Index Construction

Dictionary, postings, scalable indexing, dynamic indexing

Web Search
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Text based inverted file index

docld 10 40 33
weight | 0.837 0.634 0.447
multimedia pos 2,56,890 | 1,89,456 | 4,56
search docld 3 2 99 40
€ngines weight | 0.901 |0.438 0420 |0.265
Terms index
dictionary pos 64,75 | 4,543,234 | 23,545
crawler
ranking docld
inverted-file weight
pos
Posting lists




Index construction

* How to compute the dictionary?
* How to compute the posting lists?

e How to index billions of documents?

docld 10 40 33
/ weight | 0.837 0.634 0.447 | ..
multimedia pos 2,56,890 1,89,456 4,5,6
search
T >[docd |3 2 99 40
engines -
weight | 0.901 |0.438 0420 |0.265 |..
index
\ pos 64,75 | 4,543,234 | 23,545
crawler :
ranking docld | ...
inverted-file ' weight | ...
pos




Architectural view of the storage hierarchy

One server
DRAM: 16GB, 100ns, 20GB/s

Disk: 2TB, 10ms, 200MB/s

Local rack (80 servers)
DRAM: 1TB, 300us, 100MB/s
Disk: 160TB, 11ms, 100MB/s

Cluster (30+ racks)
DRAM: 30TB, 500us, 10MB/s

Disk: 4.80PB, 12ms, 10MB/s
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Some numbers

Table 4.1 Index sizes for various index types and three example collections, with and without
applying index compression techniques. 1n each case the first number refers to an index in which
each component is stored as a simple 32-bit integer, while the second number refers to an index
in which each entry is compressed using a byte-aligned encoding method.

Shakespeare TREC45 GOV2
Number of tokens 1.3 x 108 3.0x 108 4.4 x 1010
Number of terms 2.3 x 10* 1.2 x 10° 4.9 x 107
Dictionary (uncompr.) 0.4 MB 24 MB 1046 MB
Docid index n/a 578 MB/200 MB 37751 MB/12412 MB
Frequency index n/a 1110 MB/333 MB 73593 MB/21406 MB
Positional index n/a 2255 MB/739 MB 245538 MB/78819 MB

Schema-ind. index

5.7 MB/2.7 MB 1190 MB/532 MB 173854 MB/63670 MB

Table A.1 Key performance characteristics of the computer system used for the experi-
ments described in this book. The system is equipped with two hard disk drives, arranged
in a RAID-0 (striping). All disk operations in the indexing/retrieval experiments from Part

11 were carried out on the RAID-O0.

CPU
Model 1x AMD Opteron 154, 2.8 GHz
Data cache 64 KB (L1), 1024 KB (L2)
TLB cache 40 entries (L1), 512 entries (L2)
Execution pipeline 12 stages

Disk
Total size 2x 465.8 GB
Average rotational latency 4.2 ms (7000 rpm)
Average seek latency 8.6 ms
Average random access latency 12.8 ms (= 36 million CPU cycles)
Sequential read/write throughput (single disk)  45.5 MB/sec
Sequential read/write throughput (RA1D-0) 87.4 MB/sec

Memory
Total size 2048 MB

Random access latency
Sequential read /write throughput

75 ns (= 210 CPU cycles)
3700 MB/sec
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Text based inverted file index

Terms

dictionary

multimedia

search

engines

index

crawler

ranking

inverted-file

docld 10 40 33

weight | 0.837 0.634 0.447

pos 2,56,890 |1,89,456 | 4,5,6

docld 3 2 99 40
weight | 0.901 | 0.438 0.420 0.265
pos 64,75 4,543,234 23,545

docld

weight

pos
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Sort-based index construction

As we build the index, we parse docs one at a time.

The final postings for any term are incomplete until the end.

At 12 bytes per non-positional postings entry (term, doc, freq), demands
a lot of space for large collections.

T =100,000,000 in the case of RCV1

* So .. we can do this in memory now, but typical collections are much larger. E.g. the
New York Times provides an index of >150 years of newswire

Thus: We need to store intermediate results on disk.



