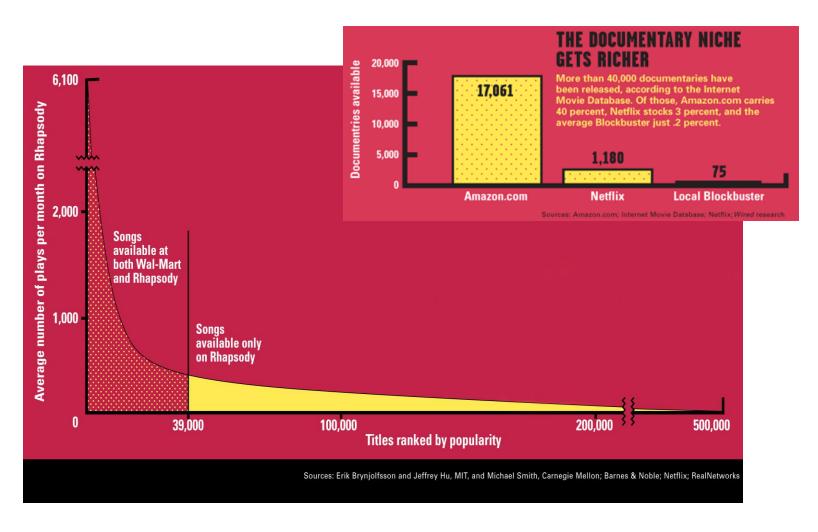


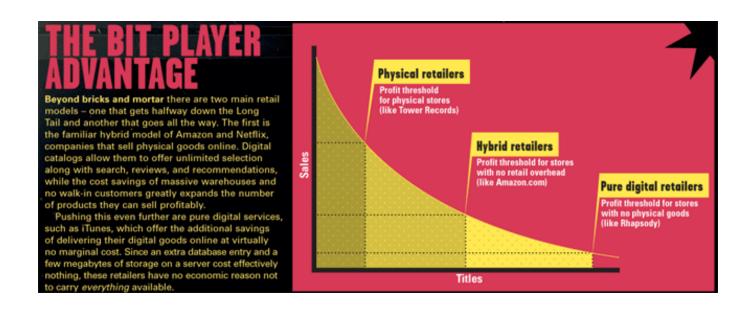
Recommendations



Sidenote: The Long Tail



Physical vs. Online



Read http://www.wired.com/wired/archive/12.10/tail.html to learn more!

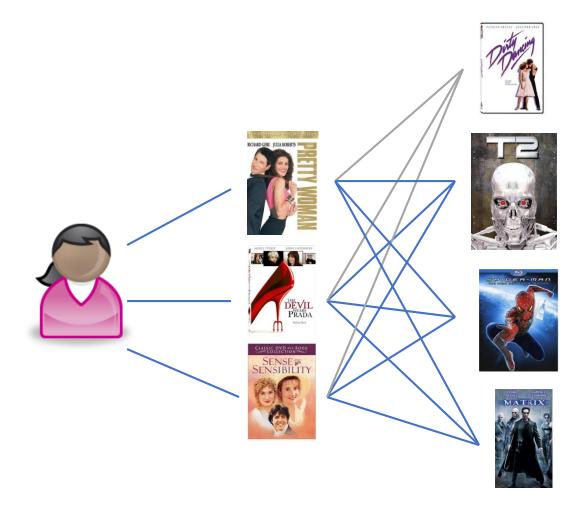
Recommender systems

- Recommender systems aim at suggesting new products to users based on their preferences
- Recommendations can be computed from two different type of inputs:
 - Product characteristics
 - Collective user ratings

Recommender systems

- Content-based recommendations
- Collaborative filtering
 - Neighborhood methods
 - Matrix factorization methods
- Hybrid methods

