Ranking linked data
Web graph, PageRank, Topic-specific PageRank and HITS
Web Search
Overview

- Indexing
- Indexes
- Ranking
- Results
- Application
- Query
- Documents
- User
- Information analysis
- Multimedia documents
- Crawler
Ranking linked data

• Links are inserted by humans.

• **They are one of the most valuable judgments of a page’s importance.**

• A link is inserted to denote an association. The anchor text describes the type of association.
The Web as a directed graph

Assumption 1: A hyperlink between pages denotes author perceived relevance (quality signal)

Assumption 2: The anchor of the hyperlink describes the target page (textual context)
Anchor text

• When indexing a document D, include anchor text from links pointing to D.

- Armonk, NY-based computer giant IBM announced today
- www.ibm.com
- Joe’s computer hardware links
 - Compaq
 - HP
 - IBM
- Big Blue today announced record profits for the quarter
Indexing anchor text

- Can sometimes have unexpected side effects - e.g., evil empire.

- Can boost anchor text with weight depending on the authority of the anchor page’s website

 - E.g., if we were to assume that content from cnn.com or yahoo.com is authoritative, then trust the anchor text from them
Citation analysis

• Citation frequency

• Co-citation coupling frequency
 • Co-citations with a given author measures “impact”
 • Co-citation analysis [Mcca90]

• Bibliographic coupling frequency
 • Articles that co-cite the same articles are related

• Citation indexing
 • Who is author cited by? [Garf72]

• PageRank preview: Pinsker and Narin ’60s
Incoming and outgoing links

• The popularity of a page is related to the number of incoming links
 • Positively popular
 • Negatively popular

• The popularity of a page is related to the popularity of pages pointing to them
Query-independent ordering

- First generation: using link counts as simple measures of popularity.

- Two basic suggestions:
 - Undirected popularity:
 - Each page gets a score = the number of in-links plus the number of out-links (3+2=5).
 - Directed popularity:
 - Score of a page = number of its in-links (3).
PageRank scoring

• Imagine a browser doing a random walk on web pages:
 • Start at a random page
 • At each step, go out of the current page along one of the links on that page, equiprobably

• “In the steady state” each page has a long-term visit rate - use this as the page’s score.
Not quite enough

• The web is full of dead-ends.
 • Random walk can get stuck in dead-ends.
 • Makes no sense to talk about long-term visit rates.
Teleporting

• At a dead end, jump to a random web page.

• At any non-dead end, with probability 10%, jump to a random web page.
 • With remaining probability (90%), go out on a random link.
 • 10% - a parameter.

• Result of teleporting:
 • Now cannot get stuck locally.
 • There is a long-term rate at which any page is visited.
 • How do we compute this visit rate?
The random surfer

• The PageRank of a page is the probability that a given random “Web surfer” is currently visiting that page.

- A 0.59
- B 0.32
- C 0.40

• This probability is related to the incoming links and to a certain degree of browsing randomness (e.g. reaching a page through a search engine).
Markov chains

• A Markov chain consists of \(n \) states, plus an \(n \times n \) transition probability matrix \(P \).

• At each step, we are in exactly one of the states.

• For \(1 \leq i,j \leq n \), the matrix entry \(P_{ij} \) tells us the probability of \(j \) being the next state, given we are currently in state \(i \).
Transitions probability matrix

A \ B \ C \ D
A \ 0 \ P_{ab} \ P_{ac} \ P_{ad}
B \ P_{ba} \ 0 \ 0 \ 0
C \ 0 \ P_{cb} \ 0 \ P_{cd}
D \ 0 \ P_{db} \ 0 \ 0
Ergodic Markov chains

• A Markov chain is **ergodic** if

 - you have a path from any state to any other

 - For any start state, after a finite transient time T_0, the probability of being in any state at a fixed time $T > T_0$ is nonzero.
Ergodic Markov chains

• For any ergodic Markov chain, there is a unique long-term visit rate for each state.
 • Steady-state probability distribution.

• Over a long time-period, we visit each state in proportion to this rate.

• It doesn’t matter where we start.

