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Abstract. This paper reports on a novel technique for literature indexing and searching 
in a mechanized library system. The notion of relevance is taken as the key concept in the 
theory of information retrieval and a comparative concept of relevance is explicated in 
terms of the theory of probability. The resulting technique called "Probabilistie Indexing," 
allows a computing machine, given a request for information, to make a statistical inference 
and derive a number (called the "relevance number") for each document, which is a measure 
of the probability that  the document will satisfy the given request. The result of a search 
is an ordered list of those documents which satisfy the request ranked according to their 
probable relevance. 

The paper goes on to show that whereas in a conventional library system the cross- 
referencing ("see" and "see also") is based solely on the "semantical closeness" between 
index terms, statistical measures of closeness between index terms can be defined and 
computed. Thus, given an arbitrary request consisting of one (or many) index term(s), a 
machine can elaborate on it to increase the probability of selecting relevant documents 
that would not otherwise have been selected. 

Finally, the paper suggests an interpretation of the whole library problem as one where 
the request is considered as a clue on the basis of which the library system makes a conca- 
tenated statistical inference in order to provide as an output an ordered list of those docu- 
ments which most probably satisfy the information needs of the user. 

1. Introduction 

One of t he  really r emarkab le  character is t ics  of h u m a n  beings is' thei r  abi l i ty  
to  c o m m u n i c a t e  wi th  and  opera te  on in fo rma t ion  fo rmula t ed  in ord inary  lan-  
guage. We somehow are able to  de t e rmine  the  mean ings  of words  and  sentences  
so as to  m a k e  j u d g m e n t s  a b o u t  sameness  of meaning ,  r edundancy ,  inconsis tency,  
relevance,  etc., in spi te  of t he  fact  t h a t  o rd ina ry  language  is ex t remely  complex 
and  f r augh t  wi th  vagueness  and  ambigu i ty .  Since the re  are  no  s tr ict  rules which  
prescribe how words  are to  be p u t  t oge the r  to  convey  var ious  k inds  and  shades  
of meanings ,  it  is difficult indeed  to  t h i n k  of us ing mach ines  to  pe r fo rm the  
following kinds  of opera t ions  on o rd ina ry  language:  a u t o m a t i c  analysis  to  de tec t  
and  remove  r e d u n d a n t  in format ion ,  a u t o m a t i c  abs t rac t ing  of re levan t  informa-  
t ion,  au tom a t i c  verif icat ion of i n fo rma t ion  (i.e., g iven s o m e  i t ems  of da ta ,  
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deciding whether or not they are inconsistent with any other data already in 
storage), automatic deduction (i.e., logical derivation), automatic correlation 
of data so as to establish trends and deviations from trends, and so on. Yet, if 
the capabilities of digital computers are to be exploited to the fullest extent, we 
would hope that someday they can be programmed to operate on ordinary lan- 
guage on the basis of its meaning (content). I t  appears that  as a first step in the 
direction of the automatic processing of ordinary language, as typified by the 
above examples, the problems of information identification and retrieval must 
be met and dealt with successfully. We therefore turn our attention to the prob- 
lems of mechanizing a library. 

There are a number of obvious difficulties associated with the so-called "library 
problem" (i.e., the problem of information search and retrieval). The one usually 
cited relates to the fact that documentary data are being generated at an alarm- 
ing rate (the growth rate is exponential---doubling every 12 years for some 
libraries), and consequently considerations of volume alone make the problem 
appear frightening. However, the heart  of the problem does not concern size, 
but rather it concerns meaning. That is to say, there have been a number of 
"hardware" solutions to the problem of library size (e.g., use of microfilm, micro- 
cards, minicards, magnacards, etc.), but the major difficulties associated with 
the library problem remain, namely, the identification of content, the problem 
of determining which of two items of data is "closer" in meaning to a third item, 
the problem of determining whether or not (or to what degree) some document 
is relevant to a given request, etc. 

The jumping-off point for our:approach to automatic information retrieval is 
the recognition that the core of the problem is that  of adequately identifying the 
information content of documentary data. In the discussion that follows we 
introduce arithmetic (as opposed to logic alone) into the problem of indexing 
and thereby pave the way for the use of mathematical operations so as to com- 
pute a number, called the relevance number, which is a measure of the prob- 
able relevance of a document for a requestor. Thus, the fundamental notion 
which acts as a wedge to drive an opening into the basic problem of informa- 
tion retrieval is that of the relevance number, which provides a means of 
ran]~ing documents according to their probable relevance. However, the solution 
to the problem of information retrieval involves more than ranking by rele- 
vance it involves the proper selection of those documents which are to be 
ranked. In order to get at this "selection" problem, it is necessary to estab- 
lish various measures of closeness of meaning, and an approach to this seman- 
tical problem is via statistics. We define various measures of closeness between 
documents and between requests for information so that given an arbitrary 
request a machine can automatically elaborate upon a search in order to re- 
trieve relevant documents which would not otherwise have been selected. 

We divide the paper into three parts: (a) a discussion of the conventional 
approach to the library problem, (b) an exposition of the solution given by 
Probabilistic Indexing, (c) a discussion of some preliminary experiments to test 
these new techniques and procedures. 
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2. Conventional Approach to an Automatic Retrieval System 

2.1. The Role of Indexes. Because, at least for the immediate future, no machine 
can actually read a document and decide whether or not its subject matter  
relates to some given request subject, it is necessary to use some intermediate 
identifying tags, namely, an indexing system. An index to a document acts 
as a tag by means of which the information content of the document in question 
may be identified. The index may be a single term or a set of terms which to- 
gether tag or identify the content of each document. The terms which constitute 
the allowable vocabulary for indexing documents in a library form the common 
language which bridges the gap between the information in the documents and 
the information requirements of the library users. 

In principle, an indexer reads an incoming document, selects one or several of 
the index terms from the "library vocabulary," and then coordinates the selected 
terms with the given document (or its accession number). Thus, the assignment 
of terms to each document is a go or no-go affair--for each term either it applies 
to the document in question or it does not. Furthermore, the processes of indexing 
information and that  of formulating a request for information are symmetrical 
in the sense that,  just as the subject content of a document is identified by co- 
ordinating to it  a set of index terms, so also the subject content of a request 
must be identified by coordinating to i t  a set of index terms. Thus, the user who 
has a particular information need identifies this need in terms of a library request 
consisting of one or several index terms or logical combinations thereof. 

2.2. The Mechanization. Given a set of tags :(index'terms) which identify the 
content of each document and a set of tags which describe a request for informa- 
tion, the problem of automatic searching resolves itself to tha t  of searching for 
and matching tags or combinations thereof. Once a set of index terms has been 
assigned to each document in the library, this information can be encoded in 
digital form, put on a suitable machine medium, and searched automatically. In 
the past, literature searching has been done automatically on punched cards 
using the IBM sorter, on magnetic tape using an electronic computer such 
as the IBM 709, on photographic film as a continuous strip such as in the 
case of the Rapid Selector, or in discrete records on photographic film as, for 
example, in the Minicard system. In each case a machine searches and retrieves 
(either copies of the document, abstracts, or a list of accession numbers) by 
matching document index terms with the terms and logic of the given request. 

2.3. The Notion of Semantic Noise. The correspondence between the informa- 
tion content of a document and its set of indexes is not exact because it is ex- 
tremely d ~ c u l t  to specify precisely the subject content of a document by 
means of one or several index words. If we consider the set of all index terms on 
the one hand and the class of subjects that  they denote on the other hand, then 
we see that  there is no strict one-to-one correspondence between the two. I t  
turns out that  given any term there are many possible subjects that  it could de- 
note (to a greater or lesser extent), and, conversely, any particular subject of 
knowledge (whether broad or narrow) usually can be denoted by a number of 
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different terms. This situation may be characterized by saying that  there is 
"semantic noise" in the index terms. Just as the correspondence between the 
i~ormat ion content of a document and its set of indexes is not exact, so also the 
correspondence between a user's request, as formulated in terms of one or many 
index words, and his real need (intention) is not exact. Thus there is semantic 
noise in both the document indexes and in the requests for information. 

One of the reasons tha t  the index terms are noisy is due to the fact that  the 
meanings of these terms are a function of their setting. That  is to say, the mean: 
ing of a term in isolation is often quite different when it  appears in an environ- 
ment (sentence, paragraph, etc.) of other words. The grammatical type, position 
and frequency of other words help to clarify and specify the meanings of a given 
term. Furthermore, individual word meanings vary from person to person be- 
cause, to a large degree, the meanings of the words are a matter  of individual 
experience. This is all to say tha t  when words are isolated and used as tags to 
index documents it is difficult to pin down their meanings, and consequently it is 
difficult to use them as such to accurately index documents or to accurately 
specify a request. 

