
Efficient query processing
Efficient scoring, distributed query processing

Web Search

1



Ranking functions

• In general, document scoring functions are of the form

• The BM25 function, is one of the best performing:

• The term frequency is upper bounded:

2



Efficient query processing

• Accurate retrieval of top k documents
• Document at-a-time

• MaxScore

• Approximate retrieval of top k documents
• At query time: term-at-a-time

• At indexing time: term centric and document centric

• Other approaches

3

Section 5.1



Scoring document-at-a-time

• All documents containing at least one 
term is scored

• Each document is scored sequentially
• A naïve method to score all documents is 

computationaly too complex.

• Using a heap to process queries is faster

4



Sort in decreasing order of score

Gets the docs with the lowest ID

Process one doc

Gets all docs with the query terms

Replace the worst doc

Scoring document-at-a-time: 
Algorithm

5

Sort in increasing order of score



MaxScore

• We know that each term frequency is bounded by

• We call this score the MaxScore of a term

• If the score of the k’th document exceeds the MaxScore of a term X, 
• We can ignore documents containing only term X

• When considering term Y, we still need to check the term X contribution

• If the score of the k’th document exceeds the MaxScore of terms X and Y, 

• We can ignore documents containing terms Y

6



Scoring document-at-a-time: 
comparison
• Comparison between reheap with & w/out MaxScore

Both methods are exact!

7



Approximating the K largest 
scores

• Typically we want to retrieve the top K docs
• not to totally order all docs in the collection

• Can we approximate the K highest scoring documents?

• Let J = number of docs with nonzero scores
• We seek the K best of these J

Sec. 7.1



Scoring term-at-time

• The index is organized by postings-lists
• Processing a query a document-at-a-time requires several disk seeks

• Processing a query a term-at-a-time minimizes disk seeks

• In this method, a query is processed a term-at-a-time and an accumulator stores 
the score of each term in the query.

• When all terms are processed, the accumulator contains the scores of the 
documents.

• Do we need to have an accumulator the size of the collection or the largest 
posting list?

9



Scoring term-at-time

• A query is processed a term-at-a-
time and an accumulator stores the 
score of each term in the query.

• When all terms are processed, the 
accumulator contains the scores of 
the documents.

• Do we need to have an accumulator 
the size of the collection or the 
largest posting list?

10



Limited accumulator

• The accumulator may not fit in memory, so, we 
ought to limit the accumulator’s length

• When traversing t’s postings
• Add the posting only if it is below a vTF threshold

• For each document in the postings list
• accumulate the term score or use new positions in 

accumulator for that doc

Sec. 7.1.5



High-idf query terms only

• When considering the postings of query terms

• Look at them in order of decreasing idf
• High idf terms likely to contribute most to score

• For a query such as “catcher in the rye”
• Only accumulate scores from “catcher” and “rye”

Sec. 7.1.5



Scoring term-at-a-time

• Baseline:
• Top 10 MaxScore 188ms, 93 ms, 2.8x105 docs

• Top 1000 MaxScore 242ms, 152 ms, 6.2x105 docs

13



Index pruning

• The accumulator technique ignores several 
query term’s postings

• This is done in query time.

• How can we prune postings that we know in 
advance that they will be almost noise?

• The goal is to keep only the most informative 
postings in the index.

14



Term-centric index prunning

• Examining only term postings, we can decide if a given term is relevant in 
general (IDF) or relevant for the document (TF).

• If a term appears less than K times in documents, store all of t’s postings in the 
index

• If the term t appears in more than K documents
• Compute the term score of the K’th document 

• Consider only the postings with scores > 𝑠𝑐𝑜𝑟𝑒 𝑑𝑘, 𝑡 ∙ 𝜖 where 0.0 < 𝜖 < 1.0

15



Document-centric index prunning

• Examining each document’s terms distribution we can predict which terms are 
the most representative of that document.

• The terms is added to the index only if it is considered representative of the document

• Compute the Kullback-Leibler divergence between the 
terms distribution in the document and in the collection.

