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Abstract 

This thesis addresses the problem of improving multimedia information retrieval by exploring 

semantic-multimedia analysis. For this goal we researched two complementary search paradigms: 

(1) search-by-keyword and (2) search-by-semantic-example. 

Search-by-keyword produces excellent results and users are completely familiarised with this 

type of search on the Web. The user is already “educated” to express his/her ideas with a sequence 

of keywords that summarize the sought information. In the search-by-keyword paradigm one needs 

to be able to detect the presence of concepts (keywords) in multimedia content. In our approach, 

for each possible query keyword we estimate a statistical model based on multimedia features that 

were pre-processed. More concretely, we studied the of family linear regression models to estimate 

the model of each keyword in a multi-modal feature space. The unique continuous multi-modal 

feature-space is created using a minimum description length criterion to find an optimal feature-

space representation. 

Unfortunately not all concepts or ideas can be described by keywords: a user might have a 

“creative idea” for which he/she can only supply some examples. It is in these situations that 

search-by-semantic-example comes to the rescue of the user. With this search paradigm the user 

formulates a query with a “semantic example” that hints at the semantics that he/she wants to find. 

Then, the semantic multimedia information retrieval system searches the multimedia database by 

evaluating the semantic similarity between the query and the previously indexed multimedia. This 

semantic comparison of two multimedia documents is the central problem of search-by-semantic-

example. Thus, we investigated the two main aspects of this problem: similarity metrics and ways to 

reduce the semantic space complexity. 

Our achievements can be divided into quantitative and qualitative aspects. On the quantitative 

side, experiments with different collections showed that the proposed statistical framework can 

deliver an excellent trade-off between precision, scalability, and flexibility. On the qualitative side, 

we were able to contribute to a better understanding of how to take advantage of semantics in 

multimedia retrieval systems by processing it at the two extremes of the information chain: at the 

content side and at the user side. 
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1  
Introduction 

“Humans get data about events using the five senses – vision, sound, touch, 
taste and smell. We assimilate this data with previous knowledge, both external 
and internal, to experience an event. … Humans first developed languages and 
then invented different mechanisms to propagate knowledge derived from their 
experience…. We’ve developed different mechanisms (ranging from the written 
language, print, photographs, telegraph, telephone, radio, television and now 
Internet) for people to share experience across time.” 
 
Ramesh Jain, “Knowledge and Experience,”  
IEEE Multimedia 2001. 
 
 

Human knowledge is by far the richest multimedia storage system. Language and other 

communication mechanisms, e.g., facial expressions, can only express a small part of one’s 

experiences and knowledge (Jain 2001). Vision and hearing, the most used senses during 

communication, carry a great part of the experience or knowledge that we wish to share. 

Information captured by these two human senses can also be effectively and efficiently captured, 

stored and processed by computers – everyone has collections of his/her holiday pictures, karaoke 

songs, videos etc. For these recorded experiences to be shared, some mechanism must be able to 

interpret human queries, and retrieve the closest match. For example, if users search their collection 

using a keyword or a phrase such as “door” or “door bell” they will expect the computer to return 

all relevant items. However, in most cases their search results in disappointment. This might be 

rooted in two reasons: (1) the context in which users formulate their information need is too vague 

and require users to refine their information need; and (2) the weak and blurred link between 

information representation schemes and the human semantic queries. These missing links are called 

the semantic gap (Smeulders et al. 2000). 

Mechanisms that fill the semantic gap have yet to be fully understood. Computer algorithms that 
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extract low-level measures from visual streams (e.g., histograms, shape, motion) and sound streams 

(e.g., volume, pitch) are widely researched, providing a wide set of features that can be used to 

index multimedia. These multimedia low-level measures rely on data-driven features, which may be 

unrelated to the concepts expressed in the semantic query. The extraction of semantic information 

from multimedia content is a research topic that tries to mimic the way human perception works, 

and therefore is highly related to artificial intelligence. However, human perception is still not being 

understood at a level that we can imitate in a computational system. 

An Information Retrieval (IR) system storing and delivering multimedia information is affected 

by this research problem when matching the semantics of the query with the semantics of the 

multimedia information (see Figure 1.1). On one hand the system must mimic human perception 

and extract the relevant semantics from the stored information and on the other hand the system 

must be able to interpret the human request and match it to the relevant stored information. The 

main problem when we wish to search our multimedia collections by expressing some semantic 

query is the missing relation between low-level features and human knowledge, or the semantic gap. 

 
Figure 1.1. Information pipeline in IR applications. 

Nowadays, applications that make use of semantics on the information side depend on manual 

annotations and other information extracted from the surrounding content, e.g., HTML links in 

case of Web content. This way of extracting multimedia semantics is flawed and costly. Doing the 

entire process automatically or even semi-automatically), can greatly decrease the operational and 

maintenance costs of such applications. In the information pipeline depicted in Figure 1.1 the user 

query is interpreted by the IR application with the same system that can simulate human 

perception to process the query and match it to the most relevant information. Thus, the semantic 

gap problem exists on both extremes of this pipeline. 

It is in this scope that we propose a semantic-multimedia information extraction framework that 

offers a certain degree of semantic information processing capabilities. Thus, the main goal of this 

thesis is to enhance multimedia retrieval applications by investigating new paradigms for 

searching semantic-multimedia information. It is in this scope that we look at the global 

problem of semantic multimedia information retrieval and address its three main elements: 

semantic multimedia analysis, semantic query analysis and semantic matching.  This contrasts with 
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previous work that has put the emphasis on only one or two of the mentioned aspects. With this 

approach we achieve a better understanding of the problem and identify the bottlenecks and the 

strengths of semantic multimedia information retrieval. 

1.1 Multimedia Information 

On the information side in Figure 1.1 multimedia documents contain a large amount of 

information that an IR system has to process and manage. Document formats can vary widely 

according to the usage domain, for example some communities consider a multimedia document to 

be a Web page, others a Flash presentation or a video file. These broadly different understandings 

of what a multimedia document is force us to define the notion of syntax and semantics of 

multimedia documents. One can easily identify the common characteristic across all listed examples 

as the presence of at least two different basic data types: text, image, video, speech, audio, synthetic 

data, interactive elements (links, events on user action, mouse over, open new window etc.) and 

structural elements (text formatting, images and video location etc.). 

 
Figure 1.2. A Web page can be seen as a multimedia document. 

The syntax of a multimedia document is an aggregation of several elements from different data 

types that provide rich information and enhanced experience: the visible and audible data types are 

text, images, graphics, video and audio; structural elements are not visible by themselves; they 

determine the spatial and temporal organization of the other data types; interactive elements 

provide a way for the user to interact with the content. 
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Looking at the Web page example of Figure 1.2 and at the video example of Figure 1.3, one can 

see that humans segment documents into manageable blocks of information to later form a 

complete understanding of the document: we employ a sequential divide and conquer technique. 

Thus, in this thesis we define the syntax of multimedia documents as blocks of text-image pairs 

carrying some semantic information. As an example of semantic information one can examine the 

first segment of Figure 1.3 and identify it as a surf scene, as a well as having strong blue tones. It is 

exactly this semantic information that we want to capture and make accessible to applications. 

Thus, for the purposes of this thesis, we define the semantics of multimedia as a set of symbols 

(tokens) related to human understanding, (e.g., “surf scene”), and senses (e.g., blue tones). 

 
Figure 1.3. A video can be seen as a multimedia document. 

Note that a text-image pair can be made of different combinations of the same image with 

different segments of text, and vice-versa. This simple definition of the syntax of multimedia 

documents allows us to cover both video and Web pages documents. The segmentation of the 

documents into pairs of (text; image) is left outside this thesis. Naphade et al. (1998) provide a good 

example of a video temporal segmentation algorithm and Yu et al. (2003) provide a good example 

of a Web page visual segmentation algorithm. 

1.2 User Information Needs 

The user side in Figure 1.1 depicts a generic paradigm of Information Retrieval: the user submits 

some information need and the system supplies the (hopefully) required information. Unlike text 

documents, multimedia documents do not necessarily contain symbols that the user can use to 

express his/her information need. This problem has roots in two different aspects. The first one is 

the richness of the searched information: visual information can communicate a wide variety of 

messages and emotions; audio content can also communicate feelings and emotions; structure also 

gives a different organization and usability (or user experience) to communication. In other words, 

multimedia documents give more freedom to the semantic interpretation of the communicated 

message. 
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The second aspect is the communication gap between the user and the system: computational 

systems can only process mathematical and logic expressions, and not all humans have the same 

skills at expressing ideas, emotions and feelings with those expressions. 

Several techniques were developed and researched to empower the user with new tools to 

express his/her query that achieve a better mapping between what the user can express, what the 

system can extract from multimedia, and what the system can successfully match. I will present 

these different retrieval paradigms in the following section. 

1.3 Multimedia Information Retrieval Systems 

Information processing and management systems have existed for several decades. Most of the 

systems deployed until the mid 90s supported text data based documents while other types of data 

were largely left outside this forest of information retrieval systems. From all this experience a set 

of elementary functional modules were common to most systems:  (1) an analysis module that 

extracts a vocabulary1 from documents; (2) an indexing module to make documents efficiently 

accessible through its information symbols; (3) a query processing module to translate the user 

information needs into information symbols; and (4) the retrieval module to rank the stored 

documents according to the similarity between information symbols. 

 
Figure 1.4. A classic multimedia IR architecture. 

A multimedia information retrieval system, as the one depicted in Figure 1.4, is functionally 

similar to traditional IR systems but it has a small difference that impacts all algorithms present in 

other modules: the multimedia analysis algorithms produce information tokens that are not 

compatible with the ones produced by text analysis algorithms. Despite this fact, the architecture 

depicted in Figure 1.4 is still a good reference of a generic information retrieval system. We will 
                                                 
1 This is also commonly known as index tokens in the context of indexing, and feature vectors in the context of 
document analysis. 
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now detail the modules of this generic architecture. 

1.3.1 Multimedia Analysis 

IR systems must analyse multimedia documents and extract features measuring the importance 

of information symbols. The objective of extracting these features is twofold: 

 to associate multimedia documents to meaningful symbols of information that a human can 

search for 

 to quickly locate relevant documents through an index of information symbols 

These information symbols can be obtained automatically, semi-automatically or manually. 

While an automatic method executes an analysis task without the intervention of a human, semi-

automatic methods includes a human as part of the analysis task. Note that some information can 

only be added by a human, as for example the name of a person, or the relation between two 

persons, e.g., friends. Different strategies are more adequate to the particular information domain 

that is being considered. For example, both Flickr2 and Google’s3 page rank rely on human edited 

information to improve search results: Flickr allow the user to tag images with some keywords that 

can be used for later searching those images; Google’s algorithm rely on human edited links that 

point to the Web page being analysed to adjust its importance. One can say that Flickr’s approach is 

semi-automatic and Google’s approach is automatic because it relies on previously existing 

information. 

 
Figure 1.5. Relation between information symbols and semantic abstraction. 

Figure 1.5 illustrates how we position some features in an imaginary scale of semantic 

abstraction: it ranges from low-level features to high-level features. Low-level features, such as a 

histogram of words or a colour histogram, are easily extracted by automatic methods. However, 

high-level features, such as topic of a news article or concepts represented in an image require more 

complex analysis algorithms due to the semantic dimension they involve. 

                                                 
2 http://www.flickr.com/ 
3 http://www.google.com/ 
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Traditional text analysis algorithms produce a limited set of features, e.g., occurring words, 

which contrast with multimedia analysis algorithms that produce a score, e.g., a probability, for all 

possible features (information symbols). This creates a dense high-dimensional vector of all features 

for all existing documents, which causes several problems such as storage space. Another (critical) 

difference is that the score associated to the extracted feature or information symbol has an error 

associated to it. This shows how the output of multimedia analysis algorithms will impact the entire 

multimedia IR system forcing us to use different techniques and algorithms to address the same 

problems. 

Low-Level Multimedia Analysis 

Low-level multimedia analysis directly extracts features from multimedia documents that are 

related to human senses or language, e.g., images colour, images texture, audio rhythm and words. 

These features are well studied and most of them have been developed in the area of data 

compression that exploits the characteristics of the human vision and hearing senses, e.g., JPEG 

and MP3. These low-level features are the information symbols that the system uses to build the 

index of multimedia documents. 

High-Level Multimedia Analysis 

High-level multimedia analysis aims to extract information that can be inferred from a 

multimedia document even if that information is not explicitly detectable by a computer. This 

involves some sort of prior-knowledge about the problem domain semantics, which is formally 

described with a set of concepts identified by keywords. These keywords capture part of the 

domain knowledge that can be used to infer the presence of a concept in a given multimedia 

document. These high-level features (keywords) are the index tokens that the system uses to build 

the index of semantic-multimedia documents. 

1.3.2 Indexing 

The information symbols extracted from multimedia content by the multimedia analysis 

algorithms are stored and managed by the indexing module. While the multimedia analysis 

algorithms impact the effectiveness of an IR system, the sole goal of the indexing module is to 

address the efficiency of the system. The core element of an indexing mechanism is the inverted-file 

index that lists information symbols and all documents containing that symbol. 

Systems indexing multimedia information must employ a high-dimensional index to 

accommodate the high-dimensional data nature of multimedia information (as mentioned 

previously, multimedia analysis produce a score for all possible feature types and dimension). The 

efficiency of high-dimensional indexes is affected by several design aspects: compression of the 
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index reducing memory usage; tree-structured indexes or hash-based indexes allowing a quicker 

look-up of the index table; sorting documents of an index entry limits the number of analysed 

documents. An excellent reference discussing the efficiency of indexes is provided by (Baeza-Yates 

and Ribeiro-Neto 1999). 

1.3.3 Query Processing 

When a user submits a query the system must analyse the user input to transform it into the 

internal representation used to index multimedia information. Essentially, the query processing 

module must parse the user query according to a given query language, extract the information 

symbols contained in it, and pass it to the retrieval module to search the index for the matching 

documents. Most query languages support text queries while multimedia queries can be expressed 

with a variety of methods as we will describe next. 

Sketch Retrieval 

One of the first studied methods to query a multimedia database is sketch retrieval4. With this 

paradigm the user query is a visual sketch of what the user wishes to find; the system then 

processes this drawing to extract its features and searches the index for images that are visually 

similar. In this case the query processing has to extract the visual features that were used to index 

the visual information. 

Search by Example 

The previous method is somewhat limited because the algorithms cannot extract exactly the 

same type of features from both the visual sketch and the stored information. Thus, researchers 

came up with the possibility of allowing the user to submit an example image representing the 

information the user is searching for (Flickner et al. 1995). In this case the query processing has to 

extract the low-level features that were used to index the multimedia information. The wide range 

of different interpretations of an example, makes this approach more useful when the user provides 

more than one example to disambiguate the information need (Heesch 2005; Ortega et al. 1997). 

Search by Keyword 

Search-by-keyword is by far the most popular method of search query: the user describes 

his/her information needs with a set of keywords and the system just searches for the multimedia 

documents, see (Magalhães and Rüger 2007b) and (Yavlinsky 2007). One limitation of all high-level 

query/search methods is that the user can only submit keywords from a predefined vocabulary. 

                                                 
4 The search engine RetrievR (http://labs.systemone.at/retrievr/) is an example of this approach. 
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Search by Semantic Example 

Similarly to the search-by-example method, the user can also provide an example as a query but 

now it will be processed at the semantic level, e.g., returning a video with the same action or event 

(goal, football game). With this method the query processing has to extract the high-level features 

that were used to index the multimedia information (Magalhães, Overell and Rüger 2007). The 

problem in this case is the different interpretations that an example can have: the user can be 

looking for a particular object, e.g., a lion, a category of documents, e.g., safari, or an action, e.g., a 

lion eating a person. 

Personalized/Adaptive Retrieval 

The personalized/adaptive retrieval is a refinement to all other search methods – it explores the 

fact that the user has a search history and profile (Urban, Jose and Rijsbergen 2003; Magalhães and 

Pereira 2004). This extra information can improve the search experience by limiting information to 

particular domains or by limiting certain document formats or even transforming the multimedia 

documents into computationally less demanding versions. 

1.3.4 Retrieval 

The retrieval module is in charge of ranking documents according to their similarity to the user 

query. This module must navigate the index according to the information symbols contained in the 

input query to search for the most similar documents. A key aspect is the similarity metric that 

depends on the search space (e.g., colour, rhythm, words) and it ought to reflect human perception 

of similarity, see (Jose, Furner and Harper 1998; Heesch 2005; Howarth 2007; Yu et al. 2008). 

1.4 Scope 

In the previous section we presented a generic multimedia IR system as an overview of the 

research area in which this thesis is positioned. Previously, the definition of multimedia syntax and 

semantics, and the discussion on the user information needs have set the working domain of the 

present thesis. Within this scenario I have identified the main objective, namely to 

  

enhance multimedia retrieval applications by investigating new paradigms for searching 

semantic-multimedia information. 

 

We are now capable of isolating the relevant modules of Figure 1.4 and the core research 

problems that need to be addressed to accomplish this objective. Hence, the reach of the current 

research is limited to algorithms that can: 
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 Improve user-query expressiveness: algorithms must process both multimedia 

information and user query at a semantic level, thus increasing the level of information 

abstraction that multimedia IR systems can process; 

 Support different modalities: algorithms must support different multimedia information, 

more specifically, they must process arbitrary text-image pairs as defined previously; 

 Low computational cost: algorithms must be executed in a limited amount of time 

involving no noticeable delays to the user, and they must offer a good degree of 

computational scalability; 

 Good retrieval accuracy: retrieved documents must be meaningful to the user query 

offering an improved user experience. 

This list of requirements has obvious impacts on the multimedia analysis and query 

processing modules of the generic IR system architecture. All other modules depicted in Figure 

1.4 are outside the scope of this thesis. Moreover, the required semantic expressiveness leads us 

into high-level analysis algorithms of semantic-multimedia information and into search paradigms 

where the user can express a query as a high-level abstraction of an information need (search-by-

keyword and search-by-semantic-example). 

1.4.1 High-Level Multimedia Analysis 

We follow a statistical learning theory approach to tackle the high-level multimedia analysis 

problem. Figure 1.6 illustrates the proposed semantic-multimedia analysis algorithm. As can be seen 

in the diagram our work is built on top of the output of low-level multimedia analysis algorithms: 

semantics of multimedia information is represented as a statistical model of low-level feature data 

estimated from training data. Other approaches would also employ metadata and other sources of 

information. 

In the first step we process a multimedia document by dividing it into text-image pairs, and then 

extract the low-level features from the different data types. In the second step we transform all 

feature spaces (text, colour, and texture) into a new data representation where keywords are easily 

modelled with an inexpensive and effective statistical model. These first two steps are described in 

Chapter 4. Finally, we represent a keyword as a linear model for its advantages for this task: support 

of high-dimensional data; ability to handle heterogeneous types of data; and low computationally 

cost. This last step is described in Chapter 5. 
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Figure 1.6. The semantic-multimedia analysis process. 

1.4.2 Search-by-Keyword 

The developed high-level analysis algorithm provides a set of keyword probabilities that enable 

multimedia information to be searched with a vocabulary of predefined keywords. The 

implemented search-by-keyword paradigm allows the user to submit a query with logical expression 

of keywords and corresponding weights. This produces one or more query vectors that are then 

used to search for the documents that are most similar to that query vector.  

1.4.3 Search-by-Semantic-Example 

The implemented search-by-semantic-example paradigm applies the high-level analysis on the 

query example to obtain the corresponding keyword probabilities. To find the documents that are 

most similar to the query vector we use the same strategy as for the previous case. Several examples 

can be provided and they are combined according to the logical expression submitted by the user. 

Moreover, both search-by-keyword and search-by-semantic-example can be used simultaneously to 

improve the expressiveness of the user information needs. Chapter 6 presents a framework to 

improve the user query expressiveness and investigates methods to compute the semantic similarity 

between the queries and the document vectors. 

1.5 Contributions 

The research carried out during the last few years resulted in an accumulated expertise that 

materialises in the following contributions to the scientific community: 

1. A better understanding of the multimedia information retrieval research area with a 

published survey of semantic multimedia analysis algorithms, and a discussion of the 

problems of evaluating IR systems on semantic-multimedia documents (Chapters 2 and 3); 

2. A practical and efficient method to build a high-dimensional visual vocabulary. This method 
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transforms low-dimensional feature spaces into high-dimensional feature spaces that allow 

to represent efficiently a vast number of concepts (Section 4.4); 

3. An estimation of the size of the visual vocabulary that can be obtained by the minimum 

description length principle (Section 4.3); 

4. A thorough study of linear algorithms as keyword models of semantic-multimedia: Rocchio 

classifier, naïve Bayes, and logistic regression with L2 regularization (Sections 5.2 and 

Section 5.3); 

5. Algorithms that have a low computational complexity and are semantically scalable 

(Subsections 5.6.3 and 5.6.4); 

6. Proposed a keyword space to search semantic-multimedia by example (Section 7.2); 

7. A characterization of the keyword space in terms of its similarity functions, dimensionality 

and the influence of semantic analysis accuracy (Section 7.6); 

8. All developed software is available for download. 

1.6 Publications 

In this section we list the publications that disseminated the research results obtained with the 

research presented in this thesis. Publications are grouped by area of contribution. 

Reviews 

Previously published techniques to analyse multimedia information represent a vast expertise 

offering an excellent insight to the area. Thus, to better assimilate and organize the different 

techniques the following review was published and updated in Chapter 3: 

 João Magalhães and Stefan Rüger, “Semantic multimedia information analysis for retrieval 

applications,” book chapter, Ed. Yu-Jin Zhang, “Semantic-based visual information 

retrieval,” IDEA group publishing, 2006. 

Semantic-Visual Analysis 

The initial work on modelling semantic information started with visual information with the 

idea of creating a generic codebook of visual words as a way of representing all possible visual 

information. Under this assumption keywords needed to be expressed with a combination of these 

visual words. To achieve this goal I implemented several algorithms: 
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 K2 algorithm: João Magalhães and Stefan Rüger, “Mining multimedia salient concepts for 

incremental information extraction,” poster at ACM SIGIR Conference on research and 

development in information retrieval, Salvador, Brazil, August 2005. 

 Logistic regression: João Magalhães and Stefan Rüger, “Logistic regression of generic 

codebooks for semantic image retrieval,” International Conference on image and video 

retrieval, Phoenix, AZ, USA, July 2006. 

 Naïve Bayes and Rocchio classifier: João Magalhães and Stefan Rüger, “High-dimensional 

visual vocabularies for image retrieval,” poster at ACM SIGIR Conference on research and 

development in information retrieval, Amsterdam, The Netherlands, July 2007. 

Semantic-Multimedia Analysis 

Modelling multimedia information was a required step to address the problem of semantic-

multimedia information retrieval. Text was also processed into a codebook of text terms similarly to 

visual terms. This resulted in a completely automatic framework to analyse text documents, image 

documents, and text and image documents. This statistical framework was thoroughly investigated 

and published: 

 João Magalhães and Stefan Rüger, “Information-theoretic semantic multimedia indexing,” 

ACM Conference on image and video retrieval, best paper award, The Netherlands, July 

2007. 

 João Magalhães and Stefan Rüger, “An information-theoretic framework for semantic-

multimedia analysis,” Journal article to be submitted. 

Searching Semantic-Multimedia 

Once the semantic-multimedia analysis algorithms are in place, it becomes possible to exploit 

the semantics of multimedia documents in many different ways. Search-by-keyword and search-by-

semantic-example are two search paradigms that were investigated and published: 

 João Magalhães, Simon Overell andStefan Rüger, “A semantic vector space for query by 

image example,” ACM SIGIR conference on research and development in information 

retrieval, Multimedia Information Retrieval Workshop, Amsterdam, The Netherlands, July 

2007. 

 João Magalhães, Fabio Ciravegna and Stefan Rüger, “Exploring multimedia in a keyword 

space,” ACM Multimedia, Vancouver, Canada, November 2008, accepted for publication. 
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 João Magalhães and Stefan Rüger, “Searching semantic-multimedia by example,” Journal 

article to be submitted. 

1.7 Organization 

The goal of this chapter was to present the general research semantic-multimedia information 

retrieval problem and to position each chapter and contribution of this thesis in its due place. Next, 

we present some background material: 

 Chapter 2 – Evaluation methodologies: covers all aspects of information retrieval 

systems evaluation: information metrics, scalability metrics, and reference collections. 

The first part of this thesis addresses the problem of semantic-multimedia indexing: 

 Chapter 3 – Semantic-multimedia analysis: discusses several models for semantic-

multimedia analysis – more emphasis is put on text and image analysis algorithms, and on 

automatic semantic search methods. 

 Chapter 4 – A multi-modal feature space: details how we find an “optimal” 

representation of our multimodal data which is easily modelled by the family of statistical 

models used in Chapter 5. 

 Chapter 5 – Keyword models: describes how a keyword is expressed as a statistical model 

of multi-modal data. The family of linear models is particularly adequate for this task for its 

support of high-dimensional data and ability to handle heterogeneous types of data. 

The second part of this thesis addresses the problem of searching semantic-multimedia: 

 Chapter 6 – Searching multimedia: discusses several methods of searching multimedia 

and discusses how semantic indexing creates a new search paradigm. 

 Chapter 7 – Keyword spaces: proposes a search by semantic example paradigm. More 

specifically we study the different characteristics of a keyword space and compare automatic 

multimedia analysis methods to manual annotation. 
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2  
Evaluation Methodologies 

2.1 Introduction 

The large number of variables affecting an IR system makes it very difficult to assess it with a 

unique measure. IR evaluation has been widely studied and it has shown to be extremely useful to 

compare different systems: information retrieval effectiveness metrics measure how well the system 

can satisfy the user information need, efficiency metrics measures the system responsiveness to the 

user query and the system’s ability to cope with large scale situations. 

Effectiveness and efficiency results produced by an evaluation methodology are widely affected 

by the data that is used to test the system: a dataset can contain information with different 

complexities that affect precision; the size of the data can also affect recall or precision (increase in 

class confusion), the quality of relevant/non-relevant annotations, or even the notion of relevant 

documents. Hence, novel evaluation methodologies are now being investigated to address scenarios 

where the notion relevant/non-relevant document has evolved into one where there are different 

levels of relevance or where there is a single relevant document, e.g., Web IR, semantic IR, 

multimedia, question-answering, expert discovery. 

In this chapter we introduce the traditional metrics and resources used in the evaluation of IR 

systems: effectiveness measures, efficiency measures and datasets. 

2.2 Effectiveness 

In response to a search query, the system being evaluated retrieves a ranked list of documents 

ordered by relevance. The ideal IR system would return a rank list containing all relevant 

documents at the top followed by non-relevant documents. Unfortunately, it is common to have a 

mixture of relevant and non-relevant documents at the top of the ranked list. Thus, it is 
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fundamental to compare ranking algorithms with some measure of how effectively algorithms place 

relevant documents at the top of the list. The effectiveness measure can be obtained for each query 

or for a given set of queries, allowing the evaluation to be done on a “per-search” basis or a “per-

run” basis. While the per-search evaluation assesses the retrieval effectiveness for a particular query, 

the per-run evaluation assesses the system’s mean performance over all single queries. It is 

particularly interesting to verify whether an algorithm performs regularly well across all queries or if 

it performs extremely well on some and extremely bad on others. 

Before introducing retrieval effectiveness measures we will discuss the meaning of relevance and 

see how its different interpretations can result in different assessment metrics. 

2.2.1 Defining Relevance 

Relevance is the central concept of Information Retrieval. It has been widely studied in different 

areas as the extensive review presented by Mizzaro (1997) shows. Mizzaro claims that relevance is a 

complex concept involving different aspects: methodological foundations, different types of 

relevance, beyond-topical criteria adopted by users, modes of expression of the relevance judgment, 

dynamic nature of relevance, types of document representation, and agreement among different 

judges. In this discussion we leave some aspects aside and merge the remaining aspects into two 

practical facets that are important to the design of semantic-multimedia information retrieval: types 

of relevance; incomplete and inconsistent relevance judgments. 

Several research areas have their own definition of relevance giving more emphasis to their 

specific objectives – IR aims at finding documents that best answers an information need, i.e. the 

most relevant documents for a particular user query. Information retrieval relies on datasets of 

documents whose relevance for a given query was judged by a human. Unfortunately, there is no 

universal definition of what a relevant document is: the notion of a relevant document is diffuse 

because the same document can have different meanings to different humans. This has been 

discussed by several researchers that noticed discrepancies between relevance judgments made by 

different annotators, see (Voorhees 1998) and (Volkmer, Thom and Tahaghoghi 2007). These 

discrepancies are more visible in large multimedia collections for two reasons: (1) multimedia 

information is not as concrete as textual information, thus more open to different interpretations 

and relevance judgments (types of relevance); (2) assessing the relevance of documents is an 

expensive task involving humans during long periods of time, thus collections with a large number 

of documents are only partially annotated: relevance judgments are incomplete and inconsistent. 

Types of Relevance 

Systems are evaluated on collections of documents that were manually annotated by human 

assessors. According to the information domain, different definitions of relevance are more 
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adequate than others. We have identified three types of relevance that are valuable to evaluate 

multimedia information retrieval: 

 Binary relevance: under this model a document is either relevant or not. It makes the 

simple assumption that relevant documents contain the same amount of information value. 

This approximation results in robust systems that achieve similar accuracy across different 

queries types, (Buckley and Voorhees 2000). 

