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1. INTRODUCTION

Network representations have been used in information retrieval since at

least the early 1960’s. Networks have been used to support diverse retrieval

functions, including browsing [38], document clustering [7], spreading activa-

tion search [4], support for multiple search strategies [11], and representation

of user knowledge [27] or document content [40].

Recent work suggests that significant improvements in retrieval perfor-

mance will require techniques that, in some sense “understand” the content

of documents and queries [9, 43] and can be used to infer probable relation-

ships between documents and queries. In this view, information retrieval is

an inference or evidential reasoning process in which we estimate the proba-

bility that a user’s information need, expressed as one or more queries, is met

given a document as “evidence.” Network representations show promise as
mechanisms for inferring these kinds of relationships [4, 12].
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The idea that retrieval is an inference or evidential reasoning process is

not new. Cooper’s logical relevance [6] is based on deductive relationships

between representations of documents and information needs. Wilson’s situa-

tional relevance [441 extends this notion to incorporate inductive or uncertain

inference based on the degree to which documents support information needs.

The techniques required to support these kinds of inference are similar to

those used in expert systems that must reason with uncertain information. A

number of competing inference models have been developed for these kinds of

expert systems [19, 21] and several of these models can be adapted to the

document retrieval task.

In the research described here we adapt an inference network model to the

retrieval task. The use of the model is intended to do the following:

—Support the use of multiple document representation schemes. Research

has shown that a given query will retrieve different documents when

applied to different representations, even when the average retrieval per-

formance achieved with each representation is the same. Katzer, for exam-

ple, found little overlap in documents retrieved using seven different

representations, but found that documents retrieved by multiple represen-

tations were likely to be relevant [20]. Similar results have been obtained

when comparing term- with cluster-based representations [2] and term-

with citation-based representations [16].

—Allow results from different queries and query types to be combined. Given

a single natural language description of an information need, different

searchers will formulate different queries to represent that need and will

retrieve different documents, even when average performance is the same

for each searcher [20, 24]. Again, documents retrieved by multiple searchers

are more likely to be relevant. A description of an information need can be

used to generate several query representations (e. g., probabilistic, Boolean),

each using a different query strategy and each capturing different aspects

of the information need. These different search strategies are known to

retrieve different documents for the same underlying information need [9].

—Facilitate flexible matching between the terms or concepts mentioned in

queries and those assigned to documents. The poor match between the

vocabulary used to express queries and the vocabulary used to represent

documents appears to be a major cause of poor recall [151. Recall can be

improved using domain knowledge to match query and representation

concepts without significantly degrading precision.

The resulting formal retrieval model integrates several previous models in a

single theoretical framework; multiple document and query representations

are treated as evidence which is combined to estimate the probability that a

document satisfies a user’s information need.

In what follows we briefly review candidate inference models (Section 2),

present an inference network-based retrieval model (Sections 3 and 5),

compare the network model to current retrieval models (Section 4), and

ACM TransactIons on Information Systems, Vol 9, No 3, July 1991



Evaluation of an Inference Network-based Retrieval Model . 189

evaluate the performance of an implementation of the network model (Sec-

tions 6 and 7).

2. INFERENCE NETWORKS

The development of automated inference techniques that accommodate un-

certainty has been an area of active research in the artificial intelligence

community, particularly in the context of expert systems [19, 211. Popular

approaches include those based on purely symbolic reasoning [5, 141, fuzzy

sets [45], and a variety of probability models [3, 251. Two inference models

based on probabilistic methods are of particular interest: Bayesian inference

networks [22, 28] and the Dempster - Shafer theory of evidence [13, 341.

A Bayesian inference network is a directed, acyclic dependency graph

(DAG) in which nodes represent propositional variables or constants and

edges represent dependence relations between propositions. If a proposition

represented by a node p “causes” or implies the proposition represented by

node q, we draw a directed edge from p to q. The node q contains a link

matrix that specifies P( q I p) for all possible values of the two variables.

When a node has multiple parents, the link matrix specifies the dependence

of that node on the set of parents ( Tq) and characterizes the dependence

relationship between that node and all nodes representing its potential

causes. 1Given a set of prior probabilities for the roots of the DAG, these

networks can be used to compute the probability or degree of belief associated

with all remaining nodes.

Different restrictions on the topology of the network and assumptions

about the way in which the connected nodes interact lead to different

schemes for combining probabilities. In general, these schemes have two

components which operate independently: a predictive component in which

parent nodes provide support for their children (the degree to which we

believe a proposition depends on the degree to which we believe propositions

that might cause it), and a diagnostic component in which children provide

support for their parents (if our belief in a proposition increases or decreases,

so does our belief in its potential causes). The propagation of probabilities

through the net can be done using information passed between adjacent

nodes.

The Dempster-Shafer theory of evidence, although not originally cast as a

network model, can be used as an alternative method for evaluating these

kinds of probabilistic inference networks. Rather than computing the belief

associated with a query given a set of evidence, we can view Dempster– Shafer

as computing the probability that the evidence would allow us to prove the

query. The degree of support parameters associated with the arcs joining

nodes are not interpreted as conditional probabilities, but as assertions that

the parent node provides support for the child (is active) for some proportion

p of the time and does not support the child for the remainder of the time.

~While this probability specification is generally referred to as a link matrix, it is actually a

tensor.
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For an and-combination we compute the proportion of the time that all

incoming arcs are active. For an or-combination we compute the proportion

of the time that at least one parent node is active. To compute the provability

of the query given a document, we examine all paths leading from the

document to the query and compute the proportion of time that all of the arcs

on at least one proof path are active. Given the structure of these networks,

this computation can be done using series-parallel reduction of the subgraph

joining the document and query in time proportional to the number of arcs in

the subgraph.

The Bayesian and Dempster-Shafer models are different and can lead to

different results. However, under the assumption of disjunctive rule interac-

tion (so called “noisy-OR”) and the interpretation of an arc from a to b as

P( b I a) = p and P( b / T a) = O, the Bayesian and Dempster- Shafer models

will produce similar results [28, page 4461. The document retrieval inference

networks described here are based on the Bayesian inference network model.

The use of Bayesian inference networks for information retrieval repre-

sents an extension of probability-based retrieval research dating from the

early 1960’s [23]. It has long been recognized that some terms in a collection

are more significant than others and that information about the distribution

of terms in a collection can be used to improve retrieval performance. The use

of these networks generalizes existing probabilistic models and allows inte-

gration of several sources of knowledge in a single framework.

3. BASIC MODEL

The basic document retrieval inference network, shown in Figure 1, consists

of two component networks: a document network and a query network. The

document network represents the document collection using a variety of

document representation schemes. The document network is built once for a

given collection and its structure does not change during query processing.

The query network consists of a single node which represents the user’s

information need and one or more query representations which express that

information need. A query network is built for each information need and is

modified during query processing as the query is refined or additional

representations are added in an attempt to better characterize the informa-

tion need. The document and query networks are joined by links between

representation concepts and query concepts. All nodes in the inference net-

work take on values from the set { false, true}.

3.1 Document Network

The document network consists of document nodes ( d,’s), text representation

nodes ( tJ‘s), and concept representation nodes ( rh’s). Each document node

represents a document in the collection. A document node corresponds to the

event that a specific document has been observed. The form of the document

represented depends on the collection and its intended use, but we will

assume that a document is a well defined object and will focus on traditional

document types (e.g., monographs, journal articles, office documents).
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. . .

Fig. 1. Basic document inference network

Document nodes correspond to abstract documents rather than their physi-

cal representations. A text representation node or text node corresponds to a

specific text representation of a document. A text node corresponds to the

event that a text representation has been observed. We focus here on the text

content of documents, but the network model can support document nodes

with multiple children representing additional component types (e. g., fig-

ures, audio, or video). Similarly, a single text might be shared by more than

one document. While shared components are rare in traditional collections

(an example would be a journal article that appears in both a serial issue and

in a reprint collection) and are not generally represented in current retrieval

models, they are common in hypertext systems. For clarity, we will consider

only text representations and will assume a one-to-one correspondence be-

tween documents and texts. The dependence of a text upon the document is

represented in the network by an arc from the document node to the text

node.
The content representation nodes or representation nodes can be divided

into several subsets, each corresponding to a single representation technique

that has been applied to the document texts. For example, if a collection has
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been indexed using automatic phrase extraction and manually assigned

index terms, then the set of representation nodes will consist of two distinct

subsets or content representation types with disjoint domains. Thus, if the

phrase “information retrieval” has been extracted and “information re-

trieval” has been manually assigned as an index term, then two representa-

tion nodes with distinct meanings will be created. One corresponds to the

event that “information retrieval” has been automatically extracted from a

subset of the collection, the second corresponds to the event that “information

retrieval” has been manually assigned to a (presumably distinct) subset of

the collection. We represent the assignment of a specific representation

concept to a document by a directed arc to the representation node from each

text node corresponding to a document to which the concept has been

assigned. For now we assume that the presence or absence of a link corre-

sponds to a binary assigned/not assigned distinction, that is, there are no

partial or weighted assignments.

In principle, the number of representation schemes is unlimited; in addi-

tion to phrase extraction and manually assigned terms we would expect

representations based on natural language processing and automatic key-

word extraction. For any real document collection, however, the number of

representations used will be fixed and relatively small. The potential domain

of each representation scheme may also be unlimited, but the actual number

of primitive representation concepts defined for a given collection is fixed by

the collection. The domain for most automated representation schemes is

generally bounded by some function of the collection size (e.g., the number of

keywords cannot exceed the number of words in a collection). For manual

representation schemes the domain size is limited by the number of docu-

ments, the representation scheme itself (e. g., a controlled vocabulary), and

the amount of time a human expert can spend analyzing each document.

The basic document network shown in Figure 1 is a simple three level

DAG in which document nodes are roots, text nodes are interior nodes, and

representation nodes are leaves. Document nodes have exactly one text node

as a child and each text node has one or more representation nodes as

children.