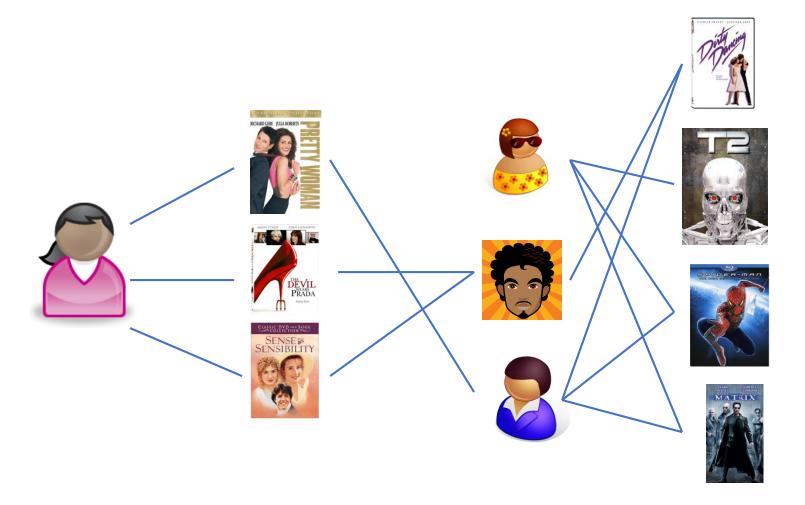
Content-based recommendations



Content-based recommendations

- Users who enjoyed a product because of its characteristics, will most likely appreciate other products with related characteristics
- The recommendation will be the set of products most similar to the consumed products
 - A similarity between a user consumed products and all other products is computed
 - The similarity is computed as a distance in the space of product characteristics
 - This is equivalent to the vector space discussed previously
- This approach requires a knowledge-base of product characteristics

Collaborative filtering

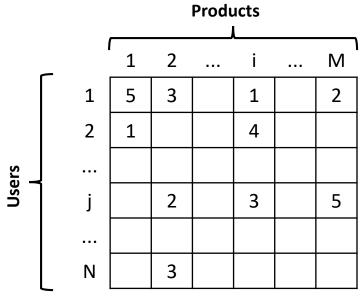


Collaborative filtering

- This family of methods explore information provided by a large number of users about a large number of products
 - Usually the so-called product ratings
- Data about co-rated product items allows us to explore co-occurrences
 - Co-occurrences can be explored in a vector space text retrieval
 - Co-occurrences matrices can also be factorized into a simpler model
- Collaborative filtering is based in the notion of product-user ratings matrix

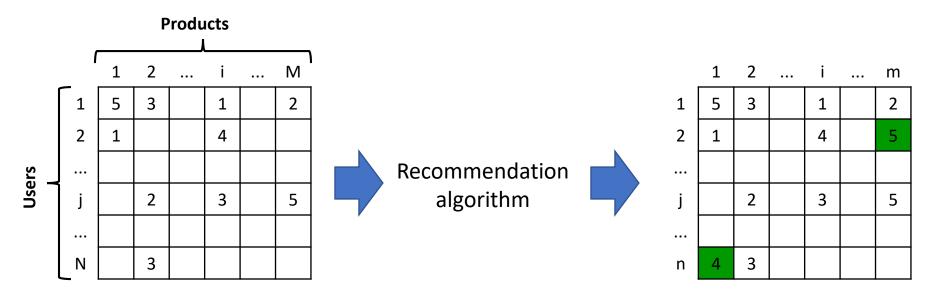
Ratings matrix

- Consider a set of M products and a set of N users
- Users indicate their preference for each product with a rating of 1 (don't like) to 5 (like)
- The matrix R collects the ratings of all users about all products
 - It is highly incomplete (sparse) because most users have only rated a small portion of all products



Objective

The goal is to mine the relations between products and users, and predict the most likely preferences of users



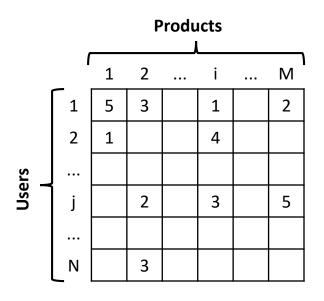
Neighborhood methods

- In neighbourhood methods, a subset of users are chosen to compute recommendations for a particular user
- This is based in the k-nearest-neighbour (k-nn) algorithm:
 - Compute the distance between the current user and all other users
 - Select the k users that have the highest similarity to the current user
 - Compute the prediction vector of all products from a weighted combination of selected neighbours' ratings.