2.4. Conventional Stopgaps. Many workers in the field of library science have 
attempted to reduce the semantic noise in indexing by developing specialized 
indexing systems for different kinds of libraries. An indexing system tailored to a 
particular library would be less noisy than would be the case other~se.  (In a 
sense, to tailor an index system to a specific library is to apply the principle of 
an ideogl0ssary, as it is used in machine language translation, to remove semantic 
ambiguity.) In spite of careful work in the developing of a "best" set of tags for 
a particular library, the problem of semantic noise and its consequences remain, 
albeit, to a lesser extent. 

Another at tempt to remove the semantic noise in request formulations has to 
do with the use of logical combinations of index terms. That  is to say, if two or 
more index terms are joined conjunctively, it helps to narrow or more nearly 
specify a subject. On the other hand, the same set of terms connected dis- 
junctively broadens the scope of a request. 1 Thus, using logical combinations of 
index terms, one would hope to either avoid the retrieval of irrelevant material 
or avoid missing relevant material. However, although a request-using a set of 
index terms joined conjunctively does decrease the probability of obtaining ir- 
relevant material, it also increases the probability of missing relevant material. 
The converse holds for a request consisting of a disjunction of index terms. This 
difficulty in the conventional approach is inherent in its go or no-go nature. 

The fact that  conventional searching consists in matching noisy tags implies 
that  the result of a search provides documents which are irrelevant to the real 
needs of the requestor, and, even worse, some of the really relevant documents 
are not retrieved. Thus, in spite of specialized indexing systems and in spite of the 

1 We use the words " c o n j u n c t i o n "  an d  "d i s junc t ion"  to denote  the logical connect ives 
" a n d "  and "or ."  This  usage is cont inued when classes, ins tead of proposit ions,  are under  
discussion (as is the case for a possible in t e rp re t a t ion  of the index terms ment ioned  above),  
a l though in this case " in t e r sec t ion"  and " u n i o n "  are more  appropr ia te .  
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use of logical combinations of index terms, the major problem is still that of 
properly identifying the subject content of both documents and requests. The 
problem of accurately representing the information content of a document by 
means of some kind of tags in such a way that a machine can operate on these 
tags in order to search for documents with the same meaning, related meanings, 
relevant meanings, etc., is still unsolved. 

In the following section we shall present the basic notions of the technique 
of Probabilistic Indexing and show that  this approach to the library problem 
improves retrieval effectiveness both by reducing the probability of obtaining 
irrelevant documents and by increasing the probability of selecting relevant 
documents. Furthermore, the technique of Probabilistic Indexing provides as the 
result of a search an ordered list of those documents which satisfy the request, 
ranked according to relevance. 

3. Derivation of the Relevance Number 

3.1. Initial Remarks. To say that index tags are noisy is to say that there is an 
uncertainty about the relationship between the terms and the subjects denoted by 
the terms. That is to say, given a docmnent indexed with its assigned term (or 
terms), there is only a probability that if a user is interested in the subject (or 
subjects) designated by the tag he will find that the document in question is 
relevant. Conventional indexing consists in having an indexer decide on a yes-no 
basis whether or not a given term applies for a particular document. Either a 
tag is applicable or it is not--there is no middle ground. However, since there is 
an uncertainty associated with the tags, it is much more reasonable and realistic 
to make this judgment on a probabflistic basis, i.e., to assert that a given tag 
may hold with a certain degree or weight. Given the ability to weight index 
terms, one can characterize more precisely the information content of a docu- 
ment. The indexer may wish to assign a low weight such as 0.1 or 0.2 to a term, 
rather than to say that the term does not hold for the document. Conversely, 
the indexer may wish to assign a weight of 0.8 or 0.9 to a term, rather than to 
say that it definitely holds for a document. Thus, given weighted indexing, it is 
possible to more accurately characterize the information content of a document. 
The notion of weighting the index terms that are assigned to documents and 
using these weights to compute relevance numbers is basic to the technique 
which we call Probabilistic Indexing. 

3.2. Notions of Relevance and Amount of Information. One of our basic aims is 
to rank documents according to their relevance, given a library request for 
information. The problem then is to take relevance, which is a primitive notion, 
and explicate i tmin the sense of making the concept precise--hopefully, to give 
a quantitative explication. If we cannot have a quantitative measure for rele- 
vance, at least we would like a comparative measure so that  ranking of docu- 
ments by relevance will be possible. In some sense the problem of explicating 
the notion of relevance (which is the basic concept in a theory of information 
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retrieval) is similar to that of explicating the notion of amount of information 
(which is the basic concept of communication theory). In Shannon's work on 
information theory we find that  one notion of amount of information has been 
exphcated i n  terms of probabilities so that  one can estabhsh a quantitative 
measure of the amount of information in a message? We approach the notion of 
relevance also in a probabilistic sense. 

3.3. First Step. By "P(A,B)" we mean the probability of an event of class B 
occurring with reference to an event of class A. We shall be interested in the 
following classes of events: 

(a) D~ : obtaining the i th document and finding it relevant. 
(b) I~: requesting information on the field of interest (subject, area of 

knowledge) designated by the j th  index term I~. 
(c) A: requesting information from the library. 

Thus 
P(A.I~,D~) = the probability that  if a library user requests information on 

Is ,  he will be satisfied with document D~. 
As the first step in the explication of relevance we assert: 
I f  P(A.I~,D1) > P(A.I~,D2), then D1 is more relevant than D2 . 

3 . 4 N e x t  Step. In the elementary calculus of probability, one can immediately 
derive by the inverse inference schema (closely associated with Bayes' Theorem): 

P(A.  I~,D,) = P(A,D,) .P(A.D,,I~) " (1) 
P(A, I~) 

For any given request Is ,  P(A,I~) is a constant, and consequently we may re- 
write (1) as follows: 

P(A.Is,D,) ,~ P(A,D,). P(A.D,,Ij) (2) 

where P(A,D~) is the a priori probability of document D~, and P(A .DJ j )  is the 
probability that if a user wants information of the kind contained in document 
D~ he will formulate a request by using I~. Thus, if we can obtain the values 
called for in the right-hand side of (2), then we can compute a quantity propor- 
tional to the value P(A.Is,D~). We call this quantity the relevance number of the 
i th document with respect to the given request. 

Immediately the problem of estimating these values confronts us. Consider 
first the estimate of P(A.D~,Ij). In principle, one could obtain an estimate of this 
probability via a statistical sampling process, but such a procedure would of 
course be extremely impractical, and it turns out that  it is unnecessary. When an 
individual indexes a document (i.e., when he decides which terms to use to tag a 
document) he intuitively estimates this probability--in the conventional case 
automatically converting the probabilities to either 0 or 1. We now assert that 

G. E. SHANNON AND W. WEAVER, The Mathematical Theory of Communication, The Uni- 
versity of Illinois Press, Urbana, Illinois (1949). 
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the weight of a tag for a document, i.e., the degree with which the tag holds for 
a document, when properly scaled, can be interpreted as an estimate of 
P(A.DJs). Thus we have from (1) and (2) 

P(A.I~,D~) = as. P(A,D,) "a,~i , (3) 

where "co~s" denotes the degree to which the j-th index term applies to the i-th 
document, P(A,D~) is the a priori probability of document D~, and a~. is the 
scaling factor times the reciprocal of P(A,Ij). If we interpret the a priori proba- 
bility so that it corresponds to statistics on document usage, i.e., so that 
P(A,D~) is the quotient of the number of uses of document D~ by the total 
number of document uses, then it is easy to show on the basis of (1) and (3) that 
~s and P(A .Dj j )  are related by 

a,~ -- f~s. P(A.D ,,I]), (4) 

where 

= P ( A ,  (5) 
P(A, 

In other words, in (4), Bi plays the role of an error factor in the estimation of 
P(A.D~,Ii) by the value c0~s ; (5) tells us how to estimate, in turn, the value of 
this error factor by using all the weights for a given tag as wen as the statistical 
data P(A,Is). An improved estimate, therefore, is given by redefining the weight 
of a tag as follows: 

w~s = ~s/Bs = improved estimate of P(A.Dj~). (6) 

We call this value "the modified weight." The reader is referred to the Appendix 
for the details on the extension of the weight of a single index term to the weight 
of any Boolean function of index terms. 

To summarize, library statistics provide us with P(A,D~), the weights co- 
ordinated with the index terms, when properly scaled, give us estimates of 
P(A.DJs), and consequently we can compute the value of the relevance number 
P(A.Ij,D~) by means of which documents can be ranked according to their 
probable relevance to the requestor. 

