Ranking linked data
Web graph, PageRank, Topic-specific PageRank and HITS

Web Search
Overview

- Indexing
- Ranking
- Application
- Query
- Documents
- User
- Crawler
- Information analysis
- Multimedia documents
- Indexes
- Results
- Query processing
Ranking linked data

- Links are inserted by humans.

- They are one of the most valuable judgments of a page’s importance.

- A link is inserted to denote an association. The anchor text describes the type of association.
The Web as a directed graph

Assumption 1: A hyperlink between pages denotes author perceived relevance (quality signal)

Assumption 2: The anchor of the hyperlink describes the target page (textual context)
Anchor text

• When indexing a document D, include anchor text from links pointing to D.

Armonk, NY-based computer giant IBM announced today

Joe’s computer hardware links
Compaq
HP
IBM

www.ibm.com

Big Blue today announced record profits for the quarter
Indexing anchor text

• Can sometimes have unexpected side effects - *e.g.*, evil empire.

• Can boost anchor text with weight depending on the authority of the anchor page’s website

 • E.g., if we were to assume that content from cnn.com or yahoo.com is authoritative, then trust the anchor text from them
Citation analysis

• Citation frequency

• Co-citation coupling frequency
 • Co-citations with a given author measures “impact”
 • Co-citation analysis [Mcca90]

• Bibliographic coupling frequency
 • Articles that co-cite the same articles are related

• Citation indexing
 • Who is author cited by? [Garf72]

• PageRank preview: Pinsker and Narin ’60s
Incoming and outgoing links

• The popularity of a page is related to the number of incoming links
 • Positively popular
 • Negatively popular

• The popularity of a page is related to the popularity of pages pointing to them
Query-independent ordering

• First generation: using link counts as simple measures of popularity.

• Two basic suggestions:
 • Undirected popularity:
 • Each page gets a score = the number of in-links plus the number of out-links (3+2=5).
 • Directed popularity:
 • Score of a page = number of its in-links (3).
PageRank scoring

• Imagine a browser doing a random walk on web pages:
 • Start at a random page
 • At each step, go out of the current page along one of the links on that page, equiprobably

• “In the steady state” each page has a long-term visit rate - use this as the page’s score.
Not quite enough

• The web is full of dead-ends.
 • Random walk can get stuck in dead-ends.
 • Makes no sense to talk about long-term visit rates.
Teleporting

• At a dead end, jump to a random web page.

• At any non-dead end, with probability 10%, jump to a random web page.
 • With remaining probability (90%), go out on a random link.
 • 10% - a parameter.

• Result of teleporting:
 • Now cannot get stuck locally.
 • There is a long-term rate at which any page is visited.
 • How do we compute this visit rate?
The random surfer

• The PageRank of a page is the probability that a given random “Web surfer” is currently visiting that page.

• This probability is related to the incoming links and to a certain degree of browsing randomness (e.g. reaching a page through a search engine).
Markov chains

• A Markov chain consists of \(n \) states, plus an \(n \times n \) transition probability matrix \(P \).

• At each step, we are in exactly one of the states.

• For \(1 \leq i, j \leq n \), the matrix entry \(P_{ij} \) tells us the probability of \(j \) being the next state, given we are currently in state \(i \).
Transitions probability matrix

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>P_{ab}</td>
<td>P_{ac}</td>
<td>P_{ad}</td>
</tr>
<tr>
<td>B</td>
<td>P_{ba}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>P_{cb}</td>
<td>0</td>
<td>P_{cd}</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>P_{db}</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Ergodic Markov chains

• A Markov chain is **ergodic** if

 • you have a path from any state to any other

 • For any start state, after a finite transient time T_0, the probability of being in any state at a fixed time $T>T_0$ is nonzero.
Ergodic Markov chains

• For any ergodic Markov chain, there is a unique long-term visit rate for each state.
 • Steady-state probability distribution.

• Over a long time-period, we visit each state in proportion to this rate.

• It doesn’t matter where we start.

