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Retrieval models

• Geometric/linear spaces 

• Vector space model

• Probability ranking principle

• Language models approach to IR

• An important emphasis in recent work

• Probabilistic retrieval model

• Binary independence model

• Okapi’s BM25
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Part 1: Probabilistic Retrieval Models
Binary independence model
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Probabilistic retrieval models

• PRP in action: Rank all documents by 𝑝 𝑟 = 1|𝑞, 𝑑

• Theorem: Using the PRP is optimal, in that it minimizes the loss (Bayes risk) under 

1/0 loss

• Provable if all probabilities correct, etc.  [e.g., Ripley 1996]

• Using odds, we reach a more convenient ranking formulation:
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𝑝 𝑟|𝑞, 𝑑 =
𝑝 𝑑, 𝑞 𝑟 𝑝(𝑟)

𝑝(𝑑, 𝑞)

O 𝑅 𝑞, 𝑑 =
𝑝 𝑟 = 1|𝑞, 𝑑

𝑝 𝑟 = 0|𝑞, 𝑑
=
𝑝 𝑑 𝑞, 𝑟 = 1 𝑝 𝑞 𝑟 = 1 𝑝 𝑟 = 1

𝑝 𝑑 𝑞, 𝑟 = 0 𝑝 𝑞 𝑟 = 0 𝑝 𝑟 = 0

O 𝑅 𝑞, 𝑑 ∝
𝑝 𝑑 𝑞, 𝑟 = 1

𝑝 𝑑 𝑞, 𝑟 = 0)

Constant part



Binary Independence Model

• Binary representation of words, i.e., documents are represented 
as binary incidence vectors of terms:

𝑑 = (𝑑0, 𝑑1, … , 𝑑𝑛)

𝑑𝑖 = 1 iff term i is present in document d, and 𝑑𝑖 = 0 otherwise.

• Queries: binary term incidence vectors

• Independence: terms occur in documents independently.

• Different documents can be modeled as the same vector.
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Binary Independence Model

• Will use odds and Bayes’ Rule:

and the independence assumption:
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𝑂 𝑅 𝑞, 𝑑 ∝
𝑝 𝑑 𝑞, 𝑟 = 1

𝑝 𝑑 𝑞, 𝑟 = 0)

𝑂 𝑅 𝑞, 𝑑 ∝
𝑝 𝑑 𝑞, 𝑟 = 1

𝑝 𝑑 𝑞, 𝑟 = 0)
=
𝑝 𝑑0, 𝑑1, … , 𝑑𝑛 𝑞, 𝑟 = 1

𝑝 𝑑0, 𝑑1, … , 𝑑𝑛 𝑞, 𝑟 = 0)

𝑂 𝑅 𝑞, 𝑑 ∝ෑ

𝑡=1

𝑛
𝑝 𝑑𝑡 𝑞𝑖 , 𝑟 = 1

𝑝 𝑑𝑡 𝑞𝑖 , 𝑟 = 0)



Binary Independence Model

• Since 𝑑𝑖 is always 0 or 1:

• Converting to log-odds and considering only the query terms:
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𝑂 𝑅 𝑞, 𝑑 ∝
𝑝 𝑑 𝑞, 𝑟 = 1

𝑝 𝑑 𝑞, 𝑟 = 0)
=ෑ

𝑡=1

𝑛
𝑝 𝑑𝑡 𝑞, 𝑟 = 1

𝑝 𝑑𝑡 𝑞, 𝑟 = 0)

𝑂 𝑅 𝑞, 𝑑 ∝ ෑ

𝑡∈ 𝑞∩𝑑

𝑝 𝑑𝑡 = 1 𝑞𝑡, 𝑟 = 1

𝑝 𝑑𝑡 = 1 𝑞𝑡 , 𝑟 = 0)
ෑ

𝑡∈ 𝑞\𝑑

𝑝 𝑑𝑡 = 0 𝑞𝑡, 𝑟 = 1

𝑝 𝑑𝑡 = 0 𝑞𝑡 , 𝑟 = 0)

𝑂 𝑅 𝑞, 𝑑 ∝ ෍

𝑡∈ 𝑞∩𝑑

log
𝑝 𝑑𝑡 = 1 𝑟 = 1

𝑝 𝑑𝑡 = 1 𝑟 = 0)

𝑝 𝑑𝑡 = 0 𝑟 = 0

𝑝 𝑑𝑡 = 0 𝑟 = 1)



