
D S L: A T S

Luı́s Caires ∗

Abstract

Spatial logics for concurrency have been proposed with the aim of rea-
soning about distribution, resource usage, mobility, and other structural as-
pects of general computing systems. This tutorial aims to introduce and mo-
tivate the main intuitions behind the development of dynamic spatial logics,
and then present some selected results and applications.

1 Introduction
Spatial logics for concurrency have been proposed with the aim of reasoning about
distribution, resource usage, mobility, and other structural aspects of general com-
puting systems. Some of these aspects are not particular to concurrency, but have
been emerging in several forms since the early days of computing science, as
witnessed by the progressive move of concern from purely functional models of
computation to increasingly sophisticated theories aiming to tackle concepts such
as state, aliasing, effects, sequentiality, resource usage, concurrency, interaction,
distribution, and mobility. These fundamental developments, motivated not only
by theoretical questions, but also by the permanent challenge posed by computing
technology, have then contributed to wide the focus in concurrency research from
centralized concurrent systems to distributed systems, in a broad sense.

While centralized processes may be accurately modeled as pure objects of
behavior, in a distributed system many interesting phenomena besides pure inter-
action, such as location dependent behavior, partial failure, resource usage and
competition are also of central interest, and must be internalized in the models.
Most of these phenomena are related to notions of computation in some kind of
space; intuitions about the essential role of space in computation are certainly not
new, and may already be found in pioneering work on concurrency and state by
Hoare, Milner, Reynolds, and others.

We find that many familiar properties of distributed systems may be under-
stood in spatial terms. Simple examples include connectivity, stating that there is

∗CITI / Departamento de Informática, Universidade Nova de Lisboa, Portugal

always an access route between two different sites; unique handling, stating that
there is at most one server process listening on a given channel, resource availabil-
ity, stating that a bound exists on the number of channels that can be allocated in a
given location; or race freedom, stating that no competing requests from different
clients will ever arise for the same server. At least certain security properties may
be also understood in spatial terms. For example secrecy: a secret is a piece of
data whose knowledge of is restricted to some parts of a system, but unforgeable
by other parts. Reasoning about more classical properties of concurrent processes
also seems to frequently require some sort of spatial reasoning. Examples are lo-
cal deadlock freedom, absence of arity mismatch errors in communication, and
safety in resource usage. Properties such as these have been addressed by type
systems and are certainly important. However, they are not invariant under usual
bisimilarities, and thus cannot be expressed by purely behavioral logics.

As traditional logics for concurrent systems have been introduced to character-
ize pure notions of behavior (modeled by transition systems, or sets of traces), dy-
namic spatial logics have been introduced with the aim to characterize the space-
time dynamics of systems with some relevant spatial structure.

Many well-known models of computation have been proposed with the intent
of modeling several kinds of concurrent, mobile, and distributed systems. Such
models have been usually formalized by process calculi, where some of the pro-
cess operators are to be understood as spatial constructors, that assemble subsys-
tems into larger systems, rather than as behavioral operators, intended to define
the control flow of processes. Many kinds of spatial structures are conceivable, at
least in principle. For example, we may consider space to be modeled as a multiset
of threads or of heap cells, as in the Berry and Boudol’s CHAM model and in the
structural congruence-based presentation of π-calculi, as a hierarchically nested
collection of locations, sites, or ambients, as in Cardelli and Gordon’s Mobile
Ambients, or as some generalized graph structure, as in graph rewriting or as in
Milner’s bigraphical models. In general, each set of spatial constructors may give
rise to appropriate spatial observations on systems. Such observations may then
be captured by various logical connectives, enabling a spatial logic to talk about
the dynamic interplay of behavior, interaction, and space in computing systems.

An important ingredient of spatial logics, also highlighted in other substruc-
tural logics, is their resource awareness, in the sense that spatial operators are able
to separate, count, and identify local resources; this fact is frequently understood
as adding an intensional character to these logics. On the contrary, we believe
that in contexts where the underlying spatial models are well understood and ex-
tensionally characterized, the approach of dynamic spatial logics may provide a
general basis for reasoning about general physical or virtual interactive systems.

This tutorial aims to introduce and motivate the main intuitions behind the
development of dynamic spatial logics, and then present some selected results

and applications. We start by reviewing some basic notions about the π-calculus,
which is our reference model of concurrency for the purposes of this note.