Similarity among users

- Given a matrix of ratings
 - The similarity between user a and user u can be computed as the Pearson correlation coefficient:

$$w_{a,u} = \frac{\sum_{i \in I} \left(r_{a,i} - \overline{r_a}\right) \left(r_{u,i} - \overline{r_u}\right)}{\sqrt{\sum_{i \in I} \left(r_{a,i} - \overline{r_a}\right)^2} \sqrt{\sum_{i \in I} \left(r_{u,i} - \overline{r_u}\right)^2}}$$

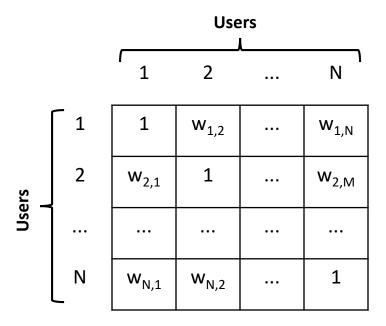


• The resulting vector is the relation between user **a** and all other N users:

	1	1 2		i	 N		
a	W _{a,1}			$W_{a,i}$	W _{a,N}		

Users neighborhood weighting matrix

 The neighborhood weighting matrix is computed as the similarity across all users



• For each user $\underline{\mathbf{a}}$ the top $\underline{\mathbf{k}}$ most similar users are selected as the neighborhood of $\underline{\mathbf{a}}$.

Preference predictions

• To predict the preference of user **a** for product **i** we compute:

$$p_{a,i} = \overline{r_a} + \frac{\sum_{u \in K} \left(r_{u,i} - \overline{r_u}\right) \cdot w_{a,u}}{\sum_{u \in K} w_{a,u}}$$

• Fom the full set of product preferences

the top $\underline{\mathbf{L}}$ products can be recommended to the user.

Considerations

- Different weighting schemes account for different aspects of data
- Users or items with too many ratings can bias predictions
 - Inverse user frequency (similar to inverse document frequency)
- Users or items with few ratings have unstable predictions
 - A default weight (bias) should be added in these cases
- The ratings of some users are considered as a good references
 - These users should get more weight

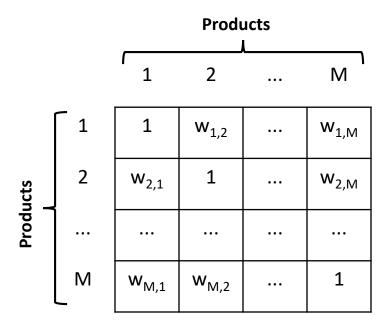
Item-based collaborative filtering

- The described approach computes a user similarity matrix
- The same steps can be applied for a matrix of product similarities
 - The similarity between two products can be computed as the Pearson correlation coefficient:

$$w_{i,j} = \frac{\sum_{u \in U} \left(r_{u,i} - \overline{r_i}\right) \left(r_{u,j} - \overline{r_j}\right)}{\sqrt{\sum_{u \in U} \left(r_{u,i} - \overline{r_i}\right)^2 \sum_{u \in U} \left(r_{u,j} - \overline{r_j}\right)^2}}$$

Item-based collaborative filtering

• Given the matrix of product similarities



• The preference of user $\underline{\mathbf{a}}$ for product $\underline{\mathbf{i}}$ is given by:

$$p_{a,i} = \frac{\sum_{j \in K} r_{a,j} \cdot w_{i,j}}{\sum_{j \in K} \left| w_{i,j} \right|}$$

Matrix factorization methods

- The number of users and the number of products might be in the orders thousands
- Reducing the search space into a lower dimensional space helps computing meaningful recommendations
- The **goal** is to find this low-dimensional space to represent both products and user preferences.