3.5. Question Concerning Estimation. At this point one might raise the following 
question. If the indexer is required to estimate P(A.DJs),  why not have him 
estimate P(A.Ii,D~) directly, since this is the goal of the computations? Actually 
this is not quite correct since the general goal of the computations is the determi- 
nation of P(A.R,D~), where R is any Boolean function of the index terms, 
Clearly the indexer cannot make a single estimate of P(A.R,D~) since the value 
depends on the particular request R and hence there would have to be as many 
estimates of P(A.R,D~) as there would be R's. In order to avoid this situation, it 
would be necessary to transform P(A.R,D~) so that R goes from the reference 
class to the attribute class. Once we do this the problem is to compute P(A.D~,R) 
given all of the values of P(A .Dj j )  as j varies over the range of tags that are 
contained in R. Thus, it turns out that P(A.R,D~) cannot be estimated directly-- 
we must obtain it from P(A.D~,R), which in turn must be computed from 
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P(A.D~,I~). 8 That  is to say, we need the value of P(A.DJ~)  anyway, and any 
other estimates are superfluous. 4 

4. Automatic Elaboration of the Selection Process 

4.1. Initial Remarks. The technique of Probabilistic Indexing, as we have seen, 
allows a computing machine, given a request for information, to derive a rele- 
vance nnmber for each document. This relevance number is a measure of the 
document's relevance. The result of a search is an ordered list of those documents  
which satisfy the request, ranked according to their relevance numbers. We 
would prefer to have a technique which not only decides which of a given class of 
documents is most probably relevant, next most probably relevant, etc., but 
which also decides whether the class itself of retrieved documents is adequate 
(at least in the sense of determining whether or not it excludes some documents 
which are relevant to the user's information needs but are not computed as 
probably relevant due to inadequacies in the user's description of his information 
need). That is to say, if we consider the request as a clue which the user gives to 
the library to indicate the nature of his information needs, then we should raise 
the following question: Given a clue, how may it be used by the library system 
to generate a best class of documents (to be ranked subsequently by their rele- 
vance numbers)? Thus given the clue, how can w e elaborate upon it automatically 
in order to produce a best class of retrieved documents? Let us turn our attention 
to this problem. 

4.2. Search Strategies and the Notion of Closeness. A library request (a clue) 
is a Boolean function whose variables are index terms, each of which, in turn, 
selects a class of documents via a logical match. That  is to say, all of those docu- 
ments whose index terms are logically compatible with the logic and the tags of 
a request R constitute the class of retrieved documents C. Our goal is to extend 
the class C in the most probable "direction," and this can be done in two ways. 
One method involves the transforming of R into R', where R' in turn will select 
a class of documents C' which is larger than C and contains more relevant docu- 
ments. A second method does not modify R but rather uses the class C to define 
a new class C". A set of rules which prescribe how to go from a given request 
R to a class of retrieved documents is called a strategy~ A strategy, in turn, in- 
volves the use of several different techniques for measuring the "closeness" be- 
tween index terms and between documents. Before proceeding, let us introduce 
some further notations to make more precise what we have been saying. 

3 See Appendix. 
Even if every request were of the elementary form P(A.Ii, D~), it would be better to 

estimate P(A.Djj)  and compute P(A.I~,D~) rather than to estimate the latter directly. 
This second argument in favor of the estimation of P (A.Di,I~) over P (A .I~,D~) appears when 
we consider the consistency of the comparative values. The indexer looks at each document, 
then runs through the various possible index terms which apply. In general P(A.D~,Ii) will 
vary over a much larger range than P (A.Ii,D~) as j varies, and therefore it is easier psycho- 
logically for the indexer to rank correctly the values over the larger range. 
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We understand by "basic selection process" the rule which uses the request 
to select the class of documents whose tags are logically compatible with the logic 
and tags of the request, and we denote this basic selection process by the func- 
tional notation "f".  Thus f is the transfer function from inputs (requests) to 
output (class of retrieved documents) and we write 

f (R)  = C (7) 

where, again, R is the request and C is the class of retrieved documents. The 
problem is to enlarge C so as to increase the probability that  it will contain 
relevant documents and to decrease the probability that  it will contain irrelevant 
documents. We approach this problem in the following way: Suppose R'  is a 
request similar in meaning to R; then we can take as a possible modification of 
/ ,  say f ' ,  

f ' (R)  = f (R)  V f (R ' )  = C V C' (8) 

(where " V "  designates class union). This modification can be made precise 
if we are able to invent a closeness measure on the request space to measure 
similarity in meaning. Since we are not sure what "meaning" is and much less 
able to assign a numerical quanti ty to it, this is rather difficult; but  we shall 
show later that  statistics can provide such measures. For the present, suppose 
we actually do have such a measure; then we can generate a modified selection 
function f t by deflningf'(R) to be the union of all classesf(R')where the "close- 
ness" between R and R'  exceeds some specified number, say e. Symbolically, this 
is written 

f ' (R)  = !J f(R') .  (9) 
[Q(R, R') > ,] 

Analogously, if we have a "distance" function in the document spaee 6 which 
gives "distance" as a numerical measure of dissimilarity of information content, 
then a completely different modification f "  of f arises via 

f " (R)  = C (10) 

where C" consists of all documents whose distance from C = f (R)  is less than e. 
Thus, we see that  a machine strategy can elaborate upon the basic selection 

process in order to improve the search in one of two different ways. The first is 
to establish a measure for "closeness" in request space so as to formulate R', 
given R. The other way is to use the class of documents C, obtained by the initial 
request R, to define a new class C #. Both of these methods are discussed below. 

4.3. Notion of Index Space. Geometrically speaking, one may think of the set 
of n index terms which constitute the library catalog "vocabulary" as points in 
an n-dimensional space. The points in this space are not located at random, but 
rather, they have definite relationships with respect to one another, depending 
on the meanings of the terms. For example, the term "logic" would be much 

5 We use "d i s tance"  in document  space, "closeness"  in request  space. The reason is t ha t  
our measures in reques t  space have the nature  of "coefficients of associat ion" ra ther  than  
the properties of mathemat ica l  distance functions.  
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closer to "mathematics" than to "music." One always finds, when looking up 
index terms in the catalog of a conventional library, other terms listed under 
"see" and "see also." This cross-indexing ("see/see also") aspect of a library 
indicates some of the relationships that index terms have for one another; i.e., it 
indicates some of the relationships between points in index space. 

The numerical evaluation of relationships between index terms can be made 
explicit by formulating probabilistic weighting factors between them. Once 
numerical weighting factors are coordinated with the distances, the cross-indexing 
aspect of a library can be mechanized so that, given a request involving one 
(or many) index terms, a machine could compute other terms for which searches 
should be made. That is to say, a request places one at a point, or several points, 
in index space, and, once the "closeness" measures between points are arith- 
metized,a machine could determine which other points to go to in order to improve 
the request. Thus, the elaboration of a request on the basis of a probabflistic 
"association of ideas" could be executed automatically. 

4.4. Automatic Groping in Index Space. There are at least two different kinds 
of relationships that can exist between the points in index space, viz., semantical 
relationships and statistical relationships. The most elementary semantical rela- 
tionship is that of synonymity, but in addition to synonymity there are other 
semantical relationships such as "partially implied by" and "partially implies." 
Such relationships between terms are based strictly on the meanings of the terms 
in question--hence the word "semantical.'! Another class of relationships is 
statistical, i.e., those based on the relative frequency of occurrence of terms used 
as indexes. The distinction between semantical and statistical relationships may 
be clarified as follows: Whereas the semantical relationships are based solely 
on the meanings of the terms and hence independent of the "facts" described 
by those words, the statistical relationships between terms are based solely on 
the relative frequency with which they appear and hence are based on the nature 
of the facts described by the documents. Thus, although there is nothing about 
the meaning of the term "logic" which implies "switching theory," the nature of 
the facts (viz., that truth-functional logic is widely used for the analysis and 
synthesis of switching circuits) "causes" a statistical relationship. (Another ex- 
ample might concern the terms "information theory" and "Shannon "--assuming, 
of course, that proper names are used as index terms.) 

Once the various "connections" between the points of index space have been 
established, rules must be formulated which describe how one should move in the 
maze of connected points. We call such rules "heuristics." They are general 
guides for groping in the "maze" in the attempt to create an optimal output list 
of documents for any arbitrary request. The heuristics would enable a machine 
to decide, for a given set of request terms, which index terms to "see" and "see 
also," and how deep this search should be and when to stop, etc. Generally 
speaking, the heuristics would decide which index terms to look at next, on the 
basis of the semantical and statistical connections between terms, and the 
heuristics would decide when to stop looking, on the basis of the number of 
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documents that would be retrieved and the relevance numbers of those docu- 
ments. (Remember that  each point in index space defines a class of documents, 
viz., all of those documents which have been assigned the index terms in question 
with a nonzero weight.) Given this understanding of heuristics, we see that an 
over-all search strategy is made up of components, some of which are heuristics; 
i.e., the sequence of devices, rules, heuristics, etc., which lead from inputs (re- 
quests) to outputs (classes of retrieved documents) is the strategy. 

4.5. Three Measures of Closeness in Index Space. In order to clarify the notion 
of developing heuristics which would determine how a computer should "grope" 
in index space, consider the following example. Assume that we compute the 
frequency, N(Ij), with which each term is used to tag a document, and also that 
we compute the frequency, N(Ij.Ik), with which pairs of terms are assigned to 
documents. We can then compute the conditional probability P(Is,Ik) that if a 
term Ii  is assigned to a document then I~ also will be assigned: 

P(I~, I~) - N ( I i .  h )  (11) 
N(Ij) 

We do this for all pairs I~, Ik .  
Assume now that I / i s  the index term which has the highest conditional prob- 

ability given I i  ; i.e., I / i s  the index term for which P(Ii,I~) is a maximum. Then 
given a request, R = I~, for all documents tagged with I i ,  we form a new re- 
quest, R' = Ii X~ I / ,  which searches for all documents tagged with either Ii 
or I / .  Thus, the rule is now to consider R' instead of R. 

This procedure tells us which tags are closest (in one sense) to given ones, but 
we still have no measure of the "closeness" (hereafter written without quotes) 
and such a measure is needed as a part of the associated computation rule. That 
is to say, we elaborate upon R and obtain R ~ by searching for documents indexed 
under tags closely related to those in the original request, but clearly the relevance 
numbers that we derive for these additional documents should be weighted down 
somewhat in order to indicate that  they were obtained only from tags which are 
close to those in the original request. We measure the closeness as follows: 
Let pj = P(Ij,[/)  and normalize p~ over the set of tags used in the request so 

t h a t  
PJ 

Now, instead of using w~(I/) (the weight assigned to I / f o r  the ith document) 
in the search computation, we replace it by #j. w~(I/). The extended search that 
we have just described is an elementary form of only one of a class of possible 
heuristics based on the statistical relationships between tags. 

A second elementary heuristic which looks even more promising is called the 
"inverse conditional" search, and it involves measuring closeness of tags to Is in 
terms of the conditional probability from Ik to I~ (instead of conversely as de- 
scribed above). That is to say, we compute the P(Ik,Ij) which is maximum 
as Ik varies, and this provides the tag which most strongly implies the given tag 
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I i .  Thus, instead of asking for that tag which is most strongly implied (statis- 
tically) by an arbitrary tag in the request, we ask for the tag which most 
strongly implies (statistically) the given tag. Using this method to determine 
the closeness of tags we establish a measure for the closeness by normalizing the 
probability as before. That is, define 

pj = P ( ' Is ,  Is), 
~ j -  PJ 

and, again, the corresponding computation rule is now ~'w~('Is), where 'Ij is 
the Ik which makes P(Ik,I~) a maximum for a given I~. 

Having discussed two possible measures of closeness, via., the conditional 
probability P(Ij,I~) and the inverse condition probability P(Ik,I~), we now con- 
sider a third statistical measure which appears to be the most promising of the 
three. This is one of several possible coe~cienls of association between predicates. 6 

The particular coefficient we have chosen arises in the following way. Consider 
the tags Is and Ik, and pa~ition the library by four classifications, viz., docu- 
ments indexed under both I] and I~, those indexed under Is but not I~, those 
indexed under Ik but not Is ,  and those not indexed under either. Letting "i~" 
denote the complement of the class I~, etc., these four classes are given by 
I~.I~, I i . ik ,  i j . Ik ,  i j .I~, respectively. The classification and the number of 
documents is shown most conveniently in a table: 

Is 

is 

h 

x = N( I j .h )  u = N( I i .h )  N(Ii)  

v = N ( L . h )  y = N ( i j . h )  N(is) 

N(h) N(h) n 

We have adjoined to the table the row and colllmn sums and n (the total 
number of documents). 

Now, using the notation of formula (11), we say that Is is statistically inde- 
pendent of Ik if 

P(I i ,h)  = P(Ik). (15) 

This can be shown to be equivalent to 

P(I j .h)  = P( I j ) .P (h ) ;  (16) 

so that rewriting in terms of frequencies we have an additional equivalence: 

N(I j .h )  = N(I~).N(Ik)/n. (17) 

e G. U. YULE, On measur ing  association between a t t r ibu tes ,  J. Royal ~tat. Sot., 75 (1912), 
• 579-642. 
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For any pair I s ,  Ik ,  
over its independence value; i.e., the quant i ty  

~(Ij ,h)  = g ( I j . h )  - N ( I j ) . N ( h ) / n .  

I t  can be shown that  this function ~ has the property 

8(I~,h) = ~(L,h)  = -~ ( i~ ,h )  = -~ (x , ,h ) ,  

(17) suggests tha t  we look at the excess of N(Ii .I~) 

(is) 

(19) 

and thus ~ is associated with the difference over independence values in all four 
classifications. Yule 7 lists some basic properties that  a coefficient of association 
between I j  and Ik should have. We call this coefficient "Q(Is,Ik)". (1) Q(I j ,h)  
should be zero whet~ ~(Ij.,h) = 0 and, moreover, Q(f j ,h)  should vary as ~(Ij ,h)  
for fixed n and fixed row and column totals; (2) the maximum of Q(Ij,I~) should 
occur when Is is contained in Ik (u = 0), or Ik is contained in I j  (v = 0) ,  or Is 
and Ik give the same class (u = v = 0); (3) the minimum of Q(Is,h) should occur 
when Ik is contained in i~ (x = 0), or .r~ is contained in I ,  (y = 0), or Is is the 
complement of Ik (x = y = 0); (4) it should have a simple range of values, say 
from - 1, to 1. A coefficient 8 tha t  has all of these properties is: 

Q(Is ,h)  = (xy - uv) / (xy  + uv), (20) 

where the intimate connection with ~ is indicated by the fact that  the nllmerator 
of Q is, in fact, n~. 

The generation of a heuristic now proceeds by the rules for the previous meas- 
ures. Given R = I s ,  we select the term I~ (different from Is) with the maximum 
coefficient Q(Ij,Ik). This value will be between 0 and 1, or no term will be se- 
lected. Then R is extended to 

R ' = I j V h ,  

and in the search Computation we multiply the weight wi(h)  by Q(I~,h). 
We now have the possibility of generating more elaborate heuristics. The 

heuristics just described can be called "one-deep." Applying the procedure again, 
we arrive at "two-deep" heuristics. At this second level, however, several possi- 
bilities arise. Having gone from Is to Is k / I k ,  we can now find the term most 
closely associated to Ik ,  say I~, thus obtaining (two-deep chain search): 

R" = V h V Iz. 

Alternately, we can choose the term of second highest association with Iy ,  say 
I ~ ,  thus obtaining (two-deep hub search) 

R" = I s V h V l , , .  

We also have the possibility of changing the measure of closeness for the 
second search, thus building as complex a search strategy as we wish. 

Loc. Cit. 
8 The coefficient recommended by Yule, loc. cit., is not Q, but Z = (v/xy - ~/uv)/(~/xy 
~/uv). The range of variation of both Q and Z is the same and since both lead to equiva- 

lent heuristics we have chosen Q for its computational simplicity. For refined work we might 
adopt Z. 
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4.6. Heuristics in the Document Space. Having shown how to generate heuristics 
by elaborating on the original requests, let us now look at the problem of im- 
plementing formula (10). We call such heuristics "extension heuristics"; i.e., 
we extend an initially retrieved class of documents by considerations concerning 
this class itselfuholding that this class gives clues as to the meaning of the 
original request. Now we would prefer not only to extend this class by measures 
of distance between documents but also introduce such measures into a "general- 
ized" relevance number computation. That is to say, we would like to combine 
heuristics in such a way that documents with associated ranking numbers are 
retrieved, not just classes of documents. We would also like to use the values 
w~(R) in the computation. 

First,  we note that the Pythagorean distance between two rows of the prob- 
abilistic matrix gives a measure of dissimilarity of information content (as well as 
dissimilarity of distribution of information) between documents corresponding to 
these rows. Call this distance, A(D~,Di). We can use this distance function to 
compute the'distance of any document from the class C of documents retrieved 
by the basic selection process. This is all the theory required to implement 
formula (10)2 

Next is the problem of defining the generalized relevance number. There are 
infinitely many possibilities here, and which is the "best" is still an open prob- 
lem. However, an extremely natural one arises as follows: We consider the values 
w~(R) as measures of closeness between R and the documents. To combine these 
values with A(D~,D~), we convert closeness to "distance" by some device such as 
considering the negative of the logarithm of w~(R). We define 

d(R,D~) = --log w,(R). (21) 

D~ will be retrieved by R ff and only ff d(R,D~) is finite; thus this characterizes 
the class of retrieved documents. Now take that document D~ in the class of 
retrieved documents such that A(D~,D~) is a minimum. 1° Then we take 

g(R,Dj) = -X/A~(D,,D~),+ log~w,(R) (22) 

as the measure of "distance" between R and Dj .~1 Note that if Dj is a retrieved 
document, then A(D~,Dj) is zero and 

g(R,D3) = - log ws(R). 