2 The π-Calculus Concurrency Model
We briefly introduce the syntax and semantics of the reference process model
chosen for our presentation: a fragment of the monadic π-calculus introduced
by Milner, Parrow and Walker [58] (see also [55, 57, 73]). The π-calculus is
a concurrent process algebra able to express dynamic creation of resources and
access mobility, based on the manipulation of communication channels as first-
class entities. The π-calculus is a foundational calculus [66] for concurrency,
expressive enough to capture most other proposed computational models. For
example, unlike Hoare’s CSP [44] and Milner’s CCS [54], the π-calculus may
express the λ-calculus [56], and concurrent-object oriented programming [77].

Given infinite sets Λ of names (m, n, p), and χ of process variables (X,Y) the
set P of processes (P,Q,R) is defined as depicted in Figure 1. In restriction (νn)P
and input m(n).P the distinguished occurrence of name n is binding, with scope
the process P. We denote by ≡α the relation of α-equivalence on processes: we
will implicitly consider processes up to α-equivalence, with care. For any process
P, we assume defined as usual the set fn(P) of free names of P. By {m/n} (resp.
{X/Q}) we denote the safe substitution of m by n (resp. of X by Q), and by {m↔n}
the safe transposition of m and n.

Structural congruence expresses basic identities on the spatial structure of pro-
cesses. Structural congruence (P ≡ Q) is the least congruence relation on pro-
cesses, defined in Figure 2. The dynamic behavior of processes is defined by a
relation of reduction, that captures the computations that a process may perform
by itself. Reduction (P→ Q) is the least relation on processes defined in Figure 3.
We denote by⇒ the reflexive-transitive closure of→.

We present a simple example of a π-calculus model: the Bouncer system.

Wr(c, s) , c〈s〉.Rd(c)
Rd(c) , rec Loop.c(x).c〈x〉.Loop
Bouncer , (νsecret)(νch)(Wr(ch, secret) | Rd(ch))

The system Bouncer is composed by two separate interacting processes, namely
Wr(c, s) and Rd(c), that bounce a private name secret on a private channel ch.

2.1 Behavioral Semantics
The reduction semantics is enough to characterize the π-calculus as an abstract
machine. However, to define a proper compositional semantics of the process con-

P,Q ::= 0 | m(n).P | m〈n〉.P | P | Q | (νn)P | X | rec X.P

Figure 1: Processes.

P | 0 ≡ P (Struct Par Void)
P | Q ≡ Q | P (Struct Par Comm)
P | (Q | R) ≡ (P | Q) | R (Struct Par Assoc)
n < fn(P)⇒ P | (νn)Q ≡ (νn)(P | Q) (Struct Res Par)
(νn)0 ≡ 0 (Struct Res Void)
(νn)(νm)P ≡ (νm)(νn)P (Struct Res Comm)
rec X.P ≡ P{X/rec X.P} (Struct Unfold)

Figure 2: Structural Congruence.

m〈n〉.Q | m(p).P→ Q | P{p/n} (Red React)
Q→ Q′ ⇒ P | Q→ P | Q′ (Red Par)
P→ Q⇒ (νn)P→ (νn)Q (Red Res)
P ≡ P′, P′ → Q′, Q′ ≡ Q⇒ P→ Q (Red Struct)

Figure 3: Reduction.

a(n).P
a(n)
→ P (In) m〈n〉.P

m〈n〉
→ P (Out)

P
α
→ Q

P | R
α
→ Q | R

(Par)
P
α
→ Q n < fn(α)

(νn)P
α
→ (νn)Q

(Res)
P{X/rec X.P}

α
→ Q

rec X.P
α
→ Q

(Rec)

P
(νs)n〈m〉
→ P′ Q

n(p)
→ Q′

P | Q
τ
→ (νs)(P′ | Q′{p/m})

(Com)
P

m〈n〉
→ Q

(νn)P
(νn)m〈n〉
→ Q

(Open)

Figure 4: Labeled transition system.

structors, there is the need to introduce some notion of contextual or observational
equivalence relation, usually in the form of bisimilarities [65, 54]. Bisimilarity is
defined in terms of the processes’ observable actions, in turn modeled by labels of
a labeled transition system. In our case, the set of labels L (α, β) given by

α, β ::= (νn)α | m〈n〉 | m(n) | τ

Name restriction (νn) on a label (νn)α expresses bound output, that is, extrusion
of a fresh name n to the environment (see [73]). The sets of fn(α) (free names)
and bn(α) (bound names) of a label α are defined as usual.

Familiar characterizations of behavioral equivalence for the π-calculus are
early bisimilarity and late bisimilarity. The standard (late) labeled transition sys-
tem (see [73]) is presented in Figure 4, and specifies the relation late labeled
transition (P

α
→ Q). To avoid clashes between fresh names and free names, the

following provisos apply: rule (Par) subject to fn(Q)#bn(α), rule (Com) subject to
p, s#fn(Q), rule (Open) subject to n , m (we write S #U to say that the sets S and
U are disjoint).

Notice that reduction → coincides with silent transition
τ
→, and does not in-

crease the set of free names of processes.
Strong late bisimilarity over the labeled transition system just defined may be

taken as our reference behavioral equivalence of processes. A strong late bisimu-
lation R is a symmetric binary relation over processes such that for all P,Q

• If P R Q and P
α
→ P′ for some P′ and α is not an input, then there exists Q′

such that Q
α
→ Q′ and P′ R Q′.

• If P R Q and P
n(p)
→ P′ for some P′ and p#fn(Q) then there exists Q′ such

that Q
n(p)
→ Q′ and, for all m, P′{p/m} R Q′{p/m}.

Strong late bisimilarity, written ∼L, is the greatest strong late bisimulation. The
intuition behind strong late bisimilarity is that the continuations of bisimilar input
processes should denote the same function of the input name, hence the clause
for input, cf. extensional equality of functions. A related notion of bisimilarity
(with a simpler definition) results from allowing processes to instantiate input
parameters “earlier” in the bisimulation game. To capture this alternative notion
of bisimilarity, we must introduce different rules for input and communication:

a(p).P
a(m)
→ e P{p/m} (InE)

P
(νs)n〈m〉
→ e P′ Q

n(m)
→ e Q′

P | Q
τ
→e (νs)(P′ | Q′)

(ComE)

The relation of early labeled transition (P
α
→e Q) is defined by the rules in Fig-

ure 4, after replacing rule (In) by (InE) and (Com) by (ComE). A strong early
bisimulation R is a symmetric binary relation over processes such that for all P,Q

• If P R Q and P
α
→e P′ for some P′ and bn(α)#fn(Q) then there exists Q′

such that Q
α
→e Q′ and P′ R Q′.

Strong early bisimilarity, written ∼E, is the greatest strong early bisimulation.
Bisimilarities have been defined with the intent of capturing undistinguisha-

bility of processes by certain contexts, and of giving a compositional semantics
to the process operators (e.g., bisimilarities should be congruences). Indeed, the
relations ∼E and ∼L are congruences for all operators, if for the case of input pro-
cesses we consider the higher-order congruence principle: if P{x/n} ∼ Q{x/n} for all
n, then a(x).P ∼ a(x).Q (cf. [73] Theorem 2.2.8(2)). For an example of undistin-
guishability under bisimilarity, notice that an external observer only able to detect
activity on publicly open interaction channels should not able to distinguish be-
tween the two following processes P1 and P2

P1 , Bouncer P2 , Bouncer | Bouncer

consisting of respectively one and two copies of the Bouncer system introduced
above. Indeed, by constructing appropriate bisimulations we may show that in this
example P1 ∼E P2 and P1 ∼L P2. In general, late bisimilarity is more discriminat-
ing than early bisimilarity. Tool support for π-calculus bisimilarity checking has
been available for some time time now [74], allowing a user to automatically prove
behavioral equivalences between (finite control) π-calculus models of concurrent
systems. Many other important notions of observational equivalence have been
proposed over the years. In any case, bisimilarity is usually considered the finer
notion of observational equivalence one would like to consider on pure behaviors.

2.2 Behavioral Logics
Operational and behavioral specifications expressed by process terms are precise,
in the sense that they usually have just one model. In order to carry out more
general analyses of the expressive power of concurrent computation models, and
also to support under-specification and abstract reasoning about process proper-
ties, a dual view of process specification by means of logical properties is then
fundamental.

There are well-known characterizations of process behavior using modal log-
ics, inspired on temporal logics: such logics are frequently variants of the logic
initially introduced by Hennessy and Milner [40]. They are essentially modal log-
ics for labeled transition systems, that include, besides the standard propositional
logic operators, certain “world” accessibility modalities motivated by the labels
of the given labeled transition system. The syntax and semantics of a simple be-
havioral π-calculus logic is shown in Figure 5, along the lines of Milner-Parrow-

P |= T , always
P |= ¬A , not P |= A
P |= A ∧ B , P |= A and P |= B
P |= 〈α〉A , Some Q . P

α
→ Q and Q |= A

P |= 〈x(y)〉LA , Some Q . P
x(y)
→ Q and All m. Q{y/m} |= A{y/m}

Figure 5: A Core Behavioral Logic (CBL).

Walker [59]; of course, other logical operators may be defined by abbreviation as
expected, including the “necessity” version of the modal operators.

A main motivation for these kind of logics is the intent to specify processes up
to bisimilarity, in other words, to specify pure behaviors.

Two processes P and Q are logically equivalent (P =L Q) for a logic L if they
satisfy exactly the same formulas of L.

For the strong late bisimilarity case, we may consider the logics of Milner-
Parrow-Walker LM [59] including all operators above, interpreted over the late
labeled transition system; for the strong early bisimilarity case, we may consider
the logic EM [59], containing all operators except 〈x(y)〉EA, and interpreted over
the early labeled transition system. More precisely, we have [59]:

• P =EM Q if and only if P ∼E Q.

• P =LM Q if and only if P ∼L Q.

Several process logics obtained by combining variants of Hennessy-Milner and of
Milner-Parrow-Walker logics with the modal µ-calculus (see [49]) were studied,
and have motivated rich verification frameworks for mobile processes (see e.g.,
[34, 35]). For example, using co-induction (expressed by the greatest fixed point
operator), we may express the property of liveness by the formula Live

Live , rec X.(〈τ〉T ∧ [·] X)

We have that Bouncer |= Live, since Bouncer |= 〈τ〉T and for all α, P if Bouncer
α
→

P then P = Bouncer. Other particularities frequently relate to the way name bind-
ing in action modalities and fresh names are dealt with, to the introduction of pa-
rameters in recursion formulas, and of quantifiers. Tool support for checking CCS
processes against rich µ-calculi based process logics has been available for quite a
while, the same does not seem to have happen for π-calculi until recently [75, 76]
(even if the MBW [74] already included a model-checker for a π-calculus logic).

3 Behavioral-Spatial Logics
If one wants to extend the scope of our study from monolithic concurrent systems
towards distributed systems, or if one wants to describe properties related to re-
source usage in general, we may realize that purely behavioral specifications do
not provide the adequate degree of expressiveness. Such a progressive shift of
focus from notions of “pure computation” to “computations in resource spaces”
has lead to the introduction of several spatial and resourceful models of compu-
tation, where many aspects traditionally considered as intensional are taken into
account. Examples of such a situation may have included for a long time impera-
tive features and effects of evaluation order in functional languages, but nowadays
involve phenomena such as spatial distribution of behavior in global computers,
where many non-behavioral aspects should not be abstracted away. Among those
we may refer aspects related to topology (inside / outside, overlapping / sepa-
rated), and aspects related to naming (private / secret, non-interference).

We may also realize that the kind of properties captured by most type sys-
tems for concurrent and mobile processes are not invariant under bisimilarity, and
therefore cannot be expressed by logics that just rely on observing process actions.
For example, we may want to specify and verify the property of deadlock absence.
Notice that Q |= Live does not really imply that Q is free from local deadlocks.

Purely behavioral logics such as LM and EM do not distinguish between
bisimilar processes, and therefore do not distinguish between deadlock and ter-
mination, as do type systems for deadlock absence. Likewise, if one wants to
talk about message protocols between partners interacting in a closed system, as
for instance in a security protocol, an enhanced observational power, that must
go beyond observing external actions, must be called for. As further example,
if one needs to express correctness properties of mobile distributed systems, we
need to refer to notions of concrete or abstract locations inside the system under
consideration. Considerations of this kind have then motivated the introduction
and development by several authors of dynamic spatial logics for concurrent and
mobile computing systems [16, 3, 4, 26, 10, 11, 12, 13, 5].

Behavioral logics explore the dynamic structure of concurrent systems (a la-
beled transition system) in order to separate and specify models of behavior. The
dynamic structure of systems is observed through modalities that navigate the
label-indexed accessibility relation between states (worlds). Then systems are es-
sentially modeled as action labeled trees, and a process operator such as parallel
composition is understood as a mapping from trees to trees (see Figure 6 (a)). On
the other hand, dynamic spatial logics have as their intended models certain struc-
tures where the states of the system (worlds), besides evolving in time, have also
an internal spatial dimension, that may be inspected by spatial observations.