Each document node has a prior probability associated with it that de-

scribes the probability of observing that document; this prior probability will

generally be set to 1 /(collection size) and will be small for real collections.

Each text node contains a specification of its dependence upon its parent; by

assumption, this dependence is complete, a text node is observed (t, = true)
exactly when its parent document is observed ( dl = true).

Each representation node contains a specification of the conditional proba-

bility associated with the node given its set of parent text nodes. This

specification incorporates the effect of any indexing weight (e. g., term fre -

quency for each parent text) or term weights (e.g., inverse document fre-

quency) associated with the representation concept. While, in principle, this
would require 0(2’) space for a node with n parents, in practice we use

canonical representations that allow us to compute the required conditional

probabilities when needed. These canonical schemes require 0(n) space if we

ACM Transactions on Information Systems, Vol. 9, No. 3, July 1991.



Evaluation of an Inference Network-based Retrieval Model . 193

weight the contribution of each parent or O(1) space if parents are to be

treated uniformly.

3.2 Query Network

The query network is an “inverted” DAG with a single leaf that corresponds

to the event that an information need is met and multiple roots that

correspond to the concepts that express the information need. As shown in

Figure 1, a set of intermediate query nodes may be used when multiple

queries express the information need. These nodes are a representation

convenience; it is always possible to eliminate them by increasing the com-

plexity of the distribution specified at the node representing the information

need.

In general, the user’s information need is internal to the user and is not

precisely understood. We attempt to make the meaning of an information

need explicit by expressing it in the form of one or more queries that have

formal interpretations. These queries may be generated from a single natural

language description (e.g., keywords or phrases for a probabilistic search, a

Boolean representation, sample documents, . ..) or they may represent addi-

tional sources of information (e.g., an intermediary’s description of the user

or of the information need, or feedback provided by the user). It is unlikely

that any of these queries will correspond precisely to the information need,

but some will better characterize the information need than others and

several query specifications taken together may be a better representation

than any of the individual queries.

The roots of the query network are query concepts; they correspond to the

primitive concepts used to express the information need. A single query

concept node may have several representation concept nodes as parents. Each

query concept node contains a specification of its dependence on the set of

parent representation concepts. The query concept nodes define the mapping

between the concepts used to represent the document collection and the

concepts used in the queries. In the simplest case, the query concepts are the

same as the representation concepts so each query concept has exactly one

parent. In a slightly more complex example, the query concept “information

retrieval” may have as parents both the node corresponding to “information

retrieval” as a phrase and the node corresponding to “information retrieval”

as a manually assigned term. As we add content representations to the

document network and allow query concepts that do not explicitly appear in

any document representation, the number of parents associated with a single

query concept will increase.

A query concept is similar to a representation concept that is derived from

other representation concepts (see Section 5 for a discussion of derived

representation concepts) and in some cases it will be useful to “promote” a

query concept to a representation concept. For example, suppose that a

researcher is looking for information on a recently developed process that is

unlikely to be explicitly identified in any existing representation scheme.

The researcher, if sufficiently motivated, could work with the retrieval

system to describe how this new concept might be inferred from other
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representation concepts. If this new concept definition is of’ general interest,

it can be added to the collection of representation concepts. This use of

inference to define new concepts is similar to that used in RUBRIC [40].

The attachment of the query concept nodes to the document network has no

effect on the basic structure of the document network. None of the existing

links need change and none of the conditional probability specifications

stored in the nodes are modified.

A query node represents a distinct query form and corresponds to the event

that the query is satisfied. Each query node contains a specification of the

dependence of the query on its parent query concepts. The link matrices that

describe these conditional probabilities are discussed further in Section 3.4,

but we note that the form of the link matrix is determined by the query type;

a link matrix simulating a Boolean operator is different than a matrix

simulating a probabilistic or weighted query.

The single leaf representing the information need corresponds to the event

that an information need is met. In general, we cannot predict with certainty

whether a user’s information need will be met by a document collection. The

query network is intended to capture the way in which meeting the user’s

information need depends on documents and their representations. Moreover,

the query network is intended to allow us to combine information from

multiple document representations and to combine queries of different types

to form a single, formally justified estimate of the probability that the user’s

information need is met. If the inference network correctly characterizes the

dependence of the information need on the collection, the computed probabil-

ity provides a good estimate.

3.3 Use of the Inference Network

The retrieval inference network is intended to capture all of the significant

probabilistic dependencies among the variables represented by nodes in the

document and query networks. Given the prior probabilities associated with

the documents (roots) and the conditional probabilities associated with the

interior nodes, we can compute the posterior probability or belief associated

with each node in the network. Further, if the value of any variable repre-

sented in the network becomes known we can use the network to recompute

the probabilities associated with all remaining nodes based on this “evi-

dence. ”

The network, taken as a whole, represents the dependence of our belief
that a user’s information need is met on the documents in a collection where

the dependence in mediated by document and query representations. When

the query network is first built and attached to the document network we

compute the belief associated with each node in the query network. The

initial value at the node representing the information need is the probability

that the information need is met given that no specific document in the

collection has been observed and all documents are equally likely (or un-

likely). If we now observe a single document d, and attach evidence to the

network asserting d, = true we can compute a new belief for every node in
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the network given d, = true. In particular, we can compute the probability

that the information need is met given that d, has been observed in the

collection. We can now remove this evidence and instead assert that some

dj, i # j has been observed. By repeating this process we can compute the
probability that the information need is met given each document in the

collection and rank the documents accordingly.

In principle, we need not consider each document in isolation but could

look for the subset of documents which produce the highest probability that

the information need is met. While a general solution to this best-subset

problem is intractable, in some cases good heuristic approximations are

possible. Best-subset rankings have been considered in information retrieval

[371, and similar problems arise in pattern recognition, medical diagnosis,
and truth-maintenance systems. For a discussion of the best-subset or belief

revision problem in Bayesian networks see Pearl [28]. At present, we con-

sider only documents in isolation because the approach is computationally

simpler and because it allows comparison with earlier retrieval models that

produce document rankings consistent with the Probability Ranking Princi-

ple [29] in which documents are considered in isolation.

The document network is built once for a given collection. Given one or

more queries representing an information need, we then build a query

network that attempts to characterize the dependence of the information

need on the collection. If the ranking produced by the initial query network

is inadequate, we must add additional information to the query network

or refine its structure to better characterize the meaning of the existing

queries. This feedback process is quite similar to conventional relevance

feedback [36].

3.4 Link Matrix Forms

For all non-root nodes in the inference network we must estimate the

probability that a node takes on a value given any set of values for its parent

nodes. If a node a has a set of parents ma = { PI, . . ., p.}, we must estimate

P(a/ pi, . . . ,pn).

The most direct way to encode our estimate is as a link matrix. Since we

are dealing with binary valued propositions, this matrix is of size 2 x 2 n for

n parents and specifies the probability that a takes the value a = true or
a = faz5e for all combinations of parent values. The update procedures for

Bayesian networks then use the probabilities provided by the set of parents

to condition over the link matrix values to compute the predictive component

of our belief in a or P( a = true). Similarly, the link matrix is used to p rovide

diagnostic information to the set of parents based on our belief in a. As

suggested earlier, encoding our estimates in link matrix form is practical

only for nodes with a small set of parents, so our estimation task has two

parts: how do we estimate the dependence of a node on its set of parents and
how do we encode these estimates in a usable form?

We will describe four canonical link matrix forms, three for the Boolean

operators and a fourth for simple probabilistic retrieval. For illustration, we
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will assume that a node Q has three parents, A, l?, and C and that

P(A = true) = a, P(B = true) = b, P(C = true) = c

For or-combinations, Q will be true when any A, B, or C is true and false

only when A, B, and C are all false. This suggests a link matrix of the form

(~=looooooo
or

)01 1 1 1 1 1 1’

In this representation the first row corresponds to the case that Q = false and

the second row corresponds to Q = true. Each column corresponds to a

specific combination of parent values. We number the columns from O to 7

and use the binary representation of the column number to index values of

A, B, and C. Thus, column O (OOOZ) corresponds to the case in which

A = false, B = false, and C = false. Column 1 (0012) corresponds to the case

in which A = false, B = false, and C = true. Similarly, column 7 (111 ~)

corresponds to the case in which all parents are true.

To compute our belief in Q = true, we simply compute a probability for

each possible combination of parent variables and multiply that probability

by the appropriate matrix element (second row). Since column O has a value

of 0.0 and all remaining columns have a value of 1.0, this gives

P(Q= true) = (1 –a)(l – b)c+ (1 – a)b(l –c) + (1 –a)bc

+ a(l – b)(l – c) + a(l – b)c+ ab(l – c) + abc

=1-(1 -a)(l-b)(l -c) (1)

which is the familiar rule for disjunctive combination of events that are not

known to be mutually exclusive. Similar matrix forms can be developed for

and

P(Q = true) = abc (2)

and not

P(Q= true) = 1 – a. (3)

If we restrict the parent nodes for any of these logic operators to values O or

1 then Q must also have a value of O or 1. If we allow terms to take on
weights in the range [0, 1] and interpret these weights as the probability that

the term has been assigned to a document text, then these inference net-

works provide a natural interpretation for Boolean retrieval with weighted

indexing. The use of these canonical forms to simulate Boolean retrieval is

discussed in Section 4.3.

For probabilistic retrieval each parent has a weight associated with it, as

does the child. In this weighted-sum matrix, our belief in Q depends on the

specific parents that are true; parents with larger weights have more influ-

ence in our belief. If we let Wa, w~, WC> 0 be the parent weights, O < w~ < 1
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the child weight, and t = w. + Wh + w,,, then we have a link matrix of’ the

form

i

w.Wq Wbwq
1 l–—

~_ (~b+%)’”. ~L#* ~_ (u’a+%)~q ~_ (~.+~b)~q
l–— l–— I–wq

t t t t t t

I WcWq ‘bwq (w, +%) w. Waw’.o——
(ZLla+wc)wq (20.+20,)20,

t t t t t t WY

Evaluation of this link matrix form results in

(w.a + w,b + ZUCC)W,
P(Q = true) =

t
(4)

This link matrix can be used to implement a variety of weighting schemes,

including the familiar term weighting schemes based on the frequency of

a term in a single document ( tf),and its frequency in the entire collection

( id~) or both ( tf. idf ). These tf. idf weights are dicussed in more detail in

Section 7.1.

