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has been collected from a set of queries. Our approach is based on three new concepts: (1)

Abstraction from specific terms and documents, which overcomes the restriction of limited
relevance information for parameter estimation. (2) Flexibility of the representation, which

allows the integration of new text analysis and knowledge-based methods in our approach as
well as the consideration of document structures or different types of terms. (3) Probabilistic

learning or classification methods for the estimation of the indexing weights making better use
of the available relevance information, Our approach can be applied under restrictions that hold

for real applications. We give experimental results for five test collections which show improve-

ments over other methods.

Categories and Subject Descriptors: G. 1.2 [Numerical Analysis]: Approximation—least squares

apPro~imatiOn; H. 3.1 [information Storage and Retrieval]: Content Analysis and
Indexing– imiexirsg nef~ods; H.3. 3 [Information Storage ancl Retrieval]: Information Search
and Retrieval— retrieval models; I. 2.6 [Artificial intelligence]: Learning—parameter learning

General Terms: Experimentation, Theory

Additional Key Words and Phrases: Complex document representation, linear indexing func-

tions, linear retrieval functions, probabilistic indexing, probabilistic retrieval, relevance descrip-
tions

1. INTRODUCTION

Document indexing is the task of assigning terms to documents for retrieval

purposes. In an early paper on probabilistic retrieval [21], an indexing model

was developed based on the assumption that a document should be assigned
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those terms that are used by queries to which the document is relevant. With

this model, the notion of weighted indexing (instead of binary indexing), that

is, the weighting of the index terms with respect to the document, was given

a theoretical justification in terms of probabilities. Fuhr [131 generalizes this

approach to all models of probabilistic indexing by introducing the concept of

“correctness” as the event to which the probabilities relate.

The Maron and Kuhns model assumes that the probabilistic indexing

weights for a document can be estimated on the basis of relevance informa-

tion from a number of queries with relation to the specific document. How-

ever, in real applications there is hardly ever enough relevance information

for a specific document available in order to estimate the required probabili-

ties. For this reason, retrospective experiments based on this model (or

related ones) might show its feasibility [18, 15], but are of little value with

regard to real applications. The model described by Kwok [17] overcomes this

problem by regarding document components as units to which the index term

weights relate. However, experimental evaluations showed that this model is

inferior to nonprobabilistic indexing approaches [19], A different model for

using probabilistic indexing weights in retrieval is described by Robertson et

al. [26] as the “2-Poisson-independence” model, but also had little success

(mainly because of parameter estimation problems). In contrast to these

results, the approaches developed by Croft [6, 7] and Wong and Yao [35] show

improvements over binary indexing; however, these models lack an explicit

notion of an event to which the probabilistic weights relate.

In this paper, we present a radically different approach to probabilistic

indexing. We introduce the concept of “relevance description” as an abstrac-

tion from specific term-document relationships. As different term-document

pairs may have the same relevance description, we overcome the problems of

parameter estimation mentioned above by estimating probabilities for rele-

vance descriptions instead of specific term-document pairs. Furthermore, this

concept is flexible, with relation to the representation of documents. For the

computation of the indexing weights, we use probabilistic classification proce-

dures instead of simple estimation schemes.

In the following, we first show how the basic ideas of our approach differ

from other work in IR. For this purpose, we discuss the relationship between

representations and models in IR by introducing a new conceptual model, and

we regard probabilistic models as machine learning approaches. In Section 3,

we give a brief introduction into the binary independence indexing model,

which forms the theoretical justification for our probabilistic indexing

weights. Then we describe the concepts and procedures of our indexing
approach. Section 5 outlines the test setting and the parameters investigated

in our experiments, followed by the presentation of the experimental results

in Section 6.

2. MODELS AND REPRESENTATIONS IN INFORMATION RETRIEVAL

In this section, we first present a conceptual model for information retrieval

(IR). This model helps to classify existing IR models and to describe the role
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Fig. 1. Conceptual model

of the representations of queries and documents in these models. In proba-

bilistic IR models, parameters of the models relate to elements of the underly-

ing representations. In order to estimate these parameters, relevance feed-

back data is used. We show that there have been two general approaches for

this kind of parameter learning, whereas the work presented in this paper

can be regarded as a new approach that overcomes most of the deficiencies of

the older ones.

Our conceptual model is presented in Figure 1: An IR system contains a

finite set of documents ~ = {cil,~,,~,, . . . }, Let Q = {ql, q,, q~,. . . } be the

(possibly infinite) set of queries submitted to th~ syst=m~ H&-e we regard

queries as unique events, that is, if two users submit the same query

statement, they are treated as different queries. The same approach is taken

in the unified model [24], where a single query is termed an “individual use. ”

Between a query and a document, there exists a relevance relationship as

specified by the user who submitted the query. Let Y = {R, ~}

(relevant/nonrelevant) denote the set of possible relevance judgementsl, then

the relevance relationship can be regarded as a mapping r: Q x Da W.

As IR systems can only have a limited understanding of–doc~ments and

queries, they are based on sets of representations D and Q of these objects.

With the mapping a~, document representations D are derived from the

original documents ~. In the same way, a~ maps queries from Q onto their

representations in Q. With regard to IR models, we can give a gore specific

description of the concept of representation: a representation of a document

or a query denotes the data that is actually used for the retrieval task. For

example, in the well-known binary independence retrieval (BIR) model [37,

251, documents are represented as sets of terms. Thus, two documents with

the same set of terms will be mapped onto the same representation, In this

model, a query representation q~ also consists of a set of terms q~, but in

addition, relevance information about some documents (with respect to the

current query) is also included in the query representation. The relevance

data for a query qk is a multiset 2 q{ = [(rhJ, dj) I rkJ ~ @ A ~J G D] of pairs of

relevance judgments and document representations. Thus, two queries ql

and q2 have the same representation if q; = q: and qfl = q:.
—

Fo~ retrieval, the sets of representations Q and D are not compared

directly because this would in many cases be too complex. For this reason,

] For multivalued relevance scales, see Fuhr [14].

‘Different documents may have the same representation, but they should occur as separate
elements in q~, even if they are given the same relevance judgement.
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the representations Q and D are transformed by the mappings fl~ and ~~

onto the descriptions QD and DD. These descriptions are the arguments of

the retrieval function Q: QD x D ~ + lR which maps descriptions of query-

document pairs onto the set of real numbers, where p(q~, d:) is called the

relevance status value. In response to a query qk, documents ~J e ~ are

ranked according to descending values P( q;, d~D) .–In the case of the binary

independence retrieval model, the description and the representation of a

document are identical (a set of terms), while the description of a query is a

set of weighted terms.