 Multi-level relevance: one knows that documents contain information with different 

importance for the same query, thus, a discrete model of relevance (e.g., relevant, highly-

relevant, not-relevant) enables systems to rank documents by their relative importance. This 

type of relevance judgments allows assessors to rate documents with different levels of 

relevance for a particular topic. 

 Ranked relevance: when documents are ordered according to a particular notion of 

similarity. An example of this type of relevance is when studying different image 

compression techniques users are asked to order compressed images by their quality in 

relation to the original. 

The binary relevance model is a good reference to develop IR systems that serve a wide variety 

of non-specialized IR applications – the system is tuned with a set of relevance judgments that 

reflect the majority of human assessors’ judgments. Voorhees (2001) has showed empirically that 

systems based on binary relevance judgments are more robust and stable than the ones based on 

multi-level relevance judgments. This happens because in the second case, systems use a fine-grain 

model to create a rank with N  groups corresponding to the different level of relevance. The 

ranking algorithm has the task of placing each one of the M  documents in the correct group of 

relevance level. It is easy to see that this task is much more difficult and tuning such algorithms will 

easily lead to an overfitting situation that is less general, and therefore less robust and stable 

(Voorhees 2001). 

The relevance judgments of the ranked relevance model are actually a rank of documents that 

exemplify the human perception of a particular type of similarity, e.g., texture, colour. The similarity 

function expressed by the rank is the ranking algorithm that is approximate. For this reason, these 

systems (and the evaluation metrics) are more stable and less prone to overfit than multi-level 

relevance systems. A disadvantage of this ranked relevance is the exponentially increasing cost of 

generating the ranked relevance judgments. 
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Incomplete and Inconsistent Relevance Judgements 

Another practical problem concerning relevance in very-large scale collections is the 

incompleteness and inconsistency of relevance judgments. In some situations the evaluation 

collection is so large that human assessors cannot judge all possible documents (incomplete 

relevance judgments), and sometimes different annotators give different relevance judgement to the 

same document (inconsistent relevance judgments). These trends have been extensively studied by 

Voorhees (1998) and Buckley and Voorhees (2004) who proposed a metric to reduce the effect of 

incomplete relevance judgments. More recently Aslam and Yilmaz, presented more stable metrics in 

(Yilmaz and Aslam 2006; Aslam and Yilmaz 2007) to tackle the stability of measures under these 

conditions (incomplete and inconsistent relevance judgments). 

One of the most important studies of human relevance judgments of multimedia information is 

the one presented by Volkmer, Thom, and Tahaghoghi (2007). They describe and analyse the 

annotation efforts made by TRECVID participants that generated the relevance judgments of all 

training data for 39 concepts of the high-level feature extraction. To overcome the problems of 

incomplete and inconsistent relevance judgments the following rules were followed: 

1. Assessors annotated a sub-set of the documents with a sub-set of the concepts; this avoids 

the bias caused by having the same person annotating all data with the same concept. 

2. All documents must receive a relevance judgment from all annotators; this eliminates the 

problem of incomplete relevance judgments but increases inconsistency. 

3. Documents and concepts were assigned to annotators so that some documents received 

more than one relevance judgment for the same concept; this eliminates the inconsistency 

problem if a voting scheme is used to decide between relevant and non-relevant. 

We stress the fact that this annotation effort was done on training data that is usually much 

larger than test data. So, the same problems of incomplete and inconsistent relevance judgments 

exist when systems are evaluated. This large scale effort was highly valuable for two reasons: it 

produced high-quality annotations of training data; and it gave important information on how 

humans judge multimedia information for particular queries, see (Volkmer, Thom and Tahaghoghi 

2007) for more details. 

2.2.2 Precision and Recall 

Precision and recall are the two most popular metrics in information retrieval. These measures 

are applied on ranked lists with both relevant documents – marked as ‘+’ in Figure 2.1 – and non-

relevant documents – marked as ‘-’ in Figure 2.1 – for the given query. The two metrics assess 
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different aspects of a system: precision addresses the accuracy of the system and recall addresses 

the completeness of the system. 

 
Figure 2.1. Retrieval effectiveness metrics based on relevant documents. 

 Precision (Prec): a measure of the ability of a system to present only relevant items. The 

precision metric is expressed as 

 
relevant in first  documents

Prec
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n
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 Recall (Rec): a measure of the ability of a system to present all relevant items. The recall 

metric is expressed as 
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 F-measure (Harmonic mean): the harmonic mean assesses the trade-off between 

precision and recall. The F-measure is expressed as 
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F
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=
+
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Each system should tune the retrieval model to improve the most relevant measure to the 

systems application, e.g., a patent information retrieval system should not miss any relevant 

document – this corresponds to a high recall system. Precision-recall curves are another useful way 

of visualizing a system’s retrieval effectiveness in detail. Figure 2.2 presents the examples of three 

systems. These curves are obtained by plotting the evolution of the precision and recall measures 
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along the retrieved rank. An ideal system would achieve both 100% precision and 100% recall. In 

practice systems always have a trade-off between precision and recall. 

 
Figure 2.2. Interpretation of precision-recall curves. 

A measure that gives more emphasis to relevant documents retrieved at the top of the rank is 

the Average Precision: 

 Average Precision (AP): the average of the precision scores obtained after each relevant 

document is retrieved. Assuming that k relevant documents were retrieved, the average 

precision expression is: 
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The previous measures evaluate the performance of retrieval results for a given single keyword. 

Assessing the retrieval effectiveness of a given system is done across several different query topics 

with a well known metric: 

 Mean Average Precision (MAP): this metric summarizes the overall system retrieval 

effectiveness into a single value as the mean of all keywords’ average precision, 

 
Q
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Q q
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Buckley and Voorhees (2000) have studied the required number Q  of different query topics 

to obtain statistically significant measures which allows to compare systems. They confirmed 

previous results (Voorhees 1998) suggesting that “at least 25 and 50 is better”, moreover, under the 

multi-level relevance model a minimum of 50 different query topics is required to obtain stable 

measures. 

2.2.3 Metrics Generalization and Normalization 

The above metrics give an indication of the effectiveness of an algorithm in a fixed evaluation 

scenario. The obtained measures are only valid for that specific scenario and cannot be generalized 

to other situations. Huijsmans and Sebe (2005) discuss how precision and recall based measures 

have a limited scope because they do not consider the number of relevant documents and the 

amount of noise in the collection. Thus, the value provided by the metric does not generalize to 

other collections because it is not normalized by the information complexity of the collection. In 

Section 2.5.2 we discuss the information complexity of a collection. 

2.3 Efficiency 

When discussing efficiency of an IR system, one can address different functions of the complete 

system. In semantic-multimedia IR we are interested in the extra computational complexity over 

conventional multimedia IR systems. This extra complexity resides in the extra processing required 

to execute the analysis algorithms to extract the semantics of multimedia content and in the 

computation of the models that enable the analysis algorithms. 

Similarly to traditional IR the development of the model is done offline and tuned in a lab to 

best fit the training data. Thus, the learning complexity is only relevant if one is in the presence of a 

relevance feedback system, which we do not address in this thesis. Therefore, we solely focus on 

the runtime complexity of the analysis algorithms. 

2.3.1 Indexing Complexity 

The indexing of information as discussed in Chapter 1 involves the generation of indexing 

tokens and its storage in a way that it can be efficiently accessible. The added complexity to index 

semantic-multimedia corresponds to the semantic-multimedia analysis algorithm. More specifically 

we are interested in: 

 Time complexity: how many documents/concepts per second can an algorithm process – 

time complexity is a variable that affects the system responsiveness; 
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 Space complexity: the memory required to process a document for the entire vocabulary – 

space complexity is variable that affects the system scalability; 

While time complexity defines the minimum time in which a request can be satisfied, the second 

defines how well a system scales with several simultaneous requests. There is a trade-off between 

the above two variables. 

2.3.2 Query Analysis Complexity 

The query analysis complexity corresponds to the cost of processing the standard query-parsing 

methods as in traditional IR systems added by the cost of running the semantic-multimedia analysis 

algorithms. Note that the last cost only exists for query-by-example queries, other queries do not 

incur additional costs. Thus, the additional cost for query-by-example is equivalent to cost of 

running the algorithm on the example provided by the user (it is equivalent to the extra indexing 

cost). 

2.4 Collections 

Evaluation measures are not the only tools involved in assessing semantic-multimedia 

information retrieval systems – multimedia collections also play an important role. Multimedia 

collections are research tools that provide a common test environment to evaluate and compare 

different algorithms. Collections exist to evaluate many different algorithms such as shot-boundary 

detection, low-level visual features, story segmentation, keyword based retrieval or automatic and 

semi-automatic search. This thesis addresses the problem of indexing and searching multimedia by 

its semantic content. Thus, the two following aspects are required to be present in our collections: 

 Keywords corresponding to concepts present in the collection content are used to describe 

which meaningful concepts are present in individual multimedia documents. 

 Categories are groups of multimedia documents whose content concern a common 

meaningful theme, i.e., documents in the same category are semantically similar. 

The above definitions create two types of content annotations – at the document level 

(keywords) and at the group of documents level (categories). While the first set of annotations is 

used to develop and evaluate the semantic-multimedia analysis algorithms (Chapter 5), the second 

set of annotations corresponds to the queries on the evaluation of the semantic-multimedia search 

evaluation (Chapter 7). Table 2.1 summarizes all collections used in this thesis. We shall describe 

next these collections in detail and present and discuss other related collections. 
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Collection Images Text Training Test Keywords Categories

Reuters-21578  7,770 3,299 90 0
Corel5000  4,500 500 179 50
TRECVID5   23,709 12,054 39 8

Table 2.1. Summary of evaluation collections used in this thesis. 

2.4.1 Text Collections 

Both retrieval and semantic description types of measures will be presented in the following 

sections, followed by a discussion of some of the image and video datasets that are commonly used 

in semantic-multimedia information retrieval applications. 

Reuters-21578 

This is a widely used text dataset, which allows comparing our results with others in the 

literature. Each document is composed by a text corpus, a title (which we ignore), and labelled 

categories. This dataset has several possible splits, and we used the predefined ModApte split for the 

keyword models evaluation: 

 Keyword models evaluation: the ModApte split contains 9,603 training documents and 

3,299 test documents, and it has been used in several other publications (Joachims 1998; 

Nigam, Lafferty and McCallum 1999; McCallum and Nigam 1998; Zhang and Oles 2001). 

Terms appearing less than 3 times were removed. Only labels with at least 1 document in 

the training set and the test set were considered leaving us with 90 labels. After these steps 

we ended with 7,770 labelled documents for training. 

20-Newsgroup 

This collection is made up of newsgroups posts of different users to 20 newsgroups concerning 

different topics of discussion. The collection contains approximately 20,000 posts and it is evenly 

split (10,000 training and 10,000 test). The 20 newsgroups collection has become a popular data set 

for experiments in text applications of machine learning techniques such as text classification and 

text clustering. 

2.4.2 Image Collections 

Several image datasets exist on the web or have been made available by researchers. We will 

discuss the image datasets that were used in the publications of this thesis. 

                                                 
5 This collection corresponds to a random split of the TRECVID development data. 



EVALUATION METHODOLOGIES 

36 

Caltech 256 

Caltech256 is collection of 30,608 images that was carefully created for object recognition. It 

contains 256 object categories and an extra category of noise. The collection was designed with the 

goal of obtaining a high-quality set of training data: a taxonomy of objects was created to cover a 

diverse and realistic collection; all object categories have enough examples (>80) to train a statistical 

model and reduce the effect of overfitting; images were collected from the Web with Google and 

PicSearch; only 30% of the total 92,652 collected images were deemed as “usable”. 

Corel Images: Corel Stock Photo CDs 

Corel Stock Photo CDs are a compilation of professional photographs organised by topics (e.g., 

Arabian horses, cars races, sunsets) with different resolutions and manually annotated with 

keywords. The images in each CD belong to the same category. It is known that the way in which 

images are selected from the CDs to build the training and testing set greatly influences retrieval 

performances (Müller, Marchand-Maillet and Pun 2002). 

In the past the Corel photo collection has been criticised for being an easy collection from an 

image retrieval point of view, see (Westerveld and de Vries 2003a). Nevertheless, the subset created 

by Duygulu et al. (2002) is a very popular dataset that is a reference dataset to compare different 

retrieval algorithms. It consists of 5,000 image, 4,500 for training and 500 for testing, and each 

image has 1-5 keywords from a vocabulary of 371 words. This collection is used in two types of 

experiments: 

 Keyword model evaluation: only keywords with at least 2 images in the test and training 

set each were considered which reduces the size of the vocabulary to 179 keywords. 

Keyword models were learned on the training set and were evaluated on the test set. 

 Semantic search evaluation: the collection is already organized into 50 image categories, 

such as rural France, Galapagos wildlife and nesting birds. The semantic categories are used 

as semantic-query topics for evaluation and only the test set is used in this evaluation. 

Getty Images 

The Getty Images (http://creative.gettyimages.com) dataset compiled by Yavlinsky et al. (2005) 

is a selection of photographs obtained by submitting queries, which exclude any non-photographic 

content, any digitally composed or enhanced photos and any photos taken in unrealistic studio 

settings. The resulting dataset contains pictures from a number of different photo vendors, which 

reduces the chance of unrealistic correlations between keywords and image contents. Keywords for 

Getty images come in three different flavours: subjects (e.g., tiger), concepts (e.g., emptyness) and 

styles (e.g., panoramic photograph). 



EVALUATION METHODOLOGIES 

37 

ImageCLEF2007: Flickr Images and Descriptions 

The ImageCLEF Photo collection includes 20,000 images and corresponding metadata (both 

textual descriptions and geographic information). The photos vary in quality, levels of noise, and 

illustrate several concepts, actions or events. Metadata enriches the images by adding information 

such as the fact that a street is in some location or the profession of one of the persons in the 

photos.  

 

 

DOCNO annotations/00/60.eng

TITLE Palma

NOTES The main shopping street in Paraguay 
LOCATION Asunción, Paraguay

DATE March 2002

IMAGE images/00/60.jpg

THUMBNAIL thumbnails/00/60.jpg 

Figure 2.3. Example of an ImageCLEF document. 

Figure 2.3 illustrates an example of metadata information on the ImageCLEF2007 collection. 

The goal of this dataset is to simulate a scenario where collections have heterogeneous sources of 

data and users submit textual queries together with visual examples. A more thorough description 

of the dataset can be found in (Grubinger et al. 2007). 

2.4.3 Video Collections 

In this section we discuss the underlying patterns of different video genres and describe a video 

collection that covers the discussed genres. 

TV News and Documentaries 

TV news and documentaries are an essentially informative type of content. There is a story that 

a reporter or a commentator is telling and the images are used to illustrate that story. Consequently, 

to extract the meaning of the content of TV news and documentaries programs, algorithms must 

be centred on the speech (or the ASR text), while the audio and visual parts can be used as auxiliary 

data. However, if one wishes to detect the presence of a given concept on the video programme, 

then its analysis must be centred on the visual modality. 

Narratives: Movies and Soap Operas 

This type of content contrasts with the previous type in the sense that it is the video that tells 

the story or narrative. In a movie or soap opera, the speech track usually consists of the characters’ 

lines, and the sound and the visual tracks tell another part of the narrative as a complement to the 

characters’ lines. Many directors choose to use only sound and visual media for scenes where they 
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want to transmit stronger emotions, e.g., the legendary shower curtain scene in Hitchcock’s Psycho. 

Movies and soap opera directors follow a set of production rules, which result in a general 

structure that can be modelled by some statistical tools, as was shown by Sundaram and Chang 

(2000) and Vasconcelos and Lippman (2000) who analysed a set of Hollywood movies. 

Sports Videos 

Sports videos are a peculiar type of video content because the constrained structure of the 

video, composed by a small number of standard shots, makes it an easier type of content to analyse 

than the previous cases. In all sports, there are a set of pre-defined events and states (due to the 

rules of the game) that follow a given pattern or sequence. The semantics are therefore reduced by 

a given set of constraints. As a consequence, in sports videos the semantic ambiguity is much lower 

than in other type of videos. 

TRECVID 

The growing interest in managing multimedia collections effectively and efficiently has created a 

new research interest arising as a combination of multimedia understanding, information extraction, 

information retrieval and digital libraries. This growing interest has initially resulted in the creation 

of a video retrieval track in the TREC conference series which later developed into a workshop in 

its own right. 

To run our experiments on video data we used the TRECVID data: since only the training set is 

completely labelled, we randomly split the English training videos into 23,709 training documents 

and 12,054 test documents. We considered each document to be a key-frame plus the ASR text 

within a window of 6 seconds around that key-frame. Thus, this collection of key-frames 

documents were used in the two following ways:  

 Keyword model evaluation: We evaluated the keyword models on the 39 keywords of the 

standard vocabulary provided by NIST. The training set was used to learn the keyword 

models and the test set was used to test the corresponding models. 

 Semantic search evaluation: The 8 categories were selected from the large-scale LS-

COMM ontology of 400 keywords provided by Naphade et al. (2006). We selected those 8 

categories as non overlapping keywords with the other 39 keywords and had a large enough 

number of examples. Only the test set is used in this evaluation. 

2.5 Collection Generation 

The generation of collections for evaluations is a task that must be considered and designed 
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carefully to adequately reflect and preserve the problem characteristics. In the course of this thesis 

we acquired some experience from working with several collections and we deemed the following 

four aspects to be crucial in the generation of such collections: data sampling strategies, data 

complexity, information relevance and generalization and cross-datasets. 

2.5.1 Data Sampling Strategies 

The generation of collections is influenced by the sources from where data is gathered and by 

the heuristics used to select the relevant examples from those sources. Sampling strategies ought to 

correctly reflect the problem in terms of the number of classes, examples per class, and ideally 

samples should be independent and identically distributed for each class. This is not always possible 

because every method used to gather information will do it in a particular way that introduces a 

natural bias. 

2.5.2 Data Complexity 

The complexity of a problem is generally reflected in the structure of its data. Data complexity 

greatly affects the number of samples required to estimate a particular statistical model. Entropy 

based measures can be used to infer the relative complexity of a particular set of data and force the 

sampling strategy to gather more data for that particular case. Thus, balanced sampling should be 

modified to gather more samples of specific classes if required. 

2.5.3 Information Relevance 

Assessing the user relevance is always a problem with some ambiguity inherent to the nature of 

the handled information. For example, news about a movie and its profits might fall into the 

entertainment or business news categories. As we discussed in Section 2.2.1, relevance is a highly 

subjective concept and in multimedia IR it becomes a critical problem. This is rooted in three main 

issues: 

 Collections are sometimes too generic 

 Precision based measures might not reflect the user satisfaction 

 Algorithms are too generic and lack the focus to answer the user’s subjective needs 

These issues become more critical when one considers semantic-multimedia information. In 

these cases, retrieval is ambiguous due to the nature of the information: there are no explicit 

symbols in data; it relies on the human knowledge and interpretation of the data under a certain 
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query and the corresponding context. Therefore, it is critical that researchers fully understand the 

scenario and knows how to address the user information needs, i.e., the problem classes (ontology 

or taxonomy), and its corresponding examples need to be carefully identified. 

2.5.4 Generalization and Cross-Datasets 

The generalization of a learning method relates to its capabilities to extract information from 

semantic-multimedia content. The assessment of this characteristic is quite important as the content 

will be made accessible according to the output of those algorithms. In semantic-multimedia IR, 

generalization takes an extra meaning: because we aim at creating models of concepts by learning it 

on particular training data, we wish to detect that concept on test data coming from any source. 

Unfortunately, the natural bias of the training collection is always present and if one tests it on a 

different type of collection it will not be as effective. For instance, examples of cars on the Corel 

collection are quite different from examples of cars on the TRECVID collection. Thus, a model 

trained on the TRECVID collection will not be as effective on the Corel collection as it is on the 

TRECVID. 

Yavlinsky and Rüger (2007) suggested to model a keyword on a given dataset with keywords 

models of other dataset. Moreover, in order to test how well a concept generalizes they suggested 

estimating keywords on a given collection (obtained with a given sampling strategy) and test it on 

another collection. This cross-collection evaluation can give a good indication as to how well the 

learning algorithm is capable of generalizing to data from other sources but referring to same 

reality. 

2.6 Summary 

The assessment and comparison of different semantic-multimedia IR algorithms requires 

common evaluation scenarios with well defined evaluation measures and reference collections. 

While evaluation measures are an objective and clear part of the process, multimedia collections are 

not so clear and they do affect the evaluation of algorithms. Depending on the collection 

characteristics, e.g., media-type, genre, artistic features, some analysis algorithms are more adequate 

than others. Each collection has different information complexities with different abstraction levels 

or artistic characteristics, thus, establishing a specific level of difficulty associated to a particular 

collection. To compare different algorithms one must use the same collection and the same 

evaluation methodology. 
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Part 1 

Indexing Semantic-Multimedia
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3  
Semantic-Multimedia Analysis 

3.1 Introduction 

Multimedia information retrieval is a research area that brings together many different expertises 

required for each specific problem. In the first part of this thesis we shall focus on the analysis of 

semantic-multimedia for indexing. Chapter 3 presents a literature review, and Chapters 4 and 5 

propose a novel semantic-multimedia analysis framework. The main goal is to infer the semantics 

of multimedia information so that it can be easily searched by its semantic content. Figure 3.1 

illustrates the scope of the first part (the dashed blocks are addressed in the second part). 

 
Figure 3.1. Scope of the semantic-multimedia analysis problem. 

Algorithms that extract the semantics of multimedia content are dependent on the content 

media type (e.g., visual, text, audio, sound), on the type of approach (e.g., statistical, rule based) and 

on the type of input data (e.g., metadata, low-level features) used to infer semantics. The review 

presented in this Chapter is an extended and updated version of the survey published in (Magalhães 

and Rüger 2006) and it is organized into single-media and multi-modal content analysis algorithms. 
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3.2 Single-Media Analysis 

This section will discuss analysis algorithms for images, text and audio. The goal of the 

presented algorithms is the creation of a model per keyword (either statistical or rule based) that 

enables a system to extract information from that media type. 

3.2.1 Image Analysis 

Image analysis and understanding is one of the oldest fields in pattern recognition and artificial 

intelligence. A lot of research has been done since Marr (1983), culminating in the modern 

reference texts by Forsyth and Ponce (2003), and Hartley and Zisserman  (2004). Datta et al. (2008) 

have recently presented a survey offering a thorough and insightful look at the area of image 

retrieval. In this section we shall discuss several algorithms according to their type: 

 Single class models fit a simple probability density distribution to each keyword 

 Translation models defines an intermediate representation of visual features and a method 

to translate from this representation to keywords 

 Hierarchical and network models explore the inter-dependence of image elements 

(regions or tiles) and its structure 

 Knowledge based models improve the models’ accuracy by including other sources of 

knowledge besides the training data, e.g., a linguistic database, WordNet 

Single Class Models 

A direct approach to the semantic analysis of multimedia is to learn a class-conditional 

probability distribution ( )|p w d  of each single keyword w  of the semantic vocabulary given its 

training data d , see Figure 3.2. This distribution can be obtained using Bayes’ law 

 ( )
( ) ( )

( )
|

|
p w p d w

p w d
p d

= . (3.1) 

The keyword probability ( )p w  can be computed straightforward and the ( )|p d w  can be 

computed with very different data density distribution models ( )p d . Several techniques to model 

( )|p d w  with a simple density distribution have been proposed: Yavlinsky et al. (2005) used a 

nonparametric distribution, Carneiro and Vasconcelos (2005) a semi-parametric density estimation, 

Westerveld and de Vries (2003b) a finite-mixture of Gaussians, and Mori et al. (1999), Vailaya et al. 

(1999), Vailaya et al. (2001) different flavours of vector quantization techniques. 
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Wang et al. (2001) and Yavlinsky et al. (2005) modelled ( )|p d w , the probability density of 

images given keywords, as a nonparametric density smoothed by two different kernels: a Gaussian 

kernel and an Earth Movers Distance kernel. They used both global and 3 by 3 tile colour features 

and texture features. The best reported mean average precision (MAP) results with tiles achieved 

28.6% MAP with the dataset of Duygulu et al. (2002) and 9.2% with a Getty Images dataset. 

( )1|p d w

( )2|p d w

( )| np d w

( )
( ) ( )

( )
|

|
p w p d w

p w d
p d

=

 
Figure 3.2. Inference of single class models. 

Yavlinsky et al. (2005) showed that a simple nonparametric statistical distribution can perform 

as well as or better than many other sophisticated techniques, e.g., translation models. However, the 

nonparametric density nature of their framework makes the task of running the model on new data 

very complex. The model is the entire dataset meaning that the demands on CPU and memory 

increase with the training data. 

Westerveld and de Vries (2003b) used a finite-mixture density distribution with a fixed number 

of components to model a subset of the DCT coefficients: 

 ( ) ( )2

1

| | ,
k

m m m
m

p x p xθ α μ σ
=

= ∑ , (3.2) 

where k  is the number of components, θ  represents the complete set of model parameters with 

mean mμ , covariance 2
mσ , and component prior mα . The component priors have the constraints 

1, ..., 0kα α ≥  and 
1

1
k

mm
α

=
=∑ . Westerveld and de Vries (2003b) tested several scenarios to 

evaluate the effect (a) of the number of mixture components, (b) of using different number of DCT 

coefficients (luminance and chrominance), and (c) of adding the coordinates of the DCT 
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coefficients to the feature vectors. The two first factors produced varying results, and optimal 

points were found experimentally. The third tested aspect, the inclusion of the coefficients’ 

coordinates, did not affect results. 

Combining the two previous approaches, Carneiro and Vasconcelos (2005) deployed a hierarchy 

of semi-parametric mixtures to model ( )|p x w  using a subset of the DCT coefficients as low-

level features. Vasconcelos and Lippman (2000) had already examined the same framework in a 

content-based retrieval system. The hierarchy of mixtures proposed by Vasconcelos and Lippman 

(1998) can model data at different levels of granularity with a finite mixture of Gaussians. At each 

hierarchical level l   the number of each mixture component lk  differs by one from adjacent levels. 

The hierarchy of mixtures is expressed as 

 ( ) ( ), ,
1

1
| |

lk
l l

i i m i m
m

p x w p x
D

α θ
=

= ∑ . (3.3) 

The level 1l =  corresponds to the coarsest characterization. The more detailed hierarchy level 

consists of a nonparametric distribution with a kernel placed on top of each sample. The only 

restriction on the model is that if node m  of level 1l +  is a child of node n  of level l , then they 

are both children of node p  of level 1l − . The EM algorithm computes the mixture parameters 

at level l  given the knowledge of the parameters at level 1l + , forcing the previous restriction. 

Carneiro and Vasconcelos (2005) report the best published retrieval MAP of 31% with the dataset 

of Duygulu et al. (2002). 

Even though the approaches by Carneiro and Vasconcelos (2005) and Westerveld and de Vries 

(2003b) are similar, the differences make it difficult to carry out a fair comparison. The DCT 

features are used in a different way, and the semi-parametric hierarchy of mixtures can model 

keywords with few training examples. 

The relationship between finite-mixtures density modelling and vector quantization is a well 

studied subject, see (Hastie, Tibshirani and Friedman 2001). One of the applications of vector 

quantization to image retrieval and annotation was deployed by Mori et al. (1999). Given the 

training data of a keyword, they divide the images into tiles and apply vector quantization to the 

image tiles to extract the codebook used to estimate the ( )|p d w  density distribution. Later, they 

use a model of word co-occurrence on the image tiles to label the image. The words with the higher sum 

of probabilities across the different tiles are the ones assigned to that image. 

Vailaya et al. (1999) and (2001) describe a Bayesian framework with a codebook to estimate the 

density distribution of each keyword. They show that the minimum description length criterion 

selects the optimal size of the codebook extracted from the vector quantiser. The features are 

extracted from the global image, and there is no image tiling. The use of the MDL criterion makes 
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this framework quite elegant and defines a statistical criterion to select every model parameter 

without any user-defined parameters. 

Maximum entropy techniques have also been successfully applied to a number of language tasks 

such as speech recognition. Jeon and Manmatha (2004) deploy a maximum entropy framework to 

capture the relationships between words and the codebook of image tiles. They used the same 

discrete codebook as in their first work (Jeon, Lavrenko and Manmatha 2003) and report better 

results. One might expect that better results can be achieved after using a soft-codebook and using 

a different distribution for the image keywords. 

Translation Models 

All the previous approaches employ a model to directly estimate ( )|p d w  in terms of low-

level image features. In contrast, translation models generate an intermediate representation of 

images (e.g., a visual vocabulary) and express keywords in terms of the auxiliary representation, see 

Figure 3.3. The problem is equivalent to cross-language problems involving three languages, e.g., 

from Arabic to French and then to English. Four methods of creating intermediate representations 

have been studied: unsupervised computation of intermediate representation, linear decomposition 

of the co-occurrence matrix (latent semantic analysis, LSA), probabilistic approximation to the full 

matrix decomposition (probabilistic LSA) and a Bayesian approach to pLSA with a latent Dirichlet 

prior over the co-occurrence random variables (latent Dirichlet allocation, LDA). 

( )2 3|p b w

( )2 1|p b w

( )2 2|p b w

 
Figure 3.3. Translation models. 