To illustrate a tf. idf weighting, let Q be a representation node and let A,

B, and C be document nodes. Let w., w~, and WCbe normalized tf values for

A, B, and C, let idfq be a normalized idf weight for Q, and let

w~ = idfq” (w. + Wb+ WC). (5)

Given our basic model, when A is instantiated, belief in Q is given by

bel(Q) = ‘awq
Wu+wb+wc

tf. . idf~(w. + Wb + WC)
——

wa+w~+wc

= tf. “ idf~

which is a form of tf. idf weight. In general, when a document is instantiated

all representation concept nodes to which it is attached take on the tf. idf

weight associated with the document /term pair.

The weight at Q has two distinct parts. The first part ( idfq in our example)

acts to set the maximum belief achievable at a node. If, for some combination

of parent values, our belief in Q is certain then this component disappears.

Note that in this formulation, the idf component is dependent only upon the

distribution of the term in the collection, not on the distribution of the term

in relevant and nonrelevant subsets. Relevance feedback is modeled as part

of the query network and does not affect belief in representation concepts.

The second part (w. + w ~ + WC in our example) acts to normalize the

parent weights. Equation 5 is appropriate for the basic model in which only

one document is instantiated at a time. In the extended model of Section 5

where multiple roots can be instantiated, this component is adjusted to
normalize for the maximum achievable set of parent weights. In the general

case, where all parents can take any value in the range [0, 1], this normaliz-

ing component disappears.
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These canonical forms are sufficient for the inference networks used in

experiments described here, but many others are possible (see Section 4,3 for

other examples). Further, when the number of parents is small (say, less

than 5 or 6) we can use the full link matrix if the dependence of a node on its

parents does not fit a canonical form.

4. COMPARISON WITH OTHER RETRIEVAL MODELS

The inference network retrieval model generalizes both the probabilistic and

Boolean models. Inference networks can be used to simulate both probabilis-

tic and Boolean queries and can be used to combine results from multiple

queries.

In this section we compare the inference network model with probabilistic

(Sections 4.1 and 4.2) and Boolean (Section 4.3) models and show how

inference networks can be used to simulate both forms of retrieval. We then

consider how the probabilities required by the model can be estimated

(Section 4.4); the estimation problems are essentially equivalent to those

encountered with probabilistic or vector-space retrieval.

4.1 Probabilistic Retrieval ModeIs

Conventional probabilistic models [36, 42] rank documents by the probability

that each document would be judged relevant to a given query,

P(relevant I dZ).2 This is, in many ways, similar to computing the probability

that a user’s information need is met given a specific document, P(1 I d,).

The principal differences between conventional probabilistic models and the

model described here are: (1) most probabilistic models do not explicitly

represent the query, (2) conventional probabilistic models do not distinguish

between a document and its representations but treat a document as a single

vector, and (3) the inference network model depends less upon Bayesian

inversion than probabilistic models, Bayesian inversion is just one way to

estimate P( 1 I d,) (or P( Q I d,) in the case of a single query).

In this section we summarize the major differences between the inference

network and conventional probabilistic models by comparing the network

model to the binary independence model. In the next section we provide a

formal comparison of the inference network model with a recent probabilistic

model that explicitly represents documents and queries.

An inference network that corresponds to the binary independence model

[421 is shown in Figure 2. A document is represented by a vector whose
components are indexing or representation concepts (d, = { rl, . . . . r.}). The
set of concepts considered is generally restricted to the subset that actually

occurs in the query. Comparing this network with that shown in Figure 1, we

‘Most probabilistic models do not actually compute P(relevant I d,), but simply rank documents
using some function that is monotonic with P(relevant I cl,). Like Fuhr [18], we believe that an
estimate of the probability of relevance is more useful than the ranking by itself A ranked hst of
documents in which the top ranked document has a probability of relevance of O,5 should be
viewed differently than a similar list in which the top ranked document has a probability of
relevance of 0,95,
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binary inde-

see that in the binary independence model, the document network is repre -

sented by a single level of representation nodes and the query network

consists of a single relevance node. In order to implement this network we

must somehow estimate the probability of relevance given the set of parent

representation concepts; and this estimate must incorporate all of our judg-

ments about the probability that a representation concept should be assigned

to a document, about the semantic and stochastic relationships between

representation concepts, about the relationship between concepts named in

the query and assigned to documents, and about the semantics of the query

itself, This dependence is complex and its estimation is not a task we could

expect users to perform willingly or reliably.

One approach to simplifying the estimation task is to invoke Bayes’ rule so

that we need only estimate the probability that each representation concept

occurs in relevant or nonrelevant documents. This approach does not help to

provide initial estimates of the probability distributions since these “simpler”

estimates must still incorporate all of the judgments required for the “hard”

estimate. The advantage of this approach is that, given samples of relevant

and nonrelevant documents, it is easy to compute P( ri) for the relevant

sample and to use the result as an estimate of P( r, Irelevant = true). We can

use a similar estimate for P( r, Irelevant = false]. Given a set of indepen-

dence assumptions and estimates for P( d,) and P(relevant = true) we can

compute P(relevant I d,). 3 Estimating P(relevant I d,) without the use of

Bayes’ rule would be extremely difficult.

Essentially the same procedures can be used to estimate P(Q I d,). The

main difference between the two estimates is that instead of using the

representation concepts directly we must compute P( CJI XC,) for each query

concept and use these beliefs to estimate P(Q I d,).

The question remains, however, whether estimates of P(relevant I d,) or

P( Q I d,) obtained in this way match users’ intuition about the dependence.

The fact that relevance feedback does improve retrieval performance sug-

gests that the estimates of P(relevant I d,) do capture at least some of the

dependence, but these estimates are generally based on a small number of

relevant documents and are necessarily rather coarse.

While it is clear that estimating P(relevant I d,) directly from a small

number of documents is impractical, it may be possible to obtain estimates of
P(Q I m~). Users may, for example, be able to assign importance to the

concepts in their query and may be able to identify significant interactions

3P(d,) and ~(relevant = true) do not play a major role in probabilistic models that only produce
a document ranking but are required to compute P(relevant I d,).
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between concepts. These estimates could improve the initial estimate and

might be used in conjunction with the estimates derived from training

samples.

A second approach to simplifying the estimation task is to identify the

different types of judgments that enter into the overall estimate and to

develop estimates for each type of judgment separately. The model presented

here represents one decomposition in which the task of estimating the

probability that a given document satisfies an information need consists of

judgments about the relationship of a document to its text, the assignment of

representation concepts to the text, the relationships between query and

representation concepts, and the relationship between queries, query con-

cepts, and the information need. Other decompositions are certainly possible

and can be accommodated within the same general framework. The set of

relationships presented here incorporates those judgments most important

for current generation document retrieval systems.

When viewed this way, the probabilistic and inference models use two

similar approaches to the same estimation problem. The probabilistic model

uses a single, general purpose rule and makes assumptions about term

dependence in order to estimate P(relevant I d,). The model presented here

views the problem of estimating P( 1 \ d,) as consisting of a set of logically

related estimates. Each estimate is made independently using procedures
specific to the type of estimate; the “probabilistic” estimate of P( Q I ~Q) is

simply one component of the overall estimate. The component estimates are

then combined in a manner consistent with the dependence relationships

represented in the inference network to provide an estimate of P(1 I d,).

4.2 Comparison with the RPI Model

To further clarify the relationship between the inference network model and

the probabilistic model, we will compare the inference network model with

Fuhr’s model for retrieval with probabilistic indexing (RPI model) [18]. To

simplify the comparison, we will temporarily adopt Fuhr’s notation. Let

dm represent a document in the collection,

x be the binary vector (xl, Xz, ., ., XJ in which each x, corresponds

to a document descriptor (representation concept),

f, represent the query, and

R represent the event that a document is judged relevant to a query.

All variables are binary valued. In this model, P( x, = 1 I dJ is interpreted

as the probability that a descriptor r, is a “correct” indexing of dm. Let X be

the set of possible values for x, where I X I s 2”.

The network shown in Figure 3 corresponds to the probability distribution

P(R, fk, xl, . . ..xn. cim)

—— ~(Rlf~>dm)

=P(Rlf~, xl, . . ..xJP(xlld J . ..~(xnl dm)~(f~)~(dm).
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Fig, 3. Inference network for RPI model

We will evaluate this expression for a given document and query so f~ and

dm are known and the distribution reduces to

P(R] fk, dm)=P(R lfk, xl, . . ..)~(~ltd m)m~(~n~dm)/dm)

Assuming that the descriptors are assigned independently, that is

the basic ranking expression for the network of Figure 3 is

P(RI f,, dm) = ~;XP@/ fk, x) P(xldm).

Equation 6 is equivalent to the basic ranking expression used

equation 9]. Equation 6 can be expanded to the product form

(6)

by Fuhr [18,

where

(Strictly speaking

x in place of xl,

PLk = P(xi= l/R>fk)

~L=p(~L=l)

u 1??2=P(xt=l/dm).

the network corresponding to (6) should have a single node

. . . . Xn since (6) makes no independence assumptions.

Independence is, however, assumed in all derivations based on (6) so we have
chosen to show it in the network. )

Using the same notation and variables, the network of Figure 1 can be

reduced to the network of Figure 4. This inference network is described by
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Fig. 4. Example inference network.

the probability distribution

P(R, f~, xl, . . ..x~. dm)

=P(R]dm)

=p(R\f~)p( fJxl>. ... x~)P(xl ldmp(xn ldm)p(dm)(dm).