Furthermore, if D~ has not been retrieved (initially), 

g(R,D¢) > --log w~(R), 

where i is the accession number of the document nearest to Di .  Thus the ranking 
by the g-function will always put an adjoined document below its associated 

Another measure of dissimilari ty is to take,  not  the Pythagorean  distance, bu t  the sum 
of the absolute values of the differences between rows; i.e., ~ [ w~k - wi~ [ ; in fact,  several 
other measures of dissimilari ty appear wor thy  of s tudy.  Our discussion is perfect ly general, 
and the reader m a y  take A(D~,Di) as any  such measure. 

~0 If  D~ is no t  unique, choose the one in the minimal set wi th  the largest  w~(R). 
~ I t  may  be preferable to "we igh t "  each of the components A(D~,Di), log w~(R) in (22). 

Suitable values of these weights are to be determined by  experimentat ion.  
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document in the class C. We may now finish the computation by subtracting the 
logarithm of the a priori probability of a document from its g-value (analogous to 
multiplying wi(R) by P(A,Di) to obtain the relevance number). The final 
heuristic is then obtained by choosing a suitable cutoff point in the list of ad- 
joined documents---taking only those with generalized relevance numbers less 
than some specified value. 

4.7. Extension of the Request Language. I t  is obvious that the richer the re- 
quest language the more precise is the user's description of his information need. 
However, as the language becomes descriptively richer, the processing of re- 
trieval prescriptions becomes more complex because of the difficulties discussed 
in section 1. A rather simple extension of our request language does, however, 
present itself. This richer language also has the virtue of adaptability to the 
automatic procedure we envisage. That is, we permit the requestor to assign 
numerical weights to index terms according to how important a role he wishes 
them to play in the processing of his request. These request weights can be used 
to scale down the index term weights and/or to serve as control numbers in 
search strategies. 

4.8. Search Strategies. We have presented some of the heuristics that appear to 
have the best possibility of being useful components of a search strategy. We 
also have formulated some principles for a general approach to the problem of 
automatic elaboration of the selection process. Let us now illustrate these ideas 
by constructing an over-all search strategy. 

First we list the variables involved: 
1. Input 

a. The request R 
b. The request weights 

2. The Probabilistic Matrix [w~j] 
a. Dissimilarity measures between doc~lments (e.g., A-values) 
b. Significance measures for index terms (An index term applied to every 

document in the library will have no significance, while an index term 
applied to only one document will be highly significant. Thfls significance 
measures are related to the "extension number" for each term, i.e., to 
the number of documents tagged with the term--the smaller this num- 
ber, the greater the significance of the index term.) 

c. "Closeness" measures between index terms (e.g., Q-values, etc.) 
3. The a priori Probability Distribution 
4. Output (by means of the basic selection process, i.e., the logical match plus 

the inverse inference schema (1) with all of its ramifications and refinements) 
a .  The class of retrieved documents, C 
b. n, the number of documents in C 
c. Relevance numbers 

5. Control Numbers 
a. no, the maximum number of documents that we wish to retrieve 
b. Relevance number control; e.g., we may ignore documents with relevance 

number less than a specified value. 
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c. Generalized relevance number control. Similar to the above, but this 
applies to the computation described in section 4.6. 

d. Request weight control; i.e., we elaborate on index terms in the request 
if their request weight is higher than some specified value. 

e. Significance number of index term control; i.e., we give index terms of 
certain significance (defined in terms of their extensions) special at- 
tention. 

6. Operations 
a. Basic selection process; denote this by "f". 
b. Elaboration of the request by using "closeness" in the request space. 

Denote this by "H". Thus the operation H will transform the request R 
into a new request R'. More precisely H is the heuristic: elaborating the 
index terms in R with request weights greater than the request weight 
control number and/or index term significance greater than a specified 
value. 

c. Adjoining new documents 'to the class of retrieved documents by using 
"distance" .in the document space. Denote this by "h". Thus the oper- 
ation h will transform the class C of retrieved documents into a new 
class, say D. More precisely, h is the heuristic: trim C to docllments 
having relevance number greater than the control number and then 
annex to C all of the documents with generalized relevance number in a 
certain range: 

d. Merge: any merging operation between two classes; e.g., forming their 
intersection, their union, trimming by using relevance mlmber and then 
forming union, etc. 

Next we combine these to obtain the strategy shown in figure 1. This strategy 
is to be regarded as a particularly simple example, its goal to obtain a specified 
number of doc~lments (say no) having the best chance of satisfying the request. 
Thus, the decision to elaborate, centers on answering the question: Is the number 
of documents selected greater than or equal to no ? In figure 1 we refer to the 
heuristic H as simply "elaborate the request." The actual transfer function H 
involves using control m~mbers to limit the elaboration. Furthermore, these 
control numbers can be varied from one application of H to the next. Similarly 
we refer to the heuristic H as simply "extend the class," but we point out that 
this too involves control numbers. Finally, a word about the classes C, C', D, 

e t c .  These are actually lists of documents ranked by relevance numbers. Thus 
the instruction "trim C to no" means "cut off the list to the no documents with 
highest relevance numbers." The output of the system will be an ordered list of 
document accession numbers. 

5. Ezperimental Results 

5.1. An Initial Remark. The previous discussion (sections 3 and 4) indicates 
that there are two basic hypotheses that we wish to verify. The first hypothesis 
asserts that the relevance number which we compute for each document, given 
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FIG. 1. A search strategy based on heuristics of elaboration and extension 

a request, is, in fact, a measure of the probable relevance of the document. The 
second hypothesis asserts that the automatic elaboration of a search does, in ]act, 
produce relevant documents which are not retrieved by the original request. 
In order to empirically verify the above hypotheses and to gain further insights 
into these problems, we conducted some preliminary experiments, the results of 
which we now summarize. 

5.2. Experimental Setup. A collection of 110 articles from Science News Letter 21 
formed the experimental library. Our choice of articles from Science News Letter 
was dictated to a large extent by the fact that these articles are relatively brief, 
pithy, clearly written, interesting, and easy'to index by nonexperts. This made 
not only the indexing but the subsequent evaluation of retrieved documents a 
reasonably uncomplicated task. 

Since the methods of Probabilistic Indexing are applicable to any indexing 
system, we were not limited in our choice of a set of tags to be used. The only 
constraint was that the number of tags in the index list be comparable with the 
size of the library. Instead of "truncating" an existing index system and using its 
tags to index the documents, we adopt the following procedure: Each document 
was read and the key content-bearing words were selected and listed. There were 
a total of 577 different keywords (as they are called) in the list. These words were 
sorted into categories on the basis of their meanings. I t  turned out that the 
keywords could be sorted into 47 fairly well-defined categories. In many cases a 
particular keyword could belong to more than one category; consequently, there 
were 919 occurrences of the keywords in the 47 categories. The names of the 47 

z~ Published by Science Service, Inc., 1719 N Street, N.W., Washington, D. C. 
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categories became the tags that  constituted an index term list. These 47 index 
terms were then assigned to the documents by working backwards as follows: 
For each category we determined which keywords it contained and each docu- 
ment which contained the keyword in question was coordinated to the cor- 
responding category. That is to say, given the categories, the keywords in each 
category, and the documents associated with each of the keywords, we then were 
able to determine which documents should be coordinated with each category, 
and thus the documents were indexed by assigning to each the names of the cor- 
responding categories. Next, Probabilistic Indexing requires that we indicate the 
degree with which each tag holds for the document by assigning weights to the 
index terms. In order to assign the corresponding weight, each document was 
reread and then the indexer decided for each of the tags coordinated to each 

• document the degree with which it held. We had decided previously that an ade- 
quate set of .values for the weights was eighths, i.e., the values 1/8, . . .  , 8/8. 

5.3. Experimental Evaluation of the Measure of Relevanve. The problem which 
we now consider is: How well does our relevance number perform in ranking 
documents according to relevance? First, we must be careful to distinguish a 
user's information need N from his request formulation R. In a real library system 
N will never be known, only its description R in a rather artificial language, viz., 
a Boolean function whose variables are index terms. The library indexing system 
only relates documents to this request language, but we want to relate docu- 
ments to information need. A bridge between request language and information 
need is through statistical data relating hbrary users with the utility they derive 
from documents. Such statistical data is gi+en by" the a priori probability dis- 
tribution. This is shown by the theoretical development which states that the 
probability of a document satisfying the request, i.e:, the probabihty of a docu- 
ment giving the desired information item N, is proportional to the product of 
the a priori probability (P(A,D~)) and the value (w~(R)) of the extended weight 
function 13 for the request describing that need• In a sense then, this quantity is 
a measure of the degree of relevance of a document for the information need of 
the requestor. We say "in a sense" because of its unavoidable probabilistic nature. 
I t  is a probabilistic estimate of the relevance of a document for the information 
need of the requestor. With this qualification in mind we call this quantity 
"relevance to information need" or "probable relevance." We have: 

(relevance to information need),~,P(A,D~).w~(R) (23) 

We conjecture that our computational procedure for computing the values of the 
extended weight function is a measure of "relevance to request formulation." 
We will present the supporting data in subsequent sections, but in anticipation 
of this we state the result. The inverse inference theorem plus experimental data 
implies: 

(relevance to information need),~,P(A,Di) (24) 

• (relevance to request formulation) 

~3 See Appendix. 
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5.3.1. The result predicted by the inverse inference theorem. The content of the 
inverse inference theorem (formula (23)) can be illustrated by the following 
hypothetical experiment: Consider a document in the experimental library. 
I t  consists of many information items. Select one of these. Let a library user 
describe this item in the library request language. Let the library system now 
operate on the request, producing a collection of documents. (If the library index- 
ing system is adequate and the formulation of the request is accurate, the original 
document from which the information item was derived should appear in this 
retrieved collection.) We now ask the library user to prepare a list: 

L1 : the retrived documents ranked according to relevance to the informa- 
tion item 

We ask another person to prepare a second list: 
L~ : the retrieved documents ranked according to relevance to the request 

formulation 
To facilitate the processing of this comparative data, we ask that the documents 
be classified into five categories: I. Very Relevant; II .  Relevant; I II .  Somewhat 
Relevant; IV. Only Slightly Relevant; V. Irrelevant. 

Suppose now we simulate an a priori probability distribution and repeat the 
above experiment many times, each time selecting a document (from which to 
obtain an information item) by using the simulated distribution. For each request 
we obtain lists L~ and L~ and third list L~ : 

L3 : the retrieved documents ranked according to the magnitude 
P(A,D~) .w~(R) 

The inverse inference theorem now .tells us what we may expect to find, 
namely, that the list L3 will agree with list L1 in the long run. More precisely, for 
each instance of a particular request R there are many information items (or 
needs) that would be formulated by R, one for each requestor-who uses R. If 
for each list Li that originated with these requestors we computed the mean 
relevance evaluation for each document in L~ by using the category numbers I, 
II,  I I I ,  IV, V, then the resulting ranking should agree with list L3. 

5.3.2. The experimental design. The result predicted above is difficult to test 
empirically because it would require such a large sample, but an experiment 
designed on a much smaller scale can give us some valuable information. Since 
it is designed primarily to test both the basic selection process and the search 
strategy by elaborating the request as well as the computational schema for 
w~(R), a flat a priori probability distribution is assumed, i.e., all P(A,D~) are 
taken to be equal. The significance of this for the probable relevance concept is 
clear by looking at formula (23). 

(relevance to information need)~w~(R). (25) 

The interpretation of this by the phrase "in the long run" still holds, however. 
That is, we would not expect a single list of type L1 to compare with its cor- 
responding list of type L~ (this last being the ranking of documents by the values 
w~(R) in the case of equal P(A,D~)). This can be seen by noting that as the in- 
formation need becomes more specific the evaluations in a list of type L~ would 
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tend to split into the two classifications of Very Relevant or Irrelevant, but the 
ranking by the values of w~(R) always varies gradually. On the other hand, a 
list of type L2 might conceivably be expected to agree with the list La in a single 
case. This is the content of the experimental result stated in subsection 5.3.1. 

5.3.3. Hypothesis to be tested. We can formulate our goal as that  of attempting 
to confirm that  the value w~(R) that  we compute for each document selected by 
a given request is, in fact, a measure of relevance with respect to the request 
formulation. If our basic notion is correct,-it implies the following hypothesis 
which we call H1. 

Hi : if a document is relevant to a request, then a high number w~(R) will be 
derived for it. 

How to verify, confirm, test this hypothesis empirically? We did the following: 
A number of documents from our experimental library were selected at  random 
and for each document a question was formulated which could be answered by 
reading the corresponding document. Several persons who acted as tes t  subjects 
were briefed as to the nature of the library, the indexing system, etc., given a 
set of questions and asked to formulate a library request for information on the 
basis of which, hopefully, relevant documents would be retrieved (as as to answer 
the question). Given the library requests that  these test subjects formulated, we 
proceeded to search and select the accession numbers of those documents satis- 
fying the logic of the request. For each request a list of documents (i.e., a list of 
the corresponding accession numbers) was generated~ and the documents in the 
lists were ranked according to the number w~(R) tha t  was computed for each. 
We then examined each list to determine whether'or not ' the  so-called "answer" 
document was on the list, and if it  was we recorded its relative position on the 
list. We made the (natural) assumption tha t  the answer document (i.e., the docu- 
ment on the basis of which the question was formulated) would be relevant to the 
request. We then determined the number of times that  the correct answer docu- 
ment retrieved was associated with a high number we(R). The results can be sum- 
marized as follows: 40 library requests were made, and in 27 cases the answer 
document was retrieved. The number of documents on the output lists ranged 
from a minimum of one (in four cases) to a maximum of 41. In the majority of 
the 23 cases which contained more than a single document, the answer document 
appeared towards the top of the list. 

The results showed that  if the answer document was on a list, then it  was com- 
puted to have a high m~mber w~(R) in most of the cases. This evidence thus sup- 
ports the hypothesis H1, which asserts tha t  if a document is relevant a high 
value w~(R) will be computed for it. However, it was not always the case that  
the answer document was computed to have the highest number; i.e., there were 
documents other than the answer document for which a high number was de- 
rived. Thus, the question arises: "If  a document has a high number w~(R), is it 
relevant to the request?" This represents the converse of the original hypothesis 
H~. We shall form this as an hypothesis and call it  H~. 

H~ : if a document has a high number w~(R), then it is relevant to the cor- 
responding request. 
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If we can confirm H2 as well as H1 we will have, in fact, confirmed an hypothesis 
H* which is stronger than each. 

H*: the methods of Probabilistic Indexing will derive a high number wi(R) 
for an arbitrary document if and only if the document in question is 
relevant to the request. 

In order to determine if there were relevant documents other than the answer 
document on a list, we had to have evaluation data from the users themselves. 
We obtained a sample of this information from the test subjects in the following 
way: Four test subjects were given the actual documents corresponding to the 
retrieval lists, and they were asked to read each document and decide whether 
they considered it to be Very Relevant, Relevant, Somewhat Relevant, Only 
Slightly Relevant or Irrelevant. Thus for eack document retrieved they would 
judge to which of these five categories it belonged, and we in turn compared 
their judgments with the numbers w~(R) which we had computed for each docu- 
ment. A fifth person prepared control lists, i.e., evaluations for the same re- 
quests. 

In order to facilitate the comparison we standardized the values w~(R); i.e., 
we multiplied each value by the reciprocal of the highest value to force the 
numbers on each list to vary from 1 to 0,--0 being the value assigned to un- 
retrieved documents. We also divided the numbers into three categories: high 
(value equal to or greater than 0.75, medium (value between 0.75 and 0.25), and 
low (value equal to or less than 0.25). The results show quite definitely that if a 
document had a high number w}(R) that document was judged by the evaluator 
as Very Relevant or Relevant, in most cases. Conversely, if the number w~(R) 
was low, the evaluators rated the corresponding document as either Only Slightly 
Relevant or Irrelevant in most cases. 

Thus the data support the following: "If a document is relevant to a request, 
then there is a strong probability that the document will have a high number 
w~(R) computed for it." Furthermore, the data support the converse; viz., "If 
a document is computed to have a high number w~(R), there is a strong proba- 
bility that it is,relevant to the request." Thus the data support both H1 and H2, 
and taken jointly we see that the data do support and confirm the stronger 
hypothesis H*; viz., a high number w~(R) will be derived if and only if the docu- 
ment in question is relevant to the request. The details of the analysis show how 
the values w~(R) associated with these documents were distributed among the 
five categories. Computing the average value and the variance in each of the 
five categories, we obtained the following results. 

Document Rating Mean 

I .  Very Relevant 0.81 
II. Relevant 0.72 

III. Somewhat Relevant 0.54 
IV. Only Slightly Relevant 0.40 
V. Irrelevant 0.18 

Variance 

0.043 
0.053 
0.043 
0.110 
0.013 

Thus we see that the values of the numbers that we computed decrease, On the 
average, as we go from category I (Very Relevant) to category V (Irrelevant). 
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Although this result tends to confirm our hypotheses H1, H2, and H*, we 
prefer to look deeper into the situation. Let us call categories I or II  simply 
"Relevant" and category V, as before, "Irrelevant ."  Note that  Relevant and 
Irrelevant are not negations of each other since we have the intermediate cate- 
gories I I I  and IV consisting of documents neither totally Relevant nor Irrelevant. 
Now the hypotheses H1, H~, H* say two things: 

1. Relevant is equivalent to High. 
2. Irrelevant is equivalent to Low. 

Also these hypotheses imply two weaker statements: 
3. Relevant implies not-Low. 
4. Irrelevant implies not-High. 