Binary Independence Model

• In the end, all boils down to computing the Retrieval Status Value (log-odds):

where

• Letting 𝑝𝑡 = 𝑝 𝑑𝑡 = 1 𝑟 = 1 and ഥ𝑝𝑡 = 𝑝 𝑑𝑡 = 1 𝑟 = 0 , we get:
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𝑅𝑆𝑉 = ෍

𝑡∈ 𝑞∩𝑑

𝑤𝑡 ,

𝑤𝑡 = log
𝑝 𝑑𝑡 = 1 𝑟 = 1

𝑝 𝑑𝑡 = 1 𝑟 = 0)

𝑝 𝑑𝑡 = 0 𝑟 = 0

𝑝 𝑑𝑡 = 0 𝑟 = 1)

𝑤𝑡 = log
𝑝𝑡(1 − ഥ𝑝𝑡)

ഥ𝑝𝑡 1 − 𝑝𝑡



Binary Independence Model

• Estimating 𝑤𝑡 coefficients becomes the central problem in BIM.
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Documents Relevant Non-relevant Total

𝑑𝑡 = 1 𝑁𝑡,𝑟 𝑁𝑡 − 𝑁𝑡,𝑟 𝑁𝑡

𝑑𝑡 = 0 𝑁𝑟 − 𝑁𝑡,𝑟 𝑁 − 𝑁𝑡 − 𝑁𝑟 − 𝑁𝑡,𝑟 𝑁 − 𝑁𝑡

Total 𝑁𝑟 𝑁 − 𝑁𝑟 𝑁

𝑝𝑡 = 𝑝 𝑑𝑡 = 1 𝑟 = 1 =
𝑁𝑡,𝑟
𝑁𝑟

ഥ𝑝𝑡 = 𝑝 𝑑𝑡 = 1 𝑟 = 0 =
𝑁𝑡 − 𝑁𝑡,𝑟
𝑁 − 𝑁𝑟

𝑤𝑡 = log
𝑝𝑡 1 − ഥ𝑝𝑡
ഥ𝑝𝑡 1 − 𝑝𝑡

= log
𝑁𝑡,𝑟 𝑁 − 𝑁𝑡 − 𝑁𝑟 + 𝑁𝑡,𝑟

𝑁𝑟 − 𝑁𝑡,𝑟 𝑁𝑡 − 𝑁𝑡,𝑟



Estimation

• On the second term, considering that 𝑁𝑟 and 𝑁𝑡,𝑟 are very small relative to 𝑁𝑡 and 

𝑁, we can approximate 𝑁𝑡,𝑟 = 𝑁𝑟 = 0

• Moreover, if  2𝑁𝑟 ≈ 𝑁𝑡,𝑟 and 𝑁𝑡 is small relative to 𝑁, we get the IDF formula:
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𝑤𝑡 = log
𝑁𝑡,𝑟 𝑁 − 𝑁𝑡 − 𝑁𝑟 + 𝑁𝑡,𝑟

𝑁𝑟 − 𝑁𝑡,𝑟 𝑁𝑡 − 𝑁𝑡,𝑟
= log

𝑁𝑡,𝑟
𝑁𝑟 − 𝑁𝑡,𝑟

+ log
𝑁 − 𝑁𝑡 − 𝑁𝑟 + 𝑁𝑡,𝑟

𝑁𝑡 − 𝑁𝑡,𝑟

𝑤𝑡 = log
𝑁

𝑁𝑡
= 𝐼𝐷𝐹

𝑤𝑡 = logit 𝑝𝑡 + log
𝑁 − 𝑁𝑡
𝑁𝑡



Graphical model for BIM

qt

Binary
variables

)0(  tt tfd
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Experimental comparison

TREC45 Gov2

1998 1999 2005 2006

Method P@10 MAP P@10 MAP P@10 MAP P@10 MAP

BIM 0.256 0.141 0.224 0.148 0.069 0.050 0.106 0.083

2-Poisson 0.402 0.177 0.406 0.207 0.418 0.171 0.538 0.207

BM25 0.424 0.178 0.440 0.205 0.471 0.243 0.534 0.277

LMD 0.450 0.193 0.428 0.226 0.484 0.244 0.580 0.293

BM25F 0.482 0.242 0.544 0.277

BM25+PRF 0.452 0.239 0.454 0.249 0.567 0.277 0.588 0.314

RRF 0.462 0.215 0.464 0.252 0.543 0.297 0.570 0.352

LR 0.446 0.266 0.588 0.309

RankSVM 0.420 0.234 0.556 0.268
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Results under TREC45 have the same index. Results under Gov2 have the same index. 
Results in different years have different queries.



Key limitations of the BIM

• BIM – like much of original IR – was designed for titles or 

abstracts, and not for modern full text search.