Use the same algorithm for disk?

e Can we use the same index construction algorithm for larger
collections, but by using disk instead of memory?

* No: Sorting T = 100,000,000 records on disk is too slow — too
many disk seeks.

=> We need an external sorting algorithm.



BSBI: Blocked sort-based Indexing

12-byte (4+4+4) records (term, doc, freq).

* These are generated as we parse docs.

Must now sort 100M such 12-byte records by term.

Define a Block ~ 10M such records
* Can easily fit a couple into memory.
* Will have 10 such blocks to start with.

Basic idea of algorithm:
* Compute postings dictionary
* Accumulate postings for each block, sort, write to disk.
* Then merge the blocks into one long sorted order.



postings

to be merged brutus  d2

brutus d3

brutus d3 brutus d2 caesar dl
caesar d4 caesar dl caesar d4
noble d3 julius  d1 — julius  dl1
with d4 killed  d2 killed  d2
noble d3

with d4

— I

disk

merged
postings
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Sorting 10 blocks of 10M records

* First, read each block and sort within:

* Quicksort takes 2N In N expected steps
* Inourcase 2 x (10M In 10M) steps

e 10 times this estimate — gives us 10 sorted runs of 10M
records each.

* Done straightforwardly, need 2 copies of data on disk
e But can optimize this



BSBI: Blocked sort-based Indexing

BSBINDEXCONSTRUCTION()

1 n—0

2 while (all documents have not been processed)
3 don—n+1

4 block «— PARSENEXTBLOCK()

5 BSBI-INVERT(block)

6 WRITEBLOCKT0ODISK(block, f,)

7 MERGEBLOCKS(f1,.. ., fn; fmerged)

Notes:

4: Parse and accumulate all termID-doclID pairs

5: Collect all termID-docID with the same termID into the same postings list

7: Opens all blocks and keep a small reading buffer for each block. Merge into the
final file. (Avoid seeks, read/write sequentially)



How to merge the sorted runs?

* Can do binary merges, with a merge tree of log,10 = 4 layers.

* During each layer, read into memory runs in blocks of 10M, merge, write

back.

— \__/

Runs being
- -

Merged run.
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Dictionary

* The size of document collections exposes many poor

software designs

* The distributed scale also exposes such design flaws

* The choice of the data-structures has great impact on

overall system performance

Table 4.2 Lookup performance at query time. Average latency of a single-term lookup for a sort-
based (shown in Figure 4.3) and a hash-based (shown in Figure 4.2) dictionary implementation. For
the hash-based implementation, the size of the hash table (number of array entries) is varied between
218 (~ 262,000) and 2** (~~ 16.8 million).

Sorted Hashed (2'®) Hashed (2°°) Hashed (2**) Hashed (2%%)

Shakespeare .32 us 0.11 ps 0.13 ps 0.14 us 0.16 s
TREC45 1.20 ps 0.53 ps 0.34 ps 0.27 ps 0.25 us
GOV2 2.79 us 19.8 s 5.80 us 2.23 s 0.84 us

To hash or not to hash?

The small look-up table of the
Shakespeare collection is so small
that it fits in the CPU cache.

What about wildcard queries?

20



Lookup table construction strategies

* Insight: 90% of terms occur only 1 time

* |nsert at the back

* Insert terms at the back of the chain as they occur in the collection,
i.e., frequent terms occur first, hence they will be at the front of the

chain

 Move to the front:
* Move to the front of the chain the last acessed term.



Indexing time dictionary

* The bulk of the dictionary’s lookup load stems from a rather small set of
very frequent terms.

* |In a hashtable, those terms should be at the front of the chains

Table 4.5 Indexing the first 10,000 documents of GOV2 (~ 14 million tokens; 181,334
distinct terms). Average dictionary lookup time per token in microseconds. The rows labeled
“Hash table” represent a handcrafted dictionary implementation based on a fixed-size hash
table with chaining.

Dictionary Implementation Lookup Time String Comparisons
Binary search tree (STL map) 0.63 us per token 18.1 per token
Variable-size hash table (STL hash map) 0.24 us per token 2.2 per token
Hash table (2'¢ entries, insert-at-front) 6.11 us per token 140 per token
Hash table (2% entries, insert-at-back) 0.37 us per token 8.2 per token
Hash table (2'° entries, move-to-front) 0.31 us per token 4.8 per token
Hash table (2'* entries, insert-at-front) 0.32 us per token 10.1 per token
Hash table (2'* entries, insert-at-back) 0.09 us per token 1.5 per token
Hash table (2'* entries, move-to-front) 0.09 us per token 1.3 per token




Remaining problem with sort-based algorithm

* Our assumption was: we can keep the dictionary in memory.

* We need the dictionary (which grows dynamically) in order
to implement a term to termID mapping.

* Actually, we could work with term,docID postings instead of

termID,doclID postings . ..
... but then intermediate files become very large.
(We would end up with a scalable, but very slow index construction method.)




SPIMI: Single-pass in-memory indexing

Key idea 1: Generate separate dictionaries for each block —
no need to maintain term-termID mapping across blocks.

Key idea 2: Don’t sort. Accumulate postings in postings lists
as they occur.

With these two ideas we can generate a complete inverted
index for each block.

These separate indexes can then be merged into one big
index.



SPIMI-Invert

SPIMI-INVERT(token_stream)

1

O ~NO O WM

11
12
13

output_file = NEWFILE()
dictionary = NEWHASH()
while (free memory available)
do token < next(token_stream)
if term(token) ¢ dictionary
then postings_list = ADDTODICTIONARY (dictionary, term(token))
else postings_list = GETPOSTINGSLisT(dictionary, term(token))
if full(postings_list)
then postings_list = DOUBLEPOSTINGSLIST(dictionary, term(token))
ApDToPosTINGSLIST(postings_list, docID(token))
sorted_terms «— SORTTERMS(dictionary)
WRrITEBLOCKTODISK(sorted_terms, dictionary, output_file)
return output_file

25



Experimental comparison

* The index construction is mainly
influenced by the available memory

e Each part of the indexing process
is affected differently

* Parsing
* Index inversion
* Indexes merging

Indexing time (hours)

- -B- - Total time elapsed
- -@- - Time to build index partitions
- -#- - Time for final merge operation

Memory limit (MB)

For web-scale indexing must use a distributed computing cluster

How do we exploit such a pool of machines?

26



Distributed document parsing

* Maintain a master machine directing the indexing job.

Break up indexing into sets of parallel tasks:

* Parsers
* |nverters

Break the input document collection into splits
* Each split is a subset of documents (corresponding to blocks in BSBI/SPIMI)

Master machine assigns each task to an idle machine from a
pool.



Parallel tasks

* Parsers
* Master assigns a split to an idle parser machine

Parser reads a document at a time and emits (term, doc) pairs

Parser writes pairs into j partitions

Each partition is for a range of terms’ first letters
* (e.g., a-f, g-p, g-z) — here j = 3.
Now to complete the index inversion

* |nverters

* Aninverter collects all (term,doc) pairs (= postings) for one term-partition.
e Sorts and writes to postings lists



