Efficient query processing

Efficient scoring, distributed query processing

Web Search

Ranking functions

* In general, document scoring functions are of the form
score(q,d) = quality(d) + Zscore(t, d)
teq

* The BM25 function, is one of the best performing:

N
Scorepmas(q,d) = Y log (E‘)‘TFBMZS(tad)a

fra- (k1 +1)

TFamas(t,d) = frat k- (1=08)+b-(lag/lavg))

 The term frequency is upper bounded: lim TFpmos(t,d) = ki +1

ft,a—00

Efficient gquery prOCGSSiﬂg T

Section 5.1

* Accurate retrieval of top k documents
* Document at-a-time

* MaxScore docld |10 40 33
/ weight | 0.837 0.634 0.447
multimedia pos 2,56,890 |1,89,456 | 4,56
* Approximate retrieval of top k documents search | ——s——T—T; —T
* At query time: term-at-a-time enetnes \ weight 0901 |0.438 0420 |0.265
i) i) index \ [pos [6475 |454323a [23545
e Atindexing time: term centric and document centr| crawler
ranking docld
inverted-file) weight
e Other approaches B

Scoring document-at-a-time

* All documents containing at least one rankBM25_DocumentAtATime ({t1, ..., tn), k) =
: m «— 0 // m is the total number of matching documents

term is scored d — min; <<, {nextDoc(t;, —o0)}
while d < oc do

resultsm)].docid « d

resultsim].score « 3o log(N/Ny,) - TFBMm2s (i, d)

me—m-+1

d « min;<;<n {nextDoc(t:,d)}
sort results[0..(m — 1)] in decreasing order of score
return results[0..(k — 1))

e Each document is scored sequentially

* A naive method to score all documents is
computationaly too complex.

©C 0B N U oW N =

Figure 5.1 Document-at-a-time query processing with BM25.

* Using a heap to process queries is faster

Scoring document-at-a-time:
Algorithm

rankBM25_DocumentAtATime WithHeaps ((t1,...,tn), k) =
for i — 1 to k do // create a min-heap for the top k search results
resultsi].score — 0
for i — 1ton do // create a min-heap for the n query terms
terms[i].term «— &;
terms(i].nextDoc — nextDoc(t;, —oo)
sort terms in increasing order of nextDoc // establish heap property for terms
while terms|0].nextDoc < co do
d — terms[0].nextDoc
score — 0
while terms[0].neztDoc = d do
t «— terms(0].term
score — score + 1og(N/Ny) - TFpmas (2, d)
terms[0].neztDoc — nextDoc(t, d)
reheap(terms) // restore heap property for terms
if score > results[0].score then
results|0].docid «— d
results|0]. score — score
reheap(results) // restore heap property for results
. . 19 remove from results all items with score =0
Sortin decreasmg order of score 20 sort results in decreasing order of score

21 return results

Sort in increasing order of score

Gets all docs with the query terms

Gets the docs with the lowest ID

W 00 = Ul o W N =

—
N = O

Process one doc

b |
o Gt o W

Replace the worst doc

e
e <

Figure 5.3 Document-at-a-time query processing with BM25, using binary heaps for managing the
set of terms and managing the set of top-k documents.

MaxScore

* We know that each term frequency is bounded by

lim TFBM25(t, d) = k1 +1
ft,a—o0

* We call this score the MaxScore of a term

* |If the score of the k’th document exceeds the MaxScore of a term X,
* We can ignore documents containing only term X
* When considering term Y, we still need to check the term X contribution
 If the score of the k’'th document exceeds the MaxScore of terms X and Y,

* We can ignore documents containing terms Y

Scoring document-at-a-time:
comparison

* Comparison between reheap with & w/out MaxScore

Table 5.1 Total time per query and CPU time per query, with and without MAXSCORE. Data set: 10,000
queries from TREC TB 2006, evaluated against a frequency index for GOV2.

Without MaxScore With MaxScore
‘Wall Time CPU Docs Scored ‘Wall Time CPU Docs Scored
OR, k=10 400 ms 304 ms 4.4.10° 18 ms 93 ms 2.8-10°
OR, k=100 402 ms 306 ms 4.4-10° 206 ms 110 ms 3.9-10°
OR, k=1000 426 ms 329 ms 4.4-10° 249 ms 152 ms 6.2-10°
AND, k=10 160 ms 62 ms 2.8-10* n/a n/a n/a

Both methods are exact!