• We want to pay attention to term frequency and document 

lengths.

• Want some model of how often terms occur in docs.
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Part 2: Probabilistic Retrieval Models
Okapi BM25
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Okapi BM25

• BM25 “Best Match 25” (they had a bunch of tries!)

• Developed in the context of the Okapi system.

• Started to be increasingly adopted by 

other teams during the TREC competitions.

• It works well!

• Goal: be sensitive to these quantities while not adding too many 

parameters

• (Robertson and Walker 1994; Robertson and Zaragoza 2009; Spärck Jones 

et al. 2000)
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Term frequency

• Probability Ranking Principle

• If we represent documents by its term presences (binary):

• If we represent documents by its term frequencies (pos-integer):
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𝑂 𝑅 𝑞, 𝑑 ∝෍

𝑡∈𝑞

log
𝑝 𝐹𝑡 = 𝑓𝑡 𝑟

𝑝 𝐹𝑡 = 𝑓𝑡 ҧ𝑟)

𝑝 𝐹𝑡 = 0 ҧ𝑟

𝑝 𝐹𝑡 = 0 𝑟)

𝑂 𝑅 𝑞, 𝑑 ∝෍

𝑡∈𝑞

log
𝑝 𝑑𝑡 = 1 𝑟

𝑝 𝑑𝑡 = 1 ҧ𝑟)

𝑝 𝑑𝑡 = 0 ҧ𝑟

𝑝 𝑑𝑡 = 0 𝑟)

O 𝑅 𝑞, 𝑑 ∝
𝑝 𝑑 𝑞, 𝑟 = 1

𝑝 𝑑 𝑞, 𝑟 = 0)

What are the best 
estimates of these 
probabilities?



▪ Words are drawn independently from the vocabulary using a 
multinomial distribution

▪ Distribution of term frequencies (tf) follows a Poisson distribution

Generative model for documents

... the draft is that each team is given a position in the draft … 

basic

team
each

that

of

is

the draft

design

nfl

football

given

…

annual draft

football

team

nfl
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Poisson distribution

• The Poisson distribution models the probability of k, the number 

of events occurring in a fixed interval of time/space, with known 

average rate 𝜇 = (c𝑓/𝑇), independent of the last event

• Examples

• Number of cars arriving at the toll booth per minute

• Number of typos on a page

19

𝑔 𝑘 𝜇 =
𝑒−𝜇 ∙ 𝜇𝑘

𝑘!



Poisson model

• Assume that term frequencies in a document (tfi) follow a Poisson 

distribution

• “Fixed interval” implies fixed document length… assume roughly 

constant-sized document abstracts
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(One) Poisson Model

• Is a reasonable fit for “general” words

• Is a poor fit for topic-specific words

• get higher p(k) than predicted too often

The mismatch with the 1-Poisson model suggests 
fitting 2-Poisson distributions

21

Documents containing k occurrences of word (λ = 53/650)

Freq Word 0 1 2 3 4 5 6 7 8 9 10 11 12

53 expected 599 49 2

52 based 600 48 2

53 conditions 604 39 7

55 cathexis 619 22 3 2 1 2 0 1

51 comic 642 3 0 1 0 0 0 0 0 0 1 1 2

Harter, “A Probabilistic Approach to Automatic Keyword Indexing”, JASIST, 1975 

Same 
frequency, 
different 

distribution.



Eliteness (“aboutness”)

• Model term frequencies using eliteness

• What is eliteness?

• Hidden variable for each document-term pair, denoted as Ei for term i

• Represents aboutness: a term is elite in a document if, in some sense, 

the document is about the concept denoted by the term

• Eliteness is binary

• Term occurrences depend only on eliteness… but eliteness depends on 

relevance 

22

𝑝 𝐹𝑡 = 𝑓𝑡 𝑟

For an elite term, what is the probability of that 
term occurring # times on a relevant document?



Elite terms

Text from the Wikipedia page on the NFL draft showing elite terms

The National Football League Draft is an 
annual event in which the National 
Football League (NFL) teams select 
eligible college football players.  It serves 
as the league’s most common source of 
player recruitment.  The basic design of 
the draft is that each team is given a 
position in the draft order in reverse 
order relative to its record …

23



2-Poisson model

• In the “2-Poisson”, the distribution is different depending on 

whether the term is elite or not

• where π is probability that document is 

elite for term but, unfortunately, 

we don’t know 𝜇𝑒𝑡 , 𝜇𝑒𝑡 , 𝜋

24

𝑝 𝐹𝑡 = 𝑓𝑡 𝑟 = 𝑝 𝑒𝑡 𝑟 𝑔 𝑓𝑡 𝜇𝑒𝑡 + 𝑝 ഥ𝑒𝑡 𝑟 𝑔 𝑓𝑡 𝜇𝑒𝑡

𝑝 𝐹𝑡 = 𝑓𝑡 𝑟 = 𝜋
𝑒−𝜇𝑒𝑡 ∙ 𝜇𝑒𝑡

𝑓𝑡

𝑓𝑡!
+ 1 − 𝜋

𝑒−𝜇𝑒𝑡 ∙ 𝜇𝑒𝑡
𝑓𝑡

𝑓𝑡!