• For each document, select the top 𝜆 ∙ 𝑛 terms 
to be added to the index

16



Head-to-head comparison

Document-centric

Term-centric

17



Head-to-head comparison

• Baseline:
• Top 10 MaxScore 188ms, 93 ms, 2.8x105 docs

• Top 1000 MaxScore 242ms, 152 ms, 6.2x105 docs

18



Other approaches 

• Static scores

• Cluster pruning

• Number of query terms

• Impact ordering
• Champion lists

• Tiered indexes

19

Chapter 7



Quantitative

Static quality scores

• We want top-ranking documents to be both relevant and authoritative

• Relevance is being modeled by cosine scores

• Authority is typically a query-independent property of a document

• Examples of authority signals
• Wikipedia among websites

• Articles in certain newspapers

• A paper with many citations

• Many diggs, Y!buzzes or del.icio.us marks

• (Pagerank)

Sec. 7.1.4



Cluster pruning: preprocessing

• Pick N docs at random: call these leaders

• For every other doc, pre-compute nearest leader
• Docs attached to a leader: its followers;

• Likely: each leader has ~ N followers.

Sec. 7.1.6



Cluster pruning: query processing

• Given query Q, find its nearest leader L.

• Seek K nearest docs from among L’s 
followers.

Sec. 7.1.6

Query

Leader Follower



Champion lists

• Precompute for each dictionary term t, the r docs 
of highest weight in t’s postings
• Call this the champion list for t

• (aka fancy list or top docs for t)

• Note that r has to be chosen at index build time
• Thus, it’s possible that r < K

• At query time, only compute scores for docs in the 
champion list of some query term
• Pick the K top-scoring docs from amongst these

Sec. 7.1.3



Docs containing many query 
terms
• Any doc with at least one query term is a candidate 

for the top K output list

• For multi-term queries, only compute scores for 
docs containing several of the query terms
• Say, at least 3 out of 4

• Imposes a “soft conjunction” on queries seen on web 
search engines (early Google)

• Easy to implement in postings traversal

Sec. 7.1.2



Tiered indexes

• Break postings up into a hierarchy of lists
• Most important

• …

• Least important

• Inverted index thus broken up into tiers of 
decreasing importance

• At query time use top tier unless it fails to yield K docs
• If so drop to lower tiers

• Common practice in web search engines

Sec. 7.2.1



Scalability: Index partitioning

26

Section 14.1

Document partitioning Term partitioning



Doc-partitioning indexes

• Each index server is responsible for a 
random sub-set of the documents

• All n nodes return k results to produce 
the final list with m results

• Requires a background process to keep the idf (and other general statistics) 
synchronized across index servers

27



How many documents to return per index-server?

• The choice of k has impact on:

• The network load to transfer partial 
search results from the index-servers 
to the server doing the rank fusion;

• The precision of the final rank.

28



Term-partitioning indexes

• Each index server receives a sub-set of the dictionary’s terms

• A query is sent simultaneously to the term’s 
corresponding nodes.

• Each node passes its accumulator to the next node 
or to the central node to compute the final rank.

• Disadvantages:
• This requires that each node loads the full posting list for each term.

• Uneven load balance due to query drifts.

• Unable to do support efficient document-at-a-time scoring.

29



Planet-scale load-balancing

• When a systems receives requests 
from the entire planet at every 
second…

• The best way to load-balance the 
queries is to use DNS to distributed 
queries across data-centers.

• Each query is a assigned a different 
IP according to the data-center load 
and to the user’s geographic 
location.

30

Barroso, Luiz André, Jeffrey Dean, and Urs Hölzle. "Web search for a planet: The Google cluster architecture." IEEE Micro (2003)



Summary

• Relevance feedback
• Pseudo-relevance feedback

• Query expansion
• Dictionary based

• Statistical analysis of words co-occurrences

• Efficient scoring
• Per-term and per-doc pruning

• Distributed query processing
• Per-term and per-doc pruning

31

Chapter 7 and 9

Section 5.1

Section 14.1