Approximating the K largest
scores

* Typically we want to retrieve the top K docs
* not to totally order all docs in the collection

e Can we approximate the K highest scoring documents?

* LetJ = number of docs with nonzero scores
e We seek the K best of these J

Scoring term-at-time

* The index is organized by postings-lists
* Processing a query a document-at-a-time requires several disk seeks

* Processing a query a term-at-a-time minimizes disk seeks

* In this method, a query is processed a term-at-a-time and an accumulator stores
the score of each term in the query.

* When all terms are processed, the accumulator contains the scores of the
documents.

* Do we need to have an accumulator the size of the collection or the largest
posting list?

Scoring term-at-time

* A query is processed a term-at-a-
time and an accumulator stores the
score of each term in the query.

rankBM25_TermAtATime ((ti,...,tn), k) =

sort (ti,...,tn) in increasing order of Ny,
acc — {}, acc — {} // initialize two empty accumulator sets
acc[0].docid — oo // end-of-list marker
for i — 1 tondo

inPos«— 0 // current position in acc

outPos — 0 // current position in acc’

for each document d in ¢;’s postings list do

while acc[inPos] < d do // copy accumulators from acc to acc’

* When all terms are processed, the po i e DAL
H 10 acc'[outPos).docid «— d
accumulator contains the scores of e oo s o8N/, TF (b) B
th e d ocume ntS. :: if acc[inPos].docid = d then // term and accumulator coincide

acc'[outPos].score «— acc’[outPos|.score + acc[inPos++).score

© @ NS s W N e

14 d «— nextDoc(t;, acc'[outPos|)
15 outPos — outPos+ 1
16 while acc[inPos] < oo do // copy remaining accumulators from acc to acc’
° 17 acc’[outPos ++] « acc[inPos++)
Do we need to have anaccumulator 1 e s ot it marker
. . 19 swap acc and acc’
the Size Of the COIIeCtlon or the 20 return the top k items of acc // use a heap to select the top k
I d rge St p OSti N g I iSt ? Figure 5.4 Term-at-a-time query processing with BM25. Document scores are stored in accumulators.

The accumulator array is traversed co-sequentially with the current term’s postings list.

10

Limited accumulator

* The accumulator may not fit in memory, so, we
ought to limit the accumulator’s length

 When traversing t’s postings
* Add the posting only if it is below a v, threshold

* For each document in the postings list

e accumulate the term score or use new positions in
accumulator for that doc

High-idf query terms only

* When considering the postings of query terms

* Look at them in order of decreasing idf
e High idf terms likely to contribute most to score

* For a query such as “catcher in the rye”
* Only accumulate scores from “catcher” and “rye”

Scoring term-at-a-time

(a) Retrieval effectiveness (b) Performance (ms per query)
0.90 — - 300 — :
075 --A-- P@10 250 - -A-- Wall time _-A
: - - MAP -A-- CPU time .
0.60 — : . : 200 : A - & A
045 | A---cA-cAAlAA-A R "A_'___‘r__.ﬂ‘--
" "A'
0.30] A__.-A-"A“"A""A'"'A 100 — . AT
0.15 AT 50 — A-'-‘A""A-
I | | L I T I |
10° 10 10° 10° 10° 10* 10° 10°
Accumulator limit (a,,5,) Accumulator limit (a,4,)

Figure 5.6 Retrieval effectiveness and query processing performance for term-at-a-time query evaluation with
accumulator pruning. Data set: 10,000 queries from TREC TB 2006, run against a frequency index for GOV2.

* Baseline:
* Top 10 MaxScore 188ms, 93 ms, 2.8x10° docs
* Top 1000 MaxScore 242ms, 152 ms, 6.2x10° docs

13

Index pruning

e The accumulator technique ignores several
query term’s postings

* Thisis done in query time.

* How can we prune postings that we know in
advance that they will be almost noise?

* The goal is to keep only the most informative
postings in the index.

docld

10

40

weight

0.837

0.634

multimedia

pos

2,56,890

1,89,456

search

engines

docld

3

2

40

index

weight

0.901

0.438

0.265

crawler

pos

64,75

4,543,234

ranking

inverted-file

docld

weight

pos

14

Term-centric index prunning

* Examining only term postings, we can decide if a given term is relevant in
general (IDF) or relevant for the document (TF).