Graphical model with eliteness
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iÎ q

Frequencies
(not binary)

Binary
variables

𝑝 𝐹𝑡 = 𝑓𝑡 𝑟 = 𝑝 𝑒𝑡 𝑟 𝑔 𝑓𝑡 𝜇𝑒𝑡 + 1 − 𝑝 𝑒𝑡 𝑟 𝑔 𝑓𝑡 𝜇𝑒𝑡

𝑝 𝐹𝑡 = 𝑓𝑡 ҧ𝑟 = 𝜋
𝑒−𝜇𝑒𝑡 ∙ 𝜇𝑒𝑡

𝑓𝑡

𝑓𝑡!
+ 1 − 𝜋

𝑒−𝜇𝑒𝑡 ∙ 𝜇𝑒𝑡
𝑓𝑡

𝑓𝑡!



Retrieval Status Value

• Going back to the Probability Ranking Principle: 

and considering the 2-Poisson model

we realize that computing the parameters 𝜇𝑒𝑡 , 𝜇𝑒𝑡 , 𝜋 for each term 

is too difficult.

26

𝑝 𝐹𝑡 = 𝑓𝑡 𝑟 = 𝑝 𝑒𝑡 𝑟 𝑔 𝑓𝑡 𝜇𝑒𝑡 + 1 − 𝑝 𝑒𝑡 𝑟 𝑔 𝑓𝑡 𝜇𝑒𝑡

𝑝 𝐹𝑡 = 𝑓𝑡 ҧ𝑟 = 𝑝 𝑒𝑡 ҧ𝑟 𝑔 𝑓𝑡 𝜇𝑒𝑡 + 1 − 𝑝 𝑒𝑡 ҧ𝑟 𝑔 𝑓𝑡 𝜇𝑒𝑡

𝑂 𝑅 𝑞, 𝑑 ∝෍

𝑡∈𝑞

log
𝑝 𝐹𝑡 = 𝑓𝑡 𝑟

𝑝 𝐹𝑡 = 𝑓𝑡 ҧ𝑟)

𝑝 𝐹𝑡 = 0 ҧ𝑟

𝑝 𝐹𝑡 = 0 𝑟)



Let’s get an insight: Graphing the RSV of several elite terms
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Its values are 0 when 
the term is absent.

It increases monotonically 
with the term frequency

Asymptotically approaches a 
maximum value as the term 
frequency increases



Saturation property

• It can be demonstrated that when 𝑡𝑓 → ∞ and e𝜇𝑒𝑡−𝜇𝑒𝑡 is small, 

the RSV is approximated by:

• Note: the asymptotic saturation happens for the query terms on 

the document’s high-frequency terms.
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log
𝑝 𝑒𝑡 𝑟 1 − 𝑝 𝑒𝑡 ҧ𝑟

𝑝 𝑒𝑡 ҧ𝑟 1 − 𝑝 𝑒𝑡 𝑟



Approximating the saturation function

• Estimating parameters for the 2-Poisson model is not easy

• We are interested that the result averaged over all terms is 

correct, the individual curves are less important.

• We can approximate the RSV with a simple parametric curve that 

has the same qualitative properties
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𝑘1 + 1 ∙ 𝑡𝑓

𝑘1 + 𝑡𝑓



Saturation function

• For high values of k1, increments in tfi continue to contribute 
significantly to the score

• Contributions tail off quickly for low values of k1
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𝑘1 + 1 ∙ 𝑡𝑓

𝑘1 + 𝑡𝑓



Approximating the 2-Poisson: BM15

• Based on the previous observations, a simple approximation to 

the RSV with the two-Poisson model term weight is:

where 𝑤𝑡 = 𝐼𝐷𝐹 and 𝑓𝑡,𝑑 is the frequency of term t.
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෍𝑞𝑡 ∙
𝑓𝑡,𝑑 𝑘1 + 1

