Mining Data Graphs Semi-supervised learning, label propagation,

Web Search

Data graphs

- Data graphs are common in Web data
 - Web link graph
 - Chains of discussions
- It is also possible to create data graphs from Web data
 - Using similarity methods between data elements
- Graphs from Web data
 - The graph vertices are the elements we whish to analyse
 - The graph edges capture the level of affinity between two of such elements

However, in Web domain...

- I have a good idea, but I can't afford to label lots of data!
- I have lots of labeled data, but I have even more unlabeled data
 - It's not just for small amounts of labeled data anymore!

What is semi-supervised learning (SSL)?

• Labeled data (entity classification)


```
•... Firing Line Inc., a
```

```
Philadelphia gun shop.
```

<u>Labels</u>

person
location
organization

Lots more unlabeled data

•... The details of Obama's San Francisco mis-adventure ...

Graph-based semi-supervised Learning

- From items to graphs
- Basic graph-based algorithms
 - Mincut
 - Label propagation
 - Graph consistency

Text classification: easy example

- Two classes: astronomy vs. travel
- Document = 0-1 bag-of-word vector
- Cosine similarity

x1="bright asteroid", y1=astronomy x2="yellowstone denali", y2=travel x3="asteroid comet"? x4="camp yellowstone"?

Hard example

x1="bright asteroid", y1=astronomy x2="yellowstone denali", y2=travel x3="zodiac"? x4="airport bike"?

- No word overlap
- Zero cosine similarity
- Pretend you don't know English

Hard example

	x1	х3	x4	x2
asteroid	1			
bright	1			
comet				
zodiac		1		
airport			1	
bike			1	
yellowstone				1
denali				1

Unlabeled data comes to the rescue

	x1	х5	x6	x7	х3	x4	x8	x9	x2
asteroid	1								
bright	1	1	1						
comet		1	1	1					
zodiac				1	1				
airport						1			
bike						1	1	1	
yellowstone							1	1	1
denali								1	1

Intuition

- Some unlabeled documents are similar to the labeled documents → same label
- 2. Some **other unlabeled documents** are similar to the above **unlabeled documents** → same label
- 3. ad infinitum

We will formalize this with graphs.

The graph

- Nodes $\{x_1, ..., x_l\} \cup \{x_{l+1}, ..., x_{m+l}\}$
- Weighted, undirected edges w_{ij}
 - Large weight \rightarrow similar x_i, x_j
- Known labels y_1, \dots, y_l
- Want to know
 - transduction: y_{l+1}, \dots, y_{m+l}
 - induction: y* for new test item x*

How to create a graph

1. Compute distance between i, j

$$w_{ij} = \exp\left(-\frac{\left\|x_i - x_j\right\|^2}{2\sigma^2}\right)$$

- 2. For each i, connect to its kNN. k very small but still connects the graph
- 3. Optionally put weights on (only) those edges
- 4. Tune σ

Mincut (s-t cut)

- Binary labels $y_i \in \{0,1\}$.
- Fix $Y_l = \{y_1, ..., y_l\}$
- Solve for $Y_u = \{y_{l+1}, ..., y_{l+m}\}$

$$\min_{Y_u} \sum_{i,j=1}^n w_{i,j} (y_i - y_j)^2$$

 Combinatorial problem (integer program) but efficient polynomial time solver (Boykov, Veksler, Sabih PAMI 2001).

Mincut example: Opinion detection

- Task: classify each sentence in a document into objective/subjective. (Pang,Lee. ACL 2004)
- NB/SVM for isolated classification
 - Subjective data (y=1): Movie review snippets "bold, imaginative, and impossible to resist"
 - Objective data (y=0): IMDB

Mincut example: Opinion detection

 Key observation: sentences next to each other tend to have the same label

 $w_{ij} = c$ if x_i, x_j are close, 0 otherwise.

• Two special labeled nodes (source, sink)

$$(x_s, y_s = 1), (x_o, y_o = 0)$$

• Every sentence connects to both with different weight

$$w_{si} = Pr(y_i = 1 | x_i, NB)$$

$$w_{io} = Pr(y_i = 0 | x_i, NB)$$

Opinion detection

- Min cut classifies sentences as subjective vs objective.
- Impact on the detection of opinion positive/negative:

Mincut example (s-t cut)

 $\min \sum_{ij} w_{ij} (y_i - y_j)^2$ minimizes the cut

Some issues with mincut

• Multiple equally min cuts, but different in practice:

- Lacks classification confidence
- These are addressed by harmonic functions and label propagation

Relaxing mincut

• Labels are now real values in the interval [0,1]

$$f(x_l) = y_l$$

$$\min_{f_u} \sum_{i,j=1}^n w_{i,j} (f_i - f_j)^2$$

- Same as mincut except that $f_u \in R$
- $f_u \in [0,1]$ and is less confident near 0.5

An electric network interpretation

Edges has conductance w_{ij}

1-volt battery connects to labeled points y_{ℓ} Voltage at node $i = f_i$ Similar voltage if many strong paths exist.