For the comparison of different IR models, the underlying representations

play an important role: only models based on identical representations are

directly comparable. So a major research goal is the development of a model

that produces the best retrieval quality for a given representation. On the

other hand, one may use more detailed representations of documents and

queries in order to improve retrieval quality (e. g., by regarding the within-

document or within-query frequency of terms or by using phrases in addition

to single words as terms). Most approaches in this direction require the

development of new models that fit to the underlying representations. In this

paper we describe a model that is representation-independent to a certain

extent, and thus it can be combined with the best representation available.

IR models also can be classified according to the mappings of our concep-

tual model that they attempt to improve. In addition to the model-specific

retrieval function, most IR models aim at optimizing either fl~ or ~~, while

the other mapping is fixed. The BIR model and many refinements of this

model try to optimize /3Q. The approach taken in this paper concentrates on

the improvement of (3D.

As mentioned in the beginning of this section, probabilistic IR models can

be regarded as parameter learning methods: in order to estimate the proba-

bilistic parameters of a model, relevance feedback data is needed. Figure 2

shows three different learning approaches that are used in IR. The three axes

indicate to what kinds of objects probabilistic parameters may relate: docu-

ments, queries and terms (that is, elements of the representation). In each of

the three approaches, we can distinguish a learning phase and an application

phase: In the learning phase, we have relevance feedback data for a certain

subset Q~ x D~ x T~ of Q x D x T (where T denotes the set of terms in the

collection) from which we can derive probabilistic parameters. These parame-

ters can be used in the application phase for the improvement of the descrip-

tions of documents and queries.

In the first type of learning, relevance feedback data is used for weighting
of search terms (e. g., in the BIR model) with respect to a single query

(representation) qh. Here we have relevance information from a set of

documents D~, and we can estimate parameters for the set of terms T~

occurring in these documents. In the application phase, we are restricted to

the same query qh and the set of terms T~, but we can apply our model to all
documents in D.

The second type of learning is orthogonal to the first approach: probabilis-

tic indexing models (e. g., the one described by Maron and Kuhns [21]) collect
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relevance feedback data for a specific document d~ from a set of queries Q~

with the set of terms T~ occurring in these queries. The parameters derived

from this data can be used for the same document and the same set of terms

T~ (occurring in queries) only, but for all queries submitted to the system,

The major problem with this approach, however, is the fact that there are not

enough relevance judgments for a single document in real databases, so it is

almost impossible to estimate the parameters in this approach.

The major drawback of these two learning approaches is their limited

application range: in the case of search term weighting from relevance

feedback, the relevance information collected for one query is worthless for

any other query. In the same way, the probabilistic indexing approach

restricts the use of relevance data to a single document. The Darmstadt

Indexing Approach [13, 3] overcomes these deficiencies by introducing the

concept of relevance descriptions: a relevance description is an abstraction

from specific queries, documents and terms. Like in pattern recognition

methods, a relevance description contains values of features of the objects

under consideration (queries, documents and terms). In the learning phase,

parameters relating to these features are derived from the learning sample

Q~ x D~ x T~. For the application phase, there are no restrictions concern-

ing the subset Q~ x DA x T~ of objects to which these parameters can be

applied: new queries as well as new documents and new terms can be

considered. This strategy is a kind of long-term learning method, since

feedback data can be collected from all queries submitted to the IR system,

thus increasing the size of the learning sample over time; as a consequence,

the probability estimates can be improved. This approach [14] has been taken

for the development of retrieval functions.3 In the following section, we

describe the application of this learning approach to the task of document

3Another long-term learning method has been presented by Yu and Mizuno [361, but instead of a
general abstraction only a single feature is regarded in this work.
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indexing, that is, the improvement of the mapping ~~ of our conceptual

model.

3. THE BINARY INDEPENDENCE INDEXING MODEL

As described in the previous section, let Q denote the set of queries and ~

the set of documents in the collection, and Q and D are the corresponding

sets of representations. Then the event space of the BII model is Q x Q, and

the query representations are sets of terms. As a consequence, th~BH model

will yield the same ranking for two different queries which use the same set

of terms. With T = { tl, . . ., t.} as the set of index terms in our collection, the

query representation q~ of a query qh is a subset q: c T. Below, we will also
use a binary vector z~ = (zhl, , z~~) instead of q:, where Zk, = 1, if

t,E q:, and z~i –– O otherwise. The document representation is not further

specified in the BII model, and below we will show that this is a major

advantage of this model. In the following, we will assume that there exists a

set d; c T of terms which are to be given weights with relation to the

document. For brevity, we will call d: “the set of terms occurring in the

document” in the following, although the model also can be applied in

situations where the elements of d: are derived from the document text with

the help of a dictionary or knowledge base (see Fuhr [13]). Let us further

assume that we have a binary relevance scale Y = { R, ~} denoting rele -

vant/nonrelevant query-document relationships. Then each element ( q~, ci~)

of the event space has associated with it the sets q;, d: and a rel_&ance

judgement r~ ~ = r(qh,~m)~ :/?.
The BII model nofi seeks for an estimate of the probability P( R I qh, dn) =

P( R I z~, dm) that a document with the representation d~ will be judged

relevant w.r.t. a query with the representation qh = qk‘. Applying Bayes’

theorem, we first get

~(~JR>dm)
P(R12?~, dn) =P(Rldn) .

P(Zh I dm)
(1)

Here P( R I dn) is the probability that document d~ will be judged rele-

vant to an arbitrary request. P( 2’~ I R, dm) is the probability that dm will be

relevant to a query with representation Zk, and P( ~~ I d~) is the probability

that such a query will be submitted to the system.

Regarding the restricted event space consisting of all documents with the

same representation dm and all queries in the collection, we assume that the
distribution of terms in all queries to which a document with representation

dm is relevant is independently

4Fuhr [13] used an additional assumption for the derivation of the BII model, However, as Bill

Cooper mentioned to us, It can be shown that these two assumptions are mcompatlble (see also
Robertson et al, [24] for a similar problem)
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With this assumption, (1) can be transformed into

Since we always regard all documents with relation to a auerv. the. .//
probabilities P( Z; I dn)- and P( Zk, / dn) are independent of a specific docu-

ment, to get

——
ii P(zk,)
~=1

P(zk) “
P(Rldm). rI

P(Rlz~, =1, d~)

Zk, ==l p(~ldm)

“ JIO
P(RI Zk, = O,d~)

P(RldJ
(2)

Now we make an additional simplifying assumption that is also used by

Maron and Kuhns [21]: The relevance of a document with representation d~

with respect to a query q~ depends only on the terms from q;, and not on

other terms. This assumption means that the last product in formula (2) has

the value 1 and thus it can be omitted.