𝑘1 + 𝑓𝑡,𝑑
∙ 𝑤𝑡



Experimental comparison

TREC45 Gov2

1998 1999 2005 2006

Method P@10 MAP P@10 MAP P@10 MAP P@10 MAP

Binary 0.256 0.141 0.224 0.148 0.069 0.050 0.106 0.083

2-Poisson 0.402 0.177 0.406 0.207 0.418 0.171 0.538 0.207

BM25 0.424 0.178 0.440 0.205 0.471 0.243 0.534 0.277

LMD 0.450 0.193 0.428 0.226 0.484 0.244 0.580 0.293

BM25F 0.482 0.242 0.544 0.277

BM25+PRF 0.452 0.239 0.454 0.249 0.567 0.277 0.588 0.314

RRF 0.462 0.215 0.464 0.252 0.543 0.297 0.570 0.352

LR 0.446 0.266 0.588 0.309

RankSVM 0.420 0.234 0.556 0.268
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Results under TREC45 have the same index. Results under Gov2 have the same index. 
Results in different years have different queries.



Document length normalization

• The Poisson Distribution assumed documents of same length.

• Why might documents be longer?

• Verbosity: suggests observed tfi too high

• Larger scope: suggests observed tfi may be right

• A real document collection probably has both effects.

• The term frequency should be normalized according to the 

document lengths
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Normalizing by doc-length: BM11

• The term frequency can be represented as a normalized value with respect to 

the average document length versus the document length

• Plugging into the BM15 formula, we get the BM11 retrieval model:
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𝑅𝑆𝑉 =෍𝑞𝑡 ∙
𝑓𝑡,𝑑
′ 𝑘1 + 1

𝑘1 + 𝑓𝑡,𝑑
′ ∙ 𝑤𝑡 =෍𝑞𝑡 ∙

𝑓𝑡,𝑑 ∙
𝑙𝑎𝑣𝑔
𝑙𝑑

𝑘1 + 1

𝑘1 + 𝑓𝑡,𝑑 ∙
𝑙𝑎𝑣𝑔
𝑙𝑑

∙ 𝑤𝑡

𝑅𝑆𝑉 =෍𝑞𝑡 ∙
𝑓𝑡,𝑑 𝑘1 + 1

𝑘1 ∙
𝑙𝑑
𝑙𝑎𝑣𝑔

+ 𝑓𝑡,𝑑

∙ 𝑤𝑡

𝑓𝑡,𝑑
′ = 𝑓𝑡,𝑑 ∙

𝑙𝑎𝑣𝑔

𝑙𝑑



Document length normalization

• Length normalization component

• b = 1  full document length normalization 

• b = 0  no document length normalization

• avdl: average document length 

over collection
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1 − 𝑏 + 𝑏
𝑙𝑑
𝑙𝑎𝑣𝑔



Okapi BM25

• 𝑘1 controls term frequency scaling -> the saturation effect
• 𝑘1 = 0 is binary model; 

• 𝑘1 = 1 is raw term frequency.

• b controls document length normalization
• b = 0 is no length normalization; 

• b = 1 is fully scaled by document length.

• Typically, 𝑘1 ∈ 1.2, 2.0 and 𝑏~0.75

36

𝑅𝑆𝑉 =෍𝑞𝑡 ∙
𝑓𝑡,𝑑 𝑘1 + 1

𝑘1 1 − 𝑏 + 𝑏
𝑙𝑑
𝑙𝑎𝑣𝑔

+ 𝑓𝑡,𝑑

∙ 𝐼𝐷𝐹𝑡



Experimental comparison

TREC45 Gov2

1998 1999 2005 2006

Method P@10 MAP P@10 MAP P@10 MAP P@10 MAP

Binary 0.256 0.141 0.224 0.148 0.069 0.050 0.106 0.083

2-Poisson 0.402 0.177 0.406 0.207 0.418 0.171 0.538 0.207

BM25 0.424 0.178 0.440 0.205 0.471 0.243 0.534 0.277

LMD 0.450 0.193 0.428 0.226 0.484 0.244 0.580 0.293

BM25F 0.482 0.242 0.544 0.277

BM25+PRF 0.452 0.239 0.454 0.249 0.567 0.277 0.588 0.314

RRF 0.462 0.215 0.464 0.252 0.543 0.297 0.570 0.352

LR 0.446 0.266 0.588 0.309

RankSVM 0.420 0.234 0.556 0.268
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Results under TREC45 have the same index. Results under Gov2 have the same index. 
Results in different years have different queries.



Summary and readings

• Probability Ranking Principle

• Binary Independence Model

• Modelling term frequency

• 2-Poisson Model

• 2-Poisson with document length normalization

• Sections 8.1 to 8.5 and 8.8 of:
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