Inspired by machine translation research, Duygulu et al. (2002)  developed a method of 

annotating image regions with words. First, regions are created using a segmentation algorithm like 

normalised cuts (Shi and Malik 2000). For each region, features are computed and then blobs are 
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generated by clustering the regional image features across an image collection. The problem is then 

formulated as learning the correspondence between the discrete vocabulary of blobs and the image 

keywords. The model consists of a mixture of correspondences between each word and each image 

in the collection, 

 ( ) ( ) ( )
{ }blobs in 

| |
n

nj nj ni
i I

p w b p a i p w w b b
∈

∝ = = =∑ , (3.4) 

where ( )njp a i=  expresses the probability of assigning the jth word to blob i  in image n , and 

( )|nj nip w w b b= =  is the probability of obtaining an instance of word jw  given blob nib . 

These two probability distributions are estimated with the EM algorithm. The authors refined the 

lexicon by clustering indistinguishable words and ignoring the words with probabilities ( )|p w b  

below a given threshold. The machine translation approach, the thorough experiments and the 

dataset form strong points of Duygulu’s et al. (2002) contribution. This dataset is nowadays a 

reference, and thorough experiments showed that (a) their method could predict numerous words 

with high accuracy, (b) increasing the probability threshold improved precision but reduced recall 

and (c) the words clustering improved recall and precision. 

Following a translation model Jeon, Lavrenko and Manmatha (2003), Lavrenko, Manmatha and 

Jeon (2003), and Feng, Lavrenko and Manmatha (2004) studied a model where blob features ( )r
Ib  

of an image I  are assumed to be conditionally independent of keywords iw , i.e., 
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Note that ( )r
Ib  and iw  are conditionally independent given the image collection D  and that

J D∈  act as the hidden variables that generated the two distinct representations of the same 

process (the words and the features). Jeon, Lavrenko and Manmatha (2003), recast the image 

annotation as a cross-lingual information retrieval problem applying a cross-media relevance model 

based on a discrete codebook of regions. Lavrenko, Manmatha and Jeon (2003) continued their 

previous work (Jeon, Lavrenko and Manmatha 2003) and used continuous probability density 

functions ( )( )|
r
IP b J  to describe the process of generating blob features and to avoid the loss of 

information related to the generation of the codebook. Extending their previous work, Feng et al. 

(2004) replace blobs with tiles and model image keywords with a Bernoulli distribution. This last 

work reports their best results, a MAP of 30%, with a Corel dataset (Duygulu et al. 2002). 

There are a vast number of approaches inspired by latent semantic analysis (LSA), a technique 
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proposed in the early nineties  (Deerwester et al. 1990), that exploits word/features co-occurrence 

to reduce the data space to a canonical space representation. LSA looks at patterns of word 

distributions (specifically, word co-occurrence) across a set of documents. A matrix M  of word 

occurrences in documents is filled with each word frequency in each document. The singular value 

decomposition (SVD) of matrix M  results in the transformation to a singular space where 

projected documents can be efficiently compared. Zhao and Grosky (2003)  transform low-level 

features into keywords with LSA. Colour features are taken from images and arranged in a bi-

dimensional histogram (hue-saturation) with 100 bins in total. This histogram plays the same role as 

words in text. The matrix M  is then filled with each row corresponding to a histogram of a given 

image. The SVD of this matrix is then computed to obtain the singular space. To analyse new 

images the SVD transformation matrices map new images to that space, and a nearest-neighbour 

technique selects the nearest keywords. This method has the advantage that it does not need a lot 

of training data for each keyword. More recently, Hare et al.  (2006) proposed a linear-algebraic 

LSA based approach that creates a semantic space of low-level features and keywords. By applying 

SVD the correlations between features and keywords are reduced to a simpler form. The rank of 

the decompositions matrices is determined empirically. A thorough analysis of this method has 

been presented in (Hare, Samangooei and Lewis 2008). 

A probabilistic formalization of LSA, pLSA (Hofmann 1999), offers a fresh view of LSA. pLSA 

is a statistical framework that approximates the SVD by a learning algorithm that jointly estimates 

the intermediate representation and the keyword correspondences. It does not define the 

correspondence learning algorithm itself, thus, a study of three different algorithms to learn the 

topic-keyword correspondence has been done in (Monay and Gatica-Perez 2007). Barnard and 

Forsyth (2001) studied a generative hierarchical aspect model, which was inspired by Hofmann and 

Puzicha’s (1998) hierarchical clustering/aspect model. In this case the intermediate representation is 

hierarchical. The data are assumed to be generated by a fixed hierarchy of nodes, where the leaves 

of the hierarchy correspond to soft clusters. Mathematically, the process for generating the set of 

observations O  associated with an image I  can be described by 
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where c  indexes the clusters, o  indexes words and blobs, and l  indexes the levels of the hierarchy. 

The level and the cluster uniquely specify a node of the hierarchy. Hence, the probability of an 

observation ( )| ,p o l c  is conditionally independent given a node in the tree. In the case of words 
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( )| ,p o l c  assumes a tabular form, and in the case of blobs a Gaussian models the regions’ 

features. As in the original pLSA, the model is estimated with an EM algorithm. 

Blei and Jordan (2003) describe three hierarchical mixture models to annotate image data, 

culminating in the latent Dirichlet allocation model (LDA). It specifies the following joint distribution 

of regions, words and latent variables ( ), ,z yθ : 
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This model assumes that a Dirichlet distribution θ  (with α  as its parameter) generates a 

mixture of latent factors, z  and y . Image regions nr  are modelled with Gaussians with mean μ  

and covariance σ , where words nw  follow a multinomial distribution with a β  parameter. This 

mixture of latent factors is then used to generate words (y  variable) and regions (z  variable). The 

EM algorithm estimates this model, and the inference of ( )|p w r  is carried out by variational 

inference. The LDA model provides a clean probabilistic model for annotating images with 

multiple keywords. It combines the advantages of probabilistic clustering for dimensionality 

reduction with an explicit model of the conditional distribution from which image keywords are 

generated. Barnard et al. (2003), improved and compared the three previously discussed models: the 

machine translation model by Duygulu et al. (2002), the hierarchical aspect model by Barnard and Forsyth 

(2001) and the LDA model by Blei and Jordan (2003). 

Also in this family of approaches, Quattoni, Collins and Darrel (2007) employ image captions to 

generate a new intermediate representation of images. The problem is split into many auxiliary 

problems and a core problem. For the auxiliary problems a structure is learned that jointly models 

captions and images. A new representation is obtained by factorizing parameters of the auxiliary 

models (SVD decomposition) and the core problem learns the keyword models in the resulting 

space. 

Hierarchical and Network Models 

The above approaches assumed a minimal relation between the various elements of an image 

(blobs or tiles). In semantic-multimedia analysis concepts are inter-dependent, for example if a 

house is detected in a scene, then the probability of existing windows and doors in the scene are 

boosted, and vice-versa. In other words, when inferring the probability of a set of inter-dependent 

random variables, their probabilities are iteratively modified until an optimal point is reached. To 

avoid instability, loops must exist over a large set of random variables, see (Pearl 1988). Most of the 
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papers discussed below model keywords and data (words and blobs or tiles) as a set of inter-

dependent random variables connected in a hierarchical or network model. 

Different graphical models have been implemented in computer vision to model the 

appearance, spatial relations and co-occurrence of local parts. Li and Wang (2003) characterise the 

images with a hierarchical approach at multiple tiling granularities (i.e., each tile in each hierarchical 

level is subdivided into smaller sub-tiles). A colour and texture feature vector represents each tile. 

The texture features represent the energy in high-frequency bands of wavelet transforms. They 

represent each keyword separately with two-dimensional multi-resolution hidden Markov models. 

This method achieves a certain degree of scale invariance due to the hierarchical tiling process and 

the two-dimensional multi-resolution hidden Markov model. 

Markov random fields and hidden Markov models are the most common generative models that 

learn the joint probability of the observed data (X) and the corresponding labels (Y). These models 

divide the image into tiles or regions (other approaches use contour directions but these are outside 

the scope of our discussion). A probabilistic network then models this low-level division, where 

each node corresponds to one of these tiles or regions and its label. The relation between nodes 

depends on the selected neighbouring method. The model has the following mathematical 

expression: 
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where i  indexes the image tiles, j  indexes the neighbours of the current i  tile, iφ  is the potential 

function of the current tile ix  and its possible labels iw , and ,i jψ  is the interaction function 

between the current tile label and its neighbours. Figure 3.4 illustrates the Markov random field 

framework. 

 
 

Figure 3.4. Two different types of random fields. 

The Markov condition implies that a given node only depends on its neighbouring nodes. This 

condition constitutes a drawback for these models because only local relationships are incorporated 

into the model. This makes it highly unsuitable for capturing long-range relations or global 

characteristics. To circumvent this limitation Kumar and Herbert (2003b) propose a multi-scale 
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random field (MSRF) as a prior model on the class labels on the image tiles. This model 

implements a probabilistic network that can be approximated by a 2D hierarchical structure such as 

a 2D-tree. A multi-scale feature vector captures the local dependencies in the data. The distribution 

of the multi-scale feature vectors is modelled as a mixture of Gaussians. The features were 

specifically selected to detect human-made structures, which are the only types of objects that are 

detected. 

Kumar and Herbert’s (2003a) second approach to this problem is based on discriminative 

random fields, an approach inspired on conditional random fields (CRF). CRFs defined by Lafferty, 

McCallum, and Pereira (2001) are graphical models initially proposed for text information 

extraction, which are applied to visual information analysis in this approach. More generally, a CRF 

is a sequence-modelling framework based on the conditional probability of the entire sequence of 

labels (Y) given the all image (X). CRFs have the following mathematical form 
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where i  indexes the image tiles, j  indexes the neighbours of the current i  tile, iφ  is the 

association potential between the current tile and the image label, and ,i jψ  is the interaction 

potential between the current tile and its neighbours (note that it is also dependent on the image 

label). The authors showed that this last approach outperformed their initial proposal of a multi-

scale random field as well as the more traditional MRF solution in the task of detecting human-

made structures. 

He et al. (2004) combine the use of a conditional random field and data at multiple scales. Their 

multi-scale conditional random field (mCRF) is a product of individual models, each model 

providing labelling information from different aspects of the image: a classifier that looks at local 

image statistics; regional label features that look at local label patterns; and global label features that 

look at large, coarse label patterns. The mCRF is shown to detect several types of concepts (sky, 

water, snow, vegetation, ground, hippopotamus and bear) with classification rates better than a 

traditional Markov random field. 

Murphy, Torralba and Freeman (2003) suggest solving the problem of information extraction 

(as an object recognition problem) by recurring to the scene context (image as a whole) as extra 

information. They aim to extract the type of scene and its objects including their position with 

wavelet based features and individual one-versus-all object classifiers and scene type discriminators. 

The individual object classifiers output is combined in a CRF for jointly solving the task of object 

recognition and scene detection. Their model explicitly assumes the inter-dependence between 

objects and scenes by assuming that object presence is conditionally independent given the scene. 
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Torralba, Murphy, and Freeman (2004) present an improvement over this approach with boosting 

to learn the conditional random field. 

Quattoni, Collins, and Darrell (2004) extend the CRF framework to incorporate hidden 

variables and combine a class conditional CRFs into a unified framework for part-based object 

recognition. The features are extracted from special regions that are obtained with the scale-

invariant feature transform (SIFT), see (Lowe 1999). The SIFT detector finds points in locations at 

scales where there is a significant amount of variation. Once a point of interest is found, the region 

around it is extracted at the appropriate scale. The features from this region are then computed and 

plugged into the CRF framework. The advantage of this method is that it needs a smaller number 

of tiles/regions by eliminating redundant tiles/regions and selecting special regions where high-

frequency energy is high. 

One should note that all these approaches require a ground-truth at the level of the image 

tiles/regions as is common in computer vision. This is not what is traditionally found in multimedia 

information retrieval datasets, where the ground-truth exists rather at a global level. 

Knowledge based Models 

The previous methods only have visual features as training data to create the statistical models in 

the form of a probabilistic network. This training data is – most of the times – limited, and the 

model accuracy can be improved by other sources of knowledge. Prior knowledge can be added to 

a model either by a “human expert”, who states the relations between concept variables (nodes in a 

probabilistic network), or by an external knowledge base to infer the concepts relations, e.g., a 

linguistic database, WordNet, see Figure 3.5. 

Tansley (2000) introduces a multimedia thesaurus in which media content is associated with 

appropriate concepts in a semantic layer composed of a network of concepts and their relations. 

The process of building the semantic layer uses Latent Semantic Indexing to connect images to 

their corresponding concepts, and a measure of each correspondence (image-concept) is taken 

from this process. After that, unlabelled images (test images) are annotated by comparing them with 

the training images using a k -nearest-neighbour classifier. Since the concepts’ inter-dependences 

are represented in the semantic layer, the probability concepts computed by the classifier is 

modified by the others concepts. 

Other authors have explored not only the statistical inter-dependence of context and objects but 

also other knowledge, not present in multimedia data, that humans use to understand (or predict) 

new data. Srikanth et al. (2005) incorporated linguistic knowledge from WordNet, see (Miller 1995), 

to deduce a hierarchy of terms from the annotations. They generate a visual vocabulary based on 

the semantics of the annotation words and their hierarchical organization in the WordNet ontology.  
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Figure 3.5. Knowledge based models. 

Benitez and Chang (2002) and Benitez (2005) took this idea further and suggested a media-

ontology (MediaNet) to help to discover, summarise and measure knowledge from annotated 

images in the form of image clusters, word senses and relationships among them. MediaNet, a 

Bayesian-network-based multimedia knowledge representation framework, is composed by a 

network of concepts, their relations and media exemplifying concepts and relationships. MediaNet 

integrates classifiers to discover statistical relationships between concepts. WordNet (Miller 1995), 

is used to process image annotations by stripping out unnecessary information. The summarization 

process implements a series of strategies to improve image description quality, e.g., using WordNet 

and image clusters to disambiguate annotation terms (images in the same clusters tend to have 

similar textual descriptions). Benitez (2005) also proposes a set of measures to evaluate the 

knowledge consistency, completeness and conciseness. 

3.2.2 Text Analysis 

Text categorization models pre-process data by removing stop-words and rare words, stemming, 

and finally term-weighting. Due to the high-dimensional feature space of text data most text 

categorization algorithms are linear models such as naïve Bayes (McCallum and Nigam 1998), 

maximum entropy (Nigam, Lafferty and McCallum 1999), Support Vector Machines (Joachims 

1998), regularized linear models (Zhang and Oles 2001), and Linear Least Squares Fit (Yang and 

Chute 1994). Joachims (1998) applies SVMs directly to the text terms. Text is ideal for applying 

SVMs without the need of a kernel function because data is already sparse and high-dimensional. 

Linear models fitted by least squares such as the one by Yang and Chute (1994) offer good 

precision, and in particular regularized linear methods, such as the one proposed by Zhang and 

Oles (2001), perform similarly to SVMs, with the advantage of yielding a probability density model. 

The maximum entropy classification model proposed by Nigam, Lafferty and McCallum (1999) 
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defines a set of features that is dependent on the class being evaluated. 

Yang (1999), and Yang and Liu  (1999) have compared a number of text classification 

algorithms and reported their performances on different text collections. Their results indicate that 

k -nearest-neighbour, SVMs, and LLSF are the best classifiers. Note that nearest neighbour 

approaches have certain characteristics, see (Hastie, Tibshirani and Friedman 2001), that make them 

computationally expensive to handle large-scale indexing tasks. 

3.2.3 Audio Analysis 

Audio analysis becomes a very important part of the multi-modal analysis task when processing 

TV news, movies, sport videos, etc. Different types of sounds can populate the sound track of a 

multimedia document, with the most common types being speech, music and silence. 

In most TV programs and sport videos these events do not overlap, but in narratives (movies 

and soap operas) these events frequently occur simultaneously. Akutsu, Hamada, and Tonomura 

(1998) present an audio-based approach to video indexing by detecting speech and music 

independently (even in the case where they occur simultaneously). Their framework is based on a 

set of heuristics over feature histograms and corresponding thresholds. With a similar goal, 

Naphade and Huang (2000) define a generic statistical framework based on hidden Markov models, 

see (Rabiner 1989), to classify audio segments into speech, silence, music and miscellaneous and their co-

occurrences. By creating an HMM for each class and every combination of classes the authors 

achieved a generic framework capable of modelling different audio events with high accuracy. 

Lu, Zhang and Jiang (2002) propose methods to segment audio and classify each segment as 

speech, music, silence and environment sound. A k-nearest neighbour model is used at the frame level 

followed by vector quantization to discriminate between speech and non-speech. A set of 

threshold-based rules is used to discriminate between silence, music and environment sound. The 

authors also describe a speaker change detection algorithm based on Gaussian-mixtures models 

(GMM); this algorithm continuously compares the model of the current speaker’s speech with a 

model dynamically created from the current audio frame. After a speaker change has been detected, 

the new GMM replaces the current speaker’s GMM. 

Another important audio analysis task is the classification of the musical genre of a particular 

audio segment. This can capture the type of emotion that a movie director wants to communicate, 

e.g., stress, anxiety or happiness. Tzanetakis and Cook (2002) describe their work on categorizing 

music as rock, dance, pop, metal, classical, blues, country, hip-hop, reggae or jazz (jazz and classical music had 

more sub-categories). In addition to the traditional audio features, they also use special features to 

capture rhythmic characteristics and apply simple statistical models such as GMM and k-NN to 

model each class’s feature histogram. Interestingly, the best reported classification precision (61%) 
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is on the same range as human performance for genre classification (70%). 

All these approaches work as a single class model of individual classes/keywords. Note that the 

hidden Markov model is in fact a probabilistic network for modelling a single temporal event that 

corresponds to a given concept/keyword. So, even though it is a network model, it is used as a 

single class model. 

3.3 Multi-Modal Analysis 

Multimedia content can be indexed in many ways and each index can refer to different 

modalities and/or different parts of the multimedia piece. In the previous algorithms, audio and 

visual modalities were processed independently to detect semantic entities. These semantic entities 

are represented in different modalities capturing different aspects of that same reality. Multimedia 

content is composed by the visual track, sound track, speech track and text. All these modalities are 

structured in the best way to communicate information. 

Structure analysis must be executed before extracting semantic information from a multimedia 

document. Given a multimedia document, an analysis algorithm must first compute the single-

media segments and their relations. Later, analysis algorithms process these segments to extract 

semantic information. The following sections will discuss some of the approaches used in these 

steps. 

3.3.1 Structure Analysis 

In Chapter 1 we defined multimedia and provided two examples of such type of content: 

HTML and video content. Both types of documents structure information across distinct 

modalities in different ways: while in HTML information is presented in a spatially layout, in video 

the information is presented in a temporal line. Thus, different structure analysis algorithms are 

required to split the multi-modal document into its meaningful segments of single-media 

information. 

Segmenting multimedia documents is outside the scope of this thesis, and we only address video 

content. 

Spatial Structure Analysis 

Due to the advent of the WWW, the HTML format is a common electronic resource available 

nowadays, making it a natural target for information extraction systems. An HTML document is 

often rich in media objects and layout information. Compared to plain text, HTML adds a layer of 

metadata that mostly contains spatial (layout) information, on top of the text. This type of content 

requires a spatial structure (layout) analysis to parse the document specific format and identify its 
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blocks of information. Figure 3.6, taken from (Cai et al. 2003), illustrates a layout analysis that 

generates visual segments of an HTML page. 

 
Figure 3.6. Spatial structure of an HTML document, (Cai et al. 2003). 

Temporal Structure Analysis 

Video content is composed by temporal scenes concerning meaningful information. From these 

scenes, example key-frames and automatic speech recognition can be applied to extract text and 

image content. Thus, synchronization and the strategy to combine the multi-modal patterns is the 

key issue on multi-modal analysis. The approaches described in this section explore the multi-

modality statistics of semantic entities, e.g., pattern synchronization. 

Video documents are temporally structured at two levels of abstraction: syntactic and semantic 

levels, see Figure 3.7. At the syntactic level the video is segmented into shots (visual or audio shots) 

that form a uniform segment, e.g., visually similar frames; representative key-frames are extracted 

from each shot, and scenes group neighbouring similar shots into a single segment. The 

segmentation of video into its syntactic structure has been widely studied, e.g., (Brunelli et al., 1999) 

and (Wang et al., 2000). 

At the semantic level, annotations of the key-frames and shots with a set of labels indicate the 

presence of semantic entities, their relations and attributes, (agent, object, event, concept, state, 

place and time, see (Benitez et al., 2002) for details). Further analysis allows the discovery of stories, 

sub-stories, or genres. 
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Figure 3.7. Temporal structure of a video document. 

Shot and scene semantic analysis introduce the time dimension, which adds temporal frames 

resulting in more information to help the analysis. In order to take advantage of the sequential 

nature of the data the natural choices of algorithms are based on hierarchical models or network 

models. However, as we shall see, some simple approaches can also offer competitive results. 

The scope of this section is the family of semantic-multimedia analysis algorithms that automate 

the multimedia semantic annotation process. The analysis at the shot and scene level independently 

considers the audio and visual modalities, and then multi-modal semantic analysis. In the following 

sections we will review papers on semantic-video analysis. A thorough review of multimedia 

semantic indexing has been published by (Snoek and Worring 2005b). 

3.3.2 Heuristic based Models 

Many of the visual video analysis methods are based on heuristics that are deduced empirically. 

However, statistical methods are more common when considering more than one modality. Most 

of the following papers explore the temporal evolution of features to semantically analyse video 

content, e.g., shot classification, logical units, etc.  

A first approach to this task is to detect events by monitoring histograms and trigger a detector 

if a given threshold is exceeded. These methods are particularly adequate for sport videos because 

broadcast TVs follow a set of video production rules, which result in well defined semantic 

structures that ease the analysis of the sport videos.  

Basketball video analysis was addressed by Tan et al. (2000) who introduced a model for 

estimating the camera movements (pan, tilt and zoom) from the motion vectors of compressed 

video. The authors further show how camera motion histograms can be used to discriminate 

different basketball shots. Prior to this, the video is segmented into shots based on the evolution of 

the intensity histogram across different frames. Shots are detected if the histogram exceeds a 

predefined threshold. They are then discriminated based on (a) the accumulated histogram of 
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camera motion direction (fast breaks and full court advances), (b) the slope of this histogram (fast breaks 

or full court advances), (c) sequence of camera movements (shots at the basket) and (d) persistence of 

camera motion (close-ups). 

Other heuristic methods deploy colour histograms, shot duration and shot sequences to detect 

events and classify shots of different sports such as football (Ekin, Tekalp and Mehrotra 2003), 

American football (Li and Sezan 2003),  or tennis (Luo and Hwang 2003). 

3.3.3 Statistics based Models 

Depending on the level of analysis depth, some approaches keep time dependence modes of an 

entire shot time, others just average the output of single key-frames analysis; while others exploit 

the time dimension to improve low-level feature extraction, e.g., shapes obtained by segmentation 

are more accurate. As we shall see now, most of the approaches described in Section 3.2.1 can also 

be applied to the visual analysis of video content. 

Single Class Models 

In TV news videos, text is the fundamental modality with the most important information. 

Westerveld et al. (2003) build on their previous work, see (Westerveld and de Vries 2003b) 

described above, to analyse the visual part and add text provided by an Automatic Speech 

Recognition (ASR) system. The authors further propose a visual dynamic model to capture the 

visual temporal characteristics. This model is based on the Gaussian mixture model estimated from 

the DCT blocks of the frames around each key-frame in the range of 0.5 seconds. This way the 

most significant moving regions are represented by this model with an evident applicability to 

object tracking. The text retrieval model evaluates a given Shoti for the queried keywords 

{ }1 2 3, , , ...Q q q q=  by: 
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This measure evaluates the probability that one or more queried keywords appear in the 

evaluated shot in the scene prior. The λ  variables correspond to the probabilities of respective 

weights. This function, inspired by language models, creates the scene-shot structure of video 

content. The visual model and the text model are combined under the assumption that they are 

independent, thus their probabilities are simply multiplied. The results with both modalities are 

reported to be better than using just one. 
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Support vector machines have been widely used in retrieval scenarios. Zheng et al. (2008) 

brought a fresh look approach to multimedia concept detection by explicitly tackling it as a ranking 

problem, which is addressed by a generative approach (Relevance Vector Machine) and compared 

to a discriminative approach (SVM). It tackles a valid, and many times forgotten, point regarding 

the fact that using SVMs for ranking is not a mathematically sound solution. 

Translation Models 

Latent semantic analysis was applied to video retrieval by Souvannavong et al. (2003). Recall that 

LSA algorithm builds a matrix M  of word occurrences in documents, and then the SVD of this 

matrix is computed to obtain a canonical space. The problem with multimedia content is that there 

is often no text corpus and hence no vocabulary. A vector quantization technique (k-means) 

returns a codebook of blobs, the vocabulary of blobs from the key-frames. In the singular feature 

space a k-NN ( 20k = ) and a Gaussian mixture model technique are used to classify new videos. 

The comparison of the two techniques shows that GMMs perform better when there is enough 

data to correctly estimate the 10 components. The k-NN algorithm has the disadvantages of every 

nonparametric method, where the model is the training data, and therefore training can take 

considerable time. 

Bag-of-features approaches have many factors that affect their performance: choice of features, 

vocabulary size, kernels, and weighting scheme. Jiang, Ngo and Yang (2007) deployed a bag-of-

features system that assessed the optimal combination of these factors. Experiments on a 

TRECVID collection proved it to be very successful at the cost of a large number of tuning 

parameters. 

In (Li et al. 2003) two media types are considered (visual and audio). For every individual 

modality a set of appropriate features is initially determined and their variation in time is recorded. 

Then, based on appropriate statistical methodologies, transformation matrices between the audio 

and the visual feature spaces are estimated. In (Wu et al. 2004) the main objective is to statistically 

examine the n  individual modalities that are concerned, and to compute a set of D , where 

D n< , statistically independent (or almost independent) mixed modalities. For that purpose, 

statistical algorithms (like PCA, ICA) are implemented in order both to reduce the feature space 

and to compute the D  independent modalities. 

Hierarchical and Network Models 

Explicitly modelling of synchronization and time relations between different patterns are the 

base of Snoek and Worring’s (2005a) approach. They propose a multimedia analysis framework 

based on Allen’s (1983) temporal interval relations. Allen showed that to maintain temporal 

knowledge about any two events only a small set of relations are needed to represent their temporal 
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relations. These relations, now applied to audio and visual patterns, are: precedes, meets, overlaps, starts, 

during, finishes, equals and no-relation. The multimedia analysis framework can include context and 

synchronization of heterogeneous information sources involved in multimodal analysis. Initially, the 

optimal pattern configuration of temporal relations of a given event is learnt from training data by a 

standard statistical method (maximum entropy, decision trees and SVM). New data are classified 

with the learned model. The authors evaluate the event detection on soccer video (goal, penalty, yellow 

card, red card and substitution) and TV news (reporting anchor, monologue, split-view and weather report). The 

difference between the different classifiers (maximum entropy, decision trees and SVM) appears to 

be not significant. 

Sport video analysis can be greatly improved with multi-modal features, for example the level of 

excitement expressed by the crowd noise can be a strong indicator of certain events (fault, goal, 

goal miss, etc). Leonardi, Migliotari and Prandini (2004) take this into account when designing a 

multi-modal algorithm to detect goals in football videos. A set of visual features from each shot is 

fed to a controlled Markov chain to evaluate their temporal evolution from one shot to the next 

one. The Markov chain has two states corresponding to the goal state and to the non-goal state. 

The visual analysis returns the positive pair-shots and the shot audio loudness is the criterion to 

rank the pair-shots. Thus, the two modalities are used sequentially. Results show that audio and 

visual modalities together improve the average precision when compared to only the audio case, see 

(Leonardi, Migliotari and Prandini 2004). 

Luo and Hwang’s (2003) statistical framework tracks objects within a given shot with a dynamic 

Bayesian network and classifies that shot from a coarse-grain to a fine-grain level. At the course-

grain level a key-frame is extracted from a shot every 0.5 seconds. From these key-frames motion 

and global features are extracted and their temporal evolution is modelled with a hierarchical 

hidden Markov model (HHMM). Individual HHMMs (a single class model approach) capture a 

given semantic shot-category. At the fine-grain level analysis Luo and Hwang (2003) work heavily 

with object recognition and tracking. After the coarse-grain level analysis segmentation is 

performed on the shots to extract visual objects. Then invariant points are detected in each shape 

to track the object movement. These points are fed to a dynamic Bayesian network to model 

detailed events occurring within the shot, e.g., human body movements in a golf game. 

Knowledge based Models 

Naphade and Huang (2001) characterise single-modal concepts (e.g., indoor/outdoor, forest, 

sky, water) and multi-modal concepts (e.g., explosions, rocket launches) with Bayesian networks. 

The visual part is segmented into shots, see (Naphade et al. 1998), and from each key-frame a set of 

low-level features is extracted (colour, texture, blobs and motion). These features are then used to 

estimate a Gaussian mixture model of multimedia concepts at region level and then at frame level. 
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The audio part is analysed with the authors’ algorithm described above, see (Naphade and Huang 

2000). The outputs of these classifiers are then combined in a Bayesian network to improve 

concept detection. Their experiments show that the Bayesian network improves the detection 

performance over individual classifiers. 