The value of the first fraction in this formula is a constant Ch for a given

query q~, so there is no need to estimate this parameter for a ranking of
documents with respect to qh.

P( R I Zk, = 1, dn) = P( R I t,, d~) is the probabilistic index term weight of t,
with relation to d~, the probability that document dn will be judged

relevant to an arbitrary query, given that it contains t,. From our model, it

follows that d: should contain at least those terms from T for which

P(R I tZ,dJ # P(R I dJ. Assuming that P(R I t,, dm) = P(R I d~) for all t,#

d;, we get the final BII formula5

p(Rl~t,4n)
P(R\qk, dJ=ch. P(RldJ. JJ

P(Rld~)
(3)

t,=qrn d;

In this form it is nearly impossible to apply the BII model, because there

hardly will be enough relevance information available to estimate the

51n contrast to this assumption, experiments described by Turtle [32, pp. 127-132] with indexing

weights also assigned to query terms not occurring in the document have shown significant
improvements in comparison to the case where these terms are ignored. For the experiments

described in this paper, this is a pragmatic assumption. We could apply our indexing approach to
terms not occurring in the documents as well.
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probabilities P( R I ti, dm) for specific term-document pairs. All attempts in
this direction are doomed to fail ([20, 18]).

4. NEW INDEXING CONCEPTS

The basic ideas for our new approach stem from the Darmstadt Indexing

Approach (DIA) [13, 2]. This approach has been developed for automatic

indexing with a prescribed indexing vocabulary. We will show how the

concepts developed within the DIA can be applied to all kinds of probabilistic

indexing.

In the DIA, the indexing task is subdivided in a description step and a

decision step. In the description step, relevance descriptions for term docu-

ment pairs (t,, dm) are formed. Similar to pattern recognition approaches, a

relevance description comprises a set of features that are considered to be

important for the task of assigning weights to terms with relation to docu-

ments. So a relevance description x( t,, d~) contains values of attributes of

the term t,,the document d~ and their relationship. Our approach makes no

additional assumptions about the choice of the attributes and the structure of

x. For this reason, the concrete definition of relevance descriptions can be

adapted to the specific application context. Examples for possible elements of

x are

—dictionary information about t,, e.g. its inverse document frequency,

—parameters describing dm, e.g., its length or the number of different terms

in it,

—information about the form of occurrence of t,in d~ (see Fuhr [13]), e.g.,

the parts of the document in which t, occurs (title us. abstract), the

within-document-frequency of t, in d~, or in the case of t, being a noun

phrase, the word distance in dm between the first and the last component

of tL.

In the decision step, a probabilistic index term weight based on this data is

assigned. This means that we estimate instead of P( R / t,, dn) the probabil-
ity P( R I x( t,, dJ). In the former case, we would have to regard a single

document d~ with respect to all queries containing t, in order to estimate
P( R I t,,dJ. Now we regard the set of all query-document pairs in which the

same relevance description x occurs. Here the probability P( R I x( t,, d~)) is

the probability that a document will be judged relevant to an arbitary query,

given that one of the document’s index terms which also occurs in the query
has the relevance description x.

There are two advantages from the introduction of the concept of relevance

description:

(1) By abstracting from specific document-term pairs, we do not need rele-
vance information about the specific document dn or the specific term t,

for the estimation of P( R I x( ti, dJ). According to the definition of the

relevance description, document-term pairs with different documents or

terms can be mapped onto the same relevance description. For this reason
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we can use relevance information from other documents or even from

queries qh with t, # q$ for the estimation of P( R I x(t,, din)), too. This

way, the amount of relevance data that is available for the estimation of

a specific indexing weight is not restricted by the number of queries for

the specific document (or documents for the specific query) for which we

have relevance information. In a system running in an application, the

amount of relevance data from which the indexing weights are computed

will always increase and therefore improve the probability estimates.

(2) Relevance descriptions can be defined for different forms of representa-

tion. Since most other probabilistic IR models are based on a specific form

of representation of documents or queries, for every new form of represen-

tation a different model has to be developed. In our approach, the

independence from a specific form of representation offers the following

possibilities:

—The representations can be adapted to the amount of relevance infor-

mation that is currently available: the more data we have, the more

detailed we can choose our representations.

—We can consider new forms of representations that are based on tech-

niques from artificial intelligence or computational linguistics. Now

the restricted view of regarding a document as a set of terms with

multiple occurrences can be abandoned (some concepts for a more

detailed document representation are described by Fuhr [13]). On the

other hand, our approach provides a solid theoretical background and

an easy-to-apply method for the effective integration of these new types

of representation in IR.

— We can develop relevance descriptions for different types of terms or

documents. Several authors have investigated the benefit of using noun

phrases in addition to single words as index terms [28, 5, 30, 8, 9, 29].

However, none of them could devise a theoretical basis for the computa-

tion of document-oriented probabilistic index term weights for this new

type of terms. The probabilistic foundation of our approach gives us a

kind of objective weighting scheme for all types of terms. In a similar

way, one could differentiate between several types of documents that

are stored in the same database. This possibility of handling heteroge -

neous document collections becomes important in new application areas

of IR systems, e.g., in the office environment.

In the decision step, estimates of the probabilistic index term weights

P( R I ti, dn) are computed. These estimates are derived from a learning

sample L c Q x Q x W of query-document pairs for which we have rele-

vance judgem—ents, so L = { ( q~, tin, rkJ}. By forming relevance descriptions

for the terms common to que~y and document for every query-document pair

in L, we get a multiset of relevance descriptions with relevance judgments

L’ = [(x(ti, dJ, rhn) I t,G q: n d: A (q~, &, r~J e L]. This set with multiple
occurrences of elements forms the basis for the estimation of the probabilistic
index term weights. However, there is a minor problem with the definition of

the event space in the probability estimation process: according to the

ACM Transactions on Information Systems, Vol 9, No. 3, July 1991.
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TabIe I. Llstof Symbols

1?
?’km

~(ti,d~)

um~

E=

EBII

Q
e

tf x idf

set of queries submitted to the system

set of documents in the system

set of query representations

set of document representations

set of terms

a specific query

a specific document

representation of query ~

representation of document ~~

term

set of terms of the query qk

set of terms of the document dm

binary relevance scale {R, R} (relevant/nonrelevant)

relevance judgement of query-document pair (~, ~)

relevance description of term-document pair (ti, dm)

indexing weight of term t, for docment dm

event space with equiprobable relevance description

event space with equiprobable query-document pairs

retrieval function

probabilistic indexing function

SMART indexing function

definition of the BII model, a single event is a query-document pair, so all

query-document pairs should be equiprobable. We will denote this event

space by EBII in the following. On the other hand, the definition of L’

suggests a different event space EX in which the triples (query, document,

term) are equiprobable events. As different query-document pairs will have

different numbers of relevance descriptions, it is obvious that the equiproba-

bility assumption on L implies nonequiprobability on L’. So there is an error

in using EX instead of E~II. However, the choice of EX eases the process of

probability estimation (see below); we will therefore regard both definitions
in the following and investigate whether this difference has any influence on

the experimental results.