The PageRank of Web page i corresponds to the probability of being at page i after an infinite random walk across all pages (i.e., the stationary distribution).
PageRank

• The rank of a page is related to the number of incoming links of that page and the rank of the pages linking to it.

\[PR(A) = (1 - d) + d \cdot \left[\frac{PR(B)}{OL(B)} + \frac{PR(C)}{OL(C)} \right] \]
PageRank: formalization

• The RandomSurfer model assumes that the pages with more inlinks are visited more often.

\[
1 - d + d \sum_{j=1}^{N} \left(\frac{L_{ij}}{c_j} \right) p_j
\]

where \(L_{ij} \) is the link matrix, \(c_j \) is the number of links of page and \(p_j \) is the PageRank of that page.
Transitions probability matrix

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>P_{ab}</td>
<td>P_{ac}</td>
<td>P_{ad}</td>
</tr>
<tr>
<td>B</td>
<td>P_{ba}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>P_{cc}</td>
<td>P_{cd}</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>P_{db}</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Diagram:

- A connected to B
- B connected to A, C, and D
- C connected to B and D
- D connected to B and C

Transition probability:

P_{ij} represents the probability of transitioning from state i to state j. Each row and column of the matrix represents a state, and the entries are the transition probabilities.
Example

• Consider three Web pages:

\[p_i = (1 - d) + d \sum_{j=1}^{N} \left(\frac{L_{ij}}{C_j} \right) p_j \]

• The transition matrix \(\frac{L_{ij}}{C_j} \) is:

\[
\begin{pmatrix}
0 & 0.5 & 0.5 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}
\]
PageRank: issues and variants

• How realistic is the random surfer model?
 • What if we modeled the back button? [Fagi00]
 • Surfer behavior sharply skewed towards short paths [Hube98]
 • Search engines, bookmarks & directories make jumps non-random.

• Biased Surfer Models
 • Weight edge traversal probabilities based on match with topic/query (non-uniform edge selection)
 • Bias jumps to pages on topic (e.g., based on personal bookmarks & categories of interest)
Topic Specific Pagerank [Have02]

• Conceptually, we use a random surfer who teleports, with ~10% probability, using the following rule:
 • Selects a category (say, one of the 16 top level categories) based on a query & user -specific distribution over the categories
 • Teleport to a page uniformly at random within the chosen category

• Sounds hard to implement: can’t compute PageRank at query time!
Query topic classification

Query category = 90% sports + 10% health
Web page topic classifier

• Web pages have specific topics that can be detected by some classifier.

• Links are more likely between topics of the same topic.

• Links between pages of the same topic are more likely to be followed.

Topic Specific PageRank - Implementation

• **offline**: Compute pagerank distributions wrt individual categories
 - Query independent model as before
 - Each page has multiple pagerank scores – one for each category, with teleportation only to that category

• **online**: Distribution of weights over categories computed by query context classification
 - Generate a dynamic pagerank score for each page - weighted sum of category-specific pageranks
Example

• Consider a query on a given set of Web pages with the following graph:

• The query has **90%** probability of being about **Sports**.
• The query has **10%** probability of being about **Health**.
Non-uniform Teleportation

Sports teleportation

Health teleportation
Interpretation

$pr = (0.9 \, PR_{\text{sports}} + 0.1 \, PR_{\text{health}})$ gives you:
90% sports teleportation, 10% health teleportation
Hyperlink-Induced Topic Search (HITS) - Klei98

• In response to a query, instead of an ordered list of pages each meeting the query, find two sets of inter-related pages:
 • Hub pages are good lists of links on a subject.
 • e.g., “Bob’s list of cancer-related links.”
 • Authority pages occur recurrently on good hubs for the subject.

• Best suited for “broad topic” queries rather than for page-finding queries.

• Gets at a broader slice of common opinion.
The hope

Long distance telephone companies

Alice

Bob
High-level scheme

• Extract from the web a base set of pages that could be good hubs or authorities.

• From these, identify a small set of top hub and authority pages;
 • iterative algorithm.
Base set and root set

• Given text query (say browser), use a text index to get all pages containing browser.
 • Call this the root set of pages.

• Add in any page that either
 • points to a page in the root set, or
 • is pointed to by a page in the root set.

• Call this the base set.
Distilling hubs and authorities

• Compute, for each page x in the base set, a **hub score** $h(x)$ and an **authority score** $a(x)$.

• Initialize: for all x, $h(x) \leftarrow 1$; $a(x) \leftarrow 1$;

• Iteratively update all $h(x)$, $a(x)$;

• After iterations
 • output pages with highest $h()$ scores as top hubs
 • highest $a()$ scores as top authorities.
Iterative update

• Repeat the following updates, for all x:

\[a(x) \leftarrow \sum_{y \rightarrow x} h(y) \]

\[h(x) \leftarrow \sum_{x \rightarrow y} a(y) \]
How many iterations?

• Claim: relative values of scores will converge after a few iterations:
 • in fact, suitably scaled, h() and a() scores settle into a steady state!

• We only require the relative orders of the h() and a() scores - not their absolute values.

• In practice, ~5 iterations get you close to stability.
Summary

• Web graphs denote a relation of relevance between edges

• Introduced a new way of modeling the value of Web links.

• Key algorithms: PageRank, Topic Specific PageRank, HITS

• References: