
Index Construction
Dictionary, postings, scalable indexing, dynamic indexing

Web Search

1

Overview

2

Application

Multimedia

documents

User

Information

analysis

Indexes

Ranking

Query

Documents

Indexing

Query

Results

Query

processing

Crawler

Indexing by similarity Indexing by terms

3

Indexing by similarity Indexing by terms

4

Text based inverted file index

multimedia

search

engines

index

crawler

ranking

inverted-file

...

...

5

Posting lists

Terms
dictionary

docId 10 40 33 ...

weight 0.837 0.634 0.447 ...

pos 2,56,890 1,89,456 4,5,6

docId 3 2 99 40 ...

weight 0.901 0.438 0.420 0.265 ...

pos 64,75 4,543,234 23,545

.

docId ...

weight ...

pos

Index construction

• How to compute the dictionary?

• How to compute the posting lists?

• How to index billions of documents?

6

10

Some numbers

11

Text based inverted file index

multimedia

search

engines

index

crawler

ranking

inverted-file

...

...

12

Terms
dictionary

docId 10 40 33 ...

weight 0.837 0.634 0.447 ...

pos 2,56,890 1,89,456 4,5,6

docId 3 2 99 40 ...

weight 0.901 0.438 0.420 0.265 ...

pos 64,75 4,543,234 23,545

.

docId ...

weight ...

pos

Sort-based index construction

• As we build the index, we parse docs one at a time.

• The final postings for any term are incomplete until the end.

• At 12 bytes per non-positional postings entry (term, doc, freq), demands
a lot of space for large collections.

• T = 100,000,000 in the case of RCV1
• So … we can do this in memory now, but typical collections are much larger. E.g. the

New York Times provides an index of >150 years of newswire

• Thus: We need to store intermediate results on disk.

13

Sec. 4.2

Use the same algorithm for disk?

• Can we use the same index construction algorithm for larger
collections, but by using disk instead of memory?

• No: Sorting T = 100,000,000 records on disk is too slow – too
many disk seeks.

=> We need an external sorting algorithm.

14

Sec. 4.2

BSBI: Blocked sort-based Indexing

• 12-byte (4+4+4) records (term, doc, freq).
• These are generated as we parse docs.

• Must now sort 100M such 12-byte records by term.

• Define a Block ~ 10M such records
• Can easily fit a couple into memory.

• Will have 10 such blocks to start with.

• Basic idea of algorithm:
• Compute postings dictionary

• Accumulate postings for each block, sort, write to disk.

• Then merge the blocks into one long sorted order.

15

Sec. 4.2

Sec. 4.2

16

Sorting 10 blocks of 10M records

• First, read each block and sort within:
• Quicksort takes 2N ln N expected steps

• In our case 2 x (10M ln 10M) steps

• 10 times this estimate – gives us 10 sorted runs of 10M
records each.

• Done straightforwardly, need 2 copies of data on disk
• But can optimize this

17

Sec. 4.2

Sec. 4.2BSBI: Blocked sort-based Indexing

18

Notes:
4: Parse and accumulate all termID-docID pairs
5: Collect all termID-docID with the same termID into the same postings list
7: Opens all blocks and keep a small reading buffer for each block. Merge into the
final file. (Avoid seeks, read/write sequentially)

How to merge the sorted runs?

• Can do binary merges, with a merge tree of log210 = 4 layers.

• During each layer, read into memory runs in blocks of 10M, merge, write

back.

19

Disk

1

3 4

2

2

1

4

3

Runs being
merged.

Merged run.

Sec. 4.2

Dictionary

• The size of document collections exposes many poor
software designs
• The distributed scale also exposes such design flaws

• The choice of the data-structures has great impact on
overall system performance

20

To hash or not to hash?

What about wildcard queries?

The small look-up table of the
Shakespeare collection is so small

that it fits in the CPU cache.

Lookup table construction strategies

• Insight: 90% of terms occur only 1 time

• Insert at the back
• Insert terms at the back of the chain as they occur in the collection,

i.e., frequent terms occur first, hence they will be at the front of the
chain

• Move to the front:
• Move to the front of the chain the last acessed term.

21

Indexing time dictionary

• The bulk of the dictionary’s lookup load stems from a rather small set of
very frequent terms.
• In a hashtable, those terms should be at the front of the chains

22

Remaining problem with sort-based algorithm

• Our assumption was: we can keep the dictionary in memory.

• We need the dictionary (which grows dynamically) in order
to implement a term to termID mapping.

• Actually, we could work with term,docID postings instead of
termID,docID postings . . .

. . . but then intermediate files become very large.

(We would end up with a scalable, but very slow index construction method.)

23

SPIMI: Single-pass in-memory indexing

• Key idea 1: Generate separate dictionaries for each block –
no need to maintain term-termID mapping across blocks.

• Key idea 2: Don’t sort. Accumulate postings in postings lists
as they occur.

• With these two ideas we can generate a complete inverted
index for each block.

• These separate indexes can then be merged into one big
index.