Data flow

assign - | Master

~~~~~~ assign

~
~-~o

Postings

S~
~

8P || 9z
gP || 92
gP || 92

Segment files

Reduce
phase



MapReduce

* The index construction algorithm we just described is an instance of
MapReduce.

 MapReduce (Dean and Ghemawat 2004) is a robust and conceptually
simple framework for distributed computing

* ... without having to write code for the distribution part.

* They describe the Google indexing system (ca. 2002) as consisting of a
number of phases, each implemented in MapReduce.



Google data centers

* Google data centers mainly
contain commodity machines.

e Data centers are distributed
around the world.

e Estimate: a total of 1 million servers, https://www.youtube.com/watch?v=zRwWPSFpLX8I
3 million processors/cores (Gartner 2007)

* Estimate: Google installs 100,000 servers each quarter.
* Based on expenditures of 200—250 million dollars per year

* This would be 10% of the computing capacity of the world!?!
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The Joys of Real Hardware

Typical first year for a new cluster:

~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)

~5 racks go wonky (40-80 macis \‘\\

~8 network maintenar g Fiaom connectivity losses)
~12 router re'g wvips for a couple minutes)

~3 router failul proull traffic for an hour)

~dozens of mind
~1000 individual |

~thousands of hard drive failures

Zips for dns

Pinine failures

slow disks, bad memory, misconfigured machines, flaky machines, etc.

Long distance links: wild dogs, sharks, dead horses, drunken hunters, etc.
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Dynamic indexing

* Up to now, we have assumed that collections are static.

* They rarely are:
e Documents come in over time and need to be inserted.
e Documents are deleted and modified.

e This means that the dictionary and postings lists have to be modified:
* Postings updates for terms already in dictionary
* New terms added to dictionary



Simplest approach

* Maintain “big” main index

IH

* New docs go into “small” auxiliary index

e Search across both, merge results

* Deletions
* |Invalidation bit-vector for deleted docs
* Filter docs output on a search result by this invalidation bit-vector

e Periodically, re-index into one main index



Issues with main and auxiliary indexes

Problem of frequent merges — you touch stuff a lot

Poor performance during merge

Actually:

e Merging of the auxiliary index into the main index is efficient if we keep a separate file for
each postings list.

* Merge is the same as a simple append.
e But then we would need a lot of files — inefficient for O/S.

Assumption for the rest of the lecture: The index is one big file.

* Inreality: Use a scheme somewhere in between (e.g., split very large postings lists, collect
postings lists of length 1 in one file etc.)



Logarithmic merge

* Maintain a series of indexes, each twice as large as the
previous one.

Keep smallest (Z,) in memory

* Larger ones (l,, |, ...) on disk

If Z, gets too big (> n), write to disk as |,
* or merge with I, (if I, already exists) as Z,

Either write merge Z, to disk as |, (if no |,)
* Or merge with I, to form Z,

etc.



LMERGEADDTOKEN(indexes, Zy, token)

1
1

1
2
3

O 00 N Oy O &~

0
1

Zo +— MERGE(Zy, {token})
if |Zo| =n
then for / — 0 to co
do if /; € indexes
then Z; 1 — MERGE(/;, Z;)
(Zi11 is a temporary index on disk.)
indexes < indexes — {l;}
else [} — Z; (Z; becomes the permanent index I;.)
indexes < indexes U {[;}
BREAK
Zo—

LOGARITHMICMERGE()

1
2
3
4

Zo— 0 (Zy is the in-memory index.)

indexes « ()

while true

do LMERGEADDTOKEN(indexes, Zy, GETNEXTTOKEN())
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Logarithmic merge

Auxiliary and main index: index construction time is O(T?) as each
posting is touched in each merge.

Logarithmic merge:
e Each posting is merged O(log T) times, so complexity is O(T log T)

So logarithmic merge is much more efficient for index construction

But query processing now requires the merging of O(log T) indexes
* Whereas itis O(1) if you just have a main and auxiliary index



Further issues with multiple indexes

e Collection-wide statistics are hard to maintain

* E.g., when we spoke of spell-correction: which of several corrected
alternatives do we present to the user?

* We said, pick the one with the most hits

* How do we maintain the top ones with multiple indexes and

invalidation bit vectors?
* One possibility: ignore everything but the main index for such ordering

* Will see more such statistics used in results ranking



Dynamic indexing at search engines

* All the large search engines now do dynamic indexing

* Their indices have frequent incremental changes

* News items, blogs, new topical web pages
e Sarah Palin, ...

* But (sometimes/typically) they also periodically reconstruct

the index from scratch

* Query processing is then switched to the new index, and the old index is
then deleted



Summary

Indexing

Dictionary data structures

Scalable indexing (BSBI, SPIMI)

Distributed document parsing

Dynamic indexing

Chapter 4

INFORMATION
RETRIEVAL

Chapter 4 (dictionary data structures)
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