages 427–459. MIT Press, 1994.

17. Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002.
18. João Costa Seco and Lúıs Caires. A basic model of typed components. In Proc. of

the European Conf. on Object-Oriented Programming (ECOOP), 2000.
19. João Costa Seco and Lúıs Caires. The parametric component calculus. Technical

Report UNL-DI-7-2002, FCT-UNL, 2002.
20. João Costa Seco and Lúıs Caires. Subtyping first class polymorphic components.

Technical Report UNL-DI-1-2005, FCT-UNL, 2004.

	Subtyping First-Class Polymorphic Components