The PageRank of Web page i corresponds to the probability of being at page i after an infinite random walk across all pages (i.e., the stationary distribution).
PageRank

• The rank of a page is related to the number of incoming links of that page and the rank of the pages linking to it.

\[PR(A) = (1 - d) + d \cdot \left[\frac{PR(B)}{OL(B)} + \frac{PR(C)}{OL(C)} \right] \]
PageRank: formalization

• The RandomSurfer model assumes that the pages with more inlinks are visited more often

\[
\begin{align*}
\text{C} & \quad \text{A} \quad \text{B} \\
1 & \quad 0.5 & \quad 0.5 & \quad 1
\end{align*}
\]

• The rank of a page is computed as:

\[
 p_i = (1 - d) + d \sum_{j=1}^{N} \left(\frac{L_{ij}}{c_j} \right) p_j
\]

where \(L_{ij} \) is the link matrix, \(c_j \) is the number of links of page and \(p_j \) is the PageRank of that page.
Transitions probability matrix

Transition Graph

![Transition Graph](image)

Probability Matrix

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Transition Probability Matrix

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>P_{ab}</td>
<td>P_{ac}</td>
<td>P_{ad}</td>
</tr>
<tr>
<td>B</td>
<td>P_{ba}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>P_{cc}</td>
<td>P_{cd}</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>P_{db}</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Example

• Consider three Web pages:

\[
p_i = (1 - d) + d \sum_{j=1}^{N} \left(\frac{L_{ij}}{c_j} \right) p_j
\]

• The transition matrix \(\frac{L_{ij}}{c_j} \) is:

\[
\begin{pmatrix}
0 & 0.5 & 0.5 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}
\]
PageRank: issues and variants

• How realistic is the random surfer model?
 • What if we modeled the back button? [Fagi00]
 • Surfer behavior sharply skewed towards short paths [Hube98]
 • Search engines, bookmarks & directories make jumps non-random.

• Biased Surfer Models
 • Weight edge traversal probabilities based on match with topic/query (non-uniform edge selection)
 • Bias jumps to pages on topic (e.g., based on personal bookmarks & categories of interest)
Topic Specific Pagerank [Have02]

• Conceptually, we use a random surfer who teleports, with ~10% probability, using the following rule:
 • Selects a category (say, one of the 16 top level categories) based on a query & user-specific distribution over the categories
 • Teleport to a page uniformly at random within the chosen category

• Sounds hard to implement: can’t compute PageRank at query time!
Topic Specific PageRank - Implementation

• **offline**: Compute pagerank distributions wrt individual categories
 • Query independent model as before
 • Each page has multiple pagerank scores – one for each category, with teleportation only to that category

• **online**: Distribution of weights over categories computed by query context classification
 • Generate a dynamic pagerank score for each page - weighted sum of category-specific pageranks
Non-uniform Teleportation

10% Sports teleportation
Interpretation

10% Health teleportation
pr = (0.9 \text{PR}_{\text{sports}} + 0.1 \text{PR}_{\text{health}}) \text{ gives you:}
9\% \text{ sports teleportation, 1\% health teleportation}
Hyperlink-Induced Topic Search (HITS) - Klei98

• In response to a query, instead of an ordered list of pages each meeting the query, find two sets of inter-related pages:
 • *Hub pages* are good lists of links on a subject.
 • e.g., “Bob’s list of cancer-related links.”
 • *Authority pages* occur recurrently on good hubs for the subject.

• Best suited for “broad topic” queries rather than for page-finding queries.

• Gets at a broader slice of common *opinion*.
The hope

Long distance telephone companies
High-level scheme

• Extract from the web a base set of pages that could be good hubs or authorities.

• From these, identify a small set of top hub and authority pages;
 • iterative algorithm.
Base set and root set

• Given text query (say browser), use a text index to get all pages containing browser.
 • Call this the root set of pages.

• Add in any page that either
 • points to a page in the root set, or
 • is pointed to by a page in the root set.

• Call this the base set.
Distilling hubs and authorities

• Compute, for each page x in the base set, a **hub score** \(h(x) \) and an **authority score** \(a(x) \).

• Initialize: for all \(x \), \(h(x) \leftarrow 1; a(x) \leftarrow 1; \)

• Iteratively update all \(h(x), a(x) \);

• After iterations
 • output pages with highest \(h() \) scores as top hubs
 • highest \(a() \) scores as top authorities.
Iterative update

• Repeat the following updates, for all x:

$$h(x) \leftarrow \sum_{y \in x} a(y)$$

$$a(x) \leftarrow \sum_{y \in x} h(y)$$
How many iterations?

- Claim: relative values of scores will converge after a few iterations:
 - in fact, suitably scaled, h() and a() scores settle into a steady state!

- We only require the relative orders of the h() and a() scores - not their absolute values.

- In practice, ~5 iterations get you close to stability.
Summary

• Global relevance of an edge in a graph

• Link directions are important

• A few iterations should be enough (you just want to compute the rank of pages, not the absolute value of relevance)

• There are other ways to distinguish the type of relevance