Label propagation

- Algorithm:
 - 1. Set $f_u = 0$
 - 2. Set $f_l = y_l$.

3. Propagate:
$$f_u = \frac{\sum_{k=1}^n w_{ku} \cdot f_k}{\sum_{k=1}^n w_{ku}}$$
.

- 4. Row normalize *f*
- 5. Repeat from step 2

Label propagation example: WSD

- Word sense disambiguation from context, e.g., "interest", "line" (Niu, Ji, Tan ACL 2005)
- x_i: context of the ambiguous word, features: POS, words, collocations
- d_{ij} : cosine similarity or JS-divergence
- w_{ij}: kNN graph
- Labeled data: a few x_i's are tagged with their word sense.

Label propagation example: WSD

• SENSEVAL-3, as percent labeled:

Percentage	SVM	LP_{cosine}	LP_{JS}
1%	24.9±2.7%	27.5±1.1%	$28.1 \pm 1.1\%$
10%	53.4±1.1%	54.4±1.2%	$54.9 \pm 1.1\%$
25%	62.3±0.7%	$62.3 \pm 0.7\%$	63.3±0.9%
50%	$66.6 \pm 0.5\%$	$65.7 \pm 0.5\%$	$66.9 {\pm} 0.6\%$
75%	$68.7 {\pm} 0.4\%$	67.3±0.4%	$68.7 \pm 0.3\%$
100%	69.7%	68.4%	70.3%

(Niu, Ji, Tan ACL 2005)

Graph consistency

- The key to semi-supervised learning problems is the prior assumption of consistency:
 - Local Consistency: nearby points are likely to have the same label;
 - **Global Consistency**: Points on the same structure (cluster or manifold) are likely to have the same label;

Local and Global Consistency

 The key to the consistency algorithm is to let every point iteratively spread its label information to its neighbors until a global stable state is achieved.

Definitions

- Data points: $\{x_1, ..., x_l\} \cup \{x_{l+1}, ..., x_n\}$
- Label set: $L = \{1, ..., c\}$
- Y is the initial classification on $\{x_1, \dots, x_l\}$ with:

$$Y_{ij} = \begin{cases} 1, & if \ x_i \ is \ labeled \ as \ y_i = j \\ 0, & otherwise \end{cases}$$

• F, a classification on x:

$$F_{n \times c} = \begin{bmatrix} F_{11} & \dots & F_{1c} \\ \dots & \dots & \dots \\ F_{n1} & \dots & F_{nc} \end{bmatrix}$$

Labeling $\{x_{l+1}, \dots, x_n\}$ as $y_i = \operatorname{argmax}_{j \le c} F_{ij}^*$

29

Consistency algorithm: the graph

1. Construct the affinity matrix W defined by a Gaussian kernel:

$$w_{ij} = \begin{cases} \exp\left(-\frac{\left\|x_i - x_j\right\|^2}{2\sigma^2}\right) & \text{, if } i \neq j \\ 0 & \text{if } i = j \end{cases}$$

$$S = D^{-1/2} W D^{-1/2}$$

where D is a diagonal matrix with $D_{ii} = \sum_k w_{ik}$

Consistency algorithm: the propagation

3. Iterate until convergence:

$$F(t+1) = \alpha \cdot S \cdot F(t) + (1-\alpha) \cdot Y$$

- First term: each point receive information from its neighbors.
- Second term: retains the initial information.
- Normalize F on each iteration.

4. Let F^* denote the limit of the sequence {F(t)}. The classification results are:

Labeling x_i as $y_i = \operatorname{argmax}_{j \le c} F_{ij}^*$

Closed-form solution

• From the iteration equation, we can show that:

$$F^* = \lim_{t \to \infty} F(t) = (I - \alpha S)^{-1} \cdot Y$$

- So we could compute F* directly without iterations.
- The closed-form may be too complex to calculate for very large graphs (the matrix inversion step)

The convergence process

• The initial label information are diffused along the two moons.

Experimental Results

Digit recognition: digit 1-4 from the USPS data set

Text classification: topics including autos, motorcycles, baseball and hockey from the 20-newsgroups

Caution

- Advantages of graph-based methods:
 - Clear intuition, elegant math
 - Performs well if the graph fits the task
- Disadvantages:
 - Performs poorly if the graph is bad: sensitive to graph structure and edge weights
 - Usually we do not know which will happen!

Conclusions

- The key to semi-supervised learning problem is the consistency assumption.
- The consistency algorithm proposed was demonstrated effective on the data set considered.