Matrix factorization methods

• In matrix factorization methos, the user-products ratings matrix

$$R = \begin{bmatrix} r_{11} & \dots & r_{1M} \\ \dots & \dots & \dots \\ r_{N1} & \dots & r_{NM} \end{bmatrix}$$

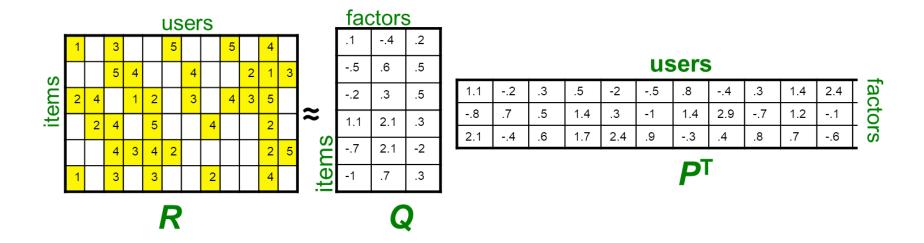
is decomposed into a k dimensional space of latent factors (each one corresponding to a dimmension)

Users and products are represented by a k dim. vector:

$$q_i = (q_{i1}, ..., q_{ik})^T$$
 $p_u = (p_{u1}, ..., p_{uk})^T$

• Rating predictions are the inner product $r_{ui} = q_i^T p_u$

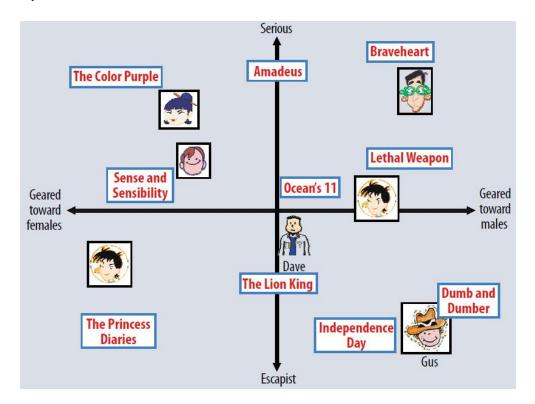
Latent factor models



- For now let's assume we can approximate the rating matrix R as a product of "thin" $Q \cdot P^T$
 - R has missing entries but let's ignore that for now!
 - Basically, we will want the reconstruction error to be small on known ratings and we don't care about the values on the missing ones

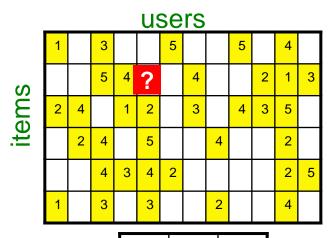
Example of latent factors

• The two most important latent factors of the winning solution of the Netflix competition was:



Ratings as products of factors

How to estimate the missing rating of user x for item i?



\hat{r}_{x}	:i =	q_i	$\cdot p_x$
=		q_{if}	$\cdot p_{xf}$
		row <i>i</i> c colum	of Q on x of P ^T

	.1	4	.2					
()	5	.6	.5					
items	2	.3	.5					
ite	1.1	2.1	.3					
	7	2.1	-2					
	-1	.7	.3					
•	k factors							

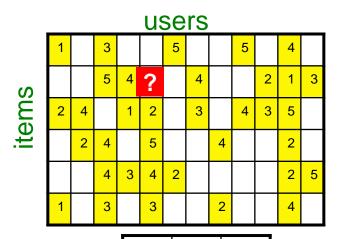
	U3613											
ors	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
• act	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
k f	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

HICATC

PT

Ratings as products of factors

How to estimate the missing rating of user x for item i?



\hat{r}_x	_i =	q_i	$\cdot p_x$
=		q_{if}	$\cdot p_{xf}$
		row <i>i</i> c colum	of Q n x of P ^T

.1	4	.2
5	.6	.5
2	.3	.5
1.1	2.1	.3
7	2.1	-2
-1	.7	.3
	5 2 1.1 7	5 .6 2 .3 1.1 2.1 7 2.1

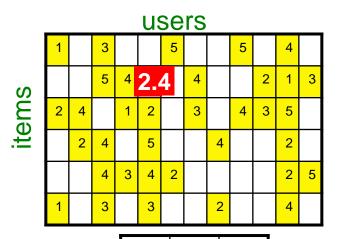
users -.2 .3 .5 -.5 .3 1.4 2.4 -.9 1.1 -2 -.4 .7 .5 1.4 1.4 2.9 -.7 1.2 -1 1.3 -.1 .6 -.4 1.7 .9 -.3 .4 .8 .7 2.4 -.6

PT

k factors

Ratings as products of factors

How to estimate the missing rating of user x for item i?