Comparing Figure 4 with Figure 3, we see that in the inference network

model the query does not appear as a separate prior (root) but is explicitly

conditioned on the representation concepts. Again, dm is given, so we have

P(Rldm)=P(Rl f~)P(f Jxl, . . ..xJP(x JdmP(x JdJx JdJ.

Applying Bayes’ rule we get

P(Rldm)=P(Rlf~)
P(xl,..., xnlf,)p(fk)

P(xlldn). ..p(~n
P(xl, . . ..xn)

Assuming that the x, are distributed independently in documents

that the assignment of the x, is independent of the query (9)

P(xl, . . ..xn) = IJJh)

P(xlj . . . ~X.1 fk) = IJJJ(~Ll fk)

we have

‘(X,l fk)
P(RldJ ‘p(Rlfk)p(fk)~ n P(x,ldm).

Xsx lszsn P(xt)

4n).

(8) and

(8)

(9)

(lo)
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Fig. 5. Effect of inversion.

The application of Bayes’ rule essentially inverts the network of Figure 4 to

obtain the equivalent network shown in Figure 5.4 Note that the use of

Bayes’ rule here is to allow us to derive a closed-form ranking expression that

can be compared with the RPI model. In practice, we would use an estimate

of P(fkl xl,..., x.) and would not invert the network.
Equation 10 reduces to

~(wLJ

[

P(xz=llfk)
= P(R1’f-k)lyfk) n

P(xi = 1)
P(xi=lldm)

l<i<~

+%=wk)
P(xi = o) )P(x, =oldm) .

If we let

nk=~(~,=llfk)

~L=~(~L=l)
u zm =P(x, =lldm),

we get the ranking expression

Equation (11) differs from (7) in that pik is conditioned only on the query and

not on R and the resulting probability is normalized by P( f~ ). The difference

in conditioning for p,~ arises because the network of Figure 4 implicitly

assumes that x and R are conditionally independent given the query, that is

4While the networks in Figures 4 and 5 are equivalent in the sense that the computed
probability distributions are the same, Figure 5 does not lend itself to normal belief network
updating procedures. In order to produce the new P( x, I fk, dm) link matrix and the new prior

P( fk) we must make use of the assum,ed value of P( din). In essence, when we invert the network
we fold the prior probability dm into the new link matrix and extract a new prior for the query.
This means that to test the effect of a change in P( din), we would have to recompute the link
matrices at each x, and compute a new P( fk). With the network in Figure 4, we can change our
assumed value for P( cim) without changing the probability information stored at each node.
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x cannot influence our assessment of relevance except through its effect on

the query. The network of Figure 3 assumes that x and f~ are independent,

but not necessarily conditionally independent given R, that is, x and the

query can influence our assessment of relevance independently. Under the

assumption of conditional independence

P(x I R, f,) = P(XI ~k)

and the p,h terms are identical. P( f~) is constant for a given query and does
not affect the ranking so, under the assumption of conditional independence,

the rankings produced by the two models are identical.

The networks in Figures 3 and 4 help to clarify the differences between the

probabilistic and inference network retrieval models. In the network of

Figure 3, the query is modeled as a separate variable that is related to the

possible document descriptions through the specification of P( R Ix, fh). The

network of Figure 4 explicitly models the dependence of the query on the

document representation and the dependence of relevance on the query.

Again, the network of Figure 4 asserts the independence of the document

representation and relevance given the query; the document representation

cannot influence the probability of relevance except through its influence on

the query.

The principal difference between the two models, then, lies in the depen-

dencies assumed. While we have chosen Fuhr’s model as the basis for

comparison, network forms could be developed for the many other probabilis-

tic formulations. The chief advantage of the inference network model is that

it allows complex dependencies to be represented in an easily understood

form and it allows networks containing these dependencies to be evaluated

without development of a closed form expression that captures these depen-

dencies.

4.3 Boolean Retrieval

Using the canonical link matrix forms of Section 3.4, we can implement
Boolean retrieval as follows. For clarity, we assume that the query and

representation vocabularies are identical so we can omit query concepts from

the network. We also assume that when one document is instantiated all

remaining documents are set to false.

(1)

(2)

Use a canonical or matrix at each representation node. When a document
is instantiated, all representation concepts to which it has been attached

will have bel( r,) = 1. All remaining representation concepts have bel( rj)

= o.

Build an expression tree for the query. The root of the tree is the query

and all arcs in the tree are directed toward the root. The leaves of this

tree will be representation concepts and the interior nodes will corre-

spond to expression operators. At each operator node use the canonical

link matrix form for that operator. Attach this tree to the document
network.
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(3) Using the evaluation procedure described in Section 3.3, instantiate each
document in turn and record the belief in the query node. Any document

for which bel(Q) = 1 satisfies the query, any node for which bel(Q) <1

does not.

Under the assumptions above and using binary indexing, bel( Q) can only

have values O or 1 and the inference network simulates a conventional

Boolean system exactly. If we relax the requirement that all uninstantiated

documents be set to O, then only documents for which bel( Q) = 1 satisfy the

query and all remaining documents have a small but nonzero bel(Q).

The same probabilistic interpretation of the Boolean operators applies

equally well to weighted indexing. Using the approach described in Section

3.4, we can incorporate indexing weights by replacing the or link matrix at

the representation concept nodes with a weighted-sum matrix incorporating

the appropriate tf and idf weights. In this case, when a document is

instantiated, all representation nodes to which it is attached take on the

tf. idf weight for that term/document pair and all remaining representation

nodes take on bel = O. These weights are then combined using the closed-form

expressions of Section 3.4. In short, the tf. idf weights are interpreted as

probabilities and are combined using the normal rules for negation and for

disjunctive or conjunctive combination of sets in an event space. As a result,

(1) through (4) provide a natural interpretation of Boolean operations in

probabilistic terms and can be used with binary or weighted indexing.

The binary nature of the retrieval decision in Boolean systems is fre-

quently cited as a drawback [8, 30, 361. We can relax our strict interpretation

of the probabilistic semantics of the Boolean operators by allowing the

number of parents = true to influence our belief. For example, we can choose

a value n s c s co and interpret the and operator to mean

P(Qand = true I n parents = true) = 1

n–k
P(Q~~~ = true I k parents = true) = 1 – — O>k>n

c’

P(Q..~ = true I no parents = true) = O

and the or operator to mean

P(QO, = true I n parents = true) = 1

P(QO, = true] k parents = true) = ~ , O<k<n

P(QO, = true I no parents = true) = O.

Since a node implementing the not operator has exactly one parent, its

interpretation is unchanged. Under this interpretation, when c = m, the

operators have their normal Boolean interpretation. As c decreases, our

belief in Q depends increasingly on the number of parents that are true.

When c = n the distinction between and and or has disappeared and the

link matrices for both operators are the same. The use of this parent
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weighting scheme is quite similar to the extended Boolean retrieval or

p-norm model [30, 361. The two approaches are equivalent when c = n and

p = 1 and when c = p = co; the resulting probability and similarity functions

are monotonic for n < c < GOand 1 < p < m.

4.4 Estimatmg the Probabllihes

Given the link matrix forms of Section 3.4, we now consider the estimates

required for the basic model of Figure 1. The only roots in Figure 1 are the

document nodes; the prior probability associated with these nodes is set to

1 /(collection size). Estimates are required for five different node types: text,

representation and query concepts, query, and information need.

Text nodes. Since text nodes are completely dependent upon the parent

document node, the estimate is straightforward. Since there is a single

parent, a matrix form can be used; t,is true exactly when d, is true so

L
()

10
text = 01”

This matrix

Note that

form is the inverse of that used for not.

the distinction between document and text nodes is not required

for the basic model and we often ignore text nodes for clarity. Text nodes are

required if we support sharing of text by documents and to support the

extended model of Section 5 which includes the citation links and document

clustering. If we allow document nodes to share text nodes, then an or

matrix is appropriate, t,is true when any parent is instantiated.

Representation concept nodes. Link matrix forms for representation

concepts were discussed in Section 3.4. For binary indexing and unweighed

terms an or-combination can be used. For tf, idf, or tf. idf weights a

weighted-sum link matrix is used.

Query concept nodes. As we have seen, previous indexing research can

be incorporated directly in the document network. The query network, partic-

ularly the links between representation and query concepts is less well
understood. Here we are interested in estimating the probabilistic depen-

dence of concepts mentioned in the user’s query upon the representation

concepts. Most current retrieval models view these two sets of concepts as

identical under the assumption that the user knows the set of representation

concepts and can formulate queries using the representation concepts di-

rectly. Under this assumption, the same link matrix as for text nodes should

be used.

Research suggests, however, that the mismatch between query and index-

ing vocabularies may be a major cause of poor recall [15]. While our initial

implementation is limited to linking query concepts to “nearly” equivalent

representation concepts using a weighted-sum combination rule, it would

appear that improved estimates of the dependence of query concepts on

representation concepts could markedly improve performance. Two areas of

research bear directly on improving the quality of these estimates: automatic

thesaurus construction and natural language research aimed at extracting
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concept descriptions from query text, identifying synonymous or related

descriptions, and resolving ambiguity.

Query nodes. The dependence of query nodes on the query concepts is

more straightforward. For Boolean queries we use the procedure described in

Section 4.3. For probabilistic queries, we use a weighted-sum matrix. In

both cases we can adjust link matrix values if we have information about the

relative importance of the query concepts.

Information need. The information need can generally be expressed as a

small number of queries of different types (Boolean, m-of-n, probabilistic,

natural language, . ). These can be combined using a weighted-sum link

matrix with weights adjusted to reflect any user judgments about the impor-

tance or completeness of the individual queries.

5. EXTENSIONS TO THE BASIC MODEL

The basic model described in Section 3 is limited in at least two respects.

First, we have assumed that evidence about a variable establishes its value

with certainty. Second, we have represented only a limited number of depen-

dencies between variables. In this section we will see that these limitations

can be removed.