Following the concepts of other probabilistic IR models, we would estimate

the probability P( R I x( t,, dn)) as the relative frequency from those elements

of L’ that have the same relevance description (in the case of EJ. (Attri-
butes with continuous values have to be discretized for this purpose, see

Wong and Chiu, for example, [34]). As a simple example, assume that the

relevance description consists of two elements, defined as

{

1,
$1 =

if t,occurs in the title of d~

o, otherwise

{

1, if t, occurs once in dn
X2 =

2, if t,occurs at least twice in d~.
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Table II. Example for Learning Sample

query dot. judg. term i?

91 dl R t, (1, 1)

t2 (o, 1)

ta (1,2)

d2 R t, (o, 2)

ta (1, 1)

‘- (0, 1)

L

!?2 dl R tg (o, 2)

t, (o, 2)

t~ (1,1)

t~ (1,2)

1-92

Table III. Probability
Estimates for the

Example from

Table II

m

P(RIF)

Ex EBII

(0:1) 1/4 1/3
(O, 2) 2/3 1/2
(1, 1) 2/3 2/3

(1,2) 1 1

Table II shows a small learning sample with two queries and two relevance

judgments for each query. From this data, the probability estimates de-

picted in Table III can be derived. Here it can be seen that the different event

spaces produce different parameter estimates.

Now, the second important concept of the DIA comes into play: It is the

task of an indexing function e( x( t,, d~)) to estimate the probabilities

I’( R I x( tL, din)). As indexing functions, different probabilistic classification
(or learning) algorithms can be applied. The general advantage of these

probabilistic algorithms over simple estimation from relative frequencies is

that they yield better estimates, because they use additional (plausible)

assumptions about the indexing function.

Within the application of the DIA for indexing with a controlled vocabu-

lary, we have investigated several probabilistic classification algorithms as

indexing functions. (Most of these algorithms are restricted to a vector form

~ of the relevance description):

—The so-called Boolean approach developed by Lustig [1] exploits prior
knowledge about the relationship between single elements of the relevance

description x and the corresponding probability P( R I x) for the develop-

ment of a discrete indexing function.
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–The probabilistic learning algorithm ID3 developed by Quinlan [23] seeks
for significant components of ~ that form a probabilistic classification tree

[10].

—By assuming only pair-wise dependencies among the components of Z, one

can apply the tree dependence model [4, 331 as indexing function [31].

—Using logistic regression [11] the indexing function yields e(2)
exp(ii~ . Z)

——
1 + exp(d~ “ 1)

, where ii is a coefficient vector that is estimated based

on the maximum likelihood method [22].

—In this paper, we will use least square polynomials (LSP) [16, 13]

as indexing functions. This method is described in more detail in the

following.

For the LSP approach, we first have to choose the class of polynomials from

which the indexing function is to be selected. Based on the relevance descrip-

tion in vector form 1, a polynomial structure

3( 2) = (1, X1 ,X2,..., XN, X; ,X1X2,... )

has to be defined (where N denotes the number of dimensions of 1). Then our

indexing function yields e(2) = iiT . 3( 2), where Z is the coefficient vector to

be estimated.
Let Y( q~, ~~) = y~~ denote a class variable for each element of L with

ykm = 1 i~ rh~ = R and yh~ = O otherwise. Then the coefficient vector d is

estimated such that it minimizes the squared error E(( y – dT . Z( 1))2 ). Here

E(, ) denotes the expectation based on a uniform distribution within ET or

E~.l, respectively. The coefficient vector ii can be computed by solving the

linear equation system [14].

E(ti. fiT)oij=E(ti. y). (4)

As an approximation for the expectations, the corresponding arithmetic

means from the learning sample are taken. The momental matrix M

contains both sides of the equation system (4) is computed according

underlying event space:

In the case of E ~11, we have

which

to the

where Z, ~ = ti(;(tl,d~)).

For the event space E,, the matrix MX is computed as

MX = +( z (%Z”~L>%”yhm).
x,~,r~&L’

The momental matrix M can then be solved to yield the coefficient

vector Z.
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For most of the experiments described here, we used a relevance descrip-

tion of four elements and a polynomial structure Z(Z) of length five (i.e., an

additional constant for a linear function). So we had to compute five coeffi -

cients al, . . ., as. Each of these parameters is estimated for a collection

rather than a particular query term (as in conventional probabilistic re -

trieval), and is therefore based on much more evidence. In our experiments,

the smallest learning sample L has about 400 elements. In comparison, in

conventional probabilistic retrieval, a typical feedback query might be 20

terms long, and thus you must estimate 40 probabilistic parameters, each one

based on perhaps 15 elements. On the other hand, our approach considers

interdependencies between all the parameters, and other experiments [16, 12]

have shown that we need about 50-100 elements per parameter in order to

achieve reliable estimates.

5. TEST SETTING

Some experiments with a preliminary version of our approach in combination

with controlled vocabulary indexing have been described by Fuhr [12, pp.

146- 150]. In this paper, we apply our approach to the task of free term

indexing and compare it with the standard SMART indexing procedures as

described by Salton and Buckley [27]. In most of our experiments, we use the

same representation of queries and documents in the SMART approach. For

this reason, our evaluation should be regarded as a starting point for further

experiments in which improved representations of documents (e. g., with

noun phrases as index terms) are considered.