Many different kinds of spatial structures are conceivable. In this presenta-

(a)

(b)

Figure 6: Behavioral models versus Spatial models.

tion, we consider the simplest spatial structure of π-calculus systems induced by
interpreting the static constructors of the process calculus as system assembly op-
erators, rather than as pure behavioral operators. In such a spatial model (see
Figure 6 (b)), a process is seen as a multiset of “threads”; threads may be bound
in groups by hidden links, corresponding to the presence of restricted names (a
direct semantics for a of spatial structure of this kind was studied in [38], with the
intention of providing a model for structural congruence).

A spatial logic then adds to a given set of behavioral modalities a set of spatial
operators closely related to the static operators of the process calculus [16, 3, 4,
12]. For nominal process calculi, the static operators are at least the composition
P | Q, its identity element 0 (denoting the empty system), and the name restriction
(νn)P. These process constructors give rise to the composition formula A | B, that
holds of a process that can be separated into a process that satisfies formula A and
a process that satisfies formula B, to the void formula 0, that holds of the void
process, and to the hidden name quantifier Hx.A that allows us to quantify over
locally restricted channels.

P |= 0 , P ≡ 0
P |= A | B , Exists Q,R . P ≡ Q | R and Q |= A and R |= B
P |= Hx.A , Exists Q, n . P ≡ (νn)Q and n#fn(A) and Q |= A{x/n}

Adding these operators to the basic set propositional operators, behavioral modal-
ities, a name occurrence predicate, and recursion, we obtain what might be con-
sidered a core spatial-behavioral logic (CSBL). We depict in Figure 7, the syntax
and satisfaction relation of such a CSBL.

The definition of the satisfaction relation follows the same lines as the one al-

P |=v T , always
P |=v ¬A , not P |= A
P |=v A ∧ B , P |= A and P |= B
P |= 0 , P ≡ 0
P |= A | B , Exists Q,R . P ≡ Q | R and Q |= A and R |= B
P |= Hx.A , Exists Q, n . P ≡ (νn)Q and n#fn(A) and Q |= A{x/n}
P |=v ∀x.A , All n . P |= A{x/n}
P |=v @n , n ∈ fn(P)
P |=v 〈α〉A , Some Q . P

α
→ Q and Q |= A

P |=v νX.A , P ∈ GFix(λS .{Q | Q |=v(X/S) A})
P |=v X , P ∈ v(X)

Figure 7: A Core Spatial-behavioral Logic (CSBL).

ready given above for CBL (Figure 5). However, notice that to interpret the propo-
sitional variables and recursion, the satisfaction predicate |=v is now parametric on
a valuation (v) mapping propositional variables (X) into Psets (essentially, a Pset
is a set processes subject to certain closure conditions [10, 12]).

A more substantial ingredient is the presence of structural (or spatial) congru-
ence in the definition of logical satisfaction. In our context of discussion, we un-
derstood structural congruence as a formalization of the identity of the intended
spatial structure of processes. In the same way as a behavioral model isolates
certain kinds of behavioral observations by means of labels of a labeled transi-
tion system, that are then inspected in the satisfaction clauses for the behavioral
modalities, so a spatial model should be a priori equipped with a well-defined no-
tion of identity of spatial structure, that may then be inspected in the satisfaction
clauses by the spatial modalities. This aspect is perhaps intriguing for those used
to see structural congruence as either a fragment of bisimilarity identities, or as
a mere technical device to simplify the presentation of the operational semantics.
In any case, we believe that the understanding of the structural congruence equa-
tions as laws of identity of spatial structure is much closer to the original source
of inspiration for structural congruence as acknowledged in [55, 56], which is the
CHAM model of Berry and Boudol [2] (“instead of composing their behaviors,
we consider agents as molecules directly reacting with each other within a solu-
tion”). Then, in our context, we expect spatial congruence to be presented as a
decidable congruence (e.g., as in [38], or as in Figure 2).

By combining spatial and the behavioral operators, we may specify many in-
teresting properties of distributed and resource based systems. We illustrate this
claim by the following sequence of simple examples:

• Property A holds somewhere in the system: ?A.

We may specify the property ?A by the formula A | >. Then P |= ?A if and
only if there exists a decomposition R | Q of the process P (P ≡ R | Q) such
that R |= A. Notice that decomposition is taken up to spatial congruence,
so the selected part R may result from grouping several subsystems of P (or
none). For example, it is always the case that P |= ?0, for any P.

• Property A holds everywhere in the system: !A.

We may specify the property !A by ¬(> | ¬A). Then P |= !A if and only if
for all decompositions R | Q of the process P we have that R |= A.

• Process has precisely one component, cf., a single thread, site, etc.: 1.

We may specify the property 1 by ¬0 ∧ ¬(¬0 | ¬0). Then we may express
with ?(1 ∧ A) that a system has some site that satisfies A. Likewise, we
may express with !(1 ⇒ A) that all sites in the system satisfies A. It is
then quite clear how more general arithmetical constraints on the number
of components of a system may be expressed in the logic; connections be-
tween the expressiveness of static fragments of spatial logics and Presburger
arithmetic has been pointed out by Dal-Zilio and Lugiez in [32].

• Spatial Dynamics

We may specify how the structure of a system evolves in time, as an effect
of the behavior of its subsystems. Consider the formula (¬0 | ¬0) ∧ 〈τ〉 1.
This formula asserts that the system has (at least) two separate non-trivial
components, but after a reduction step, it becomes a single component. A
possible model for this formula is the process

Mate , s(x).x〈〉.0 | (νn)s〈n〉.n〈〉.0

In fact, we have Mate
τ
→ P′, where P′ ≡ (νn)(n〈〉.0 | n〈〉.0), and P′ |= 1. We

may also check that although P′ has a single component in the spatial model,
this single component is actually composed by two separate subsystems,
glued together by a private resource (an hidden channel). We may certify
this property by checking that P′ |= Hx.(@x | @x). We may also see that
P′ |= ¬0 and P′ |= ¬ 〈τ〉 >, while P′ ∼ 0. Hence a spatial logic such as
CSBL distinguishes between deadlocked and terminated processes.

• Hidden names

We may state that a process has an occurrence of an hidden name x satis-
fying property P(−) by the formula Hx.(@x ∧ P(x)). For example, in the
Bouncer system we have Bouncer |= Hx.(∀y. 〈x(y)〉T). This means that
Bouncer has a subsystem that is attempting to read on a private channel.

On the other hand, if P |= Hx.(¬@x∧ P(x)), then P ≡ (νn)Q and Q |= P(n),
but n < fn(Q), so actually P ≡ Q (recall that the structural congruence
identity P ≡ (νn)P holds whenever n < fn(P)). We then have that P |=
Hx.(¬@x∧P(x)) if and only if P |= Ix.P(x) where Ix.A is a modal version
of the Gabbay-Pitts freshness quantifier [68, 39].

We may express that a process has no “real” restricted name by the formula
Public , Hx.¬@x. Using recursion, we can then state that the subsystem
obtained after removing all hidden names satisfies property A by the formula

inside(A) , νX.((Public ∧ A) ∨ Hx.(@x ∧ X))

For example, we have Mate |= 〈τ〉 inside(¬0 | ¬0).

• Action modalities

Using the quantifiers and recursion, we may express general action modali-
ties, in the style of temporal logics and the modal µ-calculus, e.g.,

[α] A , ¬ 〈α〉 ¬A
〈x(−)〉 A , ∃y. 〈x(y)〉 A
〈x〈−〉〉 A , ∃y. 〈x〈y〉〉 A
[out] A , ∀x.∀y.

[
x〈y〉
]

A
[in] A , ∀x.∀y.

[
x(y)
]

A
[?] A , [τ] A ∧ [in] A ∧ [out] A
�A , (νX)(A ∧ [?] X)

• Resource control

We may express that a process enjoys the unique handling property by the
formula � inside(¬∃x . (〈x(−)〉T | 〈x(−)〉T)).

We may express that a process is race free, in the sense that it will never
be the case that two subsystems attempt to simultaneously write to a same
reader by � inside(¬∃x . (〈x〈−〉〉T | 〈x〈−〉〉T | 〈x(−)〉T)).

• Security

We may express that a process enjoys a secrecy property, in the sense that it
will never leak private names on public channels by the formula Secrecy ,
�¬∃p.Hx. 〈p〈x〉〉T. For example, getting back to the Bouncer example, we
may verify that Bouncer |= Secrecy.

We may also check other interesting properties of Bouncer, for example,
System |= �Hx.((1 ∧@x) | (1 ∧ ¬@x)). This means that all future states of
Bouncer are always composed by two separate parts, one part that holds a
secret x, and other part that does not know about it.

4 A Spatial Logic Framework
It is well-known that minimal behavioral observations, leading to the definition of
labeled transition systems with good properties, are not easy to define for every
process calculi, in particular for spatial process calculi such as the Ambient Calcu-
lus [25]. Still, general techniques have been developed to derive transition systems
labels as minimal contextual tests defined from a reduction semantics, following
the barbed congruence approach to observational equivalence (see [50]). More
generally, for specification purposes, the introduction of arbitrary contextual tests
provides a more general approach to behavioral specifications than the observation
of elementary actions; contextual tests provide uniform approach to observational
equivalences, easily applicable to any process calculus equipped with a reduction
semantics.

A logical primitive particularly adequate for expressing contextual tests, writ-
ten A . B, was introduced in the Ambient Logic [26], a spatial logic for the
Ambient Calculus, and shown to be the adjunct of the composition operator. The
primitive was also coined “guarantee” in [10], because it allows us to specify con-
text dependent properties in a way not far from those introduced rely-guarantee
proof method [47]; a related logical operator was already proposed by Dam [33],
with the aim of achieving a form of compositionality in specifications. It turns out
that the derivation of behavioral observations, such as the HML like modalities
present in CSBL, may be expressed as certain kinds of contextual tests using the
guarantee operator, so the two approaches are not incompatible.

The semantics of the guarantee operator is given by

P |=v A . B , All Q. Q |=v A implies P | Q |=v B

The logical adjunction is given by A |= B . C if and only if A | B |= C, where by
A |= B we denote the semantic entailment relation between formulas.

The spatial logic for concurrency (SLC) introduced in [10, 12, 11, 13] thus
explores the purely spatial approach. The SLC, depicted in Figure 8, includes a
single dynamic observation primitive (^A), interpreted over the reduction system
(so the only “observable” label is τ). It also includes several spatial operators,
universal and freshness name quantifiers, and recursive definitions (which, for
technical convenience, are definable from second-order quantification [12]). The
intended model of SLC is the asynchronous π-calculus. In order to observe the
primitive action capabilities of processes, a primitive message observation pred-
icate n〈m〉 is included in the logic; this primitive may be used to easily define
elementary observation contexts. For example, modalities for testing the input
and output behavior of processes, in the style of the input clause for asynchronous
bisimilarities [1], may be rendered by

n(m)A , n〈m〉 . A n〈m〉A , n〈m〉 | A

m,n,p ::= Name Terms
x Name variable
(m↔n)p Transposition term

A, B ::= Formulas
F False
(m↔n)A Transposition
A ∧ B Conjunction
A⇒ B Implication
0 Void
A | B Composition
A . B Guarantee
nrA Revelation
n�A Revelation Adjunct
m〈n〉 Message
^A Next step
∀x.A First-order universal quantification
Ix.A Freshness quantification
X Propositional variable
∀X.A Second-order universal quantification

Figure 8: A Spatial logic for concurrency (SLC).

By combining the name occurrence predicate @n (definable from the revelation
operator nrA [24], see below) with other spatial operators it is possible to express
action (or capability) observation modalities, as shown for the Ambient Calculus
in [72], and for the π-calculus in [43]. To that end, properties characterizing pro-
cesses and testers of various forms must be defined in fairly indirect and techni-
cally challenging way. For instance, the message predicate n〈m〉 for the π-calculus
fragment under consideration might be expressed:

A I B , ¬(A . ¬B)
test(m, n) , Public ∧ 1 ∧@n ∧@m ∧ (1 I ^0)
n() , Public ∧ 1 ∧Ix.(test(n, x) . ^T)
n〈m〉 , test(m, n) ∧ (n() . ^T)

More recently, a related approach was followed in [31] to show that, at least in
some cases, a primitive temporal modality may be defined just from the available
spatial operators (in the context of a spatial logic for bigraphs [60]).