5.1 Uncertain Evidence

The only use of evidence in the basic model is to assert that a document has

been observed (d, = true). During query processing we assert each document

as true and rank documents based on the probability that the information

need is met. Evidence is attached to a node a in a Bayesian network by

creating a new evidence node b as a child of a. This new node b then passes a

likelihood vector (both components of a likelihood ratio) to a. Since evidence

is expressed in terms of likelihood we are not restricted to the values true

and false but need only specify the likelihood of a = true and a = false given

the evidence summarized at b. Thus we can “partially” instantiate nodes in

the network when the evidence we have is not sufficient to establish the

value of a proposition with certainty. This uncertain evidence can be used to

model citation and document cluster information.

Document clustering. A variety of document clustering techniques have

been developed for information retrieval [42]. Document clustering is gener-

ally used to find documents that are similar to a document that is believed

relevant under the assumption that similar documents are related to the

same queries. Our use of cluster information is somewhat different since we

do not retrieve clusters, but we can incorporate cluster information by

treating cluster membership as an additional source of evidence about docu-

ment content. In the fragment shown in Figure 6, document texts tl,t2,and

t3are indexed using representation concepts rl, r2, r~, and r4. Documents t2

and t~ have been identified as part of cluster cl; both texts are linked to a
cluster node and the cluster node is linked to the representation concepts that

define the cluster. The cluster node is similar to a conventional cluster

representative. Documents tland t2are indexed by the same representation
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Fig, 6. Document clustering model

concepts ( rl and r2) and, if we assume equivalent conditional probabilities,

would be ranked equivalently in the absence of the cluster node. With the

addition of the cluster node, however, a new representation concept ( r3) is

associated with tz by virtue of its cluster membership. Assuming that r~

contributes positively to the belief in q, t2would be ranked higher than tl.In

practice, the links between documents and clusters are not represented in the

network; evidence is attached to all clusters to which a document has been

assigned when the document is instantiated.

Citation, nearest neighbor, and hypertext links. A variety of asymmet -

ric relationships between pairs of documents can also be represented. Croft

and Turtle [12] discuss the use of inference networks to model hypertext

links. Citation and nearest neighbor relationships are similar to clustering in

that an assumed similarity between documents can be used to expand the set

of representation concepts that can be plausibly associated with a text. They

differ from clustering in that they are ordered relations defined on pairs of

documents rather than an unordered, set membership relationship between

documents and clusters.

Once example of this kind of relationship is the nearest neighbor link in

which a document is linked to those documents judged to be most similar to

the original. A second example is based on citations occurring in the text.

Citation links may be useful if the type of reference can be determined to
allow estimation of the probabilistic dependence between the nodes. Again,

these links are not explicitly represented in the network; evidence is attached

to a document’s nearest neighbors and citation partners when the document

is instantiated.

5.2 Additional Dependencies

In the basic model, we assume that there are no dependencies between

documents, between texts, between representation concepts, between query

concepts, or between queries. While independence assumptions like these are
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common in retrieval models, it is widely recognized that the assumptions are

unrealistic. In addition to the document cluster and citation information

which is modeled as evidence, we would like to explicitly represent the term

dependencies embodied in phrases, conventional term clusters [421, and

thesauri.

The basic mechanism for representing these dependencies is unchanged,

we identify the set of nodes upon which a given node depends and character-

ize the probability associated with each node conditioned on its immediate

parents. When adding these new links, however, we must be careful to

preserve the acyclic nature of the inference network. Bayesian inference

networks cannot represent cyclic dependencies since, in effect, evidence

attached to any node in the cycle would continually propagate through the

network and repeatedly reinforce the original node. In the basic model, no

cycles are possible since nodes are only linked to node types that are lower in

the DAG. The introduction of these new dependencies makes cycles possible.

Inference networks provide a natural mechanism for representing depen-

dencies between representation concepts and between query concepts. Sev-

eral automatic clustering techniques produce structures that can be used in

an inference network. For example, dependence trees or Chow trees [28, 421

contain exactly the term dependence information required for an inference

network in a form that is guaranteed to be cycle-free.

These networks can also be used to represent probabilistic thesaurus

relationships. These relationships extend those of a conventional thesaurus

by including conditional probability information. For example, a conven-

tional thesaurus might list “house pet” as a broader term for “dog” and

“cat”; the network representation will include a specification of the probabil -

ity that “house pet” should be assigned given a document containing “dog”

or “cat” in isolation, neither term, or both terms.

Synonyms, related terms, and broader terms can be represented by crest-

ing a new node to represent the synonym or related term class or the broader

term and adding the new node as a child to the relevant representation

concept nodes. We will generally prefer to add these nodes as part of the

query network since their presence in the document network would represent

a computational burden even when not used in a query. Although generally

less useful, narrower term relationships can also be represented.

6. EVALUATION METHODOLOGY

To test the effectiveness of the inference network retrieval model, inference

networks were built for two test collections. The CACM test collection

contains 3204 records describing articles published in the Communications of

the ACM from 1958 to 1979. CACM records contain author, title, abstract,

and citation information as well as manually assigned keywords and Com-

puting Review categories. The CISI test collection contains 1460 records

describing highly cited information science articles published between 1969

and 1977. CISI records contain author, title, abstract, and citation informa-

tion. Queries and relevance judgments are provided with each collection. A

ACM Transactions on Information Systems, Vol. 9, No. 3, July 1991.



210 . H. Turtle and W. B. Croft

Table I. Selected Collection Statistics

collection size

unique sterns

maximum stem frequency

stem occurrences

postings

max within document frequency

mean within document frequency

queries

CACM

3204

5493

1333 (algorithm)

117578

79243

27

3.7

50

CISI

1460

5448

660 (inform)

98304

71017

27

5.2

35

query in these collections is a natural language description of an information

need. Boolean queries have been manually constructed from these natural

language descriptions by the test collection providers. One set of Boolean

queries is available for CISI and two sets (referred to as BL1 and BL2) are

available for CACM. Summary statistics for both collections are shown in

Table I. For a more detailed description of the test collections and their

history, see Fox [171.

Most of the experimental work was conducted with the CACM collection

since it is widely used and allows comparison of our results with a large body

of previous work. Experiments with the CISI collection were carried out to

validate results obtained with the CACM collection since the performance of

many retrieval techniques is collection dependent. Previous studies have

shown that absolute performance on the CISI collection is low when com-

pared to most other test collections, including CACM. CISI articles tend to be

general and queries tend to be vague (e. g., “What is information science?”).

Retrieval performance is described in terms of precision and recall. Preci-

sion/recall data will be presented in tabular form showing precision at ten

standard recall points. When two tests are being compared, we show the

difference as the percent change from the baseline test. Significance tests are

based on a one-tailed Sign test [35] comparing the ten averaged precision

values for each query set, where a 5 percent difference in average precision is

required for two observations to be considered different. This is a conserva-

tive test, but it makes few assumptions about the distribution of observed

data. As an informal rule, a difference of 5 percent in average precision is

generally considered significant, and a 10 percent difference is considered

very significant [311.

7. RESULTS

The research hypotheses discussed here are:

(1) Given equivalent document representations, query forms, and assump-

tions about the match between indexing and query vocabularies, the

inference network model will perform as well as conventional probabilis-

tic models.
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(2) The use of multiple query formulations and search strategies will signifi-

cantly improve retrieval performance when compared to equivalent net-

works with a single natural language query.

Computational aspects of the model are discussed in [39] and complete results

are presented in [41].

In the remainder of this section, we discuss techniques for estimating the

required probabilities (Section 7. 1), compare performance with simple proba-

bilistic searches (Section 7.2), and give results for multiple query representa-

tions (Section 7.3).

7.1 Estimating the Probabilities

For the basic model we must provide two probability estimates: one estimate

characterizes the dependence of a query or information need upon the terms

in the collection (Section 7.1.1) and the second characterizes the dependence

of individual terms on their parent documents (Section 7.1.2).

7.1.1 Dependence of Queries on the Document Network. As suggested in

Section 3.4, the procedures for estimating P(Q / t,) differ for Boolean and

natural language queries. Estimates for Boolean queries use product-form

estimates which are largely determined by the model, while estimates for

natural language queries use weighted sums and are based on the results of

previous information retrieval research.

Natural language queries. A natural language query is simply a natural

language description of an information need. Words in the query that gener-

ally do not affect retrieval performance (stop words) are removed, and the

remaining words are stemmed to remove common endings in an attempt to

reduce simple spelling variations to a single form. Documents are then

ranked using Eq. 4 to combine probabilities.

Two factors are commonly used in weighting the contribution of query

terms—the frequency of the term in the query ( qf’) and the inverse document

frequency (idf ) of the term in the collection. The basic ideas are that (1) a

content-bearing term that occurs frequently in the query is more likely to be

important than one that occurs infrequently, and (2) those terms that occur

infrequently in the collection are more likely to be important than frequent

or common terms.

The use of query term weights based on idf alone decreased retrieval

performance. Weights based on within-query frequency ( qf ) and the combi-

nation of qf and idf both increased retrieval performance (significance levels

of 0.002 for both weighings). In general, the performance levels of qf and

qf. idf weighings are quite similar, and the choice of one over the other will

depend on the function used for P(t, I dJ) and on the query types to be used.

For many applications, the qf weighting will be preferred since it is simpler

and performs at least as well as qf. idf at high precision. All results reported

here use either qf or qf. idf weighting.

Boolean queries. A Boolean query consists of an expression using the

operators and, or, and not with query terms as operands. Stopwords are
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removed from the queries, query terms are stemmed as with probabilsitic

queries, and documents are ranked using Eqs. 1 through 3 to combine

probabilities.

For conventional Boolean queries, then, the retrieval model specifies how

probabilities are to be combined and no additional probabilities need be

estimated. Since it would be straightforward to add weights to terms in

Boolean queries, an open research issue is whether significant improvements

can be obtained by weighting Boolean query terms. While the Boolean

queries available with the standard test collections do not include term

importance information, [1] suggests that useful information about term

importance can be readily obtained from users; this information could be

directly incorporated as weights for Boolean expression evaluation.