* If a term appears less than K times in documents, store all of t’s postings in the
index

e If the term t appears in more than K documents
 Compute the term score of the K'th document
 Consider only the postings with scores > score(dy, t) - € where 0.0 < € < 1.0

Document-centric index prunning

* Examining each document’s terms distribution we can predict which terms are
the most representative of that document.

 Theterms is added to the index only if it is considered representative of the document

* Compute the Kullback-Leibler divergence between the
terms distribution in the document and in the collection.

* For each document, select the top A - n terms

. p(x) 4 q(x) . D, (PHQ)
to be added to the index

I 4

Document-centric

Term-centric

Head-to-head

(a) Retrieval effectiveness

08 '
j --A-- P@10
06 --A-- MAP
TR CEPPRRN A-...... A,
0.4 — A
- “A
P Arreele g
-4A
0 y '
T ' ! I
0.8 '
] --A-- P@10
06 -A-- MAP
E TV CEPPIRR. A-...... A .
0.4 A
-y ~~A
0.2 _1--~A """"" Aeeen. A-.... A
1 A
0 Ll
T T T ! !
i 60 80 100

Pruning rate (%)

comparison

(b) Performance (ms per query)

t00 4 &,
. - -A- - Wall time
75 — St -A-- CPU time
i A
50 — .A-_... R ‘~._~_
. TAL A
25 AT
4 '~A_::.~
0 T T T T T Aq

40 60 80 100
t00 5 A&
. - -A- - Wall time
75 — SR -A-- CPU time
1. A
50 o AL
4 LAl %
-4 T A s
1 TTAL T
0 . I ; , - 3—.
40 60 80 100

Pruning rate (%)

Figure 5.8 Term-centric index pruning with X = 1,000 and & between 0.5 and 1. Data set for efficiency
evaluation: 10,000 queries from TREC TB 2006. Data set for effectiveness evaluation: TREC topics 701-800.

17

Head-to-head comparison

0.6 —
05 — - A Y TR ‘_. -_,._':"_"_';VA':':-;-;-A,-.-.-.-»“~
i | e
Qoad A W
5] 4~
c .
.9 0.3 - o’
@ 1l ¥
3,_3 02 -) -4 Document-centric pruning
e = - W - Term-centric pruning
0.1
0 L3 I I) I L l] l
) 0 20 40 60 80 100
e Baseline: Performance (ms per query)
* Top 10 MaxScore 188ms, 93 ms, 2.8x10° docs

* Top 1000 MaxScore 242ms, 152 ms, 6.2x10° docs

Other approaches

* Cluster pruning
* Number of query terms

* Impact ordering
* Tiered indexes

Cha pte r7

Static quality scores

We want top-ranking documents to be both relevant and authoritative

Relevance is being modeled by cosine scores

Authority is typically a query-independent property of a document

Examples of authority signals
* Wikipedia among websites
e Articles in certain newspapers

* A paper with many citations

* Many diggs, Y!buzzes or del.icio.us
* (Pagerank)

Cluster pruning: preprocessing

« Pick VN docs at random: call these leaders

* For every other doc, pre-compute nearest leader
* Docs attached to a leader: its followers;
e Likely: each leader has ~ \N followers.

Cluster pruning: query processing

{)
1 1 1 . ’\ ’ \
* Given query Q, find its nearest leader L. o '~ .
o T~ !
o e
* Seek K nearest docs from among L’s [Query
followers.
.0
o O
® ® ' o [)
o 0O °
o0

@ Leader @®Follower

Champion lists

* Precompute for each dictionary term t, the r docs
of highest weight in t’s postings
 Call this the champion list for t
 (aka fancy list or top docs for t)

e Note that r has to be chosen at index build time
* Thus, it’s possible that r < K

e At query time, only compute scores for docs in the
champion list of some query term
* Pick the K top-scoring docs from amongst these

Docs containing many query
terms

* Any doc with at least one query term is a candidate
for the top K output list

* For multi-term queries, only compute scores for
docs containing several of the query terms
e Say, at least 3 out of 4
* Imposes a “soft conjunction” on queries seen on web
search engines (early Google)