24

SPIMI-Invert

25

Sec. 4.3

Experimental comparison

• The index construction is mainly
influenced by the available memory

• Each part of the indexing process
is affected differently
• Parsing

• Index inversion

• Indexes merging

• For web-scale indexing must use a distributed computing cluster

How do we exploit such a pool of machines?

26

Distributed document parsing

• Maintain a master machine directing the indexing job.

• Break up indexing into sets of parallel tasks:
• Parsers

• Inverters

• Break the input document collection into splits
• Each split is a subset of documents (corresponding to blocks in BSBI/SPIMI)

• Master machine assigns each task to an idle machine from a
pool.

27

Sec. 4.4

Parallel tasks

• Parsers
• Master assigns a split to an idle parser machine

• Parser reads a document at a time and emits (term, doc) pairs

• Parser writes pairs into j partitions

• Each partition is for a range of terms’ first letters

• (e.g., a-f, g-p, q-z) – here j = 3.

• Now to complete the index inversion

• Inverters
• An inverter collects all (term,doc) pairs (= postings) for one term-partition.

• Sorts and writes to postings lists

28

Sec. 4.4

Data flow

29

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map
phase

Segment files
Reduce
phase

Sec. 4.4

MapReduce

• The index construction algorithm we just described is an instance of
MapReduce.

• MapReduce (Dean and Ghemawat 2004) is a robust and conceptually
simple framework for distributed computing

• … without having to write code for the distribution part.

• They describe the Google indexing system (ca. 2002) as consisting of a
number of phases, each implemented in MapReduce.

30

Sec. 4.4

Google data centers

• Google data centers mainly
contain commodity machines.

• Data centers are distributed
around the world.

• Estimate: a total of 1 million servers,
3 million processors/cores (Gartner 2007)

• Estimate: Google installs 100,000 servers each quarter.
• Based on expenditures of 200–250 million dollars per year

• This would be 10% of the computing capacity of the world!?!

31

Sec. 4.4

https://www.youtube.com/watch?v=zRwPSFpLX8I

https://www.youtube.com/watch?v=zRwPSFpLX8I
https://www.youtube.com/watch?v=zRwPSFpLX8I

32

Dynamic indexing

• Up to now, we have assumed that collections are static.

• They rarely are:
• Documents come in over time and need to be inserted.

• Documents are deleted and modified.

• This means that the dictionary and postings lists have to be modified:
• Postings updates for terms already in dictionary

• New terms added to dictionary

33

Sec. 4.5

Simplest approach

• Maintain “big” main index

• New docs go into “small” auxiliary index

• Search across both, merge results

• Deletions
• Invalidation bit-vector for deleted docs

• Filter docs output on a search result by this invalidation bit-vector

• Periodically, re-index into one main index

34

Sec. 4.5

Issues with main and auxiliary indexes

• Problem of frequent merges – you touch stuff a lot

• Poor performance during merge

• Actually:
• Merging of the auxiliary index into the main index is efficient if we keep a separate file for

each postings list.

• Merge is the same as a simple append.

• But then we would need a lot of files – inefficient for O/S.

• Assumption for the rest of the lecture: The index is one big file.
• In reality: Use a scheme somewhere in between (e.g., split very large postings lists, collect

postings lists of length 1 in one file etc.)

35

Sec. 4.5

Logarithmic merge

• Maintain a series of indexes, each twice as large as the
previous one.

• Keep smallest (Z0) in memory

• Larger ones (I0, I1, …) on disk

• If Z0 gets too big (> n), write to disk as I0

• or merge with I0 (if I0 already exists) as Z1

• Either write merge Z1 to disk as I1 (if no I1)
• Or merge with I1 to form Z2

• etc.

36

Sec. 4.5

Sec. 4.5

37

Logarithmic merge

• Auxiliary and main index: index construction time is O(T2) as each
posting is touched in each merge.

• Logarithmic merge:
• Each posting is merged O(log T) times, so complexity is O(T log T)

• So logarithmic merge is much more efficient for index construction

• But query processing now requires the merging of O(log T) indexes
• Whereas it is O(1) if you just have a main and auxiliary index

38

Sec. 4.5

Further issues with multiple indexes

• Collection-wide statistics are hard to maintain
• E.g., when we spoke of spell-correction: which of several corrected

alternatives do we present to the user?

• We said, pick the one with the most hits

• How do we maintain the top ones with multiple indexes and
invalidation bit vectors?
• One possibility: ignore everything but the main index for such ordering

• Will see more such statistics used in results ranking

39

Sec. 4.5

Dynamic indexing at search engines

• All the large search engines now do dynamic indexing

• Their indices have frequent incremental changes
• News items, blogs, new topical web pages

• Sarah Palin, …

• But (sometimes/typically) they also periodically reconstruct
the index from scratch
• Query processing is then switched to the new index, and the old index is

then deleted

40

Sec. 4.5

Summary

• Indexing

• Dictionary data structures

• Scalable indexing (BSBI, SPIMI)

• Distributed document parsing

• Dynamic indexing

41

Chapter 4

Chapter 4 (dictionary data structures)