The statistical confirmation of these statements can be accomplished by using 
the theory of the coefficient of association between predicates as outlined in 
section 2.6. That  is to say, each of the statements above calls for a study of a 
matrix of the kind defined on p. 227, Le., a sorting of the total class of retrieved 
documents according to the properties: 

1. Relevant and High 
2. Irrelevant and Low 
3. Relevant and Low 
4. Irrelevant and High ~ 

We would expect to find the Q-values in (1) and (2) to be near + 1  (maximum 
positive association), and the Q-values in (3) and )4) near - 1 (maximum negative 
association). These values are in fact: 

Q(Relevant, High) = +0.70 

Q(Irrelevant , Low) = +0.90 

Q(Relevant, Low) = -0 .92  

Q(Irrelevant, High) = - 1.00 

Since these values are fairly sensitive, we introduce a control on the study by 
assuming that  these predicates are statistically independent, then computing the 
probabilities of the Q-values having been as close or closer to the anticipated 
values by chance. For the four distributions we calculate these control proba- 
bilities to be 0.041, 0.006, 0.010, 0.059, respectively. 14 

5.4. Elaboration of the Selection Process. 
5.4.1. Initial remarks. The relevance number, as we have seen, provides a 

means of ranking documents according to their probable relevance. However, 
the solution to the problem of retrieval effectiveness involves more than ranking 
by relevance---it involves the proper selection of those documents which are to be 
ranked. Before we describe the results of the experiments tha t  were conducted to 
test our methods for improving the selection process, let us take one more look 
at the relevance number as a filter to eliminate low relevance documents. In 

14 Precisely, if Relevant and High are independent, then the probability of their Q-value 
having the property 0.70 _~ Q ~ 1.00 is 0.041 (similarly for the other classifications). 
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particular, let us consider the usefulness of the relevance number on unelaborated 
requests. 

In our experiments, 40 different library requests were made and a total of 379 
documents were retrieved (using the basic process of selecting those documents 
whose tags are logically compatible with the logic and tags of the request). Let us 
compare the results of probabilitsic searching and so-called "binary" or con- 
ventional searching. We can do this by assuming that all the tags which are 
assigned to documents with a nonzero weight are, in fact, assigned to the cor- 
responding documents in the conventional system. Thus when the basic selection 
process is the same (viz., the unelaborated logical matching process), the same 
documents will be retrieved in both cases; however, in the conventional system 
the retrieved documents are not ranked by any criteria of relevance. For each 
of the retrieval lists if n documents have been retrieved and the answer document 
is present, then using the conventional search technique the requestor must read, 
on the average, (n + 1)/2 documents. If the answer document is not present, 
then all of the retrieved documents must be read (in order to determine that no 
relevant information was retrieved). These considerations (inadequate though 
they be, since they presuppose that only an answer document produces a satis- 
factory search result) give us a criterion with which to compare the probabilistic 
and binary searches. This criterion is the total number of documents that would 
have to be read for all. 40 searches in order to find the answer documents. The 
results are as follows: 

Total Number of Documents Total Number of Documents that 
Type of Search Retrieved would have to be P,.ead 

B i n a r y  379 235 
P robab i l i s t i c  ~ 379 181 

Thus we see that a conventional system would require the user to read approxi- 
mately 30 percent more retrieved documents to obtain the same number of 
answer documents. These two different searches, each using the basic selection 
process, produced 27 answer documents out of a possible 40. (Note that the 
binary search as defined above is more extensive than might be expected in the 
sense that we have used all the tags with nonzero weights as binary tags. In 
an actual conventional system those tags with a low weight would probably not 
be coordinated with documents. That is to say, the use of weighted tags encour- 
ages more tags to be applied to a given document than would be the case if 
weights were not allowed. In a previous study where documents were indexed 
independently by two different indexers, one using probabilistic indexing, the 
other using binary indexing (i.e., either a tag holds for a document or it does 
not), it was found than 70 percent more answer documents were retrieved in the 
probabilistic search and only 32 percent more documents had to be read. 

The above comparison presupposes that  the user is looking for some specific in- 
formation (viz., the answer document) and that he knows when he has found it. 
I t  might be more realistic to make no such assumption; therefore, let us consider 
the following comparison. Given a request for information, a probabilistic search 

~ A fiat a pr ior i  p r o b a b i l i t y  d i s t r i b u t i o n  was used. 
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is made, but beforehand we tell the user to read only those documents Which have 
a computed relevance number greater than 0.5. That is to say, "before the facts" 
we give the requestors a guide to use in reading the 40 lists presented to them. 
It  turns out that of the 379 documents in the 40 lists there are only 225 which 
have a relevance number greater than 0.5. Furthermore, it turns out that if the 
users had adopted the strategy of reading only those retrieved documents which 
had relevance numbers greater than 0.5, then they would have found 25 of the 
27 answer documents. 18 Now compare this with the case of.conventional re- 
trieval where the users would have to read all of the 379 retrieved documents 
(since there is no way to distinguish between any two documents in the same list). 
In this latter case the users, of course, would find all 27 answer documents, but 
again at the "cost" of reading all 379 documents. Thus we see that a conventional 
system would require that users read 68.5 percent more documents than for the 
probabilistic system and they would gain only 7.4 percent in increased number 
of answer documents. 

These considerations indicate that  the relevance number can be used to filter 
out irrelevant material. That is to say, if we use the relevance number associated 
with documents to separate the relevant from the irrelevant, we are providing the 
user with a valuable tool. 

5.4.2. Automatic elaboration. We have described two methods for automatically 
elaborating upon the selection process which is involved in information searching. 
One method establishes a measure of distance in document space and the other 
method involves measures of closeness in request space. We shall not consider the 
former since as yet no experimental tests have been completed. For closeness in 
request space we have described three different statistical measures, viz., forward 
conditional probabilities, inverse conditional probabilities, and coefficients of 
association. We now raise the questions: "How good are the proposed statistical 
measures of closeness in elaborating upon a request?" and "Which of the three 
measures that have been discussed is the best?" Again, in the case of the auto- 
matically elaborated request we generate the new request R' given the initial 
request R by formulating the following type of disjunction for each tag in R: 

if R - - I t ,  then R ' - -  I~V(~) I~ '  

where a is the measure of closeness between I j  and I~ ~, and Ij '  is the term that  
gives maximum a with respect to I j .  We would like to be able to establish the 
following: 

(1) That the elaborated request catches relevant documents which are not 
selected by the original (unelaborated) request. 

(2) That, although the elaborated request catches more documents, the 
relevance mlmber can be used as a guide for eliminating the ones with low prob- 
able relevance. 

16 In  one of the  two  remaining  cases  the  re levance  number  of the answer  d o c u m e n t  was  
jus t  unc~er 0.5, and in the  o ther  case the  answer  d o c u m e n t  had a rather low number  but  it 
was third in a list of  on ly  three.  
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5.4.3. Some testing (evaluation) problems. Since we are really interested in the 
over-all retrieval effectiveness of the selection process, we would like to know how 
many of the relevant documents in the entire library have been caught by the 
elaborated requests. In order to determine this it would be necessary for us to 
present to the requestor the entire library so tha t  he, in turn, could judge which 
relevant documents, if any, were not retrieved. That  is to say, in order tha t  a 
user properly judge whether or not he did, in fact, receive all relevant doduments 
as the result of a search, he would have to be familiar with the entire contents 
of the library. Because of this difficulty, we see tha t  such an evaluation would be 
impractical to conduct. We must, therefore, lower our sights and look for a 
substitute type of evaluation. The substitute that  we have adopted consists in, 
again, using the answer documents as a measure of retrieval effectiveness. Tha t  is 
to say, since we know tha t  the answer documents are relevant, we can auto- 
matically elaborate upon those original requests which did not catch the answer 
document in order to see whether the elaborated request succeeds in retrieving it. 
Such a test would allow us to establish some measure of the retrieval effectiveness 
of the automatic elaboration procedures. We can compare the total  number of 
documents for the elaborated requests with what would be the case for the un- 
elaborated request. This we have done and the results are discussed in the follow- 
ing section. 

5.4.4. Results and their evaluation. Of the 40 requests that  were made, the 
answer document was retrieved in 27 cases and it was not retrieved in 13 cases. 
We conducted three different types of elaborated requests for each of the 40 
cases. The results are as follows: 

(1) Using the method of request elaboration via forward conditional proba- 
bilities between index tags, we retrieved the correct answer document in 32 cases 
out of the 40. 

(2) Elaborating the requests via the inverse conditional probability heuristic, 
we retrieved the correct document in 33 of the 40 cases. 

(3) Using the coefficient of association to obtain the elaborated request, we ob- 
tained success in 33 cases of the 40. 

Thus we see tha t  the automatic elaboration of a request does, in fact, catch 
relevant documents that  were not retrieved by the original request. 

We now raise the question: "Because of the small size of the library and the 
large percent of the total library tha t  is selected by the elaborated request, are 
the above results statistically significant?" That  is to say, what  is the probability 
of doing as well or better just  by selecting at random, for each of the 13 requests ' 
for which the answer document was not originally retrieved, a sample of size equal 
to that  given by the elaborated requests. We have made the corresponding calcu- 
lations and it turns out tha t  probability of doing as well or better by chance is 
less than 0.034 for both the forward and inverse conditional probability elabora- 
tions and less than 0.001 for the coefficient of association search. Thus the above 
results are indeed statistically significant. 

Could the number of answer documents have been improved? That  is, could 
40 out of 40 answer documents have been retrieved? We looked at the seven cases 
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for which the answer document was not retrieved when elaborating via the co- 
efficient of association, and in three cases the indexing was at fault. That is to say, 
in three of the seven cases the answer document was poorly indexed (a fact of 
life that must be faced by all libraries). In one case the request formulation was 
very poor and no reasonable elaboration would help. In one case the answer 
document was caught by a different heuristic (viz., the forward conditional), 
and in the remaining two cases, again, the requests suffered by being poorly 
formulated. 

Now consider the fact that, although the i~utomatic elaboration of a request  
does catch relevant documents that  would not otherwise have been selected, it 
also increases the total number of retrieved documents. (We point out at this 
time that of the three heuristics which we considered, the one which elaborated 
via the coefficient of association gave the greatest ratio of answer documents to 
total documents retrieved.) In order to have the advantages of an elaborated 
request (namely, the relevant documents that it obtains) and in order to avoid 
the disadvantages (namely, the larger number of total documents), we now 
introduce the relevance number to truncate the output lists. That is to say, we 
use the relevance numbers to separate out the highly relevant from the less 
relevant documents by adopting the following rule: 0nly those documents which 
are selected by the elaborated request and which have a standardized relevance 
number greater than 0.5 are to be retrieved. Our experiments with the coefficient 
of association heuristic show that of a total of 661-documents that  were selected 
by the elaborated requests only 446 (or 67.5 percent) have a standardized 
relevance number greater 17 than 0.5. Furthermore, if we adopt this rule, then 32 
out of the 33 (or 97 percent of the) answer documents which are selected by the 
automatic elaboration would still be retrieved; i.e., 32 of the 33 answer documents 
had relevance numbers greater than 0.5. 

We conclude by observing that  to a very large degree the procedures for 
automatically elaborating upon a request are empirical; i.e., their development 
and refinement must rest on further empirical testing and experimentation. Hope- 
fully the results of further tests will shed light on and provide new insights into 
the difficult and intriguing problems of information identification, search and 
retrieval. 

APPENDIX 

Extension of the Weight Function 

Before looking at the computional procedure for deriving the relevance number 
given any arbitrary request R, we must explain the meaning of the language of the 
request. We allow two logical operations between index terms, viz., "and" and 
"or". We abbreviate "I1 or I2" by "I1 k~ I2", "I1 and I2" by "I1.I~"; the first is 
called a disjunctive request, the second, a conjunctive request. The different 
interpretations of the logical combinations 11.12, I1 k/ 12, as used in request 

~7 For  these computa t ions  we used a fiat a priori probabi l i ty  distr ibution.  
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TABLE 1 
Interpretation of Logical Connectives 

Request: 

Logical meaning 

Retrieval instruction 
meaning 

Class meaning 

I f . l :  

User requests information on 
the "subjec t"  designated 
by Ii.Iz 

Search for documents in- 
dexed under I~ and I2 

User obtains documents in- 
dexed under both I~ and I2 

I ,  V 1", 

User requests information on 
the "subject"  designated by 
11 V I2 

Search for documents indexed 
under I~ and search for docu- 
ments indexed under/'~ 

User obtains documents in- 
dexed under I~ or I: or both 

formulations are shown in table 1. Note how the " V "  inside a retrieval prescrip- 
tion becomes an "mid" in the retrieval instructions. We can say tha t  a dis- 
junctive request is actually several requests, but the searches are to be conducted 
simultaneously. 

By extending the notation for a request to include logical combinations of tags, 
we can consider every request R (i.e., every Boolean function of index terms) as 
an event class. For example, R = I j  , R = Ii.Ik , R = I~ V I~ , etc. We have 
shown that  if it is possible to compute P(A.D~,R) then we can rank documents 
according to probable relevance by taking the relevance number to be 

P(A,Di) .P(A.D~,R);  

for, by the inverse probability calculation 

( 1 ) . P ( A , D , ) . P ( A . D , , R ) ,  (1) P ( A . R ,  D~) -- P ( A , R )  

so that  P(A.R,D~) is proportional to P(A,D~).P(A.Di,R).  Now we note that  
P(A.D~,R) is an extension of the modified weight function in the sense that :  
If R = Ii, then 

w,j = w,(R) = P(A.D,,R).  (2) 

Thus the problem is to extend the function w~(Ii), whose values are given only 
for I~, . . -  , I~,  to any Boolean function of these terms. We denote this extension 
by w~(R) and we require this extension to satisfy the rules of probability since 
we intend for it to be an estimate of P(A.D~,R). In particular, we require: 

0 _-< w,(R) __< 1, (3) 

w,(I1.I2) ~ w,(I~), (4) 

w,(I VI ) + w,(Ii.I2) = w,(I1) + (5) 

We note the important fact tha t  (5) allows us to compute the weight of a dis- 
junction if the weight of a conjunction is known. Successive applications of (5), 
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combined with logical transformations, allow the weight of any request to be 
written as sums and differences of weights of single terms or conjunctions. Thus 
the problem of the extension of the weight function is reduced to the extension to 
conjunctions. For these weights we also have certain restrictive conditions. If 
we let p = w~(I1) and q = w~(I~), then it can be shown Chat wl(I~.I~) must be 
less than or equal to the minimum of the tWO numbers p and q and must be greater 
than or equal to p + q - 1 if this is positive, otherwise it must. be greater than 
or equal to 0. We write this conditions as 

max[0, p + q -  1] ~ w~(I~.h) ~ rain[p, q]. (6) 

We have decided to take as the initial w-value of a conjunction its independence 
value, i.e., 

w ~ ( h . h )  = w,.~.w~2. (7) 

The relevance number for a conjunction I1.I~ is then given by 

' P(A,D~).  w n . w a ,  

and the relevance number for a disjunction I i  V I~ becomes by (5) 

P(A,D~).  [w,.l -t- w,~ - w~l.w,~]. 

Several remarks need to be made about use of the independence value. Note 
that we do not say that the tags axe independent--in fact they are not--but the 
word "estimate" is useful to avoid making a false assumption. First, we estimate 
W~(Ii.I2):by w,.~.w~. Second, we use the independence value relative to the class 
D~, that is, we take 

P ( A . D , . I J ~ )  = P ( A . D J 2 ) ,  (8) 

but not 

P(A.Ii , I~)  = P(A,I~).  (9) 

We believe the former estimate is more accurate than the latter. In section 4.5 
we discussed a coefficient of association between index terms. This coefficient 
Q lies in the interval [ - 1 ,  1] with Q = 0 being the point of independence. The 
joint occurrence of two events will have a probability in excess of its independence 
value only if the corresponding value of Q is positive. We have two intervals to 
schematize this situation (p and q are the probabilities of the separate events and 
Q their coefficient of association): 

0 Q---~ 1 

Interval of Positive Association 

P" qT Probability --~ ~min[p, q] 

Corresponding Interval of Probability Value 

An investigation of the statistical correlation between tags via the computation 
of Q and then a subsequent study of which pairs of tags were used in requesting 
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shows that Q had positive values for almost all of these pairs. This indicated that 
computations were called for with estimates of w~(I~.I~) taken at the upper end 
of the scale, i.e., where 

w~(Ii.I2) = min[w~l,w~2]. (10) 

The results were not as successful as when using the independence value. A 
possible explanation lies in noting that independence is a three-term relation as 
formulas (8) and (9) show. I t  could well be that the probability value for tags 
/1 and I2 relative to the reference class A lies closer to the maximum value 
(rain[p, q]), while the probability value for It and I2 relative to A.D~ lies closer 
to its independence value. In our computations we have assumed this to be 
the case. 
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