For our experiments, we used the five experimental collections shown in

Table IV. In order to perform predictive experiments, the set of queries of

each collection was split into halves. Because of the limited number of

queries in our collections, a random sampling technique might have split the

queries into two very different samples; therefore we used the number of

relevant documents for a query as a criterion to get two disjoint, but similar

query sets for each collection. Table IV shows for both sets the number of

queries and the average number of terms as well as the average number of

relevant documents per query. From these two query sets, we used one for

the estimation of the probabilistic indexing function, which is called learning

sample in the following. With the second set, called test sample below, only

predictive retrieval runs were performed; that is, no relevance information

from this set has been used for the estimation of the indexing function. In

additional retrospective experiments the learning sample was used for re -

trieval runs, too.

Besides the choice of the query set, we also had to decide which documents

should be considered in the learning set L. In our experiments, we investi-

gated two possibilities:

(1) Full relevance information: All documents retrieved for the queries from

the learning sample are considered. A document dn is retrieved with

respect to a query q~ if d; (l q; # @.
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Table IV. Collections Used for Experiments

collection

#documents

#learning queries

#test queries

avg. length learning

avg. length test

avg. rels. learning

avg. rels. test

CACM

3204
26
26
11.1

10.5

14.8

15.8

CISI

1460

38
38
25.7

19.9

39.8

42.1 T
CRAN INSPEC

1398 12684
113 39
112 38

9.1 15.8

9.2 15.8

8.3 33.2

8.1 32.8

NPL

11429

47
46

7.2

7.1

22.8

22.0

(2) Top 15 documents: Only the top 15 documents for each query (by applying

the retrieval function ~~f,df with tf x idf indexing weights, see below)

are included in L.

The first variant follows from the BII model which is based on the event

space I Q I x I D I; the additional assumptions restrict this event space to a

set of al~query-document pairs which have at least one term in common. The

second case is more realistic for applications, because mostly a user will only

judge the top ranking documents.

For the development of the LSP indexing functions, we first had to define a

relevance description Z, for which we used the following parameters.

tfm ,: within-document frequency ( wdf ) of t,in d~.

max tf~: maximum wdf tf~, of all terms t,E d:.

n~: number of documents in which t,occurs.

/Ql: number of documents in the collection.

Id;l: number of different terms in dm.

tam,: = 1, if t,occurs in the title of d~, and O otherwise.

With the exception of the parameter tam,, we consider only information

that is also used in the standard SMART indexing procedures [27]. With

these parameters, the components of the relevance description were defined

as

xl = tfm,

X2 = 1/max tfm

~3=@(n L/l Ql)

x~=logld~l

X5 = tam, .
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Based on this relevance description, four different indexing functions e~,

‘Q, et ~id, ~, and eta were developed by defining the polynomial structures

ti,f,df= (1,X1X2X3, X,X2, X3, X4)

fi,a=(l>x,,x2,~,,~4>~5).

So we have the indexing functions

e~=aO+al tfni+a2/max t~~+aalog(n, / lQl)+~4Ml~tl>

eQ=~~+~~tfm~+~2/maxtfm+ a310g(ni/1~/)+a410gld;l

+ alO/max t~n o log(rzi/ I Q 1) + all /max tfn - log( I d; 1)

+ a12(log(nL/ IQ I))2 + a,310g(rz, / lQl)logl d~l + w(lwl d;l)2,

‘tfidf = a. + al ttm, log(n, / I Q I )/max tf~ + a2 tfm, /max tfn

+a310g(n, /l Ql)+a410gld~l,

‘ta = a. + al tfm, + a2/max tf~ + a310g(n L/ l~t) + a410gl d~l + a5tav, i.

e~ and efa are linear functions of Z, while e~ is a so-called “complete

quadratic polynomial” of ~. e~f~d f was defined in order to get a function
similar to the best SMART indexing function, called tf x idf [271.

In our experiments, it turned out that the indexing functions may yield

negative indexing weights for some relevance descriptions. In these cases,

the weight was set to O. The experiments described by Pfeifer [22] dealing

with the problem of negative estimates indicated that this is a weakness of

LSP indexing functions: Even if y~n = O, a negative indexing weight is

regarded as an error (and similarly for y~ ~ = 1 and a weight > 1). It turned

out that slight improvements in terms of indexing quality can be achieved

when relevance descriptions which would get negative indexing weights are

removed from the learning sample, and then the coefficient vector is recom-

puted. This procedure can be repeated several times, with smaller samples

and diminishing improvements from step to step.

The retrieval results for the LSP indexing functions are compared with

those of the tf x idf indexing function described in the following (for further

details, see Salton and Backley [271). In contrast to our indexing method, the

SMART approach does not consider any relevance information for the compu-

tation of the indexing weights. With the parameters as defined above, first a
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preliminary indexing weight an, for each term in a document is computed:

( tfm *
a ml = 0.5 +0.5

max tfn )– “l@&

These weights are further normalized by the factor w~ = JE t .d~~:, so
the final indexing weight for a term t, in a document d~ according to the

tf x idf formula yields Un, = a ~, / Wm.

In the retrieval process, the indexing weights u~, are used by the retrieval

function p( q~, d~) which computes a relevance status value for each query-

document pair. Then the documents are ranked by decreasing relevance

values.

We performed a few experiments with the BII formula (3). As experiments

described by Fuhr [13] have shown, the assumption of a constant (3 for the

probabilities P( R I dn) yields significantly better retrieval results than docu-

ment-specific estimates. So the retrieval function based on the BII model is

In most of our experiments, we considered the scalar product as retrieval

function with

Here Ch, denotes the weight of the term tiwith respect to the query qk. As

mentioned by Wong and Yao [35], this retrieval function can be given a

utility theoretic interpretation in the case of probabilistic indexing weights

u : The weight c~, can be regarded as the utility of the term t,, and the

re~~ieval function gives the expected utility of the document with respect to

the query.

For the computation of the query term weights c~,, three different possibil-

ities were considered in our experiments. In the following, we denote these

weighting schemes as subscript of the retrieval function:

— p~l.: Binary query term weights are used with Ch, = 1 for all tze q;.

— et f: The query terms weight c,+, is set equal to the number of occurrences
tfk, of t,in the query formulation qk.

— @tf,d[ : The query term weights are computed in the same way as the
tf x Ldf document term weight, except that the within-query frequencies

tfkl (and max tfk) are regarded instead of the within-document frequencies.