$\hat{r}_{xi} =$	q_i	p_x
$=\sum$	q_{if}	$\cdot p_{xf}$
	= row <i>i</i> o = colum	f Q n x of P ^T

	.1	4	.2					
(0	5	.6	.5					
items	2	.3	.5					
ite	1.1	2.1	.3					
	7	2.1	-2					
	-1	.7	.3					
•	k factors							

						use	13					
ors	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
• act	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
Κf	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

LICARC

Q

Approximating the matrix decomposition

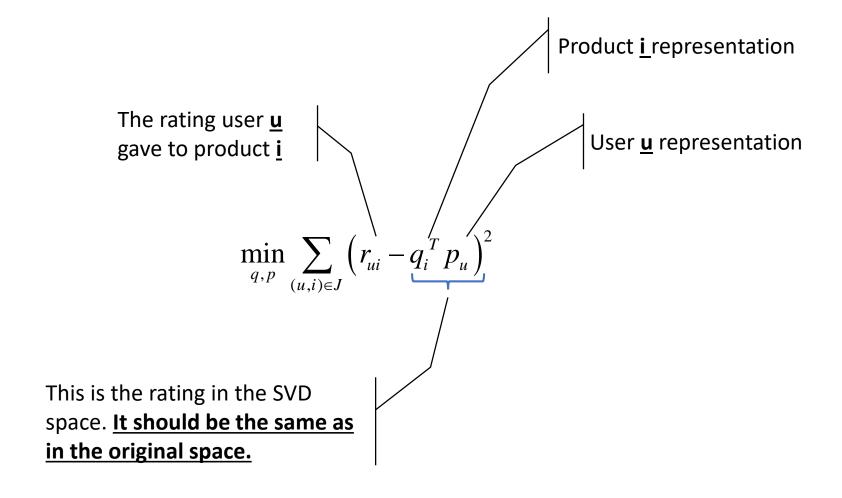
 Consider the products and users representation in the <u>k-dimensional</u> space :

$$q_i = (q_{i1}, ..., q_{ik})^T$$
 $p_u = (p_{u1}, ..., p_{uk})^T$

• The SVD matrix decomposition into a <u>k latent factors</u> space is approximated by minimizing the difference between the set <u>J</u> of actual ratings and the ratings in the transformed space

• This is equivalent to: $\min_{q,p} \sum_{(u,i)\in J} (r_{ui} - q_i^T p_u)^2$

Approximating the matrix decomposition



Accounting for user and product bias

- When rating products some users are more generous than others
 - This is the user bias: the average rating a user gives to products
- In general a product might receive higher ratings than others
 - This is the product bias: the average ratings the product receive
- Thus, the user preference for a given product must consider the average ratings, the product average rating and the user average rating

$$\min_{q,p} \sum_{(u,i)\in J} \left(r_{ui} - pr_{ui}\right)^2$$

$$pr_{ui} = \mu + b_i + b_u + q_i^T p_u$$

Implicit preferences

- Cold start problem:
 - Some users provide very few ratings
 - Some products don't have many ratings
- Implicit preferences can be inferred by the system through the user profile
- Consider <u>N(u)</u> the set of items for which user <u>u</u> expressed an implicit preference
- Consider <u>A(u)</u> the set of user profile attributes such as age, gender, etc.

Implicit preferences

Implicit product preferences are mapped into the factor model as:

$$\sum_{i \in N(u)} x_i \qquad \frac{1}{\sqrt{|N(u)|}} \sum_{i \in N(u)} x_i$$

• Implicit profile preferences are mapped into the factor model as:

$$\sum_{i \in A(u)} y_i$$

• Thus, the SVD representation of the user u is completed with implicit preferences:

$$\min_{q,p} \sum_{(u,i)\in J} \left(r_{ui} - pr_{ui}\right)^2$$

$$pr_{ui} = \mu + b_i + b_u + q_i^T \left(p_u + \frac{1}{\sqrt{|N(u)|}} \sum_{i \in N(u)} x_i + \sum_{a \in A(u)} y_a \right)$$