IBM research by Adams et al. (2003) extend the approach of Naphade and Huang (2001) by 

including text from Automatic Speech Recognition as a third modality and by using Support Vector 

Machines to combine the classifier outputs. The comparison of these two combination strategies 

showed that SVM (audio, visual and text) and Bayesian networks (audio and visual) perform equally 

well. However, since in the later case, speech information was ignored one might expect that 

Bayesian networks can in fact perform better. More details about this work can be found in 

(Naphade and Smith 2003), (Natsev, Naphade and Smith 2003) and (Tseng et al. 2003). 

3.4 Discussion 

Single-Media Analysis 

The described algorithms vary in many different aspects, such as in their low-level features, 

segmentation methods, feature representation, modelling complexity or required data. While some 

concepts require large amounts of training data to estimate its model, e.g., car, others are very 

simple and require just a few examples, e.g., sky. So, we advocate that different approaches should 

be used for different concept complexities. 

Single class models assume that concepts are independent and that each concept has its own 

model. These are the simplest models and the ones with better accuracy. 

Translation models, hierarchical models, and network models capture a certain degree of the 

concept inter-dependence (co-occurrence) from the information present in the training data. The 

difference between the models is linked to the degree of inter-dependence that can be represented 

by the model. In practice, when inter-dependency information is incorporated in the model it also 

inserts noise in the form of false inter-dependency, which can cause a decrease in performance. So, 

the theoretical advantage of these models is in practice reduced by this effect. 

All these models rely exclusively on visual low-level features to capture complex human 

concepts and correctly predict new unlabelled data. The training data is – most of the times – 

limited, and the model accuracy can be improved by other sources of knowledge. Srikanth et al. 

(2005) and Benitez (2005) are two of the few proposals that exploit prior knowledge external to the 

training data to capture the inter-dependent (co-occurrence) nature of concepts. 

At this time, knowledge based models seem the most promising semantic analysis algorithms for 

information retrieval. Text information retrieval has already shown a great improvement over 



SEMANTIC-MULTIMEDIA ANALYSIS 

62 

exclusively statistical models when an external linguistic database was used, see (Harabagiu et al. 

2000). I predict that multimedia retrieval will go through a similar progress but at a slower pace 

because there is no “multimedia ontology” offering the same knowledge base as WordNet offers to 

linguistic text processing. 

Multi-Modal Analysis 

When considering multi-modal content a new and very important dimension is added: time. 

Time adds a lot of redundancy that can be effectively explored to achieve a better segmentation and 

semantic analysis. The most interesting approaches consider time either implicitly, e.g., (Westerveld 

et al. 2003), or explicitly, e.g., (Snoek and Worring 2005a). 

Few papers show a deeper level of multi-modal combination than Snoek and Worring (2005a) 

and Naphade and Huang (2001). The first explicitly explores the multi-modal co-occurrence of 

patterns resulting from the same event with temporal relations. The later integrates multi-modal 

patterns in a Bayesian network to explore patterns co-occurrences and concept inter-dependence. 

Natural language processing experts have not yet applied all the techniques from text to the 

video’s extracted speech. Most approaches to extract information from text and to combine it with 

audio and visual extracted information are very simple, such as a simple product between the 

probabilities of different modalities classifiers. 

3.5 Conclusions 

Semantic-multimedia analysis for retrieval applications has delivered its first promises, and many 

novel contributions will be done over the next years. To achieve a more comprehensive 

understanding of the field, we conducted a thorough research of previous works and organized 

them according to its media types and into different families of algorithms: 

 Single class models 

 Translation models 

 Hierarchical and network models 

 Knowledge based models 

Major developments in semantic-multimedia analysis algorithms will probably be related to 

knowledge based models and multi-modal fusion algorithms. Future applications might boost 

knowledge based models research by enforcing a limited application domain (i.e. a constrained 
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knowledge base). Examples of such applications are football games summaries, and mobile photo 

albums. 

Multi-modal analysis algorithms have already proven to be crucial in semantic-multimedia 

analysis. Large developments are expected in multi-modal analysis owing to its relative novelty 

where several problems wait to be explored and owing to the TRECVID conference series that 

pushes forward this research area through a standard evaluation methodology and a rich 

multimedia collection. The limited research in multi-modal fusion algorithms is due to the different 

expert knowledge that is required to deal with the different modalities (image analysis, audio and 

speech analysis, natural language processing). 
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4  
A Multi-Modal Feature Space 

4.1 Introduction 

Demand for techniques that handle both text and image based documents is increasing with the 

wide spread of search applications. It is impossible to conceive nowadays a world without systems 

that allow us to search for specific news articles, scientific papers, or information in general. Users 

want more: they want to have the same retrieval model that would allow to search for text 

documents, visual documents, or documents with both media, e.g., photographs with captions, 

video shots (key-frames and speech). To achieve this, a new breed of information retrieval models 

is required: one that seamlessly integrates heterogeneous data. Thus, in this thesis we assume that in 

any given collection D  of N  multimedia documents 

 { }1 2, , ..., Nd d d=D , (4.1) 

each document is characterized by a vector 

 ( ), , ,j j j j
T V Wd d d d=  (4.2) 

composed by a feature vector Td  describing the text part of the document, a feature vector Vd  

describing the visual part of the document, and a keyword vector Wd  describing the semantics of 

the document. More specifically we have: 

 The feature vector Td  contains text based features such as text terms obtained via a 

stemmer, bag-of-word, part-of-speech or named entities 

 The feature vector Vd  contains low-level visual features such as texture, colour or shape 
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 The feature vector Wd  contains keyword confidence scores concerning the detection of the 

corresponding concept 

Algorithms and techniques to compute low-level text and visual features are widely studied, and 

several algorithms exist to extract them. Keyword features representing multimedia information 

have a less consensual solution because of the ambiguity and subjectivity of the information that 

they try to describe – the semantic content of a multimedia document. The semantic description of 

multimedia information, the feature vector Wd , is the core topic of this thesis. To describe the 

semantics of multimedia information we define the set  

 { }1, ..., Lw w=W  (4.3) 

as a vocabulary of L  keywords. Keywords are linguistic representations of abstract or concrete 

concepts that we want to detect in multimedia documents. The feature vector Wd  is formally 

defined as 

 ( ),1 ,2 ,, ,...,j j j j
W W W W Ld d d d=  (4.4) 

where each component ,
j
W td  is a score indicating the confidence that keyword tw  is present in that 

particular document. The concepts may not be explicitly present in multimedia information, 

methods are required to compute the likelihood that the keyword is actually present in the 

multimedia document. 

Equation (4.2) shows us the other information that we have about documents: text and visual 

feature. Thus, to compute the components of the keyword vector j
Wd  we shall use text and visual 

feature data. This leads us to the definition of each component of the keyword vector as 

 ( ), 1 | ,j j j j
W t t T Vd p y d d= = , (4.5) 

where the random variable { }1, 0j
ty =  indicates the presence/not-presence of keyword tw  on 

document jd  given its text feature vector j
Td  and visual feature vector j

Vd . This enables the 

semantic indexing of multimedia content which allows users to submit the same query to search for text 

documents, visual documents, or documents with both media, e.g., photographs with captions, video shots (key-frames 

and speech). Equation (4.2) integrates heterogeneous representations of a multimedia document (text, 

image and semantic) and Equation (4.5) will make multimedia information searchable with the same 

type of queries for all type of media. 

In Chapters 4 and 5 we shall address the problem of estimating a statistical model for Equation 

(4.5). I shall propose a statistical framework that can simultaneously model text-only documents, 
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image-only documents, and documents with both text and images. I will follow a statistical learning 

theory approach to solve the semantic multimedia analysis problem, more specifically as a multi-

label classification problem. Figure 4.1 illustrates the traditional framework: statistical models are 

learned from the training data of keyword, and new data are labelled with the trained models. For 

excellent references on statistical learning theory and pattern recognition see (Hastie, Tibshirani and 

Friedman 2001) and (Duda, Hart and Stork 2001). 

 

  

 

 
Figure 4.1. The traditional statistical learning theory framework. 

4.2 Multi-Modal Keyword Models 

Our first objective is to compute the components of keyword feature vectors Wd  representing 

the semantics of multimedia documents. For this we will estimate and select a model tβ ∈ Θ , from 

a set Θ  of candidate models, that best represents the keyword tw  in terms of text data and visual 

data. We omit model tβ  of keyword tw  from Equation (4.5) for notational simplicity. The 

expression can now be written as: 

 ( ), 1 | , ,j j j j
W t t T V td p y d d β= =  (4.6) 

The statistical model tβ ∈ Θ  can assume many forms (e.g., nearest neighbour, neural networks, 

linear models, support vector machines) according to the family of algorithms and to the 

complexity of the specific algorithm within a particular family of algorithms. The choice of the 

family of algorithms is done by examining the requirements that multimedia information retrieval 

applications face in a real world scenario: 

 Arbitrary addition and removal of keywords 

 Easy update of existing keyword models with new training data 

 Seamless integration of heterogeneous types of data 
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 Computationally efficient indexing of multimedia information 

 Good retrieval effectiveness 

The first two requirements concern an important practical aspect in large-scale multimedia 

indexes – the integrity of the index when keyword models are modified. When a keyword model is 

modified (added, removed or updated) the index can be affected in two ways: if keyword models 

are dependent then the entire index becomes obsolete; if keyword models are independent then 

only the part of the index concerning that keyword becomes obsolete. This leads to a solution 

where keyword models are independent so that a modification in one keyword model will have a 

minor influence on the indexes. Thus, presence of keywords shall be represented by Bernoulli 

random variables 

 ( ) ( ) { }1
| 1 0,1tt

yy
t t t t tp y yρ ρ ρ

−
= − = , (4.7) 

where tρ  is the probability of keyword tw . 

The remaining three requirements can be difficult to accommodate in a unique model: support 

of multi-modal information, be able to quickly index new multimedia content and to achieve a good 

accuracy. When modelling multi-modal keywords, one has to deal with both dense feature spaces 

and sparse feature spaces. On the one hand visual feature data can be very dense making its 

modelling difficult due to the irregular frontiers caused by concept cross-interference. Expanding 

the original feature space into higher-dimensional ones results in a sparser feature space where the 

modelling of the data can be made easier. On the other hand, text feature spaces are typically too 

sparse making its modelling difficult because there is not enough support data to estimate the 

details of concept models. In these situations we have to compress the feature space into a lower 

dimensional space where data is compressed into a more dense space. These transformations of the 

original feature space into a space where the data is optimally distributed is represented as 

 ( ) ( ) ( )( )T VF , F , Fj j j j
T V T Vd d d d= , (4.8) 

where ( )TF j
Td  correspond to the text data transformation and ( )VF j

Vd  correspond to the visual 

data transformation. This renders the final expression for the components of keyword feature 

vectors as 

 ( )( ), 1 | F , ,j j j j
W t t T V td p y d d β= = . (4.9) 

The transformation of multimedia document features only need to be computed once for all 
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keyword models, in other words, the transformation is independent of the keyword models. The 

interesting implication of this fact is that it can reduce the indexing computational complexity: 

because the transformation generates a high-dimensional space, one can limit the keyword model 

search space Θ  to the family of linear models which have a very low computational complexity in 

the classification phase (but not necessarily in the learning phase). Besides the low computational 

complexity, linear models offer other interesting advantages: support of high-dimensional data (easy 

integration of heterogeneous data), naturally embedded background knowledge in the form of 

priors (ideal for keyword model update) and good accuracy (retrieval effectiveness). 

In the remainder of Chapter 4 I will present and propose ( )TF Td  and ( )VF Vd  the 

transformations of visual and text data. Chapter 5 presents linear models tβ  to represent keywords. 

4.3 Optimal Data Representation 

The transformations ( )TF Td  and ( )VF Vd  change the representation of the original text and 

visual feature spaces. As mentioned, transformations ( )TF Td  and ( )VF Vd  will adopt specific 

strategies adequate to the characteristics of each type of data. However, in both cases there is the 

problem of selecting the optimal transformation from the large number of possible transformations 

and their varying complexities. In practice, the selection of the optimal transformation is equivalent 

to old questions like “how many text features?” and “how many visual clusters?” that are usually addressed 

by some heuristic method. In this section I shall formally address this problem. 

The proposed feature space transformations are inspired by information theory: the space 

transformation F  can be seen as a codebook composed by a set of T VM M M= +  codewords 

representing the data space. Given the codebook of a feature space one is able to represent all 

samples of that feature space as a linear combination of keywords from that codebook. Information 

theory (Cover and Thomas 1991) provides us with a set of information measures that not only 

assess the amount of information that one single source of data contains, but also the amount of 

information that two (or more) sources of data have in common. Thus, we employ the minimum 

description length criterion (Rissanen 1978), to infer the optimal complexity TM  and VM  of each 

feature space transformation ( )TF Td  and ( )VF Vd . Note that I use the word “optimal” from an 

information theory point of view. The treatment of the model selection problem presented in this 

section is based on (Hastie, Tibshirani and Friedman 2001) and (MacKay 2004). 

4.3.1 Assessing the Data Representation Error 

The process of changing the original feature-space representation into the new representation 

with a given candidate transformation F̂  has an associated error. If we represent F̂  as the 
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estimated transformation, and G  as the lossless transformation that we are trying to estimate, we 

can compute the mean-squared deviation between the estimated model and the desired response as 

the error 

 
( ) ( ) ( )( )

( ) ( )( ) ( ) ( )

2

2 22

ˆErr E F

ˆ ˆ ˆE F F E F .e

d G d d

d G d E d dσ

⎡ ⎤= −⎢ ⎥
⎣ ⎦

⎡ ⎤ ⎡ ⎡ ⎤ ⎤= + − + −⎣ ⎦ ⎣ ⎣ ⎦ ⎦

D
 (4.10) 

The first term is the variance of the modelled process and cannot be avoided. The second term 

measures the difference between the true mean of the process and the estimated mean. The third 

term is the variance of the estimated model around its mean. The above expression can be written 

as: 

 ( ) ( )( ) ( )( )2 2 ˆ ˆErr Bias F Variance Fed d dσ= + +D  (4.11) 

The more complex we make the candidate transformation F̂  the lower the bias but higher the 

variance. Equation (4.11) expresses the transformation bias-variance tradeoff: simple 

transformations can only represent the training data’s coarse details (high bias) causing a high 

prediction error (low variance) because the transformation ignores important aspects of the data 

structure; complex transformations can represent training data structures in great detail (lower bias) 

but the prediction error increases (in variance) because the transformation do not generalise to 

other data. 

 
Figure 4.2. Bias-variance trade-off curve. 

Figure 4.2 illustrates a typical bias-variance trade-off curve of the training sample error and the 

test sample error. The optimal transformation is the one that achieves the best generalization error 
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on the new unseen samples. There are two types of methods to select the transformation that has 

the best generalization error: empirical methods use validation data different from the training data 

to assess the model generalization error on the test data, e.g., cross-validation and bootstrap; criteria 

based methods provide an estimate of the model generalization error on the test data based on the 

error on the training data and the complexity the model, e.g., Bayesian Information Criterion. The 

minimum description length criterion is in the later group, and I chose it as the model selection 

criterion for feature space transformation. 

4.3.2 The MDL Principle 

Model selection is a widely studied subject, see (Hastie, Tibshirani and Friedman 2001), and the 

minimum description length (MDL) criterion is among the most common criteria of model 

selection. Rooted in information theory, the MDL principle was initially thought as a method to 

find the minimum number of bits required to transmit a particular message msg . To transmit this 

message a codebook cbk  such as Huffman coding can be used to compress the message. Thus, the 

total number of bits required to transmit the message is 

 ( ) ( ) ( )DL , DL | DLmsg cbk msg cbk cbk= + , (4.12) 

corresponding to the description length of the message msg  encoded with the codebook cbk  plus 

the description length of the codebook cbk . The MDL principle says that the optimal trade-off 

between these two quantities is achieved with the codebook mincbk  that minimizes the above 

expression. The minimum description length is written as 

 ( ) ( ) ( )min minMDL DL | DLmsg msg cbk cbk= + , (4.13) 

where mincbk  is the optimal codebook that allows the message msg  to be transmitted with the 

minimum number of bits. 

The relation between the MDL criterion and the problem of model selection is straightforward: 

it assesses the trade-off between the data likelihood (the message) under a given model (the 

codebook) and the complexity of that model. In the problem we are addressing, the data D  will be 

transformed into a new feature-space by a transformation F̂ . Hence, Equation (4.12) is written as 

the sum of the likelihood of the data D  on the new feature space and the complexity of the 

feature-space transformation F̂ . Formally, we have 

 ( ) ( )ˆ ˆDL F log | F log
2i i

d

npars
, p d N

∈

= − + ⋅∑
D

D , (4.14) 
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where npars  is the number of parameters of the transformation F̂ , and N  is the number of 

samples in the training dataset. Hence, the MDL criterion is designed “to achieve the best compromise 

between likelihood and … complexity relative to the sample size”, (Barron and Cover 1991). Finally, the 

optimal feature-space transformation is the one that minimizes Equation (4.14), which results in 

 ( )
F̂

ˆF arg min DL F,= D . (4.15) 

The MDL criterion provides an estimate of the model error on the test data. Note that it is not 

an absolute estimate – it is only relative among candidate models. To evaluate the set Θ  of 

candidate models and to better assess the characteristics of each model relatively to others we can 

compute the posterior probability of each model, 

 ( )
( )

( )

n
1

DL F
2

1
DL F

2
1

F |
i

n

i

e
P

e

−

−Θ

=

=

∑
D . (4.16) 

The minimum description length approach is formally identical to the Bayesian Information 

Criterion but is motivated from a Bayesian perspective, see (MacKay 2004). 

4.4 Dense Spaces Transformations 

Some of the input feature spaces (depending on its media type) can be very dense making its 

modelling difficult due to cross-interference between classes. Expanding the original feature space 

into higher-dimensional ones results in a sparser feature space where the modelling of the data can 

be easier. This technique is applied by many related methods such as kernels. The discussion 

section of the next chapter will discuss these relationships. 

The low-level visual features that I use are dense and low-dimensional: hence, keyword data may 

overlap thereby increasing the cross-interference. This means that not only the discrimination 

between keywords is difficult but also the estimation of a density model is less effective due to 

keyword data overlapping. One solution is to expand the original feature space into a higher-

dimensional feature space where keywords data overlap is minimal. Thus, we define FV  as the 

transformation that increases the number of dimensions of a dense space with m  dimensions into 

an optimal space with Vk  dimensions 
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 ( )
( )

( )

T

,1 ,1 ,

V ,1 ,

,1 ,,

f , ...,

F ,..., ,

f , ...,
V

V V V m

V V m V

V V mV k

d d

d d k m

d d

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (4.17) 

In other words, for an input feature space with m  dimensions the transformation 

( ),1 ,F , ...,V V V md d  generates a Vk  dimensional feature space with Vk m , where each 

dimension i  of the new feature space corresponds to the function ( ), ,1 ,f , ...,V i V V md d . The 

optimal number of such functions will be selected by the MDL principle and the method to 

estimate the functions is defined next. 

4.4.1 Visual Features Pre-Processing 

The feature processing step normalises the features and creates smaller-dimensional subspaces 

from the original feature-spaces. The low-level visual features that we use in our implementation 

are: 

 Marginal HSV distribution moments: this 12 dimensional colour feature captures the 4 

central moments of each colour component distribution. I use 3 subspaces corresponding 

to the 3 colour components with 4 dimensions each subspace. 

 Gabor texture: this 16 dimensional texture feature captures the frequency response (mean 

and variance) of a bank of filters at different scales and orientations. I use 8 subspaces 

corresponding to each filter response of 2 dimensions each. 

 Tamura texture: this 3 dimensional texture feature is composed of the image’s coarseness, 

contrast and directionality. 

I tiled the images in 3 by 3 parts before extracting the low-level features. This has two 

advantages: it adds some locality information and it greatly increases the amount of data used to 

learn the generic codebook. 

4.4.2 Visual Transformation: Hierarchical EM 

The original visual feature vector ( ),1 ,, ...,V V V md d d=  is composed of several low-level visual 

features with a total of m  dimensions. These m  dimensions span the J  visual feature types (e.g., 

marginal HSV colour moments, Gabor filters and Tamura), i.e. the sum of the number of 

dimensions of each one of the J  visual feature space equals m . This implies that each visual 

feature type j  is transformed individually by the corresponding ( )V, ,F j V jd  and the output is 
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concatenated into the vector 

 ( )
( )

( )

T

,1 ,1

V

, ,

F

F

F

V V

V

V j V j

d

d

d

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, (4.18) 

where the dimensionality of the final VF  transformation is the sum of the dimensionality of each 

individual visual feature space transformation V,F j , i.e., 

 ,1 , ,... ...V V V j V Jk k k k= + + + + . (4.19) 

The form of visual feature space transformations V,F j  is based on Gaussian mixture density 

models. The components of a GMM capture the different modes of the problem’s data. I propose 

to use each component as a dimension of the optimal feature space where modes are split and well 

separated thereby creating a feature space where keywords can be modelled with a simple and low 

cost algorithm. 

The transformations are defined under the assumption that subspaces are independent. This 

allows us to process each visual feature subspace j  individually and model it as a Gaussian mixture 

model (GMM) 

 ( ) ( ) ( )
,

2
, , ,

1

| | ,
V jk

V V j m j V m j m j
m

p d p d p dθ α μ σ
=

= = ∑ , (4.20) 

where Vd  is the low-level feature vector, jθ  represents the set of parameters of the model of the j

visual feature subspace: the number ,V jk  of Gaussians components, the complete set of model 

parameters with means ,m jμ , covariances 2
,m jσ , and component priors ,m jα . The component 

priors have the convexity constraint 1, ,, ..., 0
Vj k jα α ≥  and ,

,1
1V jk

m jm
α

=
=∑ . Thus, for each 

visual feature space j , we have the Gaussian mixture model with ,V jk  components which now 

defines the transformation, 
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1, 1, 1,

V,

2
, , ,

| ,

F
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⎢ ⎥⎣ ⎦

, (4.21) 

where each dimension corresponds to a component of the mixture model. The critical question that 

arises from the above expression is that one does not know the optimal complexity of the GMM in 

advance. The complexity is equivalent to the number of parameters, which in our case is 



A MULTI-MODAL FEATURE SPACE 

74 

proportional to the number of mixture components ,V jk : 

 
( )

, , ,

dim dim 1
dim

2
j j

j V j j V j V jnpars k k k
⋅ +

= + ⋅ + , (4.22) 

where dim j  is the dimensionality of the visual subspace j . Note the relation between this 

equation and Equation (4.14). To address the problem of finding the ideal complexity we 

implemented a hierarchical EM algorithm that starts with a large number of components and 

progressively creates different GMM models with a decreasing number of components. For 

example, if it starts with 10 random components the EM will fit those 10 GMM components, store 

that model, deletes the weakest component and restarts the fitting with the previously 9 fitted 

components that will compensate the deleted component. The process is repeated until one 

component remains. In the end the algorithm generated 10 mixtures that are then assessed with the 

MDL criterion and the best one is selected. The implemented hierarchical EM adopts several other 

strategies that we will describe next. 

Implementation Details 

The hierarchical EM algorithm was implemented in C++ and it is based on the one proposed 

by Figueiredo and Jain (2002): it follows the component-wise EM algorithm with embedded 

component elimination. Figure 4.3 presents its pseudo-code; more details can be found in 

(Figueiredo and Jain 2002). The mixture fitting algorithm presents a series of strategies that avoids 

some of the EM algorithm’s drawbacks: sensitivity to initialization, possible convergence to the 

boundary of the parameter space and the estimation of different feature importance. 

The algorithm starts with a number of components that is much larger than the real number and 

gradually eliminates the components that start to get few support data (singularities). This avoids 

the initialization problem of EM since the algorithm only produce mixtures with components that 

have enough support data. Component stability is checked by assessing its determinant (close to 

singularity) and its prior (few support data). If one of these two conditions is not met, we delete the 

component and continue with the remaining ones. This strategy can cause a problem when the 

initial number of components is too large: no component receives enough initial support causing 

the deletion of all components. To avoid this situation, component parameters are updated 

sequentially and not simultaneously as in standard EM. That is: first update component 1 

parameters ( )2
1 1,μ σ , then recompute all posteriors, update component 2 parameters ( )2

2 2,μ σ , 

recompute all posteriors, and so on. 

After finding a good fit for a GMM with k  components, the algorithm deletes the weakest 

component and restarts itself with 1k −  Gaussians and repeats the process until a minimum 
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number of components is reached. Each fitted GMM is stored and in the end the set of fitted 

models describe the feature subspace at different levels of granularities. 

The hierarchical EM algorithm for Gaussian mixture models addresses the objective of finding 

the optimal feature space by (1) creating transformations with different complexities and (2) 

splitting data modes into different space dimensions, hence enabling the application of low-cost 

keyword modelling algorithms. 

 
 
Input: data, k_max, k_min, threshold, MinPrior, MinVolume 
 
for (k = 1; k < k_max; k++) { 
  GMM[k].Initialize(data); 
 
// This cycle fits several mixture models 
while (k_max > k_min) { 
 
  // This cycle fits one mixture model 
  do { 
    for (k = 1; k < k_max; k++) { 
      // Maximization-Step 
      GMM[k].UpdateMean(); 
      GMM[k].UpdateCovariance(); 
      GMM[k].UpdatePrior(); 
 
      // Check for singularities and small components 
      if ((Det(GMM[k].Covariance()) < MinVolume) ||  
          (GMM[k].Prior < MinPrior)) { 
 
        GMM[k].DeleteComponent(); 
        k_max = k_max – 1; 
      } 
 
      // Expectation-Step 
      UpdatePosteriors(); 
    } 
    old_llk = llk; 
    llk = LogLikelihood(); 
 
  } while (threshold > (llk – old_llk); 
 
  // Store the fitted mixture model 
  HierarchyOfGMM.Push(GMM); 
 
  // Restart the algorithm without the smallest component 
  GMM.DeleteWeakestComponent(); 
  k_max = k_max – 1; 
} 
 
Output: HierarchyOfGMM 
 

Figure 4.3. Hierarchical EM algorithm. 

4.4.3 Experiments 

Experiments assessed the behaviour of the hierarchical EM algorithm on a real world 
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photographic image collection. The collection is a 4,500 images subset of the widely used Corel 

CDs Stock Photos. More details regarding this collection are provided in Chapter 2. The visual 

features used in these experiments are the Gabor texture features, the Tamura texture features and 

the marginal HSV colour moments as described in Section 4.4.1. 

The evolution of the model likelihood and complexity with a decreasing number of components 

are the two most important characteristics of the hierarchical EM that I wish to study. The 

algorithm is applied to individual visual feature subspaces. Each GMM model starts with 

, 200V jk =  Gaussians, and the algorithm fits models with a decreasing number of components 

until a minimum number of Gaussians of 1. 

One of the assumptions of the minimum description length principle is that the number of 

samples is infinite. Thus, to increase the accuracy of the MDL criterion we created 3 by 3 tiles of 

the training images. This increased the number of training samples by a factor of 9, which greatly 

improves the quality of the produced GMMs because of the existence of more data to support the 

model parameters.  

The inclusion of all tiles also brings another advantage: it allows algorithms to explore the 

correlation between different concepts present in different tiles. For example, because most 

pictures of jets are taken with a jet on the central tile and sky on the surrounding tiles, this constitutes 

a strong correlation that algorithms should capture. 

4.4.4 Results and Discussion 

An advantage of the chosen algorithm to find the optimal transformation is its natural ability to 

generate a series of transformations with different levels of complexities. This allows assessing 

different GMMs with respect to the trade-off between decreasing levels of granularity and their fit 

to the data likelihood.  

Figure 4.4 illustrates the output of a GMM model fitting to the output of one Gabor filter. The 

minimum description length curve (blue line) shows the trade-off between the models complexity 

(green line) and the models likelihood (red line). Note that we are actually plotting –log-likelihood for 

better visualization and comparison. The models likelihood curve is quite stable for models with a 

large number of components (above 40). On the other extreme of the curve one can see that 

models with fewer than 40 components the likelihood start to exhibit a poorer performance. The 

small glitches in the likelihood curve are the result of component deletion from a particularly good 

fit (more noticeable between 10 and 20 components). This effect is more visible when a component 

has been deleted from a model with a low number of components because the remaining ones are 

not enough to cover the data that was supporting the deleted one.  
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Figure 4.4. Model selection for the Gabor filters features (Corel5000). 

 
Figure 4.5. Model selection for the Tamura features (Corel5000). 
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The model complexity curve shows the penalty increasing linearly with the number of 

components according to Equation (4.22). The most important curve of this graph is the minimum 

description length curve. At the beginning it closely follows the likelihood curve because the 

complexity cost is low. As the model complexity increases the model likelihood also becomes better 

but no longer at the same rate as initially (less than 10 components). This causes the model penalty 

to take a bigger part in the MDL formula, and after 20 components the MDL criterion indicates 

that those models are not better than previous ones. Thus, according to the MDL criterion the 

optimal transformation for this Gabor filter is the model with 18 components. 

The selection of the transformation of the Tamura visual texture features is illustrated in Figure 

4.5. The behaviour is the same as for the Gabor features with the only difference that the change 

from the descending part of the MDL curve to the ascending part is not so pronounced. This 

indicates that the optimal model, , 39V jk = , is not so distinct from the neighbouring models with 

,V jk  between 30 and 50. 

 
Figure 4.6. Model selection for the marginal moments of HSV colour 

histogram features (Corel5000). 

Finally, Figure 4.6 illustrates the optimal transformation selection experiments for a colour 

channel of the marginal HSV colour moments histograms. The behaviour is again similar to the 
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an indication that the GMMs are well fitted to the data with a low number of components and that 

a deletion of a component leaves uncovered data causing the likelihood jitter. 

4.5 Sparse Spaces Transformations 

Text features are high-dimensional sparse data, which pose some difficulties to parametric 

generative models because each parameter receives little data support. In discriminative models one 

observes over-fitting effects because the data representation might be too optimistic by leaving out 

a lot of the underlying data structure information. High-dimensional sparse data must be 

compressed into a lower dimensional space to ease the application of generative models. This 

optimal data representation is achieved with a transformation function defined as  

 ( )
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, (4.23) 

where n  is the number of dimensions of the original sparse space, and Tk  is the number of 

dimensions of the resulting optimal feature space.  

In other words, the sparse spaces transformation ( )T ,1 ,F ,...,T T nd d  receives as input a feature 

space with n  dimensions and generates a Tk  dimensional feature space, where each dimension i  
of the new optimal feature space corresponds to the function ( ), ,1 ,f , ...,T i T T nd d . The optimal 

number of such functions will be selected by the MDL principle, and the method to estimate the 

functions is defined next. 

4.5.1 Text Feature Pre-Processing 

The text part of a document is represented by the feature vector ( ),1 ,, ...,T T T nd d d=  obtained 

from the text corpus of each document by applying several standard text processing techniques 

(Yang 1999): stop words are first removed to eliminate redundant information, and rare words are 

also removed to avoid over-fitting (Joachims 1998). After this, the Porter stemmer (Porter 1980) 

reduces words to their morphological root, which we call term. Finally, we discard the term 

sequence information and use a bag-of-words approach. 

These text pre-processing techniques result in a feature vector ( ),1 ,, ...,T T T nd d d= , where 

each ,T id  is the number of occurrences of term  it  in document d . 
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4.5.2 Text Codebook by Feature Selection 

To reduce the number of dimensions in a sparse feature space we rank terms 1,..., nt t  by their 

importance to the modelling task and select the most important ones. The information gain 

criterion ranks the text terms by their importance, and the number of text terms is selected by the 

minimum description length. The criterion to rank the terms is the average mutual information 

technique, also referred to as information gain (Yang 1999), expressed as 

 ( ) ( )
1

1
IG MU ,

L

i j i
j

t y t
L =

= ∑ , (4.24) 

where it  is term i , and jy  indicates the presence of keyword jw . The information gain criterion is 

the average of the mutual information between each term and all keywords. Thus, one can see it as 

the mutual information between a term it  and the keyword vocabulary. 

The mutual information criterion assess the common entropy between a keyword entropy 

( )jH y  and the keyword entropy given a term it , ( )|j iH y t . Formally the mutual information 

criterion is defined as 

 ( ) ( ) ( )
( ) ( ){ } ,

,
,

0;1 ,

,
MU , , log

j T i

j T i
j i j T i

y d j T i

p y d
y t p y d

p y p d=

= ∑ ∑ , (4.25) 

where ,T id  is the number of occurrences of term it  in document d . Yang and Pedersen (1997) and 

Forman (2003) have shown experimentally that this is one of the best criteria for feature selection. 

A document d  is then represented by Tk  text terms as the mixture 

 
( ) ( ) ,

1 1

|
T Tk k

T i
i i i

i i

d
p d p t d

d
α α

= =

= =∑ ∑ , (4.26) 

where ,T id  is number of occurrences of term it  in document d . The parameters of the above 

mixture are the priors iα  of corresponding to term it . This results in a total number of parameters 

 Tnpars k= . (4.27) 

A list of models is constructed by progressively adding terms to each model according to the 

order established by the information gain criterion.  In this particular case of sparse text features the 

complexity of the transformation is equivalent to the number Tk  of text terms. The application of 

the MDL criterion in Equation (4.14) is now straightforward. 

Finally, terms are weighted by their inverse document frequency, resulting in the feature space 
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transformation function 

 ( ) ( )
( )( ), ,

,

f log
DF

T i T T r i
T r i

N
d d

d

⎛ ⎞⎟⎜ ⎟⎜ ⎟= − ⋅ ⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
, (4.28) 

where N  is the number of documents in the collection, ( ),DF T id  is the number of documents 

containing the term it , and ( )r i  is a permutation function that returns the i th text term of the 

information gain rank. 

4.5.3 Experiments 

Experiments assessed the behaviour of the information gain criterion on the Reuters news 

collection described in Chapter 2. The text corpus was processed as described in Section 4.5.1 to 

obtain the text terms, and models are constructed by adding terms to the model according to the 

information gain rank. 

4.5.4 Results and Discussion 

The evolution of the model likelihood and complexity with an increasing number of terms is 

again the most important characteristic that we wish to study. Figure 4.7 illustrates the model 

likelihood (red line) versus the model complexity (green line) and the minimum description length 

criterion as a measure of their trade-off. Note that the graph is actually showing the –log-likelihood 

for easier visualization and comparison. 

Figure 4.7 illustrates the improving likelihood as new terms are added to the feature space. The 

curve smoothness observed in this graph is due to the scale of the x-axis (100 times greater than in 

the images case) and to the fact that neighbouring terms have similar information value. 

The problem of selecting the dimensionality of the optimal feature space is again answered by 

the minimum description length criterion that selects a feature space with 972 dimensions. It is 

interesting to notice that the MDL selects a low dimensionality reflecting a model with lower 

complexity than others with better likelihood but higher complexity. Note that if we had more 

samples (in this dataset the number of samples is limited to 7,770) we would be able to select a 

more complex model (remember that the MDL criterion assumes an infinite number of samples). 

Moreover, information gain is a feature selection method that ranks terms by their 

discriminative characteristics and does not actually try to faithfully replicate the data characteristics. 

This is in contrast with the hierarchical EM method used for the dense feature spaces that is a pure 

generative approach. Hence, when adding new terms to the optimal feature space, we are directly 

affecting the classification performance. 
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Figure 4.7. Model selection for the bag-of-word features (Reuters). 

4.6 Conclusions and Future Work 

This Chapter proposed a probabilistic framework aimed at extracting the semantics of 

multimedia information. The probabilistic framework, summarized in the expression 

 ( )( )1 | F , ,j j j
t T V tp y d d β= , (4.29) 

is divided in two parts: the support of heterogeneous types of data through the feature space 

transformation ( )F ,j j
T Vd d  and keyword models tβ . The support of heterogeneous types of data, 

the main topic of this Chapter, is one of the central points of a true multimedia information 

retrieval system. We looked at a list of requirements to guide the design of the feature space 

transformations. A distinction was made between the types of multimedia feature spaces as sparse 

feature spaces and dense feature spaces. In sparse spaces most dimensions of a feature vector are 

zero and in dense spaces most dimensions are non-zero and they have a high cross-interference 

between classes. 

For dense spaces, we proposed a hierarchical EM algorithm as the feature space transformation 

( )F j
V Vd . The transformation uses the components of a Gaussian mixture model as dimensions of 

the optimal feature space. The optimal complexity of the mixture model is selected by the MDL 
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criterion. For sparse spaces, we proposed the average mutual information criterion as the feature 

space transformation ( )F j
T Td . The transformation ranks terms by their relevance and the optimal 

feature space is obtained by selecting the optimal number of terms with the MDL criterion. 

Experiments showed how the minimum description length criterion selects the optimal feature 

space transformation by assessing the trade-off between model likelihood and model complexity. 

The next chapter will show how the MDL criterion, a completely unsupervised criterion, can 

actually select an optimal (or close to optimal) multi-modal feature space. 

4.6.1 Future Work 

The presented research triggered some ideas that we wish to pursuit in the future: 

 Text transformation: the information gain criterion depends on keyword class 

information, which contrasts with visual feature transformations that are completely 

independent of this class information. Thus, one of the items that we plan to include in this 

framework in the future is a text clustering technique that does not discard text terms. 

 High-dimensional indexing methods: the fitting of hierarchical GMM models create a 

structured representation of data similar to the ones used in high-dimensional indexing 

methods. We would like to investigate the applicability of this hierarchy to improve the 

index search efficiency and computational complexity. 
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5  
Keyword Models  

5.1 Introduction 

Modelling keywords in terms of multimedia information is the main objective of the first part of 

this thesis. Keywords are present in multimedia documents according to complex patterns that 

reflect their dependence and correlations. Different probability distributions can be applied to 

capture this information, also Bayesian networks can be used to define complex distributions that 

try to represent complex keyword interactions. This thesis opted to assume nothing about keyword 

interactions, and we define keywords as Bernoulli random variables with 

 ( ) ( )1 1 0 tw
t tp y p y= = − = =

D

D
, (5.1) 

where ty  is a particular keyword, D  is the size of the training collection and 
tw

D  is the 

number of documents in the training collection containing keyword tw . In the previous chapter we 

proposed a probabilistic framework 

 ( )( ) { }| F , , 0,1t t tp y d yβ = , (5.2) 

where ( )F d  is a visual and text data transformation that creates a unique multi-modal feature 

space, and a keyword tw  is represented in that feature space by a model tβ . We will ignore the 

feature type and use a plain vector to represent the low-level features of a document as 

 ( ) ( ) ( )( ) ( )T V 1F F , F , ...,j j j
T V Md d d f f= = . (5.3) 

One of the goals of the proposed ( )F d  transformation is the creation of an optimal feature 
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space, where simple and scalable keyword models tβ  can be used. This chapter will propose the 

application of linear models to address this particular problem. The setting is a typical supervised 

learning problem, where documents are labelled with the keywords that are present in that 

document. Thus, we define  

 ( )1 ,..., ,j j j
Ly y y=  (5.4) 

as the binary vector of keyword annotations of document j , where each j
ty  indicates the presence 

of keyword tw  in document j  if 1j
ty = . Note that a perfect classifier would have 

( ) 0Wy d− =  on a new document. The annotations vector jy  is used to estimate keyword 

models and to test the effectiveness of the computed models. 

5.2 Keyword Baseline Models 

The first linear models that we shall present in this section are simple but effective models that 

can be applied in the multi-modal feature space (Magalhães and Rüger 2007a). The advantage of 

both Rocchio classifier and naïve Bayes classifier is that they can be computed analytically. 

5.2.1 Rocchio Classifier 

Rocchio classifier was initially proposed as a relevance feedback algorithm to compute a query 

vector from a small set of positive and negative examples (Rocchio 1971). It can also be used for 

categorization tasks, e.g., (Joachims 1997): a keyword tw  is represented as a vector tβ  in the multi-

modal space, and the closer a document is to this vector the higher is the similarity between the 

document and the keyword. A keyword vector tβ  is computed as the average of the vectors of 

both relevant documents { }
tw

D and non-relevant documents { }
tw

D\D , 

 

( )
( )

( )
( )

F F1 1

F F
w wt tt t

t
d dw w

d d

d d
β

∈ ∈

= −∑ ∑
D D\DD D\D

. (5.5) 

For retrieval scenarios, documents are ranked according to their proximity to the keyword 

vector. The cosine similarity measure has already proven to perform quite well in high-dimensional 

spaces. Since the cosine function is limited to the interval 1;1⎡ ⎤−⎣ ⎦  one can define the probability of 

observing a keyword tw  in a particular document d  as a function of the cosine of the angle 

between the keyword vector tβ  and the document vector, i.e., 

 

( ) ( )( )1 1
| cos , F

2 2t tp w d dβ= + , (5.6) 
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where the ( )( )cos , Ft dβ  is computed as 

 

( )( )
( )
( ) ( ) ( )

,1

2 2
,1 1

F
cos ,F

F

T
t i it i

t
M Mt

t i ii i

fd
d

d f

ββ
β

β β

=

= =

⋅
= ⋅ =

⋅

∑
∑ ∑

. (5.7) 

The Rocchio classifier is a simple classifier that has been widely used in the area of text 

information retrieval and, as we have shown, can also be applied to semantic-multimedia 

information retrieval. Moreover, this classifier is particularly useful for online learning scenarios and 

other interactive applications where the models need to be updated on-the-fly or the number of 

training examples are limited. 

5.2.2 Naïve Bayes Model 

The naïve Bayes classifier assumes independence between feature dimensions and is the result 

of the direct application of Bayes’s law to classification tasks: 

 
( )

( ) ( )
( )

11 ,..., | 1
1 | t M t

t

p y p d f f y
p y d

p d

= = =
= =  (5.8) 

The assumption that features if  are independent of each other in a document can be modelled 

by several different independent probability distributions. A distribution is chosen according to 

some constraints that we put on the independence assumptions. For example, if we assume that 

features if  can be modelled as the simple presence or absence in a document then we consider a 

binomial distribution. If we assume that features if  can be modelled as a discrete value to indicate 

the presence confidence in a document then we consider a multinomial distribution, see (McCallum 

and Nigam 1998). The binomial distribution over features if  would be too limiting; the 

multinomial distribution over features if  offers greater granularity to represent a feature value. 

In the multi-modal feature space features are continuous and not discrete. Thus, we need to 

define |if d
N  as the count of the feature if  in a given document d . To satisfy the multinomial 

distribution this variable needs to be an integer and we approximate it as 

 
( )| |

if d iN p f d M⎢ ⎥= ⋅⎣ ⎦ . (5.9) 

Note that for high-dimensional feature spaces, M  is quite large allowing us to round |if d
N  to 

an integer with minor loss of accuracy. Given this, the probability of a document d  given a 

keyword tw  is expressed as a multinomial over all feature space dimensions: 



KEYWORD MODELS 

87 

 
( ) ( ) ( ) |

1 |

| 1
| 1 !

!

f di

i

NM
i t

t
i f d

p f y
p d y p d d

N=

=
= = ∏  (5.10) 

When plugging the multinomial distribution into expression (5.8) the term |1 !
if d

N  is cancelled. 

Since all documents have the same length, the constants !d  and ( )P d  can be dropped from the 

equation. This leaves us with the proportionality relation 

 ( ) ( ) |

1

| 1 | 1 f di

M
N

t i t
i

p d y p f y
=

= ∝ =∏ . (5.11) 

Now, we are left with the task of computing the probability of feature if  for a given keyword 

tw : 
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| 1 wt

i
d

i t
i

d

f d
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 (5.12) 

Finally, the complete expression of the naïve Bayes model assuming a multinomial behaviour of 

features if  can be written as: 
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 (5.13) 

This results in the following keyword models 

 
( ), | 1 , 1,...,t i i tp f y i Mβ = = = . (5.14)

 

In retrieval scenarios, documents are ranked according to their probability for the queried 

category. In classification scenarios, documents are labelled with the arguments that maximize the 

expression 

 { }
( )

1, ..., 
max |tt L

p y d
∈

. (5.15) 

Alternatively, one can compute the log-odds and classify a document with the keywords that 

have a value greater than zero: 
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M
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= ==
∑  (5.16) 

Formulating naïve Bayes in log-odds space has two advantages: it shows that naïve Bayes is a 

linear model and avoids decision thresholds in multi-categorization problems. In this case the 

keyword models become 

 

( )
( ),

| 1
log , 1,...,

| 0
i t

t i
i t

p f y
i M

p f y
β

=
= =

=
. (5.17)

 

5.3 Keywords as Logistic Regression Models 

Logistic regression is a statistical learning technique that has been applied to a great variety of 

fields, e.g., natural language processing (Berger, Pietra and Pietra 1996), text classification (Nigam, 

Lafferty and McCallum 1999), and image annotation (Jeon and Manmatha 2004). In this section we 

employ a binomial logistic model to represent keywords in the multi-modal feature space. The 

expression of the binomial logistic regression is 

 ( )( )
( )( )

1
1 | F ,

1 exp Ft t
t

p y d
d

β
β

= =
+ ⋅

 (5.18) 

and 

 ( )( )
( )( )
( )( )

exp F
0 | F ,

1 exp F
t

t t
t

d
p y d

d

β
β

β

⋅
= =

+ ⋅
. (5.19) 

The logistic regression model is also a linear model, which makes it a scalable and efficient 

solution for modelling keywords. It can be easily shown that logistic regression is a linear model by 

computing the log-odds 

 
( )( )
( )( )

1 | F ,
log 0

0 | F ,

j
t t

j
t t

p y d

p y d

β

β

=
>

=
, (5.20) 

as we did for the naïve Bayes classifier. If the inequality is true then the keyword is deemed to be 

present in the document. Expanding this equation we get 

 ( ) ,0 ,1 1 ,... 0j j j
t t t t M MF d f fβ β β β= + + + >  (5.21) 
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that shows the linear relationship between the regression coefficients tβ  and the multi-modal 

features ( )F d . Figure 4.1 shows the form of the binomial logistic regression function. 

 
Figure 5.1. Form of the binomial logistic model. 

The theory of Generalized Linear Models also shows how to derive the logistic regression 

expression from a point of view of pure linear models and without making use of the log-odds as 

we did here. I shall develop this later in this chapter. 

5.3.1 Regularization 

As discussed by Nigan, Lafferty and McCallum (1999) and Chen and Rosenfeld (1999), logistic 

regression may suffer from over-fitting. This is usually because features are high-dimensional and 

sparse meaning that the regression coefficients can easily push the model density towards some 

particular training data points. Zhang and Oles (2001) have also presented a study on the effect of 

different types of regularization on logistic regression. Their results indicate that with the adequate 

cost function (regularization), precision results are comparable to SVMs with the advantage of 

rendering a probabilistic density model. 

An efficient and well known method of tackling over-fitting is to set a prior on the regression 

coefficients. As suggested by Nigan, Lafferty and McCallum (1999) and Chen and Rosenfeld (1999) 

I use a Gaussian prior ξN  for the regression coefficients,  

 ( )2
* ~ ,ξ ξ ξβ μ σN  (5.22) 

with mean  0ξμ =  and 2
ξσ  variance. The Gaussian prior imposes a cost on models *β  with large 

norms thus preventing optimization procedures from creating models that depend too much on a 
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single feature space dimension. When introducing the Gaussian prior in the keyword model 

expression we obtain 

 ( ) ( ) ( )2 21 | , , 1 | , |t t t t tp y d p y d pξ ξβ σ β β σ= = = , (5.23) 

which we will now use in the maximum likelihood estimation. We will drop the variance 2
ξσ  of the 

Gaussian prior in our notation. 

5.3.2 Maximum Likelihood Estimation 

The log-likelihood function computes the sum of the log of the errors of each document in the 

collection D : 

 ( ) ( )( ) ( )( )| log | F ,j j
t t t t

j

l p y d pβ β β
∈

= ∑
D

D  (5.24) 

For each keyword model the likelihood function tells us how well the model and those 

parameters represent the data. The model is estimated by finding the minimum of the likelihood 

function by taking the regression coefficients as variables: 

 ( )min |t l
β

β β= D  (5.25) 

For models where the solution can be found analytically, the computation of the regression 

coefficients is straightforward. In cases, where the analytical solution is not available typical 

numerical optimization algorithms are adequate. 

The regression coefficients need to be found by a numerical optimization algorithm that 

iteratively approaches a solution corresponding to a local minimum of the log-likelihood function. 

To find the minimum of the log-likelihood function ( )l β  with respect to β , I use the Newton-

Raphson algorithm: 

 
( ) ( )12 old old

new old
T

l lβ β
β β

ββ β

−⎛ ⎞ ⎛ ⎞∂ ∂⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟= − ⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟∂∂ ∂⎜ ⎜⎟ ⎟⎝ ⎠ ⎝ ⎠
 (5.26) 

The first-order derivative matrix is a vector with M  elements corresponding to the dimension 

of the space resulting from the application of ( )F d  to the original data. The second-order 

derivative, the Hessian matrix, is a square-matrix with M M×  components. The Hessian matrix 

imposes a high computational complexity (both in time and space) on the parameter estimation 



KEYWORD MODELS 

91 

algorithm. In multimedia information retrieval we use feature spaces with thousands of dimensions, 

meaning that the processing of the Hessian matrix is computationally too costly. For these reasons, 

we must use algorithms that are more suitable for such a large-scale problem. 

5.3.3 Large-Scale Model Computation 

When applying the Newton-Raphson algorithm to high-dimensional data the Hessian matrix 

often cannot be computed at a reasonable cost because it is too large and dense. Large scale Quasi-

Newton methods are an adequate solution for our problem: instead of storing and computing the 

full Hessian matrix, these methods store a few vectors that represent approximations implicitly 

made in previous iterations of the algorithm. The L-BFGS algorithm (limited-memory Broyden-

Fletcher-Goldfarb-Shanno) is one of such algorithms, see (Liu and Nocedal 1989a) for details: “The 

main idea of this method is to use curvature information from only the most recent iterations to construct the Hessian 

approximation. Curvature information from earlier iterations, which is less likely to be relevant to the actual 

behaviour of the Hessian at the current iteration, is discarded in the interest of saving storage.” 

The L-BFGS algorithm iteratively evaluates the log-likelihood function and its gradient, and 

updates the regression coefficients and the Hessian approximation. For the binomial logistic 

regression the log-likelihood function is 

 

( ) ( ) ( )( )( )( ) 2

2

F log 1 exp F ,

1
,

2

j

j j j
t t t t t

d

l y d d

ξ

β β β λβ

λ
σ

∈

= − + −

=

∑
D

 (5.27) 

where for each example jd  the variable j
ty  is 1 if the example contains the keyword tw and 0 

otherwise. ( )F jd  is the nonlinear space transformation of the document features. To minimize 

the log-likelihood we need to use the gradient information to find the tβ  where the log-likelihood 

gradient is zero, i.e., 

 
( ) ( ) ( )( )( )0 F 1 | ,F

j

t j j j j
t t t t

t d

l
d y p y d

β
β λβ

β ∈

∂
= = − = −

∂ ∑
D

. (5.28) 

These two last equations are the binomial logistic regression functions that the L-BFGS 

algorithm evaluates on each iteration to compute the tβ regression coefficients. 

We use the implementation provided by Liu and Nocedal (1989b) to estimate the parameters of 

both linear logistic models and log-linear models. It has been shown that L-BFGS is the best 

optimization procedure for both maximum entropy (Malouf 2002) and conditional random fields 

models (Sha and Pereira 2003). For more details on the limited-memory BFGS algorithm see 
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(Nocedal and Wright 1999). 

5.4 Relationship to other Approaches 

The proposed framework has several similarities with other approaches to statistical learning 

theory and pattern recognition. In this section we shall discuss and compare our probabilistic 

framework to other approaches that I consider to be the most similar. 

5.4.1 Kernel Methods 

Kernel methods, initially proposed by Aizerman, Braverman and Rozonoer (1964), use 

functions that allow learning algorithms to operate in a high-dimensional feature space without ever 

computing the vectors of the data in that space. Instead, one uses a kernel function to compute the 

inner products between vectors of all pairs of data in the feature space. This operation is often 

computationally cheaper than the explicit computation of the high-dimensional vector. 

These methods allow the application of linear classification algorithms to solve non-linear 

problems by transforming the original data into a higher-dimensional space, where the linear 

classifier can be applied.  

The logic behind these methods is similar to our approach but with different motivations and 

ways of achieving it. While kernel methods use specific functions to transform data into the high-

dimensional space we estimate the function from the data itself. Another difference is that we 

explicitly compute the vectors in the high-dimensional space. Note, however, that we cannot 

directly apply the kernel trick to our data because the concatenation of all features is already high-

dimensional and quite heterogeneous. 

5.4.2 pLSA 

This family of algorithms merge the two steps that we defined and simultaneously optimize the 

creation of clusters and the cluster-class relation. However, usual pLSA do not define the number 

of clusters and leave this problem out of the formulation. If enough clusters are created, pLSA 

should obtain better results because the clustering phase is done with the objective of creating 

keyword-based clusters. This contrasts with the proposed framework that creates unsupervised 

clusters, and each keyword can have its own clusters if that improves the likelihood. 

The implications of using pLSA to the task of multimedia semantic analysis is that existing 

indexes become invalid under several situations: when a new keyword is added to the vocabulary, 

all existing keyword models become invalid; when a single keyword needs to be updated with new 

training data, all existing keyword models become invalid as well. This effect is a consequence of 
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the joint modelling of keywords.  

5.4.3 Generalized Linear Models 

The classic linear model assumes a normal linear relationship between the input variables X  

and the model output for each keyword ty : 

 1 |t tE y X Xβ⎡ ⎤= =⎣ ⎦ , (5.29) 

where tβ  is the vector of regression coefficients of the keyword tw . This linear relation is quite 

limited to model complex and non-linear processes as is the case at hand. Generalized linear models 

(McCullagh and Nelder 1989) extend this model by introducing a link function ( )g ⋅ = ⋅  to model 

non-linear relations between the input variables x  and the model output  y : 

 ( )1 |t tg E y X Xβ⎡ ⎤= =⎣ ⎦  (5.30) 

The link function ( )g ⋅ = ⋅  can be any monotonic differentiable function that best represents 

the true relationship between the input variables and the model output. From the large number of 

possibilities for the link functions we used the logit  function, Equation (5.18). 

It is extremely rare that the true relationship between the input variables and the model output is 

actually linear. In these cases, basis functions are used to augment or replace the input variables by 

other variables that will turn the problem into a linear classification problem. In our framework this 

is the role of the feature space transformation ( ) ( )1F ,  ...,  j j j
Md f f= . However, we have 

established a fully automated way of estimating these basis functions. Thus, the proposed 

probabilistic framework falls under the large category of Generalized Linear Models. 

5.5 Evaluation 

The presented algorithms were evaluated with a retrieval setting on the Reuters-21578 

collection, on a subset of the Corel Stock Photo CDs (Duygulu et al. 2002) and on a subset of the 

TRECVID2006 development data. 

5.5.1 Collections 

The three collections used in this evaluation are described in more detail in Chapter 2. 

Reuters-21578 

This is a widely used text dataset which allows comparing our results with others in the 

literature. Each document is composed by a text corpus, a title (which we ignore), and labelled 
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categories. This dataset has several possible splits and we have used the ModApte split which 

contains 9,603 training documents and 3,299 test documents. This is the same evaluation setup 

used in several other experiments (Joachims 1998; Nigam, Lafferty and McCallum 1999; McCallum 

and Nigam 1998; Zhang and Oles 2001). Terms appearing less than 3 times were removed. Only 

labels with at least 1 document on the training set and the test set were considered leaving us with 

90 labels. After these steps we ended with 7,770 labelled documents for training. 

Corel Images 

This dataset was compiled by Duygulu et al. (2002) from a set of COREL Stock Photo CDs. 

The dataset has some visually similar concepts (jet, plane, Boeing), and some concepts have a 

limited number examples (10 or less). In their seminal paper, the authors acknowledge that fact and 

ignored the classes with these problems. In this paper we use the same setup as in (Yavlinsky, 

Schofield and Rüger 2005), (Carneiro and Vasconcelos 2005), (Jeon, Lavrenko and Manmatha 

2003), (Lavrenko, Manmatha and Jeon 2003) and (Feng, Lavrenko and Manmatha 2004), which 

differs slightly from the one used in the dataset original paper, (Duygulu et al. 2002). The retrieval 

evaluation scenario consists of a training set of 4,500 images and a test set of 500 images. Each 

image is annotated with 1-5 keywords from a vocabulary of 371 keywords. Only keywords with at 

least 2 images in the test set and training set each were evaluated, which reduced the number of 

vocabulary to 179 keywords. Retrieval lists have the same length as the test set, i.e. 500 items. 

TRECVID 

To test the similarity ranking on a multi-modal data we used the TRECVID2006 data: since only 

the training set is completely labelled, we randomly split the training English videos into 23,709 

training documents and 12,054 test documents. We considered each document to be a key-frame 

plus the ASR text within a window of 6 seconds around that key-frame. Key-frames are annotated 

with the standard vocabulary of 39 keywords provided by NIST. 

5.5.2 Experiment Design 

To evaluate the proposed framework we deployed a retrieval experiment for all collections listed 

in the previous section. The experiment methodology was as follows: 

1. For a given algorithm and a given multi-modal feature space 

a. For each keyword in the considered collection 

i. Estimate the keyword model on the training set by applying a cross-

validation with 5 folds and 10 value iterations, as suggested in (Kohavi 
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1995), to determine the ideal Gaussian prior variance 2
ξσ  

ii. Compute the relevance of each test document 

iii. Rank all test documents by their relevance for the considered keyword 

iv. Use the collection relevance judgments to measure the retrieval 

effectiveness of the considered rank 

b. Repeat step a) for all keywords 

c. Compute the mean average precision 

2. Repeat for a different algorithm or multi-modal feature space 

The above methodology was repeated for all linear models that we presented in this chapter and 

for different multi-modal feature spaces. We considered the Reuters-21578 collection, the 

Corel5000 collection, the ASR part of the TRECVID2006, the key-frames of the TRECVID2006 

and both key-frames and text of the TRECVID2006 development data, which makes a total of five 

collections. 

Feature Selection 

The high dimensionality of the feature space could be reduced by applying a feature selection 

criterion to remove noisy dimensions. However, this introduces an unknown variable which is the 

ideal number of feature dimensions. These noisy dimensions are critical for numerical optimization 

procedures that exploit the small variations of each feature dimension. Standard logistic regression 

is highly affected by these noisy dimensions. The inclusion of a Gaussian prior allows to 

simultaneously estimate the keyword model and to shrink the weight of noisy features. Sparse linear 

models (SVMs and logistic regression with Laplacian prior) provide a better alternative by not 

including noisy feature dimensions. See (Hastie, Tibshirani and Friedman 2001), Section 3.5 for 

more details on feature selection and shrinkage. 

5.5.3 Text-Only Models 

The text-only models experiments on the Reuters-21578 collection evaluated the sparse data 

processing part of our framework. The optimal feature space was created with the average mutual 

information criterion as described in Chapter 4. All presented linear models were used in the 

evaluation. 
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Retrieval Effectiveness 

Experiments in the Reuters dataset were evaluated with mean average precision, Figure 5.2, 

mean precision at 20, Figure 5.3, and interpolated precision-recall curves, Figure 5.4. All results 

were obtained with a 972 dimensional multi-modal feature space selected by the minimum 

description length criterion. 

When comparing the naïve Bayes model to the logistic regression model, results confirm what 

one would expect: naïve Bayes performs much worse than logistic regression (24.3% MAP versus 

49.0% MAP). However, it is a surprise to see that Rocchio classifier is actually comparable to 

logistic regression – it obtained 49.7%. This supports the hypothesis that Reuters data is structured 

in a single cluster shape. Another reason why the Rocchio classifier performs so well on this dataset 

is that from all three classifiers it is the one that uses the simplest assumptions about data 

(organized as a high-dimensional sphere). The implications are that it is less prone to over-fit on 

classes with few training examples, unlike logistic regression.  

 
Figure 5.2. Reuters-21578 retrieval MAP evaluation. 

 
Figure 5.3. Reuters-21578 retrieval MP@20 evaluation. 
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However, MP@20 values on Figure 5.3 show that logistic regression is actually more selective 

than Rocchio because it can do better on the top 20 retrieved documents: logistic regression 

obtained 39.3% while Rocchio obtained only 37.1%. Interpolated precision-recall curves, Figure 

5.4, offer a more detailed comparison of the models and confirm that logistic regression and 

Rocchio are very similar. 

 
Figure 5.4. Interpolated precision-recall curve evaluation on the Reuters-

21578. 

 
Figure 5.5. Retrieval precision for different space dimensions (text models). 
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Model Complexity Analysis 

We also studied the effect of the optimal space dimensionality by measuring the MAP on 

different spaces. The different multi-modal feature spaces were obtained by progressively adding 

new terms according to the average mutual information criterion.  

Figure 5.5 shows that after some number of terms (space dimension) precision do not increase 

because the information carried by the new terms is already present in the previous ones. The graph 

confirms that Rocchio is consistently better than logistic regression. Note that the MDL point (972 

terms) achieves a good trade-off between the model complexity and the model retrieval 

effectiveness. 

5.5.4 Image-Only Models 

The image-only models experiment on the Corel Images collection evaluated the dense data 

processing part of the framework. The multi-modal feature space was created with the hierarchical 

EM algorithm described in Chapter 4. The different multi-modal feature spaces were obtained by 

concatenating different colour and texture representations. As before, we evaluated all linear 

models that we presented in this chapter. 

Retrieval Effectiveness 

We first applied the MDL criterion to select a multi-modal feature space and then ran the 

retrieval experiments for all linear models. The space selected by the MDL criterion has 2,989 

dimensions. 

 
Figure 5.6. Corel retrieval MAP for different keyword models. 

The MAP measures shown in Figure 5.6 shows that the best performance is achieved by the 

logistic regression models with a 27.9%, followed by naïve Bayes with 24.3% and Rocchio with 

21.9%. The MP@20 measures in Figure 5.7 show that both naïve Bayes and logistic regression are 

0.219

0.243

0.279

0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350

Rocchio

NaiveBayes

LogisticRegL2

Mean average precision



KEYWORD MODELS 

99 

affected similarly. However, the Rocchio classifier is less selective as the decrease in retrieval 

accuracy shows (from 21.9% to 10.1%). Contrary to the Reuters collection, the more complex 

structure of Corel Images dataset has affected the performance of the Rocchio classifier. Thus, 

both naïve Bayes and, more specifically, logistic regression can better capture the structure of this 

data. The interpolated precision-recall curves in Figure 5.8 show that logistic regression is better 

than Rocchio and naïve Bayes across most of the recall area. 

 
Figure 5.7. Corel retrieval MP@20 for different keyword models. 

 
Figure 5.8. Interpolated precision-recall curves for different keyword 

models. 
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Results on this collection are more in agreement with what one would expect from the 

complexity of each model. Naïve Bayes applies a Gaussian on each dimension of the feature space, 

which reveals to be a more accurate assumption than the single cluster assumption made by the 

Rocchio classifier. Finally, logistic regression can better capture the non-Gaussian patterns of the 

data and achieve a better performance. 

 
Algorithm MAP L 

Cross-Media Relevance Model (Jeon, Lavrenko and Manmatha 2003) 16.9% 179 
Continuous-space Relevance Model (Lavrenko, Manmatha and Jeon 2003) 23.5% 179 
Naïve Bayes 24.3% 179 

LogisticRegL2 27.9% 179 

Non-parametric Density Distribution (Yavlinsky, Schofield and Rüger 2005)  28.9% 179 
Multiple-Bernoulli Relevance Model (Feng, Lavrenko and Manmatha 2004) 30.0% 260 
Mixture of Hierarchies (Carneiro and Vasconcelos 2005) 31.0% 260 

Table 5.1. MAP comparison with other algorithms (Corel). 

Table 5.1 compares some of the published algorithms’ MAPs on the Corel collection. Note that 

some algorithms consider keywords with only training 1 example and 1 test example, thus resulting 

in 260 keywords instead of the 179 keywords. Methods that used the 260 keywords are some type 

of non-parametric density distributions that can easily model classes with a small number of 

examples. This table also shows how the proposed algorithm achieves a retrieval effectiveness that 

is in the same range as other state-of-the-art algorithms. 

Model Complexity Analysis 

Figure 5.9 depicts the evolution of the mean average precision with the dimensionality of the 

multi-modal feature space. Each point on the curve reflects the different levels of model 

complexities of the output of the hierarchical EM. Remember that the multi-modal feature space is 

the concatenation of the hierarchical EM Gaussian mixture models of the different feature 

subspaces. We concatenate sub-spaces with a similar number of level of complexity, e.g., GMMs 

with the same number of components per feature subspace. 

For low dimensional multi-modal spaces the MAP for all models are quite low. Only when the 

dimensionality increases does the MAP achieve more stable values. The MAP stabilizes because the 

more complex GMMs models do not allow achieving a better discrimination between the relevant 

and non-relevant examples. The same phenomenon was observed on the Reuters collection. 
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Figure 5.9. Retrieval precision for different space dimensions. 

5.5.5 Multi-Modal Models 

For the multi-modal models we proceeded in the same way as for the other single-medium 

experiments with the difference that we deployed single-media and multi-modal experiments to 

compare and analyse the information value of each modality. 

Retrieval Effectiveness 

We first applied the MDL criterion to select a multi-modal feature space and then ran the 

retrieval experiments for all linear models. The space selected by the MDL criterion has 5,670 

dimensions for the visual modality, 10,576 for the text modality, and the multi-modal space has a 

total of 16,247 dimensions. For the text modality the MDL selects the maximum number of terms 

because some of the key-frames have no ASR. 

Figure 5.10 and Figure 5.11 present a summary of the retrieval effectiveness evaluation in terms 

of MAP and MP@20, respectively. All types of keyword models show the same variation with 

respect to each modality: text based models are always much lower than the image based models, 

and the difference between image based models and multi-modal models is always small. Moreover, 

logistic regression models are always better than naïve Bayes and Rocchio. This confirms previous 

knowledge that TRECVID collection is more difficult and its data exhibit a more complex 

structure, which is why logistic regression can exploit the non-Gaussian patterns of data: it achieves 

20.2% MAP on the text-only experiment, 27.3% on the image-only experiment and 29.5% on the 

multi-modal experiment. 
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Figure 5.10. MAP by different modalities (TRECVID). 

 

  
Figure 5.11. MP@20 by different modalities (TRECVID). 
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Text based models, Figure 5.12, exhibit a predictable behaviour: Rocchio is the less effective 

model, and logistic regression is the most effective model for all values of recall. However, for 

values of recall higher than 70%, all models are very similar. Image based models, Figure 5.13, 

present a similar behaviour but the difference between the Rocchio and the naïve Bayes model is 

very small. It is also possible to observe that there is a significant difference between these two 

models for values of recall between 10% and 90%. Multi-modal models, Figure 5.14, show that 

naïve Bayes models better exploit the higher number of information sources than the Rocchio 

classifier. This is not a surprise as naïve Bayes considers individual dimensions, and the data 

structure is more complex than the spherical structure assumed by Rocchio. Also related to this 

phenomenon is the retrieval effectiveness obtained by the logistic regression model. 

Finally, Figure 5.15 compares the logistic regression model on the different modalities. The first 

phenomenon to note is the difference between the text modality and the images modality. We 

believe that text-only models achieved such a low performance because some of the documents do 

not contain any text, and most concepts are more directly related to visual features than to text 

features. Multi-modal models perform better than the best single-media based models, which was a 

predictable behaviour given the increase in the number of predictors. However, this difference is 

not as big as we expected initially. We believe that the larger number of predictors would require a 

more exhaustive cross-validation procedure. 

 
Algorithm MAP Keywords Modalities Videos 

LogisticRegL2 27.3% 39  V English 

Non-parametric Density Distribution 
(Yavlinsky, Schofield and Rüger 2005)  

21.8% 10  V All 

LogisticRegL2 29.5% 39  V+T English 

SVM 
(Chang et al. 2005) 

26.6 10 V+T All 

Table 5.2. MAP comparison with other algorithms (TRECVID). 

Table 5.2 compares the proposed algorithm to two TRECVID submissions that attained an 

MAP above the median and all keywords are modelled with the same algorithm (some TRECVID 

systems employ a different algorithm for each keyword). Note that our results were obtained for 

more keywords (39 instead of 10) and less training data (just English), so, results are a rough 

indication of how our method compares to others. We limited the amount of training data due to 

computational reasons. However, as we can see from the table, the proposed approach is 

competitive with approaches that were trained in more advantageous conditions (fewer keywords). 
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Figure 5.12. Interpolated precision-recall curve for the text models 

(TRECVID). 

 

 
Figure 5.13: Interpolated precision-recall curve for image models 

(TRECVID). 
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Figure 5.14. Interpolated precision-recall curve for multi-modal models 
(TRECVID). 

 

 
Figure 5.15. Interpolated precision-recall curves for different modalities 

(TRECVID, LogisticRegL2). 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec
is
io
n

Recall

Rocchio NaiveBayes LogisticRegL2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec
is
io
n

Recall

Text Images Cross‐media



KEYWORD MODELS 

106 

Model Complexity Analysis 

For the second experiment we studied the effect of the complexity of the feature space 

transformations – the number of dimensions of the optimal feature space. Figure 5.16 illustrates the 

text-based models’ retrieval effectiveness as new terms are added to the optimal feature space. The 

order by which terms are added is determined by the average mutual information. Retrieval 

effectiveness improves constantly but at a slower rate and with a different trend than for the 

Reuters collection. Again, we believe that this is related to the fact that some documents have no 

text and that TRECVID data is more complex. 

Image based models, Figure 5.17, show an identical trend to the Corel collection. For a small 

number of dimensions the retrieval effectiveness is quite low and it quickly increases until a given 

dimensionality. The MAP achieves a stable range of values after around 5,000 dimensions and is 

not affected by the addition of new dimensions to the feature space. 

Multi-modal based models, Figure 5.18, exhibit a more irregular trend than the single-media 

models. The higher dimensionality and features heterogeneity might be the cause for this 

phenomenon. The differences between the three models is related to the respective modelling 

capabilities: Rocchio assumes a spherical structure which reveals to be too simplistic for this data; 

naïve Bayes assumed independent dimensions, which is also not the best model for this data; 

finally, logistic regression further exploits feature dimensions interactions with linear combinations 

of them. Logistic regression, with an adequate cross-validation procedure, revealed to achieve the 

best retrieval effectiveness. 

 
Figure 5.16. Retrieval precision for different space dimensions (TRECVID, 

text). 
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Figure 5.17. Retrieval precision for different space dimensions (TRECVID, 

images). 

 

 
Figure 5.18. Retrieval precision for different space dimensions (TRECVID, 

multi-modal). 
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5.6 Conclusions and Future Work 

The creation of the multi-modal feature space is a generalization procedure which results in a 

trade-off between accuracy and computational complexity. Thus, the described algorithm offers an 

appealing solution for applications that require an information extraction algorithm with good 

precision, scalability, flexibility and robustness. 

The novelty of the proposed framework resides in the simplicity of the linear combination of 

the heterogeneous sources of information that were selected by the minimum description length 

criterion. 

5.6.1 Retrieval Effectiveness 

The performed experiments show that our framework offers a performance in the same range 

as other state-of-the-art algorithms. It was not surprising to see that logistic regression attains better 

results than naïve Bayes at the expense of a higher learning cost. Table 5.1 summarized the 

performance of several alternative algorithms on the Corel dataset with just slight changes (the 

number of keywords and the type of features). Text and image results are quite good while 

multimodal experiments were affected by the noise present on the speech text and by the higher 

number of parameters to estimate. 

Results on the TRECVID collection are more difficult to compare because participants apply 

different important changes that obfuscate algorithms comparison: correction of ground-truth 

provided by NIST; use of different low-level features; different keywords are modelled with 

different algorithms, e.g., sky might be modelled with a GMM, face with an SVM, and vegetation with 

a k-NN. Despite this fact we presented a summary in Table 5.2 that shows how our method attains 

a retrieval effectiveness that is in the same range as other state-of-the-art methods. 

5.6.2 Model Selection 

The algorithm’s immunity to over-fitting is illustrated by the MAP curve stability as the model 

complexity increases. Logistic regression can be interpreted as ensemble methods (additive models) 

if we consider each dimension as a weak learner and the final model as a linear combination of 

those weak learners. This means that our model has some of the characteristics of additive models, 

namely the observed immunity to overfitting. It is interesting to note that the simple naïve Bayes 

model appears to be more immune to overfitting than the logistic regression model. This occurs 

because the optimization procedure fits the model tightly to the training data favouring large 

regression coefficients, while the naïve Bayes avoids overfitting by computing the weighted average 

of all codewords (dimensions). Note that when fitting the model we are minimizing a measure of 

the model log-likelihood (the average classification residual error) and not a measure of how 
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documents are ranked in a list (average precision). The mean average precision is the mean of the 

accumulated precision over a ranked list. Thus, we believe that if we trained our models with 

average precision as our goal metric, the retrieval results on the test set would improve. 

5.6.3 Computational Scalability 

Since the optimal feature space is common to all keywords the transformation must be 

computed only once for all keywords. Thus, the resources required to evaluate the relevancy of a 

multimedia document for each keyword are relatively small. During classification, both time and 

space complexity of the data representation algorithms is given by the number of Gaussians 

(clusters) selected by the model selection criteria. The computational complexity of linear models 

during the classification phase is negligible, resulting in a very low computational complexity for 

annotating multimedia content and making it quickly searchable. 

The computational complexity during the learning phase is dominated by the hierarchical EM 

algorithm of mixture of Gaussians and the cross-validation method. The worst-case space 

complexity during learning is proportional to the maximum number of clusters, the number of 

samples, the dimension of each feature, and the total number of cross-validation iterations and 

folds. I consider this cost to be less important because the learning can be done offline. 

Apart from the mixture of hierarchies (Carneiro and Vasconcelos 2005) all other methods are 

some sort of kernel density distributions. It is well known (Hastie, Tibshirani and Friedman 2001) 

that the nature of these methods makes the task of running these models on new data 

computationally demanding: the model corresponds to the entire training set meaning that the 

demand on CPU time and memory increases with the training data.  

For these reasons, our approach has a lower computational complexity during the classification 

phase. It has a bearing on the design of image search engines, where scalability and response time is 

as much of a factor as the actual mean average precision of the returned results: Table 7.4 in 

Chapter 7 illustrates how the low computational complexity enables a new search paradigm that 

requires the detection of multiple concepts on-the-fly. 

5.6.4 Semantic Scalability 

Assuming that the used set of keywords is a faithful sample of a larger keyword vocabulary it is 

expected that one can use the same optimal feature space to learn the linear model of new 

keywords and preserve the same models. Note that the optimal feature space is a representation of 

the data feature space: it is selected based on the entire data and independently of the number 

keywords. The consequence of this design is that systems can be semantically scalable in the sense 

that new keywords can be added to the system without affecting previous annotations. 
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5.6.5 Future Work 

The evaluation of the presented linear models has uncovered new issues that can be tackled by 

further researching the following topics: 

 L1 regularized logistic regression: sparse models are known to perform better than the 

smoothed version of logistic regression, e.g., relevance vector machines or support vector 

machines. This would allow us to use arbitrary dimensions of the feature space and discard 

the ones that are not in use thus reducing the computational complexity. 

 Replace cross-validation: cross-validation based model selection is computationally very 

complex and demands large computational resources. Other methods for linear models 

exist that can reduce the model selection cost such as the newly proposed method to follow 

regularization paths (Park and Hastie 2007). 

 Use other features (SIFT, text relations, etc): we limited the set of features to very simple 

ones as our focus was on the models and not on the features. However, it would be 

interesting to evaluate the usefulness of more semantic features such as WordNet or other 

visual grammars. 
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Part 2 

Searching Semantic-Multimedia 
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6  
Searching Multimedia  

6.1 Introduction 

In the classic information retrieval search paradigm the user transforms some information need 

into a system query, and the system replies with the required information. Unlike text documents, 

multimedia documents do not explicitly contain symbols that could be used to express an 

information need. This problem has roots in two different aspects: 

 Richness of multimedia information: visual and audio information can communicate a 

wide variety of messages, feelings and emotions; temporal and spatial structure adds 

organization and usability. 

 Expressiveness of the user query: systems have always forced humans to describe their 

information need in some query language. However, not all information needs are easily 

expressed. 

Multimedia information retrieval systems are best at processing user queries represented by 

mathematical expressions, and not everyone have the same skills at expressing ideas, emotions and 

feelings in such a formal way. While in text retrieval we express our query in the format of the 

document (text), in multimedia retrieval systems this is more difficult due to semantic ambiguities. 

The user is not aware of the low-level representation of multimedia, e.g., colour, texture, shape 

features, pitch, volume or tones. Instead the user is often more interested in the semantic richness 

of multimedia information. This demands a search system that relies on a high-level concept 

representation of multimedia, thus, providing a semantic layer to multimedia documents. Figure 6.1 

illustrates how an image is represented by both low-level features and high-level features (keyword 
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annotations and metadata). 

 
Figure 6.1. Examples of search spaces of visual information. 

The goal now is to explore new ways of applying this semantic layer to improve search. The 

semantic layer is created with the output of the keyword models proposed in the first part of this 

thesis. It creates a keyword space that organizes multimedia according to their semantics. Thus, it 

allows users to search by keyword and by semantic example. In this chapter and the following I will 

address the problem of search by example in keyword spaces, i.e., search by semantic example. 

 
Figure 6.2. The scope of semantic query-processing. 

The architecture of a multimedia information retrieval system defined in Chapter 1 is 

reproduced in Figure 6.2 where the scope of Chapters 6 and 7 is highlighted (solid lines). In this 

chapter I will review these techniques and in the following chapter I will present a framework for 

searching semantic-multimedia spaces. 
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6.2 Content based Queries 

Early research in multimedia retrieval produced several systems that allowed users to search 

multimedia information by its content. The user would provide an example image (or an audio file) 

or a sketch image (or a melody humming) containing what they wanted to search for. QBIC 

(Flickner et al. 1995) is by far the best known of such systems but several other systems appeared at 

the same time: VisualSeek (Smith and Chang 1996); Informedia (Wactlar et al. 1996); PicHunter 

(Cox et al. 1996); Virage (Bach et al. 1996); MARS (Ortega et al. 1997); SIMPlicity (Wang, Li and 

Wiederhold 2001). This multitude of systems explored new techniques and introduced others into 

the area of multimedia retrieval. Many of these are present in systems produced nowadays. For 

example, VisualSeek was one of the pioneers in Web image crawling and search, and MARS 

introduced a new relevance feedback method that became highly popular (Rui et al. 1998). 

All these systems implement a content based search paradigm where query processing methods 

are based on the principle that information needs can be expressed by example images or sketch 

images provided by the user. This is a good starting point and if users are able to provide examples 

then it would be much easier for the system to find relevant documents. 

Query processing algorithms start by analysing the provided examples and extract low-level 

features from them. Once user examples are represented by low-level features (colour, texture, 

regions, motion, pitch, tones or volume features), the next step is to rank the database documents 

by similarity. In this process there are two aspects that are fundamental to query processing in 

content based search. The first one is the reduction of a user example to a set of low-level features. 

This implies that the user understanding of the provided example is captured by the extracted low-

level features. The second aspect is the subjective notion of similarity. There is always some 

ambiguity as to what exactly the provided example illustrates. This problem of visual similarity was 

studied by Ortega et al. (1997) and in many other cases, e.g., (Swain and Ballard 1991; Heesch and 

Rüger 2004; Vasconcelos 2004). 

Low-level features capture part of the knowledge represented in a multimedia document, and 

there are situations where search by colour, texture or shape is an excellent solution. However, low-

level features might not be the ideal representation when the search is semantic and the goal is to 

find examples of cars, dogs, etc. This is the so called semantic gap. To overcome this problem two 

types of methods have been proposed: semi-automatic methods that rely on user feedback guiding 

the system with positive and negative examples (relevance feedback), and automatic methods that 

rely on high-level feature representations of information (semantic based queries). 
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6.3 Relevance Feedback 

Relevance feedback systems (Rocchio 1971) allow the user to compose a set of visual positive 

examples that are different representations of the same semantic request. Relevance feedback tries 

to iteratively specify the semantic characteristics of the intended results by adding semantically 

relevant examples and removing semantically non-relevant examples from the working model. 

Positive and negative examples are obtained from user feedback in different ways: 

 Explicit feedback is obtained by having the user marking specific documents as relevant 

or non-relevant. This information allows the system to create a relevance model for each 

specific query; the MARS system proposed a popular relevance feedback technique (Rui et 

al. 1998). 

 Implicit feedback is inferred from user interactions, such as noting which documents 

users select for viewing, and how long they view those documents. This approach is also 

known as long-term models because query logs are used to refine relevance models, see 

(Vasconcelos 2000). 

 Blind relevance feedback is obtained by assuming that the top n documents in the result 

set are actually relevant; a query with those top examples is automatically resubmitted as 

positive examples. 

Explicit relevance feedback is by far the most researched approach, differing mainly in the 

multimedia representation method that tries to mimic human perception. Yang et al. (2005) 

implemented a relevance feedback algorithm that works on a semantic space created from image 

clusters that are labelled with the most frequent concept in that cluster. Semantic similarity is then 

computed between the examples and the image clusters. Lu et al. (2000) proposed a relevance 

feedback system that labels images with the previously described heuristic and updates these 

semantic relations according to the user feedback. The semantic links between the examples and 

the keywords are heuristically updated or removed. Zhang and Chen (2002) followed an active 

learning approach, and He et al. (2003) applied spectral methods to learn the semantic space from 

user feedback. 

Smeulders et al. (2000) summarized the research area of content based search and relevance 

feedback in their classic paper. Note the difference between content based queries where 

multimedia semantics is automatically represented as low-level features, and relevance feedback, 

where the user is inserted in the loop to better define multimedia semantics in terms of low-level 

features. The use of relevance feedback per se does not make the system aware of any semantics as 
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it still represents images by their low-level features. In my opinion content based queries are limited 

in the way information is represented: low-level features are not sufficient to represent the entire 

universe of interpretations that a user might have regarding a multimedia document. Instead users 

might be interested in searching multimedia by its semantic content. 

6.4 Semantic based Queries 

Systems that are aware of multimedia semantics have already flourished in the multimedia 

information retrieval community allowing different search paradigms. Figure 6.3 illustrates three 

different semantic search paradigms that users can exploit to satisfy their information need. These 

search paradigms work on a high-level feature space that is obtained through different methods. 

The semantic space is obtained either through some manual method, automatic method or semi-

automatic method, e.g., relevance feedback. 

Automatic algorithms are attractive as they involve a low analysis cost when compared to 

manual alternatives. Automatic methods are based on heuristics or on some pattern recognition 

algorithm. Heuristic techniques rely on metadata attached to the multimedia: for example, Lu et al 

(2000) analyse HTML text surrounding an image and assign the most relevant keywords to an 

image. Pattern recognition algorithms exploit low-level features extracted from the multimedia itself 

and create a model for each keyword that needs to be detected. Several techniques have been 

proposed in the literature: Feng, Lavrenko and Manmatha (2004) proposed a Bernoulli model with 

a vocabulary of visual terms for each keyword, Carneiro and Vasconcelos (2005) a semi-parametric 

density estimation based on DCT features of images, Magalhães and Rüger (2007b) developed a 

maximum entropy framework to detect multi-modal concepts, while Snoek et al. (2006) proposed 

an SVM based multi-modal feature fusion framework. Chapter 3 discusses these methods in detail. 

 
Figure 6.3. Semantic based search. 

Thus, it is in this context that Chapter 6 and Chapter 7 study keyword spaces (created with the 

output of keyword detector algorithms) for multimedia retrieval by example. 
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6.4.1 Keyword based Queries 

The direct application of keyword annotations, i.e. high-level features, allows the user to specify 

a set of keywords to search for multimedia content containing these concepts. This is already a 

large step towards more semantic search engines. Although quite useful in some cases this still 

might be too limiting: semantic multimedia content captures knowledge which goes beyond the 

simple listing of keywords. The interaction between concepts, the semantic structure and the 

context are aspects that humans rely on to express some information need. Natural language based 

queries and semantic example based queries explore these aspects. 

6.4.2 Natural Language based Queries 

In text IR systems the user can create text based queries by combining keywords with simple 

Boolean expressions as in inference networks (Turtle and Croft 1991) or by writing a natural 

language query expression (Croft, Turtle and Lewis 1991). These types of query expressions are 

now possible in multimedia information retrieval owing to algorithms that can detect multimedia 

concepts. Recently, Town and Sinclair (2004) proposed an ontology based search paradigm for 

visual information that allows the user to express his query as a sentence, e.g., “red flower with sky 

background”. It relied not only on the detection of concepts but also on the information stored in 

the ontology regarding concept and concept-relations. 

6.4.3 Semantic Example based Queries 

These type of approaches can produce good results but it puts an extra burden on users who 

now have to describe their idea in terms of all possible instances and variations, or express it 

textually. This requires creativity or expressiveness, which may be a limiting factor. Thus, in these 

cases users should be able to formulate a query with a semantic example of what they want to 

retrieve. Of course, the example is not semantic per se but the system will look at its semantic 

content and not only at its low-level characteristics, e.g., colour or texture. This means that the 

system will infer the semantics of the query example and use it to search the image database. Both 

database and query are analysed with the same concept extraction algorithm. Moving away from 

implementing query by semantic example as relevance feedback, Rasiwasia et al. proposed a 

framework to compute semantic similarity to  rank images according to the current state of the 

query, (Rasiwasia, Vasconcelos and Moreno 2006; Rasiwasia, Moreno and Vasconcelos 2007). They 

start by extracting semantics with an algorithm based on a hierarchy of mixtures (Carneiro and 

Vasconcelos 2005) and compute the semantic similarity as the Kullback-Leibler divergence. Tesic et 

al. (2007) address the same problem but replace the Kullback-Leibler divergence by an SVM. The 

SVM uses the provided examples as the positive examples, and negative examples are randomly 
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sampled from the database. A cluster model of the database is used to sample negative examples 

from clusters where the positive examples have low probability. Their results show good 

improvements over text-only search. Following these steps, Natsev et al. (2007) explored the idea 

of using concept-based query expansion to re-rank multimedia documents. They discuss several 

types of methods to expand the query with visual concepts. Another approach to query expansion 

in multimedia retrieval by Haubold et al. (2006) uses lexical expansions of the queries.  

Hauptman et al. (2007) present an estimation of the number of concepts that is required to fill 

the semantic gap. They use a topic search experiment to assess the number of required concepts to 

achieve a high precision retrieval system – their study suggests 3,000 concepts. This approach 

associates the success of semantic-multimedia IR to a single factor (number of concepts) and leaves 

several aspects of the problem, e.g., similarity functions and different querying paradigms, out of 

the analysis. 

The described family of techniques allow ranking algorithms to work at a semantic level by 

extracting the concepts from both multimedia and users’ queries examples. The second step in the 

ranking problem is to explore the semantic similarity between the users’ examples and the 

multimedia documents. Thus, semantic similarity, computed either in a low-level feature space or a 

high-level feature space, is a corner stone in the ranking process. 

6.4.4 Semantic Similarity 

Semantic similarity tries to measure the difference in the meaning of the information of two 

documents. Two different approaches are popular: a distance function in a semantic space and a 

walk function in an ontology graph. Both methods can either use a predefined metric or can learn a 

metric based on some training data, e.g., (Yu et al. 2008). In the next chapter we will thoroughly 

discuss and analyse a set of predefined metrics in a keyword space. The second type of methods is 

based in an ontology that mirrors human knowledge. Smeaton and Quigley (1996) explored 

semantic distances between words for query expansion. They show that semantic distances based 

on WordNet offers a substantial improvement over traditional IR techniques. Benitez and Chang 

(2000) also explored ontology based methods to compute the semantic similarity between images. 

6.5 Summary 

In this chapter I motivated the application of keyword spaces to the problem of search by 

example and compared it to previous research. Several search paradigms delivering different ways 

of user information need expressiveness were discussed: content based queries (low-level features 

examples); relevance feedback (interactive); semantic based queries (keywords, natural language and 
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semantic examples). Early systems allowed the user to submit queries only based on low-level 

features, while most recent systems already allow the use of automatically extracted high-level 

features. I have emphasised semantic multimedia example based queries as this is one of the less 

studied methods and it is a natural application of the multimedia analysis algorithms described in 

the previous chapters. 
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7  
Keyword Spaces 

7.1 Keywords and Categories 

Multimedia semantics is related to the way humans think and perceive multimedia information. 

The link between low-level features and high-level features is a known problem that has been 

addressed by a large body of work and is pointed as one of the main bottlenecks in semantic-

multimedia information retrieval. In this chapter I address the problem of ranking multimedia by 

semantic similarity. This search paradigm allows the user to submit a single example image of a 

yellow flower and retrieve images of flowers of all colours, textures and backgrounds. This is 

possible because the search space does not represent multimedia by their low-level features but by 

their high-level concepts, e.g., flowers, mountains, river, or sky. It is in this context that I designed a 

search framework to study similarity ranking for search by semantic-multimedia example.  

( )dist ,a b
w W Wd d

( )SemSim ,a bd d

a
Wd

b
Wd

ad bd

p p1distw
−

 
Figure 7.1. Commutative diagram of the computation of semantic similarity 

between two multimedia documents. 

This scenario calls for a feature space capable of representing multimedia by its semantic 

content where semantic similarity is easily computed. Figure 7.1 depicts the process of computing 

the semantic similarity ( )SemSim ,a bd d  between multimedia a documents ad  and bd . A 

multimedia document ad  is transformed into the keyword space by the : a a
Wp d d→  

transformation. In this keyword space, a multimedia document ad  is represented by the vector a
Wd  
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containing keyword scores. These scores indicate the confidence that a keyword is present in the 

document. Now, in this keyword space the distance ( )dist ,a b
w W Wd d  between vectors a

Wd  and b
Wd  

is inversely proportional to the semantic dissimilarity6 between documents ad  and bd , i.e., 

( )1 / SemSim ,a bd d . In this chapter we study the following aspects of this process: 

 Manual versus automatic methods of transforming a multimedia document into the 

keyword space, i.e., the : a a
Wp d d→  transformation. 

 Functions to compute the semantic dissimilarity as the distance ( )dist ,a b
w W Wd d  between 

two keyword vectors. 

 The influence of the keyword space dimensionality on the distance functions 

( )dist ,a b
w W Wd d . 

 The influence of manual annotations accuracy on the computation of semantic similarity 

functions. 

It is in this context that we designed a framework to search multimedia by semantic similarity. 

As mentioned before, the keyword vectors can be obtained by manual or automatic methods, 

which we define formally as: 

 User keywords: a user manually annotates multimedia with keywords representing 

meaningful concepts present in that multimedia content. 

 Automatic keywords: an algorithm infers multimedia keywords and a corresponding 

confidence representing the probability that a given concept is present in that multimedia 

content. 

Figure 7.2 illustrates some of the images on the Flickr web site annotated by a user with the 

keyword “London”. These images can be further grouped into themes concerning the same idea: (1) 

London touristic attractions; (2) London’s river Thames; (3) London metro; (4) London modern art. Each one of 

these themes is a row of images in Figure 7.2. Formally we define categories as: 

 Categories are groups of multimedia documents whose content concern a common 

meaningful theme, i.e., documents in the same category are semantically similar. 

The above definitions create two types of content annotations – at the document level 
                                                 
6 Distance is equivalent to the inverse of similarity: large distances imply low similarity and small distances 
imply high similarity. 
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(keywords) and at the group of documents level (categories). Because both keywords and categories 

describe the content of multimedia one would assume that categories can be inferred from 

keywords. For example, given a query image depicting the Big Ben the system would retrieve other 

images belonging to the same category, “London touristic attractions”,  and not necessarily visually 

similar. 

 
Figure 7.2. Example of Flickr images annotated with the keyword London. 

In our experimental framework, keywords and categories of multimedia documents are defined 

by each collection ground truth: keywords are used to compute semantic similarity and categories 

are used to evaluate semantic similarity. 

Next I formalize the idea of keyword spaces, followed by the implementation description of our 

semantic-multimedia search system. Section 7.3 describes how keyword vectors are computed with 

a naïve Bayes algorithm (automatic keywords) or are obtained from the ground truth labels of the 

collection (user keywords). We then apply noise to the user keywords to study the influence of 

different levels accuracy. Once documents are represented in the keyword space the user can select 

or submit a query document (Section 7.4). A semantic similarity function is used to find documents 

from the same unknown category (Section 7.5). Section 7.6 presents the evaluation experiments of 

the keyword space. Experiments were done on Corel Images and TRECVID data. 

7.2 Defining a Keyword Space 

Our goal is to devise a search space capable of representing documents according to their 
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semantics and with a defined set of semantic operations. Semantic spaces are similar to other 

feature spaces like colour or texture feature spaces where the space structure replicates a human 

notion of colour or texture similarity (assuming image documents). The distinction is clear: while in 

the first case images are organized by their texture or colour similarity, in semantic spaces images 

are organized by their semantic similarity. Figure 7.3 illustrates a visual semantic space where each 

dimension corresponds to a given keyword and images that are semantically similar are placed in 

the same neighbourhood. The usefulness of such a semantic space ranges from search-by-example 

to tag-suggestion systems and recommender-systems.  

 
Figure 7.3. A keyword space with some example images. 

In this setting, and reusing the notation defined in Chapter 4, we represent a multimedia 

document as 

 ( ) ( ), , , ,T V W f Wd d d d d d= =  (7.1) 

where Wd  corresponds to the document keyword annotations and fd  to the document low-level 

features ( ),f T Vd d d= . These two representations form two distinct feature spaces, e.g., in the 

first case an image is represented by its texture or colour features, in the second case the same 

image is represented by its semantics in terms of keywords. A keyword space for searching 

multimedia by semantic similarity is defined by the following properties: 

 Vocabulary: defines a lexicon 
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 { }1, ... , Lw w=W  (7.2) 

of L  keywords used to annotate multimedia documents. 

 Multimedia keyword vectors: a multimedia document d  is represented by a vector 

 ( ),1 ,, ... , 0,1
L

W W W Ld d d ⎡ ⎤= ∈ ⎣ ⎦  (7.3) 

of L  keywords from the vocabulary W , where each component id  corresponds to the 

likelihood that keyword iw  is present in document d . 

 Keyword vectors computation: the keyword vector can be computed automatically or 

provided by a user. Section 7.3 discusses and compares both methods. 

 Semantic dissimilarity: given a keyword space defined by the vocabulary W , we define 

semantic dissimilarity between two documents as 

 0dissim : 0,1 0,1
L L

w
+⎡ ⎤ ⎡ ⎤× →⎣ ⎦ ⎣ ⎦ , (7.4) 

the function in the L  dimensional space that returns the distance between two keyword 

vectors. Section 7.5 presents several distance functions. 

Given the above definitions it is easy to see that for a query example ( ),f Wq q q= and a 

candidate document ( ),f Wd d d= , the semantic similarity between documents is computed as the 

inverse of the dissimilarity ( )dissim ,w W Wq d  between the corresponding keyword vectors. 

 
Figure 7.4. A multimedia document description. 

The lexicon of keywords corresponds to dimensions of the keyword space, allowing documents 

to be represented with varying types of information according to the type of keyword, e.g., visual 

concepts, creation date and author. Figure 7.4 illustrates how documents can be described with 
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different representation schemes. This richness of expressivity might confuse ranking algorithms – 

the same document can have multiple interpretations each one giving more emphasis to different 

sets of keywords. Thus, by limiting the semantic representation to a subset of the document 

semantics one defines the scope of the search domain. 

In searching semantic multimedia it is important that the semantic space accommodates as many 

keywords as possible to be sure that the user’s idea is represented in that space without losing any 

meaning. Thus, automatic systems that extract a limited number of keywords are less appropriate. 

This design requirement leads us to the research area of high-dimensional spaces. 

The structure of the space, i.e., the way keywords interact with each other, is defined by the 

distance function of that space. Distance functions are crucial in computing the semantic similarity 

between two multimedia documents – they define keyword independence and dependence. For 

example, the Euclidean distance considers keywords to be independent while graph-based metrics 

take keyword dependence into account. Some non-linear similarity metrics can even create semantic 

sub-spaces by grouping dimensions that convey the same type of information, e.g., visual concepts 

of information for search systems, music CD purchases for recommender systems. 

In this thesis I limit the lexicon of keywords to a set of L  visual and multimodal concepts that 

are present in images and video clips. 

7.3 Keyword Vectors Computation 

Data points in the keyword space correspond to a vector of keywords for a given multimedia 

document – the way these vectors are computed is application dependent. In some applications, 

keyword vectors Wd  are extracted automatically from captions, Web page text, or low-level 

features. In this Chapter 4 and 5 we proposed a machine learning algorithm Ap  that computes 

keyword vectors from low-level features: 

 
( ) ( )| ,W A T Vd p d p y d d= =  (7.5) 

The machine learning algorithm supports a large number of keywords so that the keyword space 

can wrap the semantic understanding that the user gives to a document. This is in line with the 

requirement for highly expressive descriptions of multimedia, i.e., large number of keywords. 

In other type of applications, keyword vectors Wd  are extracted manually from the document 

content by a user Up , i.e., 

 :U Wp d d→ . (7.6) 
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The user inspects the document to verify the presence of a concept and annotates the document 

with that keyword if it is present. 

7.3.1 Automatic Keyword Annotations 

In this section we describe how to estimate a probability function p  that automatically 

computes the vector 

 ( ) ( )( )1 | ,  ... , | ,W f L fd p y d p y d=  (7.7) 

of L  keyword probabilities from the document’s low-level features fd . Following the approach 

proposed Chapter 5, each keyword iw  is represented by a naïve Bayes model. The following is a 

summary of Chapters 4 and 5, and is repeated here for the convenience of the reader. 

Keyword Models 

Keywords are modelled as text and visual data with a naïve Bayes classifier. In our approach we 

look at each document as a unique low-level feature vector ( )1, ...,f Md f f=  of visual features 

(Section 4.1.2) and text terms (Section 4.1.3). The naïve Bayes classifier results from the direct 

application of Bayes law and independence assumptions between dimensions of a feature vector: 

 

( )
( ) ( )
( ) ( )( )

1

11

|
|
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M
j i ji

j f L
i f M ii
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p y d

p y p d f f y

=

=

=
=

∏
∑

 (7.8) 

Formulating naïve Bayes in the log-odds space results in 
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( )

( )
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( )1
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log log | log

0 | 0 | 0

M
j j i j

i
ij j i j

p y d p y p f y
M p f d

p y d p y p f y=

= = =
= +

= = =
∑  (7.9) 

which casts it as a linear model that avoids decision thresholds in annotation problems. 

Visual Data Processing 

Three different low-level visual features are used in our implementation: marginal HSV 

distribution moments, a 12 dimensional colour feature that captures the histogram of 4 central 

moments of each colour component distribution; Gabor texture, a 16 dimensional texture feature 

that captures the frequency response (mean and variance) of a bank of filters at different scales and 

orientations; and Tamura texture, a 3 dimensional texture feature composed by measures of image 

coarseness, contrast and directionality. The images are tiled in 3 by 3 parts before extracting the 

low-level features. 
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Text Data Processing 

Text feature spaces are high dimensional and sparse. To reduce the effect of these two 

characteristics, one needs to reduce the dimensionality of the feature space. We use mutual 

information to rank text terms according to their discriminative properties. 

7.3.2 User Keyword Annotations 

Professional annotations are done by experts that received some training on how to identify 

concepts in multimedia content, clarified all ambiguities regarding the meaning of keywords, and 

have no hidden intention of incorrectly annotation content. In most cases, professional annotations 

are obtained by a redundant voting scheme intended to remove disagreement between professional 

annotators. Thus, it constitutes an extra method of cleaning data annotations. Both Corel and 

TRECVID2005 annotations were done by experts that followed these general guidelines. Thus, we 

assume that professional annotations have 100% accuracy. In contrast, annotations done by real 

users are sometimes random, incomplete or incorrect for several reasons: the user might not be 

rigorous, users have different understanding of the same keyword, or it might be the result of spam 

annotations. In a real scenario with non-professional users one would expect to have keyword 

annotations with accuracies below 100%. 

Following this reasoning, we use professional annotations to generate user keywords with 

different levels of accuracies: 

 Obtain user annotations: generate completely accurate user keywords from the 

professional annotations of the collection of N  multimedia documents. This corresponds 

to the Corel and TRECVID collections annotations. 

 Add errors to annotations: given the professional annotations, invert a given number e  of 

annotations which results in a classifier with an accuracy of 

  accuracy
L N e
L N
⋅ −

=
⋅

, (7.10) 

note that this is done to both positive and negative annotations. This step simulates 

different numbers of errors that users might do when annotating multimedia content. 

7.3.3 Upper and Lower Bounds 

Automatic annotation algorithms are not completely accurate and we do not foresee that a new 

algorithm will achieve a high accuracy in the near future. Thus, the user keyword annotations define 

the upper bound on the retrieval effectiveness that can be obtained in a search by semantic example 
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scenario. Correspondingly, the naïve Bayes algorithm was chosen as the automatic keyword 

annotation algorithm because it defines a lower bound on the retrieval effectiveness that can be 

obtained in a search by semantic example scenario. 

7.4 Querying the Keyword Space 

User queries can include keywords, multimedia examples, and arbitrary combinations of 

keywords and multimedia examples. The algorithm that parses the user request produces query 

vectors in the keyword space with the same characteristics as multimedia document vectors. For the 

objectives of this thesis we only need to consider single example queries. Moreover, the user 

request analysis algorithm must generate the query description in a fixed amount of time and with a 

low computational cost. This is an important feature because the system needs to answer the user 

request in less than one second and it should also be able to support several users simultaneously. 

Thus, for each query, the system analyses the submitted example and infers a keyword vector 

with the automatic algorithm 

 ( )W A fq p q= , (7.11) 

or a user provides the keywords present in the example, i.e.,  

 :U Wp q q→ . (7.12) 

Query examples are converted into keyword vectors with the methods described in the previous 

section. 

7.5 Keyword Vectors Dissimilarity 

In this section we discuss the dissimilarity functions to compute the semantic similarity between 

two multimedia documents. The dissimilarity functions presented in this section assume three types 

of spaces: geometric, histogram-based and probabilistic spaces. Thus, all dissimilarity functions 

assume that either the space is linear or that keywords are independent. The computation of 

dissimilarity is based on functions ( ),D a b  that are not necessarily a distance function because they 

might violate one of the properties of a true metric: 

1. Non-negativity, ( ), 0D a b ≥  

2. Symmetry, ( ) ( ), ,D a b D b a=  
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3. Triangle inequality, ( ) ( ) ( ), , ,D a b D a c D c b≤ +  

4. Identity of indiscernibles, ( ), 0D a b =  for a b=  

With completely accurate user keywords we isolate the dissimilarity functions from the keyword 

annotation process. This way we can assess how much of the semantic similarity precision is due to 

the keyword vector computation method and how much is due to the dissimilarity functions. 

The computation of dissimilarity ranks for all documents in a database is an expensive process 

with linear complexity. Several methods exist to reduce this complexity, as for example sampling 

(Howarth and Rüger 2005b). This topic is outside the scope of this paper as we are interested in 

finding methods to rank documents by semantic similarity with the maximum possible precision. 

7.5.1 Geometric Spaces 

Geometric similarity functions operate on high-dimensional spaces and each function is 

implemented as a distance function under specific assumptions and/or constraints. Thus, input 

feature components can be any real values. However, special attention should be given to spaces 

with heterogeneous dimensions, e.g., metadata with discrete dimensions, that might require a 

specific normalization each (Gelman et al. 2003). 

Minkowski Distance 

The Minkowski distance between the query example wq  and a database document wd  is defined 

as 

 
( ) ( )

1/

Minkowski , ,
1

, ,

pL
p

W W p W W W i W i
i

D q d L q d q d
=

⎡ ⎤
⎢ ⎥= = −⎢ ⎥
⎢ ⎥⎣ ⎦
∑ , (7.13) 

where the indices i  concern the concept i , and p  is a free parameter 1p > . However, Howarth 

and Rüger (2005a) have shown that for visual features fractional dissimilarity measures (Minkowski 

distance with 0.0 1.0p< < ) offer a better performance for several types of features. In this 

chapter I use { }0.5,  1.0,  2.0,  p ∈ ∞  as different distance measures. pL  is not a true metric for 

1p <  because it violates the triangle inequality; nevertheless it can offer useful dissimilarity values. 

The unit spheres for { }0.5,  1.0,  2.0,  p ∈ ∞  in the two dimensional space are illustrated in 

Figure 7.5. 

Manhattan Distance 

Manhattan distance ( 1.0p = ) corresponds to the human notion of distance between two 

points placed over a squared grid. The Manhattan distance is the accumulated sum of the distances 
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in each dimension, 

 
( ) ( )Manhattan 1 , ,

0

, ,
L

W W W W W i W i
i

D q d L q d q d
=

= = −∑ . (7.14) 

This distance is identical to the length of shortest all paths connecting wq  and wd  along lines 

parallel to the coordinate system. 

 
Fractional 0.5p =  

 
Manhattan 1.0p =  

 
Euclidean 2.0p = , 

 
Chebyshev p = ∞  

Figure 7.5. Unit spheres for standard Minkowski distances. 

Euclidean Distance 

Euclidean distance (Minkowski distance with 2.0p = ) corresponds to the human notion of 

distance between two points in a real coordinate space, expressed as 
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Chebyshev 

The Chebyshev distance (Minkowski distance with p = ∞ ) measures the maximum of the 

distance in each dimension. It is expressed as 

 ( ) ( )Chebyshev , ,0
, , maxW W W W W i W ii L

D q d L q d q d∞ ≤ ≤
= = − . (7.16) 

Cosine Distance 

Since we work in high-dimensional spaces, in geometric terms one can define the independence 

between two vectors as the angle between them. This gives an indication as to whether two vectors 

point to a similar direction or not. This is the well known cosine similarity which becomes a 

dissimilarity by taking the difference to 1: 

 
( ) ( )Cosine , cos 1 W W
W W W W

W W

q d
D q d q d

q d

⋅
= = −

⋅
 (7.17) 

Geometric correlation is one of the several possible ways to measure the independence of two 

variables. Also, the cosine distance is a special case of Pearson correlation Coefficient when data are 

normalized with mean zero. 

7.5.2 Histograms 

Histograms are computed by discretizing feature spaces into bins, meaning the proportion of 

cases in which this bin is occupied. Histograms are widely applied in colour spaces where each bin 

corresponds to a given segment of the colour space measuring the proportion of pixels that fall into 

that segment. In our scenario we consider one concept to be equivalent to one bin of the 

histogram. 

Canberra Distance 

The Canberra distance is the sum over the difference in each bin normalized by the sum of the 

corresponding bin sizes: 

 
( ) , ,

Canberra
1 , ,

,
L

W i W i
W W

i W i W i

q d
D q d

q d=

−
=

+
∑ . (7.18) 

This distance has been used before with relative success in low-level-feature based image 

retrieval (Kokare, Chatterji and Biswas 2003). 
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Histogram Intersection 

Histogram intersection is a measure that was applied in the early 1990s (Swain and Ballard 1991) 

as a method to index images by colour. This distance measures what two histograms have in 

common by computing their intersection. The distance is normalized with the size of the smaller 

histogram: 
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,
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∑

 (7.19) 

This measure is equivalent to L1 distance. 

7.5.3 Probabilistic Spaces 

In this section I describe statistics based measures of similarity: divergences between two 

probability density distributions, and the likelihood that two samples of a given population came 

from the same probability density distribution. 

Kullback-Leibler Divergence 

In statistics and information theory the Kullback-Leibler (KL) divergence is a measure of the 

difference of two probability distributions. It is the distance between a “true” distribution (the 

query vector) to a “target” distribution (the document vector). The KL divergence is defined as 

 

( ) ( ) ( )
( )

,
KL ,

1 ,

|| log
L

W i
W W W i

i W i

p q
D q d p q

p d=

= ∑  (7.20) 

In information theory it can be interpreted as the expected extra message length needed by 

using a code based on the candidate distribution (the document vector) compared to using a code 

based on the true distribution (the query vector). Note that the KL divergence is not a true metric 

as it is not symmetric. 

Jensen-Shannon Divergence 

The Jensen-Shannon (JS) divergence is the symmetrised variant of the KL divergence and 

provides a true metric to compare two probability distributions: 

 ( ) ( ) ( )JS KL KL
1 1 1 1

, || ||
2 2 2 2W W W W W W W WD q d D q q d D d q d

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= + + +⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎝ ⎠ ⎝ ⎠
, (7.21) 

An interesting characteristic of the JS divergence is that one can assign different weights to each 
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distribution (Lin 1991). This makes it particularly useful for decision problems where weights could 

be the prior probabilities. 

Pearson Correlation Coefficient 

The Pearson correlation coefficient between two random variables is a measure of the strength 

of their independence. It measures the degree of linear relationship between two random variables. 

Positive values of correlation indicate a linear relationship, while negative values correspond to a 

negative linear relationship between the variables. A correlation of 0 corresponds to the case where 

the variables are independent. The Pearson correlation coefficient expressed as 
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, (7.22) 

is equivalent to the cosine distance when both variables are normalized to mean zero. 

7.6 Evaluation 

I have focused experiments on similarity ranking of a single semantic-multimedia example 

(search by semantic example) in this chapter. The goal is to study the characteristics of the semantic 

space and how it behaves with different parameters. 

7.6.1 Collections 

I carried out experiments on similarity ranking of semantic multimedia using an image collection 

and a multimodal collection. Both collections were split into training and test set, and they have two 

levels of annotations: one used to build the models of keywords that correspond to the lexicon of 

keywords of the keyword space; and a second level of categories that correspond to a particular 

category. More details regarding these collections are provided in Chapter 2. 

 
 Training Examples Test Examples Keywords Categories

Corel Images 4,500 500 260 50
TRECVID 23,709 12,054 39 8

Table 7.1. Summary of collections used on the experiments. 

Corel Images 

The collection is split into a training set of 4,500 images and a test set of 500 images. Each 
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image is annotated with one to five keywords from a vocabulary of 371 keywords. Only keywords 

with at least one image both in the test and training set were used, which reduces the size of the 

vocabulary to 260 keywords. The collection is already organized into 50 image categories, such as 

rural France, Galapagos wildlife and nesting birds, as illustrated in Figure 7.24. 

TRECVID 

To test semantic similarity on video data we used the TRECVID data: since only the training set 

is completely labelled, we randomly split the English training videos into 23,709 training documents 

and 12,054 test documents. Key-frame keywords have two origins: the standard vocabulary of 39 

keywords provided by NIST, plus the large-scale LS-COMM ontology of 400 keywords provided 

by Naphade et al. (2006). We trained the keyword models on the 39 keywords to form the keyword 

space and used 8 categories as relevance judgments (ground truth) for evaluation (landscape, weapons, 

politics, vehicle, group, daytime outdoor, dancing and urban park). The 8 categories were selected from the 

LS-COMM ontology as non overlapping keywords with the other 39 keywords and had an enough 

number of examples. Note that because TRECVID categories are not annotated at the level of 

groups of documents we expect to have a lower accuracy in TRECVID when compared to Corel 

that have meaningful categories. 

7.6.2 Experiments Design 

Before proceeding to the keyword space dissimilarity evaluation experiments we first learned the 

naïve Bayes keyword models on the training set of each collection. Dissimilarity evaluation is done 

on the collections test set and with the corresponding keyword models. Each individual test 

example is used as a query example to rank the remaining test examples by semantic-similarity. 

Formally, the followed methodology is described next: 

1. Learn the naïve-Bayes model for each keyword on the training set of each collection (260 

models for Corel and 39 for TRECVID). Note that we do not reuse the training set as the 

search database in contrast to (Rasiwasia, Moreno and Vasconcelos 2007). 

2. Submit a test document as a query example to rank the remaining test examples by semantic 

similarity. 

3. Compute keyword annotations for both documents and query with the different algorithms: 

a. Automatic keywords with the naïve-Bayes algorithm (260 keywords for Corel and 

39 for TRECVID). 

b. User keywords with varying accuracy. 
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4. Rank documents by their semantic similarity to the query example according to a given 

dissimilarity function: 

a. Minkowski (0.5), Manhattan, Euclidean, Chebychev, Cosine, Canberra, Kullback-

Leibler and Jensen-Shannon. 

5. The category of the query example is used as relevance judgment to evaluate the rank of 

documents. 

6. Repeat steps 2 to 5 for all test examples. 

The above methodology is repeated for each dissimilarity function, dataset, and keyword vector 

computation algorithm. This way we isolate the variables of the problem that we are interested in 

studying: semantic-similarity functions, influence of user annotations accuracy, influence of the 

number of keywords. 

Average precision, mean precision at 20, and interpolated precision-recall curves are the 

measures used for comparing the different ranks. Mean average precision (MAP) and mean 

precision at 20 (MP@20) are the measures to evaluate the different systems. Conceptually, average 

precision is the area under the precision recall curve. Average precision as a performance measure 

has the advantage that it gives a greater weight to results retrieved early. Mean precision at 20 is an 

important measure of the usability of the system as many users only look at the top results, see 

(iProspect April 2006). 

7.6.3 Results and Discussion 

Automatic Keywords 

These results are obtained with the output of the naïve Bayes classifier and for the keyword 

space with the maximum number of keywords. Thus, it evaluates the dissimilarity functions in a 

fully automated scenario. 

The MAP obtained with Canberra and Cosine was consistently better than the others as we can 

see from Figure 7.6 for the Corel collection and from Figure 7.10 for the TRECVID collection. 

The same behaviour could be observed with the MP@20, Figure 7.7 and Figure 7.11 for the Corel 

and TRECVID collections respectively. As expected the difference between the same family of 

metrics was not great: Minkoswki based metrics are all similar (apart from Chebyshev, p = ∞ ); 

probabilistic based metrics (KL and JS divergence) are all in the same range. However, note that in 

all situations retrieval performance is always well above the random rank, the random MAP is 0.034 

for the Corel collection and 0.029 for the TRECVID collection. 
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Figure 7.6. MAP of the different dissimilarity functions (Corel Images). 

 

 
Figure 7.7. MP@20 of the different dissimilarity functions (Corel Images). 
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Figure 7.8. Interpolated precision-recall curves of the different dissimilarity 

functions (Corel). 

 

 
Figure 7.9. Interpolated precision-recall curves of the different dissimilarity 

functions (Corel). 
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Figure 7.10. MAP of the different dissimilarity functions (TRECVID). 

 
Figure 7.11. MP@20 of the different dissimilarity functions (TRECVID). 
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Figure 7.12. Interpolated precision-recall curves of the different dissimilarity 

functions (TRECVID). 

 

 
Figure 7.13. Interpolated precision-recall curves of the different dissimilarity 

functions (TRECVID). 
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A more careful analysis of the different dissimilarity functions with automatic keywords is 

provided by the precision-recall curves in Figure 7.8 for the Corel collection and in Figure 7.12 for 

the TRECVID. These curves confirm that dissimilarity functions show a common pattern and they 

are grouped according to their family. In both collections, curves are more different from each 

other in the recall interval between 0.20 and 0.80 (Figure 7.9 and Figure 7.13 provide zoom over 

this range of recall). In these graphs the grouping of the functions according to their type is more 

noticeable. Note that Canberra and Cosine dissimilarity functions are very similar along the entire 

curve. 

User Keywords 

The evaluation presented in this section creates a keyword space with the output of professional 

level user keywords according to the procedure described in section 7.3.2. Thus, it allows assessing 

how different dissimilarity functions behave in the presence of user generated annotations. 

The user keyword results provide us with the upper bound of the retrieval effectiveness. The 

upper bound is obviously dependent on the similarity function. Figure 7.14 illustrates the precision-

recall curves of the different dissimilarity functions on the Corel collection. It is visible the 

improvement over automatic keywords for all dissimilarity functions. Figure 7.15 illustrates the 

same experiment on the TRECVID collection. 

 
Dissimilarity Corel Images TRECVID 

Minkowski (0.5) 0.387 0.092 
Manhattan 0.435 0.096 
Euclidean 0.435 0.097 
Chebyshev 0.240 0.073 
Cosine 0.464 0.131 
Canberra 0.174 0.055 
Kullback-Leibler 0.415 0.092 
Jensen-Shannon 0.460 0.123 

Table 7.2. MAP for user keywords. 

Table 7.2 summarizes the MAP values for both collections. The most noticeable fact is that 

even with completely accurate annotations we cannot pass a value of 50% MAP.  These results 

allow us to draw many speculations and are a good source of many new research questions. There 

is an obvious gap between the annotated keywords and the unknown categories. Note that this is 

different from the notion of semantic gap between low-level features and concepts. It is actually a 

gap among concepts, in this case between the annotated concepts and the user information need. 
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This point to two possible solutions: increase the number of concepts or investigate semantic 

spaces to represent multimedia information and possible similarity metrics. The first solution is the 

simple application of brute force, hoping to have comprehensive annotations with better high-level 

concept extractors. The second solution suggests investigating similarity functions that incorporate 

concept interdependencies and are robust to noisy document descriptions. 