For evaluation, the standard SMART routines were taken for computing

the average precision of a set of queries at a certain recall point. From these

precision values at the recall points 0.25, 0.50, and 0.75, we took the average

as global measure of retrieval quality. In addition, significance test were

performed with the Wilcoxon signed-ranks test. For this purpose, the
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Table V. Average Precision Values for

Learning and Test Samples

E
collection

CACM
CISI
CRAN
INSPEC

NPL

0.1358 0.2099

0.3634 0.3816

0.2214 0.2489

0.1505 \ 0.2138

relative

difference

- 2.7%

+ 54.6%

+ 5.0%
+ 12.4%
+ 42.1%

precision values at a certain recall point were compared query-wise for two

different combinations of indexing and retrieval function (like the above, the

recall points 0.25, 0.50, and 0.75 were regarded here). However, due to the

relatively small number of queries in most of our test samples, only a few

significant differences were found (see next section).

6. EXPERIMENTAL RESULTS

With the test parameters described before, we performed a number of re-

trieval runs according to a factorial test plan; that is, we tested (almost) all

possible parameter combinations. In the following, we will present the exper-

imental results grouped by the different parameters, in order to show

the influence of each parameter on the final retrieval quality. Unless men-

tioned otherwise, all probabilistic indexing functions are based on the event

space EX.

Learning vs. Test Sample

Before presenting results of predictive retrieval runs for probabilistic index-

ing, we want to discuss the sampling problem: our approach requires a

representative sample of the collection as a learning sample. With the

limited number of queries available in our collections, we had to split the

query sets into similar halves instead. Now we want to investigate how

similar these two samples really are. It is obvious that this is still an open

research problem in IR: having experimental results for a collection A, for

which other collections is A representative (so that one can conclude that the

experimental results hold for this set of collections)?

As a very simple measure of the similarity of two collections, we use the

results of the retrieval function et ~,d~ in combination with tf x idf indexing

weights here. Table V shows the average precision values for the learning

and the test samples of each collection, and the relative difference between

the two results. It can be seen that we have the best sampling for the CACNI

collection, and for the CRAN and INSPEC collection, the two query sets also

seem to be quite similar. In the case of the CISI[ collection, the difference is

much larger (see also the average query lengths in Table IV); in the follow-
ing, we will see that this may account for some strange results that we got for

the CISI collection. We have the biggest difference for the NPL collection;

however, as claimed by Salton and Buckley [27], the combination of @tfidf
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Table VI. Retrieval Results Using Either the Top15 Ranked Documents
or Full Relevance Information (learning sample, ~~,n, IIz)

eL eQ etjidj

collection full top full top full top

CACM 0.2954 0.3066 0.3249 0.3210 0.3021 0.3228

+ 3.8’%0 - 1.2%

CISI

+ 6.9%
0.1021 0.1160 0.1108 0.1236 0.1033 0.1193

+ 13.6% + 11.6% + 15.5%

CRAN 0.3710 0.3776 0.3532 0.3389 0.3504 0.3405

+ 1.8% - 4.0% - 2.8?to

INSPEC O 1982 0.2094 0.2228 0.1875 0.2096 0.2139

+ 5770 - 15.8% + 2.1%
NPL 0.2110 01729 0.1750 0,1295 0.1975 0.1243

-18.170 - 26.0% - 37.1%

Table VII. Retrieval Results Using Either the Top 15 Ranked Documents
or Full Relevance Information (test sample, Cb,., I?x)

eL 6!Q \ etj,~

collection full top full top full top

CACM O 3103 0.3046 0.3688 0.3566 0.3347 0.3324

- 1.8% -3.370 - 0.7%
cm ~01405 0.1731 0.1571 0.1949 0.1457 0.1745

+ 23.270 + 24.l% + 19.8~o

CRAN 0.4122 ‘34265 0.4065 0.3925 0,3914 0,3764

+ 3.5’%0 - 3.4% - 3.8%

INSPEC 02331 02307 0.2452 0.2141 0.2036 0.1929

- 1.0’%0 - 12.7% - 5.3%

NPL 0.2393 0.2834 0.2068 0.1749 0.2710 0.1943

+ 18.4% - 15.4% - 28.3%

and tf x icif is not appropriate for the NPL collection, since terms occur at

most once in the queries of this collection. Therefore, our measure of similar-

ity may be invalid for the NPL collection. This assumption is also supported

by the results presented in the following section.

Documents in the Learning Set

Using either the top 15 ranked documents or all documents retrieved as

elements of L, we show the retrieval results for the different indexing

functions in Tables VI and VII. It can be seen that the differences in the

retrieval results caused by the choice of L are the smallest for the indexing

function e~; this may be due to the fact that the estimation of the coefficient

vector Zi is less crucial for e~ than for e~ and e~f,df, since e~ is the only linear
function presented in these tables. With the exception of the CISI collection,

most of the results for the indexing functions based on the top 15 documents

are worse than those based on full relevance information. On the other hand,
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Table VIII. Retrieval Results Using Either EX or EBrr (learning sample,

top, &,,)

eL eo f%jidj

collection E= EBII E= I EBII E= EBII

CACM 0.3066 0.3110 0.3210 0.3036 0.3228 0.3122

+ 1.4% - 5.4% - 3.3%

CISI 0.1160 0.1166 0.1236 0.1227 0.1193 0.1172
+ 0.5% - 0.7% - 1.8%

CRAN 0.3776 0.3766 0.3389 0.3302 0.3405 0.3271
- 0.3% - 2.6% - 3.9%

INSPEC 0.2094 0.2160 0.1875 0.1849 0.2139 0.2077

+ 3.2% - 1.4’%0 - 2.9%

NPL 0.1729 0.1706 0.1295 0.1224 0.1243 0.1197
- 1.3% - 5.5% - 3.7%

Table IX, Retrieval Results Using Either Ei or EBII (test sample,

top> Qb,n)

eL t?Q t?~fi~

collection E= EB1l E= EBII E= EBII

CACM O 3046 0.3049 0.3566 0.326.3 0.3324 0.3277

+ 0.1% - 8.5% - 1.4’%0

CIS1 0.1731 0.1693 0.1949 0.1886 0.1745 0.1636
- 2,2% - 3.2% - 6.2%

CRAN 0.4265 0.4178 0.3925 0.3719 0.3764 0.3598
- 2.0% - 5.2% - 4.4%

INSPEC 0.2307 0.2398 0.2141 0.2101 0.1929 0.1810

+ 3.9% - 1.9% - 6.2%

NPL 0.2834 0.2815 0.1749 0.1664 0.1943 0.1846
- 0.7% - 4.9% - 5.0%

the loss in retrieval quality by restricting to the top 15 documents is not too

large to make our approach infeasible for practical applications. Following

this point of view, we will discuss only results of indexing functions based on

the top 15 ranked documents in the following section.

Event Space

Tables VIII and IX show the difference in the retrieval quality by using

either the event space Ex or EB1l. For eL, the differences are negligible, while

the other indexing functions are again more sensitive to small changes in the

learning samples. In general, one can say that the choice of the event space is

not crucial for the development of probabilistic indexing functions.

Bll Model

Only a few experiments

since it turned out that

other retrieval functions.

were performed with the retrieval function PBII,

better retrieval results can be achieved with the

In order to derive an estimate for the parameter ~
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Table X. Retrieval Results Using e~ore~ with the BIIRetrieval Function (@~~r, ~BZ~)

learning sample ted sample

full top full top

collection eL eQ eL eQ eL eQ e.L eQ

CACM 0.2373 0.3169 0.2552 0.2894 0.2606 0.3352 0.2680 0.3180

+ 33.570 + 13.470 + 28.6% + 18.7%

CISI 01020 0.1043 0.1146 0.1138 0.1347 01390 0.1402 0.1446
+ 2.3yo - 0.7% + 3.29io + 3.1%

CRAN 0.3427 0.3587 0.3662 0.3486 0.3902 0.4096 0.4010 0.4029
+ 4.7% - 4.8% + 5.0% + 0.5%

INSPEC 0.1597 0.1870 0.1677 0.1796 0.1740 0.2078 0.1656 0.2001

+ 17.1% + 7.1% + 19.4% + 20.8%

NPL 0.2333 0.2355 0.2371 0.20S6 0.2510 0.2561 0.2831 0.2557

+ 0.970 - 11.6% + 2.0% - 9.7%

for each collection, we performed series of retrieval runs on the learning

samples with different values for this parameter. Then we choose the value

that gave us the best retrieval results. Different values of ~ were derived this

way for e~ and e~ as well as for full relevance information and feedback from

the top 15 ranked documents. The retrieval results for the BII model are

shown in Table X. For the learning sample and full relevance feedback, e~

gives better retrieval results than e~. Since e~ contains all the parameters of
e~ plUS all quadratic combinations of elements of ~, it is theoretically

supposed to be better than eI., at least in combination with @~II. With

feedback information from the top 15 documents only, we get mixed results

for the learning sample. By comparing the results of the BII model with those

of p~, ~ from the previous tables, it can be seen that p~II performs clearly

worse than ~b,.. Some further experiments showed that in all cases, better

retrieval results can be achieved with the Q~II function when indexing

weights u~, s (? are ignored by the retrieval function: in contrast to the other

retrieval functions where every indexing weight u~, > 0 for a term ti c q: fl

d: increases the relevance value, with Q~II weights with O < u~, < ~ de-

crease the relevance value. With this modification of ~~11, we got results

similar to those of e~, ~. However, we do not have a theoretical justification

for this modification.

Indexing Functions

In Tables XI and XII we compare the retrieval results of the probabilistic

indexing functions with those of the tf x idf formula. At first glance, these

results seem to be inconsistent. With the learning samples, there is a

different probabilistic indexing function for each collection which yields the

best retrieval results. We would expect that e~ always performs better than

e~ here, but in contrast to the experiments with the BII model, e~ yields

worse results than e~ for three of the five collections. This shows that the

results depend on the choice of the retrieval function (see also the discussions

ACM Transactmns on Information Systems, Vol. 9, No. 3, July 1991



A Probabilistic Learning for Document Indexing . 243

Table XI. Probabilistic Indexing Functions vs. tf x id~
Formula (learning sample,

top, Em (?~,n)

collection tf x idf Q e~ji~
CACM 0.2604 0.;;66 0.;210 0.3228

+ 17.7% + 23.3% + 24.0%
CISI 0.1188 0.1160 0.1236 0.1193

- 2.4% + 4.0% + 0.4%
CRAN 0.3567 0.3776 0.3389 0.3405

+ 5.9% - 5.0% - 4.5%
INSPEC 0.1706 0.2094 0.1875 0.2139

+ 22.7% + 9.9% + 25.4%
NPL 0.1580 0.1729 0.1295 0.1243

+ 9.4% - 18.0% - 21.3%

Table XII. Probabilistic Indexing Functions vs. tf x idf
Formula (test sample, top, E., Qb,n)

collection tf x idf Q e*f~dJ

CACM 0.2674 0.;;46 0.;566 0.3324

+ 13.9% + 33.4% + 24.3%

CISI 0.1407 0.1731 01949 0.1745
+ 23.0% + 38.5% + 24.0%

CRAN 0.3841 0.4265 0.3925 0.3764
+ 11.0% + 2.2% - 2.0%

INSPEC 0.1848 0.2307 0.2141 0.1929
+ 24.8% + 15.9% + 4.4%

NPL 0.2141 0.2834 0.1749 0.1943

+ 32.4% - 18.3% - 9.2%

below). However, because of its poor performance @~II was not considered in

further experiments.

Looking at the test samples, we get more uniform results. For three of the

five collections e~ yields the best retrieval results of all indexing functions

considered. The CISI and CACM collections behave differently, and for both

collections the similarity between learning and test sample may be the

reason. With the CISI collection, the results for the probabilistic indexing

functions in comparison to the t~ x idf formula are better for the test sample

than for for the learning sample. In the case of the CACM collection, the

better performance of e~ (in comparison to e~) can be explained by the small

difference between learning and test sample. Here we get good estimates for

the large number of parameters of eQ. With the other collections, the

(relatively) small learning samples yield only good estimates for the indexing

function with the lowest number of parameters and a linear structure,
namely e~. In the case of e~f,d ~, we have the same number of parameters as

for e~, but the elements of the polynomial structure fi~f,~f are strongly

dependent on each other, which makes this function rather sensitive to
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Table XIII Comparison of Different Retrieval Functions (test sample, top, I?z)

ltfxidfl eL eta I
collection &ftdj @b,n / 4kJidj Qbin f

CACM 0.2963 0.3046 0.:371 0.3283 0.3148 0.?464

+ 2.8~o + 13.8% + 10.8% + 6.2% + 16.9%

CISI 0.2099 01731 0.2288 0.2052 0.1751 0.2311
- 17.5% + 9.0% - 2.2% - 16.6% + 10.1%

CRAN 0.3816 0.4265 0.4293 0.3922 0.4554 0.4556

+ 11.870 + 12.5% + 2.8% + 19.3% + 19.4%

INSPEC 0.2489 0.2307 0.2708 0.2502 0.2326 0.2694
- 7.3% + 8.8% + 0.5% - 6.5% + 8.2%

NPL 0.2138 0.2834 0.2834 0.2382 -

+ 32.6% + 32.6% + 11.4’70 -

differences between learning and test sample. So, with the size of the

collections available, only e~ seems to be appropriate.