* Easy to implement in postings traversal

Tiered indexes

auto Doc2
Tier 1 best
car Doc1 » Doc3
* Break postings up into a hierarchy of lists ;
insurance Doc2 *» Doc3
* Most important
. auto
* Leastimportant Tior 2 best Doc1 » Doc3
car
* Inverted index thus broken up into tiers of insurance
decreasing importance
auto Doc1
. e best
« At query time use top tier unless it fails to yield K d&€3
car Doc2

* If so drop to lower tiers
 Common practice in web search engines

insurance

Scalability: Index partitioni

Section 14.1

Document partitioning Term partitioning

Documen Documents

%
zZ
o
Q.
1]

'y

Terms
Terms

Y 4 A
Nodel Node2 Node3

26

Doc-partitioning indexes

* Each index server is responsible for a User
random sub-set of the documents

Receptionist - process the query

« send back the top
Kk tesuits l
\) . 2

' Node 3

Node 2

Search
results

e All n nodes return k results to produce
the final list with m results

~return the topm
results'to the user

* Requires a background process to keep the idf (and other general statistics)
synchronized across index servers

27

How many documents to return per index-server?

* The choice of k has impact on:

* The network load to transfer partial
search results from the index-servers
to the server doing the rank fusion;

* The precision of the final rank.

Per-node retrieval depth (k)

50 y - - -~
- — =
40 — --—- n=8
] —--— n=16
'''' n=32
80 n=64
4 ‘--’_,_I
20_"" e ’_I'_;.'_)'—"-"' _ _’_ _
= See— Sl -
10 — - Y o '-". —_ = smmaaa R
- - P A L L T LT T T TNt bbb bbb
| AT
0 T I L] I T I T I L] I
0 20 40 60 80 100

Target result set size (m)

Figure 14.3 Choosing the minimum retrieval depth k that returns the top m results with probability
p(n,m, k) > 99.9%, where n is the number of nodes in the document-partitioned index.

28

Term-partitioning indexes

* Each index server receives a sub-set of the dictionary’s terms

* A query is sent simultaneously to the term’s
corresponding nodes.

* Each node passes its accumulator to the next nod
or to the central node to compute the final rank.

User

Receptionist

/—*\ Node N
Tt v(tl) —=u’ Node u(t2) 3

Query

Search
results

- = P
TEN : 5 L S
- forward the query . Node - receive accumulators
to index nade w{tl) v(t3) Jeom ey

- receive the final - process.t2's postings -
. accum:latnr set list and Update/create :

° D d t . - return the top mi accumulators
I S a Va n a g e S . results to the user - forward accumulators ™

to vit3]

* This requires that each node loads the full posting list for each term.
* Uneven load balance due to query drifts.
* Unable to do support efficient document-at-a-time scoring.

29

Planet-scale load-balancing

* When a systems receives requests
from the entire planet at every
second...

* The best way to load-balance the
queries is to use DNS to distributed
queries across data-centers.

e Each query is a assigned a different
IP according to the data-center load
and to the user’s geographic
location.

Serving a Google query

When a user enters a query to Google (such
as www.google.com/search?q=ieee+society), the
user’s browser first performs a domain name sys-
tem (DNS) lookup to map www.google.com
to a particular I address. To provide suflicient
capacity to handle query traffic, our service con-
sists of multiple clusters distributed worldwide.
Each cluster has around a few thousand
machines, and the geographically distributed
setup protects us against catastrophic data cen-
ter failures (like those arising from earthquakes
and large-scale power failures). A DNS-based
load-balancing system selects a cluster by
accounting for the user’s geographic proximity
to each physical cluster. The load-balancing sys-
tem minimizes round-trip time for the user’s
request, while also considering the available
capacity at the various clusters.

Barroso, Luiz André, Jeffrey Dean, and Urs Hélzle. "Web search for a planet: The Google cluster architecture.” IEEE Micro (2003)

30

Summary

Relevance feedback
* Pseudo-relevance feedback

Query expansion
* Dictionary based
* Statistical analysis of words co-occurrences

Efficient scoring
* Per-term and per-doc pruning

Distributed query processing
* Per-term and per-doc pruning

Introduction to

INFORMATION
RETRIEVAL

Implemanting and Evaluating Search Engine

Chapter 7and 9

Section 5.1
Section 14.1

31