 
Figure 7.14. Interpolated precision-recall curves of the different dissimilarity 

functions (Corel). 

 
Figure 7.15. Interpolated precision-recall curves of the different dissimilarity 

functions (TRECVID).  
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User Keywords Accuracy 

In this experiment we study the influence of the accuracy of annotations done by users on the 

retrieval MAP. The procedure described in section 7.3.2 was followed to evaluate the retrieval 

effectiveness with varying levels of annotation accuracy. This procedure tries to simulate the effect 

of incorrect user annotations that might occur for different reasons, e.g., interpretation of keyword, 

spam, or incomplete annotations. 

In the Corel collection, both MAP and MP@20 are extremely sensitive to small changes in 

highly accurate user keywords as can be seen in Figure 7.16 and Figure 7.17 respectively. There is a 

major change in retrieval precision when classifiers accuracies go from 90% to 100 % and it is 

relatively stable for accuracies under 90%. TRECVID exhibits the same MAP and MP@20 trend in 

Figure 7.18 to Figure 7.19 respectively: both MAP and MP@20 suffers an exponential growth with 

the increase of user keywords accuracy. Note that retrieval effectiveness in Corel is more sensitive 

to the classifiers accuracy than with TRECVID. This is a consequence of the higher correlation 

between the Corel keywords and categories than in TRECVID. 

A more detailed analysis of the curves shows that for the same level of retrieval effectiveness, 

MP@20 needs more accurate classifiers than the MAP. This is not a surprise as MP@20 measures 

the specialization of a retrieval system, thus, more accurate classifiers allow the system to be better 

at retrieving particular documents at the top of the rank. 

 

 
Figure 7.16. Effect of user keywords accuracy on the MAP (Corel). 
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Figure 7.17. Effect user keywords accuracy on the MP@20 (Corel). 

  

 
Figure 7.18. Effect of user keywords accuracy on the MAP (TRECVID). 
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Figure 7.19. Effect of user keywords accuracy on the MP@20 (TRECVID). 

 

User Keywords versus Automatic Keywords 

The MAP upper bound of retrieval by semantic similarity is computed with completely accurate 

user keywords. This bound is obtained with professional user keyword annotations. In the Corel 

collection the upper bound is 0.464; in the video-clip collection the upper bound is 0.131. Table 7.3 
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from curves on Figure 7.16 and Figure 7.18). 

In the Corel collection, a retrieval scenario with automatic keywords and the Cosine dissimilarity 

results in a MAP of 0.235, which is on par with or even slightly better than the corresponding one 

of the 95% correct user keyword (0.226). The same holds for other similarity functions. Thus, 

automatic keywords have roughly the same performance as 95% correct user keywords. 
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The encouraging news here is that we are comparing a simple automatic annotation algorithm to 
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Dissimilarity 

Corel Images  TRECVID  

Automatic
keywords 

User 
keywords

(100%) 

User 
keywords

(95%) 

Automatic  
keywords 

User  
keywords 

(100%) 

User  
keywords

(95%) 

Minkowski (0.5) 0.231 0.387 0.197 0.056 0.092 0.056 
Manhattan 0.230 0.435 0.204 0.054 0.096 0.057 
Euclidean 0.226 0.435 0.205 0.052 0.097 0.058 
Chebyshev 0.207 0.240 0.141 0.045 0.073 0.039 
Cosine 0.235 0.464 0.226 0.052 0.131 0.084 
Canberra 0.239 0.174 0.157 0.056 0.055 0.048 
Kullback-Leibler 0.210 0.415 0.224 0.043 0.092 0.060 
Jensen-Shannon 0.212 0.460 0.230 0.044 0.123 0.080 

Random 0.034 0.029 

Table 7.3. Comparison between automatic keywords and user keywords. 

Keyword Space Dimensionality 

In the previous evaluations the keyword space included the full range of concepts, 

independently of their value to the ranking process. This affects accuracy as some of the concepts 

are either noise or are irrelevant to most searches. In this section we study the effect of removing 

noisy keywords from the keyword space in the ranking process with automatic keywords. 

The keyword space is built by progressively adding keywords according to their precision. Thus, 

the keywords with higher average precision are added first. This is similar to unsupervised feature 

selection that is exclusively based on the accuracy of the keywords. Thus, I do not use the category 

to select the keywords (e.g., use the final objective to select dimensions like in normal feature 

selection) because in this experiment one should not know the category beforehand. 

In the Corel collection we can observe that the first concepts carry more information value. As 

lower precision keywords are added to the semantic space the MAP (Figure 7.20) and the MP@20 

(Figure 7.21) also increase. It is important to note the robustness to noise that this experiment 

illustrates: Canberra, Correlation and Cosine continue to show a good robustness to noise. 

The same general conclusions can be drawn from the MAP (Figure 7.22) and MP@20 (Figure 

7.23) curves on the TRECVID collection. However, in this dataset we see that the relation between 

the keywords and the categories is not as clear as in the Corel collection. This is probably due to the 

fact that Corel keywords/query categories were done by trained professionals with the explicit 

intention of creating meaningful hierarchy (keywords/ categories) and TRECVID keywords/ 

categories were done with the sole purpose of annotating content. Also, note that the MP@20 is 

more sensitive than MAP to the initial keywords with higher precision. The reason for this is that 

MP@20 looks at a limited set of results, thus making the first accurate keywords more valuable. 
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Figure 7.20. Effect of the number of concepts on the MAP (Corel). 

 

 
Figure 7.21. Effect of the number of concepts on the MP@ 20 (Corel). 
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Figure 7.22. Effect of the number of concepts on the MAP (TRECVID) 

 

 
Figure 7.23. Effect of the number of concepts on the MP@20 (TRECVID) 
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Uncontrolled Vocabularies 

Non-professional users annotate content with every keyword that they wish. This generates 

uncontrolled vocabularies nowadays called folksonomies. Their advantages are obvious from the 

multitude of social-media Web applications that apply it successfully. 

However, the uncontrolled nature of folksonomies causes many problems in the computation 

of semantic dissimilarities between two multimedia documents. First, it is never possible to know 

the correct meaning that a user gives to a keyword, e.g., the keyword football means different sports 

for different cultures. Second, the user might dishonestly annotate a document with a popular 

keyword to attract other users. Third, users might have different criteria to annotate documents, 

e.g., some users might rigorously annotate all keywords while others might skip the obvious ones. 

Thus, uncontrolled vocabularies offer an good solution to the problem of multimedia annotation 

but is not a solution that delivers 100% accuracy. 

With automatic methods these problems do not exist: algorithms’ errors are always consistent 

for the same type of content, e.g., similar content suffer the same type of annotations noise. Thus, 

we believe that the results of the proposed framework show that automatic methods have an 

important role in the semantic exploration of multimedia content. 

Query Processing Scalability 

The time complexity of the semantic query analysis is a crucial characteristic that I consider to 

have the same importance as precision. For this reason I carefully chose algorithms that can handle 

multimedia semantics with little computational complexity. Table 7.4 illustrates the times required 

to extract the visual-features and to run the semantic-multimedia analysis algorithm. Measures were 

done on an AMD Athlon 64 running at 3.7GHz. Note that these values are for the inference phase 

and not for the learning phase. 

 
Task Time (ms) 

margHSV 3x3 feature 30 
Tamura 3x3 feature 54 
Gabor 3x3 feature 378 
Semantic annotation (260 concepts) 9 

Table 7.4. Semantic analysis performance per image. 

These times can be further improved because all intermediate steps are written onto disk which 

takes much more time than the algorithm itself. On a production system, the data generated from 

analysing a query example would not have to be written to disk thereby improving the 

computational performance. 
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Semantic Relevance 

Assessing the user information needs from an example is always a difficult task. In this chapter I 

assumed that the information need can be represented by a set of keywords extracted from the 

example and evaluated with categories. The commonly used measures of precision and recall use a 

binary relevance model to identify relevant and non relevant documents. However, in the current 

scenario the relevance of a document is difficult to measure because semantic relevance is gradual 

and contextual. The problem is even more complex for several reasons, e.g., for a particular query 

an image with one matching keyword might be more meaningful than an image with two matching 

keywords; an image might belong to different categories but only one category is the required one. 

Figure 7.24 illustrate some of these situations: the images on the rural-France category can illustrate 

other unknown categories, e.g., old-buildings; images on the categories nesting birds and Galapagos 

wildlife overlap semantically in many aspects.  

 
Image category:  

rural France 
Image category:  

Galapagos wildlife 
Image category:  

nesting birds 

 barn;buildings;field; 

 buildings;field;tree 

 castle;hills;sky;stone 

crab;rocks; 

 giant;rocks;tortoise 

birds;nest 

 birds;nest;tree; 

 barn;birds;nest;wood; 

birds;nest;water; 

Figure 7.24. Example of image keyword-categories relationships. 

This is a consequence of the two problems of semantic relevance judgments: incompleteness 

and type of relevance judgment. Incompleteness of relevance judgments derives from the fact that 

not all labels present in a document are marked as present. The second problem concerns the type 
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of relevance judgments (keywords and categories) used in these experiments. Thus, ranked 

relevance where documents are ordered by similarity is more adequate to investigate functions for 

semantic similarity. Note that, although binary relevance judgments are an approximation to this 

ideal situation, they still provide a good research setup. 

7.7 Conclusions and Future Work 

This chapter addressed the problem of exploring multimedia by semantic similarity in a keyword 

space. Managing multimedia by their keywords and categories is a complex task involving a long 

chain of information processing algorithms. We presented experiments to analyze three aspects of 

the process: (1) the influence of the accuracy of user keyword annotations versus automatic 

keyword annotation algorithms and (2) functions to compute semantic similarity; and (3) the 

dimensionality of the keyword space.  

Our evaluation allows us to draw the following conclusions regarding multimedia semantic 

similarity: 

 A keyword space defines a new feature space that needs to be further investigated 

 Automatic keyword annotations perform better than 95% accurate user keywords but is still 

below completely accurate user keywords 

 User keywords show that similarity is highly sensitive to extremely accurate keyword 

annotations (the difference between 95% and 100% correct keywords) 

 User keywords show that similarity is robust to errors for averagely accurate keyword 

annotations (range between 80% and 95%) 

 All considered dissimilarity functions perform similarly 

 The increase of the semantic space dimensionality, results in a corresponding increase in 

retrieval effectiveness 

We believe that the results of the proposed framework show that automatic methods have an 

important role in the semantic exploration of multimedia content. These conclusions together with 

the experiments results shed some light on the problem of semantically comparing two multimedia 

documents. 
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7.7.1 Future Work 

The presented framework is highly flexible and raises many research questions and hypothesis – 

experiments on this chapter only researched a small part of the problem. Thus, the research 

questions that I consider more relevant as future work are: 

 Graph-based semantic similarity: There is a gap between the high-level concepts and the 

high-level search categories. Not all categories can be represented by those concepts. This 

point to the hypothesis that search categories are not arranged in a sphere type pattern but 

with some other pattern, e.g., a disjoint mixture of clusters. Graph-based functions should 

be able to embedded concept dependencies in the computation of semantic dissimilarity. 

 Human ranked relevance judgments of semantic similarity would provide a better 

source to investigate other measures of semantic similarity. 

 Evaluation of queries with arbitrary combinations of keyword and semantic 

examples: The presented experiments were all unsupervised retrieval, however a human 

user can provide more information, e.g., keywords, to guide the retrieval model towards the 

correct search topic. 

 Extension of the search by semantic-example paradigm to other types of data: The 

collections in this evaluation cover images and videos. Other types of information such as 

Web or cross-media documents could be included. 
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8  
Conclusion 

8.1 Achievements 

The aim of this thesis is to research statistical models of semantic-multimedia information with 

a view to enhance multimedia retrieval applications. In the first part I proposed an approach that 

creates a layer linking low-level multimedia data to semantic information in the form of keywords. 

These links were established by the keyword modelling framework proposed in Chapters 4 and 5: 

 The first step of the framework builds a multi-modal feature space that is selected by the 

MDL principle. The optimal feature space is selected from a group of candidate models 

computed with a hierarchical EM algorithm for visual data and the mutual information 

criterion for text data (Chapter 4). 

 Keywords are then modelled with an algorithm from the family of linear models: Rocchio 

classifier, naïve Bayes, and logistic regression with L2 regularization (Chapter 5). 

This framework was thoroughly evaluated with different collections in search-by-keyword and 

search-by-semantic-example scenarios that illustrated its excellent trade-off between flexibility, 

scalability and precision: 

 Flexibility: the framework supports both single-media and multi-modal information 

(Chapter 4), and a large number of keywords (Chapter 5). 

 Scalability: the framework can easily scale in terms of computational complexity and 

number of keywords (Chapter 7). 
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 Effectiveness: retrieval results of keyword models are slightly below but in the same range 

of the best algorithms (Chapter 5). 

In the second part of this thesis we addressed the problem of searching semantic-multimedia. 

The most relevant contribution of this second part is the proposal and the thorough 

characterization of a keyword space to represent semantic-multimedia. From these experiments the 

most outstanding findings are: 

 Search by semantic-example offer excellent results, i.e., it was a surprise to find that 

multimedia semantic similarity with automatic keywords performs as good as or better than 

95% accurate user keywords (Chapter 7). 

 All considered dissimilarity functions perform similarly and the increase in the keyword 

space dimensionality results in an improvement of the retrieval effectiveness (Chapter 7). 

This research gave us new ideas to improve the quantitative results of the algorithms we 

evaluated. In Section 8.2 we will discuss the most relevant ones. Last of all, my quantitative results 

constitute a stable base to carry out a qualitative inspection and analysis.  

On the qualitative side we were able to gather a critical view of (a) the research done throughout 

the course of this thesis and (b) the research done by the multimedia information retrieval 

community (Chapter 3 and 6). The most relevant qualitative achievement is a better understanding 

of how to exploit semantics in multimedia retrieval systems by processing it at the two extremes of 

the information chain: at the content side and at the user side. This research direction turned out to 

be very relevant as most research in the past was dedicated to the development of multimedia 

analysis exclusively on the content side (Forsyth 2001). Taking this to the user side constitutes a 

paradigm-shift that avoids a limited vocabulary of query keywords but it also uncovers a series of 

limitations. By looking at the user needs one can see how current algorithms cannot provide a 

single general and unifying solution of semantic-information processing. Part of this limitation 

resides on the problem setting definition as shall be detailed in Section 8.3. 

Fortunately, the Web has not only created a vast amount of information but it has also enabled 

applications for users to communicate and interact. These new ways of communicating define a set 

of new sources of information (e.g., new types of data, user interaction, or information usage) from 

where pioneering algorithms can be developed. These new sources of information define an 

innovative problem setting as we shall discuss in Section 8.4. 

Finally, both search by keyword and search by semantic example contribute to friendlier human 

computer interfaces. However, by pushing the use of semantics across the entire information chain 

one creates new uses of the studied technology between the two extremes. For example, semantics 
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can also be used by intermediary systems (e.g., proxies or gateways) to adapt content on-the-fly to 

user devices with limited capabilities, e.g., mobile phones. We will conclude this chapter with a 

discussion of the influence of the proposed research on multimedia applications in Section 8.5. 

8.2 Future Work 

Specific future work concerning the studied algorithms was discussed at the end of the 

corresponding chapter. Here, I summarize the most important topics: 

 Explore other features (SIFT, text relations, etc): we limited the set of features to very 

simple ones as our focus was on the models and not on the features. However, it would be 

interesting to evaluate the usefulness of more semantic features such as WordNet or other 

visual grammars. 

 L1 regularized logistic regression: sparse models are known to perform better than the 

smoothed version of logistic regression, e.g., relevance vector machines or support vector 

machines. This would allow us to use arbitrary dimensions of the feature space and discard 

the ones that are not in use, thus, reducing the computational complexity. L1 regularized 

logistic regression seem ideally suited and has been applied successfully in many fields, see 

(Park and Hastie 2007). 

 Replace cross-validation: cross-validation based model selection is computationally very 

complex and demands large corresponding resources. Other methods for linear models 

exist that can reduce the model selection cost such as the newly proposed method to follow 

regularization paths (Park and Hastie 2007). 

 Rich-queries with arbitrary combinations of keywords and semantic-examples: The 

presented experiments were all automated retrieval. Users can provide more information 

(e.g., keywords) to guide the retrieval process towards the correct search topic. Thus, 

research of rich-query usage would show us new methods of embedding semantics in 

human computer interfaces. 

 Graph-based semantic dissimilarity: There is a gap between high-level concepts and 

high-level search topics. Not all search topics can be represented by those concepts. These 

observations support the hypothesis that a search topic is not arranged in a sphere type 

pattern but with some other pattern, e.g., a disjoint mixture of clusters. Graph-based 

functions should be able to embed concept dependencies in the computation of semantic 
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dissimilarity. 

8.3 Limitations of Semantic-Multimedia IR 

Current approaches of extracting information from semantic-multimedia content are based on a 

scenario that involves several processing steps with an associated loss of information. In this setting 

the most relevant points of information loss are: 

 Data and annotations: the traditional semantic-multimedia IR setting is defined by some 

training data and the corresponding annotations. This is a simple and traditional model that 

has been explored in different areas and the lack of training data has many times been 

pointed out as the overriding issue. However, simple annotations are an oversimplification 

of the problem domain: information semantics are more complex than simple binary 

annotations of examples. The large amount of weakly-labelled data available from different 

sources, e.g., Wikipedia, Flickr, or news sites, limits the usability of the traditional setting. 

 Keyword vocabulary: deploying larger (uncontrolled) vocabularies enabling more 

expressive descriptions of information has been adopted by several social-media 

applications. However, as noted by Lew, Sebe et al. (2006) the question “Is this approach really 

working – or can it be made to work?” still remains. I believe that folksonomies will suffer the same 

limitation as Web pages: it is just text and semantics are not associated to the text. This is a 

consequence of folksonomy ambiguity (keywords with no defined meaning) and complexity 

(keywords interaction are just based in co-occurrence). 

 Low-level representations of information: computer vision, audio processing and natural 

language processing all apply a compressed representation of information to enable 

information extraction algorithms. In all cases, there is a significant loss in the semantics 

preserved in these low-level representations of data. Thus, richer low-level features that 

preserve the most relevant information are required. 

 Machine learning: techniques that allow computers to learn a given task have not yet 

achieved the level of human understanding and perception required by semantic-multimedia 

IR. Both similarity functions and learning algorithms are tied to the low-level representation 

of information, thus suffering the same type of limitations. 

As can be inferred from the above list, semantic-multimedia information retrieval combines 

many different types of expertise and with that it also inherits the different limitations of each area. 
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8.4 New Challenges in Semantic-Multimedia IR 

In this section we discuss new challenges as a set of research topics addressing the limitations 

listed in the previous section. 

Users and Social-Media 

In recent years multimedia IR research has focused on the ambitious task of extracting 

meaningful information from semantic multimedia. Large efforts were allocated to this task, and 

little effort has been dedicated to the understanding of real user problems (Forsyth 2001). These 

concerns have again been voiced recently at a talk at the British Computer Society by van 

Rijsbergen (2007). 

Fully automatic analysis algorithms have been pursued feverously by the community. However, 

a number of social-media applications have successfully inserted the user in the loop, giving 

evidence that semi-automatic methods are adequate in these scenarios. Social-media applications 

like Flickr, YouTube7, del.icio.us8, IMDB9, Wikipedia and others have strategically put users in the 

information processing loop where they are constantly providing valuable feedback. 

This new setting contrasts greatly with the classic multimedia IR model and motivates users to 

cooperate as a large community. Understanding the possibilities of the new problem setting allows 

scientists to work on solutions that can help users and bring more success to the area of semantic-

multimedia IR. 

Large-Scale Data Resources 

While the traditional problem setting favours supervised methods that model labelled data, the 

new problem setting makes available large amounts of unlabeled data that create a demand for a 

new breed of unsupervised algorithms. The objective of these algorithms should be the deduction 

of a knowledge base concerning the way users perceive and interact with semantic-multimedia 

information. 

Weakly-Labelled Data Resources 

Another challenge derives from the community aspect of the new setting. A problem that we 

found in this thesis is the strong dependence that today’s algorithms have on the quality of 

annotations. Multimedia is currently available with different comments, tags, links and other 

information that multiple users assign to a given document. This community effect provides 

algorithms with many implicit (e.g., comments) and explicit (e.g., tags) relevance judgments that 

                                                 
7 http://www.youtube.com 
8 http://del.icio.us/ 
9 Internet Movie Database: http://www.imdb.com 
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should be exploited. 

Both weakly-labelled data resources and the output of unsupervised algorithms are important 

sources of explicit and implicit annotations of training data. Semi-supervised methods become an 

attractive type of approach that should be further researched in semantic-multimedia information 

retrieval. 

Cross-Media Information 

The new multimedia IR scenarios combine many different types of information sources with 

different semantics. In this thesis we considered only text and visual information, but many other 

information sources are available in multimedia, (e.g., authorship, location, event), capturing device 

characteristics (e.g., lenses depth of field). New algorithms must cope with the multitude of 

information sources and with the increased complexity and heterogeneity that they exhibit. 

8.5 Influence on Multimedia Applications 

The research presented in this thesis can make applications aware of semantic-multimedia 

information that was previously ignored. Besides enabling an all-new set of applications, semantics 

can also improve existing multimedia applications by: 

 Making available richer information 

 Improving human computer interaction 

 Reducing the application’s operational and maintenance costs 

These improvements are of great value for multimedia content owners, keepers, distributors and 

users of multimedia collections. Companies with multimedia product catalogues, TV stations, 

newspapers, museums, art galleries, picture libraries are currently drowning in non-indexed 

multimedia information and are eager for new commercial uses of their multimedia assets. All 

application domains making use of multimedia will benefit from a semantic interaction, for 

example: 

 Architecture, real estate, and interior design, e.g., searching for ideas 

 Broadcast media selection, e.g., radio channel, TV channel 

 Cultural services, e.g., history museums, art galleries 
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 Digital libraries, e.g., image catalogue, musical dictionary, bio-medical imaging catalogues, 

film, video and radio archives 

 E-Commerce, e.g., personalized advertising, on-line catalogues, directories of e-shops 

 Education, e.g., repositories of multimedia courses, multimedia search for support material 

 Entertainment, e.g., systems for the management of personal multimedia collections, 

including manipulation of content, e.g., home video editing, searching a game, karaoke 

 Investigation services, e.g., human characteristics recognition, forensics 

 Journalism, e.g., searching speeches of a certain politician using his name, his voice or his 

face 

 Multimedia directory services, e.g., yellow pages, Tourist information, Geographical 

information systems 

 Remote sensing, e.g., cartography, ecology, natural resources management 

This list illustrates how our initial objective is fulfilled: the semantic richness of multimedia 

content enables retrieval applications to deliver more meaningful information. 

 



 

159 

Nomenclature 

Given collection D  of N  multimedia documents 

 { }1 2, , ..., Nd d d=D , (4.1) 

each document is characterized by a vector 

 ( ), , ,j j j j
T V Wd d d d=  (4.2) 

composed by a feature vector j
Td  describing the text part of document, a feature vector j

Vd  

describing the visual part of the document, and a keyword vector j
Wd  describing the semantics of 

the document. 

To describe the semantics of multimedia information we define a vocabulary 

 { }1, ..., ,Lw w=W  (4.3) 

of L  keywords. The feature vector Wd  is formally defined as 

 ( ),1 ,2 ,, ,...,j j j j
W W W W Ld d d d=  (4.4) 

where each ,
j
W td  dimension indicates the confidence that keyword tw  is present in document jd  

and can be computed automatically by an algorithm 

 ( ),j j j
W A T Vd p d d= , (7.5) 

or manually assigned by an annotator 

 : j j
U Wp d d→ . (7.6) 
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A Multi-Modal Feature Space 

The automatic method is computed as the probability function 

 ( )( ), 1 | F , ,j j j j
W t t T V td p y d d β= = . (4.9) 

where the random variable { }1, 0j
ty =  indicates the presence/not-presence of keyword tw  on 

document jd  and tβ  is the keyword model, and the function F  is the optimal feature space 

transformation 

 ( ) ( ) ( )( )T VF , F , Fj j j j
T V T Vd d d d= , (4.8) 

where ( )TF Td  is a sparse space transformation and ( )VF Vd  is a dense space transformation.   

 

The dimensionality of both transformations is selected by the minimum description length 

criterion, 

 ( ) ( ) ( )min minMDL DL | DLmsg msg cbk cbk= + , (4.13) 

where mincbk  is the optimal codebook that allows the message msg  to be transmitted with the 

minimum number of bits. 

 

The dense space transformation is defined as the vector  

 ( )
( )

( )
,

T
2

1, 1, 1,

V, ,

2
, , ,

| ,

F ,

| ,
V j V V

j V j j

j V V j

k j V k j k j

p d

d k n

p d

α μ σ

α μ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, (4.21) 

where each dimension is a component of the Gaussian mixture model of the thj  low-level visual 

feature. 

 

The sparse space transformation is defined as the vector 

 ( )
( )

( )

T

,1 ,1 ,

T ,1 ,

,1 ,,

f , ...,

F ,..., ,

f , ...,
T

T T T n

T T n T

T T nT k

d d

d d k n

d d

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, (4.23) 

where each dimension corresponds to a term frequency scaled by its inverted document frequency: 



NOMENCLATURE 

161 

 ( ) ( )
( )( ), ,

,

f log
DF

T i T T r i
T r i

N
d d

d

⎛ ⎞⎟⎜ ⎟⎜ ⎟= − ⋅ ⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
, (4.28) 

where ( )r i  is a permutation function that returns the i th text term of the information gain rank.  

 

The information gain criteria is expressed as  

 
( ) ( ), ,

1

1
IG MU ,

L

T i j T i
j

d y d
L =

= ∑ , (4.24) 

where ,T id  corresponds to a text term, jy  indicates the presence of keyword jw , and MU  is the 

mutual information between these two variables: 

 ( ) ( ) ( )
( ) ( ){ } ,

,
,

0;1 ,

,
MU , , log

j T i

j T i
j i j T i

y d j T i

p y d
y t p y d

p y p d=

= ∑ ∑ , (4.25) 

 

Keyword Models 

Keywords models tβ  in the optimal feature space defined by ( )F d  assume the following 

forms: 

 A Rocchio classifier with a cosine distance 

 

( )( )
( )
( )

F
cos ,F

F
t

t
t

d
d

d

β
β

β
= ⋅ , (5.6) 

where the keyword model corresponds to the regression coefficient 

 

( )
( )

( )
( )\

F F1 1

F F
w wt tt t

t
d dw w

d d

d d
β

∈ ∈

= −∑ ∑
D D DD D\D

. (5.5) 

 A naïve Bayes model: 

 

( )
( )

( )
( ) ( ) ( )

( )1

1 | 1 | 1
log log | log

0 | 00 |

jj j iM
t t i tj

ij i ij
it i tt

p y d p y p f y
M p f d

p y p f yp y d =
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∑  (5.16) 
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 A logistic regression model with the likelihood function defined as: 

 

( ) ( ) ( )( )( )( ) 2

2

F log 1 exp F ,

1
,

2

j

j j j
t t t t t

d

l y d d

ξ

β β β λβ

λ
σ

∈

= − + −

=

∑
D

 (5.27) 

where 2
ξσ  is the variance of the Gaussian prior, and j

ty  corresponds to the annotation of 

keyword tw  on document jd . 

Keyword Spaces 

A keyword space is defined by the following properties: 

 Vocabulary: defines a lexiconW  of L  keywords used to annotate multimedia documents. 

 Multimedia keyword vectors: a multimedia document is represented by the vector of 

keywords Wd . 

 Keyword vectors computation: the keyword vector can be computed automatically or 

provided by a user.  

 Semantic dissimilarity: given a keyword space defined by the vocabulary W , semantic 

dissimilarity between two documents is defined as 

 0dissim : 0,1 0,1
L L

w
+⎡ ⎤ ⎡ ⎤× →⎣ ⎦ ⎣ ⎦ R , (7.3) 

the function in the L  dimensional space that returns the distance between two keyword 

vectors. 

The following dissimilarity functions were tested: 

 ( ) ( )
1/

Minkowski , ,
1

, ,

pL
p

W W p W W W i W i
i

D q d L q d q d
=

⎡ ⎤
⎢ ⎥= = −⎢ ⎥
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∑ , (7.13) 

 ( ) ( )Manhattan 1 , ,
0

, ,
L

W W W W W i W i
i

D q d L q d q d
=

= = −∑ , (7.14) 

 ( ) ( ) ( )2Euclidean 2 , ,
0

, ,
L

W W W W W i W i
i

D q d L q d q d
=

= = −∑ , (7.15) 
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 ( ) ( )Chebyshev , ,0
, , maxW W W W W i W ii L

D q d L q d q d∞ ≤ ≤
= = − , (7.16) 

 ( ) ( )Cosine , cos 1 W W
W W W W

W W

q d
D q d q d

q d

⋅
= = −

⋅
, (7.17) 

 ( ) , ,
Canberra

1 , ,

,
L

W i W i
W W

i W i W i

q d
D q d

q d=

−
=

+
∑ , (7.19) 

 ( ) ( ) ( )
( )

,
KL ,

1 ,

|| log
L

W i
W W W i

i W i

p q
D q d p q

p d=

= ∑ , (7.20) 

 ( ) ( ) ( )JS KL KL
1 1 1 1

, || ||
2 2 2 2W W W W W W W WD q d D q q d D d q d
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