Comparing the results of the probabilistic indexing functions with those of

the tf x idf function, one can see that the probabilistic functions outperform

the SMART function in most cases.

Retrieval Functions

If one is interested in good retrieval results, the comparison of indexing

functions by using a simple retrieval function like Qb,. may not be appropri-

ate. Table XIII shows the results for the indexing function e~ in combination

with the three retrieval functions @b,,, @ff and Qtf,d ~. It can be seen that gtf

yields the best results among the retrieval functions. As Qtf performs better

than Q6,., the information about the within-query frequency of the search

terms seems to be useful in consideration with probabilistic document index-

ing. This result confirms the utility-theoretic justification of linear retrieval

functions. On the other hand, there is no improvement by using O,fzdf instead

of ~~~ for the probabilistic indexing weights. This is plausible, since the
information about the inverse document frequency of the terms has been

considered already in the document indexing process. The significance tests

for the comparison of @~,. and p~f showed significant differences (P >95
percent) for the CISI collection at all three recall levels and for the CAC!M

and the INSPEC collection at the 0.75 recall level.
The retrieval results for the probabilistic indexing functions are compared

with those of the tf x idf indexing weights and the @~f,df retrieval function.

Salton and Buckley [27] prove this combination to be, more or less, the best

SMART indexing and retrieval method. The comparison of this method with
eL in combination Vvith gtf shows that the probabilistic indexing function

yields better retrieval results for all collections. (The Wilcoxon test indicated

significant differences ( P > 99.5 percent) for the CRAN and the NPL collec-

tion at the recall levels of 0.25 and O.5.) This finding is not surprising. The
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SMART approach offers a general indexing function which is applicable to a

broad range of collections, whereas our approach can be adapted to each

specific collection. On the other hand, the development of probabilistic index-

ing function requires learning data which has to be collected from the

running retrieval system, but the SMART indexing functions can be applied

without having any relevance information at all. For this reason, with regard

to applications, the two approaches are complementing each other. When a

new collection is set up, first the SMART approach should be applied and

relevance information should be collected. After a while, when there is

enough learning data available, the probabilistic approach can be applied. As

more and more relevance information is collected, the probabilistic indexing

can be further improved by choosing more detailed relevance descriptions

and more complex indexing functions (polynomial structures).

Document Representation

In order to test the effect of an improved document representation, we

performed a few experiments with the indexing function e~a. With this

function, we consider whether an index term occurs in the title of a document

or only in the abstract. The experimental results of er. for the test samples

are shown in Table XIII (No results are given for the NPL collection here,

since the NPL document texts were not available for our experiments. ) In

comparison to e~, we get significant improvements for the CRAN collection

(P> 99 percent at all three recall levels). For the other collections, only

minor improvements were achieved (and a slight degradation with ptf for the

INSPEC collection). The Wilcoxon test showed significant differences only for

the CACM collection at 0.25 recall for p~f and at 0.5 recall for ~~,~ (P >99

percent). The best probabilistic combination (e~~, Ott) is significantly better

than the SMART approach for the CRAN collection at all three recall levels

(P> 99 percent), for the INSPEC collection at the recall points of 0.25 and

0.75 (P> 95 percent) and for the CACM collection at 0.75 recall (P> 95

percent).

On the learning sample (results not given here), we observed the same

behavior of e~ for the different collections. So one can conclude that the

distinction between title and abstract should be considered when developing

indexing functions, but the effect is collection-dependent. (In the case of the

CRAN collection, the titles are one-sentence descriptions of the experiments

described in the articles, so the terms occurring in the title are most signifi-

cant with relation to the document, ) Again, these results show a major

advantage of our indexing functions: they are able to adapt to specific

characteristics of a collection. On the other hand, if a new feature included in

the relevance description is insignificant, there is no loss in retrieval perfor-

mance (provided that the learning sample is not too small).

7. CONCLUSIONS

In this paper, we have devised a new probabilistic indexing approach which

is feasible for real applications. The major concepts of our approach are the
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following:

–Definition of a probabilistic indexing model in terms of the BII model. In

contrast to nonprobabilistic indexing models (see Salton and Buckley [271)

or earlier probabilistic models [6], the indexing weights of the BII model

have a clear notion as probabilities in a well-defined event space.

—Abstraction from specific term-document pairs by definition of relevance

descriptions. Unlike many other probabilistic IR models, the probabilistic

parameters do not relate to a specific document or query. This feature

overcomes the restriction of limited relevance information that is inherent

to other models, e.g., by regarding only relevance judgments with respect

to the current request. Our approach can be regarded as a long-term

learning method which complements the short-term learning method of

relevance weighting of search terms. For the latter problem, the retrieval-

with -probabilistic-indexing (RPI) model [13] has been developed. This

model allows to distinguish between two queries ql, qz with q: = q; by

regarding query-specific relevance feedback inform–ati~n (similar to model

3 presented by Robertson et al. [24]). Consequently, the query representa-

tion of the RPI model is a pair qh = (q;, q{), where q; denotes a set of

documents with relevance judgments with relation to qh.

–Flexibility of the form of representation of term-document relationships in

relevance descriptions. While other probabilistic models relate to specific

forms of representation (which is also a reason for the large number of

models published), our approach can be easily adapted to new forms of

representation. This is very important for new text analysis and knowl-

edge-based methods, which have not been considered by probabilistic mod-

els yet. Now we have devised an easy-to-apply model for the integration of

these methods in IR systems.

— Probabilistic learning (or classification) methods as indexing functions

instead of simple parameter estimation methods. This way, we can make

better use of the available learning data, and we can choose the complexity

of the indexing function according to the size of the learning sample.

The experimental results indicate that our approach can be applied in

running IR systems and that it is superior to other indexing methods.

Currently, the size of the available test collections puts some difficulties on

the testing of the probabilistic indexing approach, as the results for the

nonlinear indexing functions show. In contrast to other probabilistic models,
this problem can be neglected in real applications, as the learning sample

size is a function of the total number of queries with relevance judgments

available. Furthermore, we have shown that the restriction of the learning

sample to the top ranking documents is not a serious impediment for the

applicability of our method.

With the concepts described in this paper, we have given a framework for

the development of probabilistic indexing functions. Besides the investiga-

tion of different probabilistic learning and classification methods for the
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development of indexing functions, the considerate ion of improved document

representations will be a prospective field of research.
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