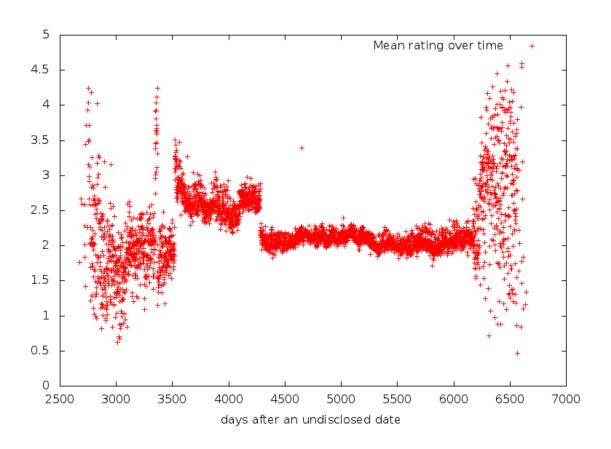
Clusters of users

- The above methods assume all users have the same bias and implicit preferences
- ... but users don't chose products randomly, they select products from a given group of products:
 - Their group of preferred produtcs.
- <u>Bias</u> and <u>implicit preferences</u> can in fact be computed from the group of users (cluster of users) to which the user belongs to.
- Clustering the products and the users will help in obtaining more accurate estimates of these values

Temporal dynamics

- User preferences change with time
 - Users tend to be more demanding or their preferences more refined and specific
 - A fan of thrillers might become a fan of crime dramas a year later
- Products popularity also change with time
 - Most of the time a product popularity decays with time
 - It can get popular after many months of its release (or years in some cases
 - It can get popular again in the future (retro fashion, release of a movie remake)
- These dynamics might repeat over time.

Temporal Dynamics



Temporal dynamics

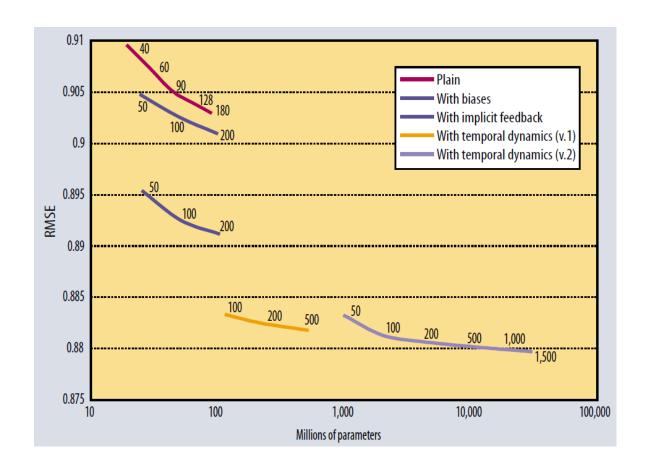
 The extension of factor models to incorporate temporal preferences is achieved by making biases and preferences a function of time

$$\min_{q,p} \sum_{(u,i)\in J} \left(r_{ui} - pr_{ui}\right)^2$$

$$pr_{ui} = \mu + b_i(t) + b_u(t) + q_i^T p_u(t)$$

- Classical methods include window based weighting and decaying weights
- Other more elaborate models can detect temporal patterns and predict a series of product selections

Example: performance results on NetFlix data



Million \$ Awarded Sept 21st 2009

Hybrid recommender systems

- Hybrid recommender systems combine both content-based profiles for each user and the collaborative ratings of products
- The simplest approach creates two separate rankings and combines them
- Other more elaborate and effective methods exist...

Hybrid recommender systems

- Content-based filtering methods can be used to learn a model about the products a user enjoys
 - This model can then predict the ratings of unrated products and this way reduce the sparsity of the ratings matrix
 - A collaborative filtering method can be applied next
- With content-based filtering methods clusters of users can be created by looking into their profiles
 - Predictions are made by applying collaborative filtering for the groups of users
- See (Melville, Sindhwani, 2010) for more references.

Summary

- Content-based recommendations
- Collaborative filtering
 - Neighborhood methods
 - Matrix factorization methods
- Hybrid recommender systems
- References:

<u>Chapter 9</u> of Jure Leskovec, Anand Rajaraman, Jeff Ullman, "**Mining of Massive Datasets**", Cambridge University Press, 2011.