It is also possible that some form of idf weighting could be used to improve

performance of Boolean queries or that weighting strategies developed for

conventional Boolean systems [26] could be adapted to the network model. An

experiment in which each intermediate and and or expression was weighted

using an idf based on the number of documents in the intermediate result

did not improve performance.

7.1.2 Dependence of Term Belief on Documents. The probability that a

term accurately describes the content of a document can be estimated in

several ways, but previous information retrieval research has consistently

shown within-document frequency ( tf ) and inverse document frequency ( idf )

to be useful components of such estimates [32]. In developing estimates, we

concentrated on functions involving tf and idfi other functions are certainly

possible and could be used in the basic model. The idf measure used in these

experiments is given by

(collection size
log

term frequency
idf = )

log(collection size) “

The measure used for within-document frequency in these experiments is a

normalized tf [36, 42] in which the score for term i in document j is given by

frequency of term i in doc j
ntfLJ =

max frequency for any term in doc j

Given these basic forms for the tf and idf estimates, several experiments

were conducted to determine the following:

(1) What range of belief values for a term is appropriate given that a term

occurs in an instantiated document ( P( t, I dJ = true)).

(2) What range of belief values is appropriate given that a term does not
occur in an instantiated document ( P( t,IdJ = false)).

(3) How the tf and idf components should be combined when forming the
overall estimate of term belief.

Strictly speaking, our use of P( t,IdJ = true) and P(tLId] = false) here is a

bit loose. In the basic model, only one parent document is instantiated at a
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time, so that any term has either exactly one instantiated parent or no

instantiated parents. When we write P( ti I dJ = true), we really mean

P( tt I dj = true A all other parents = false).

When we write P(ti I dj = false), we really mean

P( t, Iall parents = false).

We occasionally refer to P(t, I dJ = true) as the belief in t,,given that parent

dj is true, and will refer to P(t, Iall parents = false) as the default belief

for ti.

Default belief. Most probabilistic models form a document score by adding

the scores for each term in common with the query; missing terms are treated

as if they had a score of O. In the inference network model, this amounts to

asserting that the absence of a term in a document (in most cases, in the

abstract or title of the document) implies certainty that the term should not

be assigned to the document. Given the small size of the title and abstract

compared to the full document and the fact that the query and document

vocabularies are not identical, a less extreme estimate for the probability

that a term should be assigned, given that it is not observed, seems more

reasonable. This estimate should probably depend on the type of document

record in use—the absence of a term from the full text of a journal article

should be treated as stronger evidence than its absence from abstract or title.

Since the within-document frequency for all of these term-document pairs

is zero, we considered only estimates based on a term’s collection frequency

(idf) and hypothesized that the default belief should be proportional to the
frequency of the term in the collection (inversely proportional to idf ). Essen-

tially, this hypothesis asserts that a common term is more likely to be a

correct descriptor than a rare term given that neither occurs in the

document.

Retrieval performance for natural language queries with a fixed default

value is assigned to all terms (no idf weights) peaks for defaults in the range

0.3 to 0.4. A higher default probability reduces the effect of a missing term

on a document’s ranking, but it also compresses the range of belief values for

the query given the documents in the collection.

Since values in the 0.3 to 0.4 range produced the best retrieval perfor-

mance, several default estimates of the form a – (~* idf ) were tried, where a

ranged from 0.2 to 0.5 and ~ ranged from 0.2 to 0.4 (estimates for P( t, I dj =

true) were adjusted as necessary to avoid overlapping ranges). The idf

weighted defaults perform about as well as the fixed defaults.

Since a default estimate that is inversely proportional to a term’s idf did

not consistently improve performance, estimates in which the default is

directly proportional to idf were examined. With this interpretation, the

absence of a common term is stronger evidence that the term should not be
assigned to the document than the absence of a rare term. These estimates

performed significantly worse than either the fixed or the original idf

weighted estimates.
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Combining the tf and idf estimates. A large number of functions for

combining the tf and idf estimates were tested. These functions have the

general form

P(t,ldj =true) = a +P*tf+7* idf+8*tf*idf

where 0.4 s a s 0.6 and ~, ~, and 6 were chosen to produce a probability in

the range [0.. 11. The best performance is generally achieved when 13= -y = 0.0

and only the tf. idf product term remains. In a final set of experiments,

changes to the relative weight of the tf and idf components of this product

term were tested, but changing weights did not significantly improve perfor-

mance.

Several ranking functions were developed during these experiments that

perform well when compared to conventional retrieval models. The perfor-

mance of many of the best functions is quite similar, but a good overall belief

estimate is given by

P(ti I dj=true) = 0.4 + 0.6*tf*idf
(12)

P( t, I all parents false) = O.4.

Variations that work about as well use a log normalization for the tf

component or an id~weighted default (e. g., P(t, Iall parents false) = 0.4 –

(0.2* idf)).

While this estimate works well for both collections and for all query types,

it is probably not the best that can be achieved. Our objective in these

experiments was to gain a better understanding of the major factors that

influence the performance of the retrieval model and how traditional infor-

mation retrieval weighings could be implemented in the inference network

model. Further research can certainly improve these estimates, but it is

difficult to estimate how much additional performance can be gained.

7.2 Baseline Results

Given the strategies for estimating belief at nodes in the network, we now

wish to compare the performance of the network model with that of conven-

tional probabilistic (Section 7.2. 1) and Boolean (Section 7.2.2) models.

7.2.1 Probabilistic Retrieval. It is possible to build inference networks
that are equivalent to conventional probabilistic systems if exactly the same
indexing strategies are used. In practice, minor variations in the way docu-

ments are parsed and indexed will result in small performance differences

even when the network form implements a ranking function that is equiva-

lent to that used in the probabilistic system. Using the estimates of the last

section, however, it is possible to build networks that perform better than

conventional probabilistic models. Table II shows retrieval performance of

the network model compared to a baseline probabilistic model that uses tf. idf

weighting. Performance improves 25.0’% for the CACM collection and 5.3%
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Table II. Comparison of Probabilistic and Network Model Performance

215

Recall

10

20

30

40

50

60

70

80

90

100

average

c

Probabilistic

60.2

48.3

41.0

30.9

26.5

21.6

15.0

11.7

6.4

4.4

26.6

Precision (% ch~

7M ‘

Network

67.2 (+11.7)

56.2 (+16.4)

47.6 (+16.0)

41.3 (+33.6)

34.4 (+30.2)

29.1 (+34.8)

20.3 (+35.5)

16.3 (+39.1)

11.3 (+76.1)

8.7 (+99.8)

33.3 (+25.0)

Ke) – 50 emeries
u,

Probabilistic

34.8

26.3

20.4

17.0

1.5.0

13.2

10.7

9.3

7.4

5.5

16.0

N

Network

37.3 (+7.0)

29.1 (+10.6)

21.5 (+5.5)

18.4 (+8.3)

15.9 (+5.8)

13.5 (+2.2)

11.6 (+8.3)

9.2 (–1.7)

7.1 (–4.8)

4.8 (–14.0)

16.8 (+5.3)

for CISI. The performance of the network model is better than the probabilis-

tic model at a-significance level of 0.001 for CACM and 0.062 for CISI.

These results lead us to accept Hypothesis 1. The demonstrated perfor-

mance improvements can be attributed primarily to the use of a default

probability. Probabilistic models could be formulated to use the same default

strategy and to achieve similar improvements.

7.2.2 Boolean Retrieval. Establishing a reasonable baseline for Boolean

queries is problematic since conventional Boolean retrieval does not rank

documents. In order to simulate Boolean queries, we built inference networks

with binary belief estimates for P( t,IdJ) and used the normal network

evaluation procedures. This effectively assigns all documents that satisfy the

query a belief of 1.0, all those that do not satisfy a belief of 0.0, and breaks

ties by sorting on document identifier which places newer documents higher

in the ranking. Table III compares performance of the network model with

conventional Boolean retrieval. Performance improves by 57.7% (BL 1) and

49. 1% (BL2) for CACM and by 65.3% for CISI. The performance of the

network model is better than the Boolean model at a significance level of

0.001 for both CACM query sets and 0.001 for CISI.

Our results are compared with those reported for the Extended Boolean or

p-norm model of Salton et al. [331 in Table IV. For this comparison, we use

average precision at three recall levels (25%, 50%, and ‘7570) rather than our

customary ten levels, in order to permit comparison with the published

results. Note that, for the CACM collection, Salton, et al. [33] include two

queries (author searches) that are not used in our experiments.

For both CACM and CISI, the network evaluation of the Boolean queries is

better than the best p-norm evaluation. For CACM, average precision for

network Booleans is 15.1 ‘%o better than for the p-norm model for one set of

Boolean queries and 7.8% better for the other set. Note that these results

should be interpreted cautiously, since the details of the precision/recall

computation for the published p-norm results are not known.
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Recall
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20

30

40

50
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80
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100

average
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Table 111, Comparison of Boolean and Network Models

Precision (% than.
CACM

Boolean

46.2

39.3

32.1

26.1

23.6

21.3

13.7

10.5

6.9

5.0

22.5

BL1

67.6 (+46.3)

58.8 (+49.9)

50-2 (+56.3)

45.2 (+72.8)

39.8 (+68.3)

33.6 (+57.7)

22.0 (+60.0)

18.1 (+72.8)

11.4 (+65.1)

7.9 (+58.9)

35.4 (+57.7)

BL2

66.2 (+43.1)

55.5 (+41.5)

46.9 (+46.3)

41.4 (+58.2)

35.4 (+49.8)

29.5 (+38.7)

22.5 (+63.9)

17.8 (+70.3)

11.0 (+58.8)

8.8 (+75.8)

33.5 /+49.lj

CISI

Boolean

23.7

20.9

14.6

13.1

12.1

9.2

6.9

5.6

4.9

3.8

11.5

Network

45.3 (+91.3)

32.8 (+57.2)

24.6 (+68.5)

20.5 (+56.2)

17.9 (+47.5)

15.0 (+62.8)

12.7 (+85.0)

9.5 (+69.0)

7.1 (+45.1)

4.3 (+14.2)

19.0 (+65.3)

Table IV. Average Precision for p-Norm and
Inference Network Booleans

YFT2!zz
Average Precision – 3 recall points

1 CISI I 18.4 (p=l) I 19.’2 (+4.3%) I

Salton et al. [33] report that the best p-norm interpretation of the Boolean

queries outperforms ~osine-correlation searches for “both CACM and CISI.

Our results also show that the Boolean interpretation consistently outper-

forms the probabilistic (see Table V). This result clearly depends on the

quality of the Boolean queries that were generated from the original natural

language versions. It would be easy to build Boolean queries that perform

poorly, and one would expect performance to improve if domain knowledge

was used to expand the set of query terms. The Boolean queries in the test

set, however, do not add new terms or domain knowledge. Performance

improvements appear to arise because the Boolean queries capture structural

information in the queries (phrase structure, compound nominals, and nega-

tion) that is not exploited in probabilistic queries. The potential for encoding
linguistic structure in Boolean or Boolean-like expressions is an important

area for future research.

7.3 Multiple Query Representations

In order to test Hypothesis 2:

The use of multiple query formulations and search strategies will signifi-

cantly improve retrieval performance when compared to baseline proba-

bilistic searches.
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Table V, Comparison of Probabilistic and Boolean Searches

Precision (% chaa

CACM

prob.

67.2

56.2

47.6

41.3

34.4

29.1

20.3

16.3

11.3

8.7

33.3

BL1

67.6 (+0.6)

58.8 (+4.7)

50.2 (+5.5)

45.2 (+9.4)

39.8 (+15.5)

33.6 (+15.2)

22.0 (+8.1)

18.1 (+10.7)

11.4 (+0.6)

7.9 (–9.4)

35.4 (+6.6)

BL2

66.2 (–1.6)

55.5 (–1.2)

46.9 (–1.3)

41.4 (+0.2)

35.4 (+2.8)

29.5 (+1.4)

22.5 (+10.8)

17.8 (+9.0)

11.0 (–3.3)

8.8 (+0.2)

33.5 (+0.7)

?)/
CISI

prob.

38.3

27.9

20.0

17.5

15.5

12.9

11.2

9.0

7.0

4.7

Boolean

45.3 (+18.3)

32.8 (+17.3)

24.6 (+23.3)

20.5 (+17.4)

17.9 (+15.3)

15.0 (+16.1)

12.7 (+13.7)

9.5 (+4.7)

7.1 (+1.7)

4.3 (–8.3)

16.4 I 19.0 (+15.7) ,

Table VI. Performance of Combined Queries on CACM

Precision I

Probabilistic

67.2

56.2

47.6

41.3

34.4

29.1

20.3

16,3

11.3

8.7

BL1

67.6

58.8

50.2

45.2

39.8

33.6

22.0

18.1

11.4

7.9

33.3 I 35.4

com~ined

76.2 (+13.3)

66.3 (+17.9)

56.3 (+18.3)

50.9 (+23.4)

45.4 (+31.6)

38.8 (+33.1)

25.1 (+23.5)

20.4 (+24.8)

12.4 (+9.1)

9.2 (+4.8)

40.1 (+20.5)

BL2

66.2

55.5

46.9

41.4

35.4

29.5

22.5

17.8

11.0

8.8

33.5

Combined

71.9 (+6.9)

60.0 (+6.8)

51.8 (+8.9)

44.3 (+7.3)

38.7 (+12.4)

32.4 (+11.1)

23.6 (+16.0)

18.9 (+16.0)

11.7 (+3.7)

9.2 (+5.5)

36.3 (+9.0)
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Inference networks were built to evaluate both probabilistic and Boolean

versions of the query and to combine the results using a weighted-sum link

matrix. Table VI shows the effect of combining probabilistic and Boolean
queries with CACM; Table VII shows performance for CISI. Combining

queries increased performance by 20.5% (BL1) and 9.0% (BL2) for the CACM

collection and by 17 .8’%0 for CISI. The combined performance is better than

for probabilistic queries at significance levels of 0.002 for both CACM query

sets and 0.004 for CISI. The combined performance is better than for Boolean

queries at significance levels of 0.001 and 0.002 for CACM, but only 0.250 for

CISI. These results lead us to accept Hypothesis 2. The performance improve-

ment due to combining queries is one of the most consistent improvements

observed in this research; for any reasonable document network, combining
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Table VII. Performance of Combined Queries on CISI

Recall

10

20

30

40

50

60

70

80

90

100

average

Probabtistic

38.3

Precision (% change) – 35 aueries

Boolean

45.3 (+18.3)

27.9

20.0

17-5

15.5

12.9

11.2

9.0

7.0

4.7

16.4

32.8 ~i17.3)

24.6 (+23.3)

20.5 (+17.4)

17.9 (+15.3)

15.0 (+16.1)

12.7 (+13.7)

9.5 (+4.7)

7.1 (+1.7)

4.3 (–8.3)

19.0 (+15.7)

‘Combined

44.7 (+16.7)

36.1 (+29.2)

25.0 (+25.0)

20.3 (+16.2)

18.0 (+16.2)

15.2 (+17.1)

12.8 (+14.3)

9.5 (+5.3)

7.0 (+0.7)

4.6 (–2.5)

19.3 (~17.8j

probabilistic and Boolean queries gives significant performance improve-

ments.

We originally thought that at least part of the performance improvements

arose because the two query types were retrieving different relevant docu-

ments, so that the combined set contained more relevant documents than

retrieved by the separate queries. This is not, however, the case. The

documents retrieved by the Boolean queries are a subset of those retrieved by

the corresponding probabilistic query. The individuals preparing the Boolean

queries rarely added new terms to the query (for CACM, 4 out of 50 queries

in each Boolean set contained new terms), and these new terms retrieved no

new relevant documents. It appears that the objective in creating the Boolean

queries was to capture the structural information present in the natural

language versions, not to produce the best possible Boolean queries. If

trained searchers were asked to produce high-recall Boolean queries from the

natural language descriptions, they would generally use their knowledge of

the subject domain and indexing practice to expand the set of terms to

include synonyms and related terms. It is likely that these enhanced searches

would retrieve relevant documents not found by the probabilistic query and

that these queries would perform better than those provided with the test

collection.

The observed performance improvement, then, is due entirely to the fact

that the normalized sum of the beliefs produces a better ranking than the
rankings produced by the probabilistic or Boolean queries alone.

To determine the degree to which the natural language and Boolean

rankings agreed for the CACM test queries, correlation coefficients (Pearson

product moment) were computed for the rankings produced by each query.

The rankings agreed reasonably well (no negative coefficients), ranging from

0.286 to 1.0 for BL1 and from 0.282 to 1.0 for BL2 with mean rank

coefficients of 0.731 and 0.735, respectively (using the belief estimates of Eq.

12). Unfortunately, the correlation coefficient does not appear to be a good

predictor of the performance of the combined ranking; identical rankings can
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both be wrong, and dissimilar rankings can be combined to produce a good

result.

Attempts to weight the query types either by scaling beliefs to a similar

range or assigning fixed weights to the query types did not improve the

performance. It is likely, however, that information about the relative qual-

ity of the queries (e. g., user judgments) could be used to weight the

contribution of each query and to improve performance.

The actual belief values produced by the two query types are quite vari-

able, and it is difficult to predict whether one ranking will dominate the

combined result. Probabilistic beliefs tend to be more uniformly distributed

between a minimum that is either fixed (fixed default belief) or determined

by the number of query terms ( idflweighted default) and a maximum deter-

mined by the number of terms and the term weights. Boolean belief values

depend heavily on the structure of the Boolean expression. In practice,

and-structured queries generally rank a relatively small number of docu-

ments highly, after which belief values drop off rapidly. Or-structured queries

tend to produce a more uniform distribution of beliefs.

Croft and Thompson [10] found that different query representations or

strategies worked better for some queries than others and that it was difficult

to predict which strategy would work best with a given query. In their work,

they tried to select a query evaluation strategy based on different query

features (query length, sum, and average of idf weights), but found that

these features did not predict which strategy would work well. One of the

strengths of the network model is that it is not necessary to predict which

query representation will perform well. Given reasonable query representa-

tions, the combined performance is better than that achieved by either

representation separately.

8. CONCLUSION

With the CACM collection, the network model gives the performance im-

provements shown in Table VIII when compared to conventional probabil-

istic retrieval. For natural language queries, average precision improves

25.0%, for BL1 it improves 33.3%, and for combined queries it improves by

50.7%. The amount of improvement is, of course, dependent upon the base-

line used. Comparing the inference network results with the best reported

vector-space results gives improvements ranging from – 3. 9$% to +42.6%

(Table IX). Comparing our results to reported p-norm results (Table X) shows

improvement of 8.2% to 30. i!i~o over the best p-norm results. As reported in

[41], the use of citations as additional evidence increases network perfor-

mance by roughly 5 –890 over the results shown here.

Based on these results, we can accept the hypotheses discussed in this

section:

(1) Given equivalent document representations, query forms, and assump-
tions about the match between indexing and query vocabularies, the

inference network model performs better than conventional probabilistic

models.
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(2)

Recall

10

20

30

40

50

60

70

80

90

100

average

Table VIII Network Model Performance Improvement

Precision (7o chamzel – 50 aueries

probabilistic

60.2

48.3

41.0

30.9

26.5

21.6

15.0

11.7

6.4

4.4

26.6

NL ‘

67.2 (+11.7)

56.2 (+16.4)

47.6 (+16.0)

41.3 (+33.6)

34.4 (+30.2)

29.1 (+34.8)

20.3 (+35.5)

16.3 (+39.1)

11.3 (+76.1)

8.7 (+99.8)

33.3 (+25.0)

“’BL1”

67.6 (+12.3)

58.8 (+21.9)

50.2 (+22.3)

45.2 (+46.2)

39.8 (+50.4)

33.6 (+55.4)

22.0 (+46.5)

18.1 (+53.9)

11.4 (+77.1)

7.9 (+81.0)

35.4 ~+33.3j

combined

76.2 (+26.5)

66.3 (+37.3)

56.3 (+37.2)

50.9 (+64.8)

45.4 (+71.4)

38.8 (+79.5)

25.1 (+67.2)

20.4 (+73.5)

12.4 (+92.2)

9.2 (+109.5)

40.1’ (+50.7j

Table IX. Average Precision for Vector-Space and Inference

Network Models -

Average Precision – 3 recall points

Best Network NL+

vector-space NL Boolean

“ [SM83] 30.3 34.9 (+15.2%) 43.2 (+42.6%)

[sa188] 36.3 34.9 (-3.9%) 43.2 (+19.0%)

Table X. Average Precision for p-Norm and Inference Network Models

Average Precision – 3 recall points

Best Network NL+

p-norm Booleau Boolean

CACM 33.1 (p=2) 38.1 (+15.1 %)-BL1 43.2 (+30.5%)

35.6 (+7.8% )-BL2 30.6 (+16.7%)

CISI 18.4 (p=l) 19.2 (+4.3%) 19.9 (+8.2%)

The use of multiple query representations significantly improves re -

trieval performance when compared to equivalent networks with a single

query representation.

The results described here also support a number of additional conclusions:

–Conventional probabilistic retrieval strategies based on t~ and idf work

well in the network model.

–The use of a nonzero default probability for term belief significantly

improves performance.

—The use of query term weights based on the frequency of the term in the

query improves performance for natural language queries.

—Even simple Boolean queries perform as well as corresponding probabilistic

versions, given the combining functions of Eqs. 1 through 3.
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Perhaps the most important conclusion of the current research is that evi-

dence from multiple sources can be combined to improve our estimate of the

probability that a document satisfies a query. As a result, the network model

provides a natural framework within which to integrate results from several

areas of information-retrieval research (e. g., intelligent interfaces or NLP

techniques).

REFERENCES

1. CROFT, W. B., AND DAS, R. Experiments with query acquisition and use in document

retrieval systems. In Proceedings of the 13th International Conference on Research and

Development in Information Retrieval Jean-Luc Vidick, Ed. ACM, Sept. 1990, pp. 349-368,

2. CROFT, W. B., AND HARPER, D. J. Using probabilistic models of document retrieval without

relevance information. J. Dec. 35 (1979), 285-295.

3. CHEESEMAN, P. An inquiry into computer understanding. Comp. Intell. 4 (Feb. 1988),
58-66,

4. COHEN, P. R., AND KJELDSEN, R. Information retrieval by constrained spreading activation

in semantic networks. Znf. Prccess. Manage. 23, 2 (1987), 255-268.

5. COHEN, P. R. Heuristw Reasoning About Uncertainty; An Artificial Intelligence Approach.

Pitman, Boston, Mass., 1985.

6. COOPER, W. S. A definition of relevance for information retrieval. Inf. Storage Retrteval, 7

(1971), 19-37.

7. CROFT, W. B. A model of cluster searching based on classification. Inf. Syst. 5, 3 (1980),
189-195.

8. CROFT, W. B. Boolean queries and term dependencies in probabilistic retrieval models

J. Am. Sot. Inf. Sci. 37, 2 (1986), 71-77.

9. CROFT, W. B. Approaches to intelligent information retrieval. Znf. Process. Manage. 23, 4

(1987), 249-254.

10. CROFT, W. B., AND THOMPSON, R. H. The use of adaptive mechanisms for selection of search

strategies in document retrieval systems, In Proceedings of the ACM/ BCS Znternatzonal

Conference on Research and Development m Information Retrieval, C. J. van Rijsbergen, Ed.
1984, pp. 95-110.

11. CROFT, W. B., AND THOMPSON, R. H. Z3R: A new approach to the design of document

retrieval systems. J. Am. Sot. Znf. Sci., 38 (Nov. 1987), 389-404.

12. CROFT, W. B., AND TURTLE, H. A retrieval model incorporating hypertext links. In Hyper-

text ’89 Proceedings 1989, pp. 213-224.

13. DEMPSTER, A. P. A generalization of Bayesian inference, J. Royal Stat. Sot. B. (1968),

205-247.

14. DOYLE, J. A truth maintenance system. Artzf. Zntell. 12, 3 (1979), 231-272.

15. FURNAS, G. W., LANDAUER, T, K., GOMEZ, L. M., AND DUMAIS, S. T. The vocabulary

problem in human-system communication. Commun, ACM, 30, 11 (Nov. 1987), 964-971.

16. Fox, E. A., NUNN, G. L., AND LEE, W. C. Coefficients for combining concept classes in a

collection. In Proceedings of the Eleventh Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval (Grenoble, June 13-15, 1988). ACM,
New York, 1988, pp. 291-308.

17. Fox, E. A. Characterization of two new experimental collections in computer and informa-

tion science containing textual and bibliographic concepts. Technical Report 83-561. Dept. of

Computer Science, Cornell Univ., Ithaca, N. Y., Sept. 1983.
18. FURH, N. Models for retrieval with probabilistic indexing. Inf. Process. Manage. 25 1

(1989), 55-72.

19. KANAL, L. N., AND LEMIWER, J. F,, EDS. Uncertainty m Artificial Intelligence. North-
Holland, Amsterdam, 1986,

20. KATZER, J., MCGILL, M. J., TESSIER, J. A., FRAKES, W., AND DASGUPTA, P. A study of the

overlap among document representations. Znf. Technol. Res. Dew. 1 (1982), 261-274

ACM Transactions on Information Systems, Vol. 9, No. 3, July 1991.



222 . H. Turtle and W. B. Croft

21. LEMMER, J. F., AND KANAL, L. N., EDS. Uncertainty in Artificial Intelligence 2. North-
Holland, Amsterdam, 1988.

22. LAURITZEN, S. L., AND SPIEGELHALTER, D. J. Local computations with probabihties on
graphical structures and their application to expert systems. J, Royal Stat. Sot. B, 502

(1988), 157-224.

23. MARON, M. E., AND KUHNS, J. L. On relevance, probabilistic indexing and information
retrieval. J. ACM, 7 (1960), 216-224.

24. MCGILL, M., KOLL, M., AND NOREAULT, T. An evaluation of factors affecting document
ranking by information retrieval systems. Tech. Rep., Syracuse Univ , School of Information
Studies, 1979.

25. NILSSON, N. J. Probabilistic logic. Artzf Intell. 28, 1,(1986), 71-87
26. NOREAULT, T., KOLL, M., AND MCGILL, M. J. Automatic ranked output for Boolean searches

in SIRE J. Am Soc Zn~ SCZ. 28, 6 (1977), 333-339.
27. ODDY, R. N., PALMQUIST, R. A., AND CRAWFORD, M. A. Representation of anomalous states

of knowledge in information retrieval. In Proceedings of the 1986 ASIS Annual Conference.

1986, pp. 248-254.

28. PEARL, J. Probabilistic Reasoning in Intelhgent Systems: Networks of PlausLble Inference

Morgan Kaufmann Publishers, 1988.

29. ROBERTSON, S. E. The probability ranking principle m IR J. Dec. 33, 4 (Dec. 1977),

294-304.

30. SALTON, G. A simple blueprint for automatic Boolean query processing. Znf. Process

Manage. 24, 3 (1988), 269-280

31. JONES, K. S., AND BATES, R. G Research on automatic indexing 1974-1976. Tech. Rep.
Computer Laboratory, Univ. of Cambridge, 1977.

32. SALTON, G., AND BUCKLEY, C. Term weighting approaches in automatic text retrieval Znf.

Process. Manage. 24, 5 (1988), 513-523

33. SALTON, G., Fox, E., AND Wu, H. Extended Boolean mformatlon retrieval. Comrnun. ACM,

26, 11 (Nov. 1983), 1022-1036.

34. SHAFER, G, A Mathematical ‘Theory of Euidence. Princeton University Press, Princeton,
N J., 1976.

35. SIEGEL, S. Non-parametric Statist~cs for the Behavorial Sczences. McGraw-Hill, New York,
1956,

36. SALTON, G , AND MCGILL, M J. Introduction to Modern Information RetrLeval. McGraw-Hill,
New York, 1983.

37. STIRLING, K. H. The effect of document ranking on retrieval system performance: A search
for an optimal ranking rule. Proc. Am. Soc Znf. Sci. 12 (1975), 105-106,

38. THOMPSON, R. H., AND CROFT, W. B. Support for browsing in an intelligent text retrieval
system. Znt. J. Man-Mach. Stud., 30 (1989), 639-668.

39. TURTLE, H., AND CROFT, W. B. Efficient evaluation for probabilistic retrieval, In RIA091
Conference Proceedings (Barcelona, Apr. 3-5, 1991), pp. 644-661.

40. TONG, R. M., AND SHAPIRO, D. Experimental investigations of uncertainty in a rule-based
system for information retrieval Int. J. Man-Mach. Stud. 22 (1985), 265-282,

41. TURTLE, H. Inference Networks for Document Retrieval. PhD thesis, Computer and Informa-
tion Science Dept., Univ. of Massachusetts, Amherst, Mass., 1990. Available as COINS
Tech, Rep, 90-92.

42. VAN RIJSBERGEN, C. J. Znformatzon Retrieval Butterworths, London, 1979.
43. VAN RIJfiDF,RGEN,C. J. A mm-classical logic for information retrieval. Comput. J. 29, 6

(1986), 481-485.

44. WILSON, P, Situational relevance, Inf. Storage RetrLeval 9 (1973), 457-471.

45, ZADEH, L. A. The role of fuzzy logic in the management of uncertainty in expert systems
Fuzzy Sets Sys. 11, (1983), 199-228,

Received January 1991; revised January 1991; accepted February 1991

ACM Transactions on Information Systems, Vol, 9, No 3, July 1991