SLC first-order terms denote pure names. In order to support object level
reasoning about freshness constraints, the term language, besides variables and
names (constants), also includes explicit transpositions at both the term and for-

mula level. For example, consider the valid entailment of SLC

A ∧ ¬@n ∧ ¬@m |= (m↔n)A

This statement captures, at the object level, the fundamental principle of equiv-
ariance, or freshness: “fresh names are all alike”, if a property holds of a fresh
name, it also holds of any other fresh name. Thus, the treatment of freshness in
SLC is inherited from the Gabbay-Pitts models of freshness [68, 39]. In particular,
SLC includes a modal version of the Gabbay-Pitts freshness quantifier Ix.A. The
semantics of the freshness quantifier is defined by

P |= Ix.A , Exists n#Ix.A and P |= A{x/n}

In order to logically express properties of restricted names, alternative spatial op-
erators to the hidden name quantifier and the free name predicate have been pro-
posed by Cardelli and Gordon in [24]. It turns out that the hidden name quantifier
Hx.A may be expressed by combining the freshness quantifier with the revela-
tion operator, while the name occurrence predicate @− may be expressed by the
revelation operator:

Hx.A , Ix.xrA @n , ¬xrT

Conversely, we may also express revelation and the freshness quantifier from
name occurrence and hidden name quantification.

Ix.A , Hx.(¬@x ∧ A) nrA , ¬@n ∧ Hx.(n↔ x)A

The guarantee operator is very expressive, the implicit quantification over the set
of all processes brings it fairly close to a general set comprehension mechanism.
For example, validity may be defined inside the logic [26] by

unsatisfiable(A) , A . F valid(A) , unsatisfiable(¬A)

These constructions also allow an internal definition of entailment and then of
fixed point operators as derived constructions:

A Z⇒ B , valid(A⇒ B) (νX)A , ∃X.X ∧ (X Z⇒ A)

In [10, 12, 11, 13] the semantics, meta-theoretic properties, and a proof theory
for SLC have been developed in detail. In particular, a cut-free sequent calculus
formulation of a proof system for the whole spatial logic is provided. In order to
capture the spatial structure of processes, sequents are tagged with a set of con-
straints, that specify dependencies between processes and between names, such

as reduction constraints and name apartness conditions:

〈S 〉Γ − ∆ Sequents, of the form
〈S 〉 u1 : A1, . . . , un : An − v1 : B1, . . . , vm : Bm

Ai, Bi Formulas
ui, v j Indexes, members of a process algebra (the worlds)
S finite set of constraints (e.g., equations, reductions)

The proof system is shown to be sound with respect to the intended process model.
Due to the sequent based presentation, directed by the syntax of formulas, proofs
of intuitive results may be obtained in a rather mechanical way, by decomposing
formulas into subformulas. For the sake of illustration, we discuss the proof of a
simple sequent, involving spatial reasoning. The sequent (A | B) ∧ 0 − A asserts
that if a process is void and satisfies (A | B) then it also satisfies A. This fact is
intuitively true, since all spatial decompositions of void are themselves void. Here
is how a proof of (A | B) ∧ 0 − A looks like

5. 〈S , u � X | Y, u � 0,X � 0〉 X : A,Y : B − u : A (by (Id), u �S X)
4. 〈S , u � X | Y, u � 0〉 X : A,Y : B − u : A (by 5, (S | 0), X | Y �S 0)
3. 〈S , u � X | Y〉X : A,Y : B, u : 0 − u : A (by 4, (0L))
2. 〈S 〉 u : (A | B), u : 0 − u : A (by 3, (| L))
1. 〈S 〉 u : (A | B) ∧ 0 − u : A (by 2, (∧L))

Several techniques introduced in the proof-theoretic development of SLC are in-
teresting from many perspectives. Worth to highlight are the use of explicit name
transpositions to talk about freshness related properties, and its key role in the
proof of cut-elimination. Building on a variant of SLC, a fully formalized de-
velopment in spatial logic of the correctness proof for a peer to peer distributed
algorithm (the Arrow Distributed Protocol of [37]) was carried out in [71].

5 Expressiveness of Dynamic Spatial Logics
It is clear that spatial logics are more expressive than more traditional behav-
ioral logics for concurrency, in the sense that more processes are distinguished.
The question arises then about what spatial logics are really talking about: in
technical terms, what is exactly the separating power of spatial logics for each
model considered. Posed in this terms, the issue was first addressed by Sangiorgi
in [72], where it is shown that the equivalence induced on processes by the Am-
bient Logic [26] is “intensional”, in the sense that it coincides with structural
congruence (usually considered an intensional congruence, at least when com-
pared with the extensional observational congruence). Related technical results

P ≡e Q{X/(q)P} ⇒ P ≡e (rec X(q).Q)[q] (Struct Rec Solve)
α.P + α.P ≡e α.P (Struct Cho Abs)

Figure 9: Extended Structural Congruence

about the expressiveness of spatial logics were also presented in [42] and in Lozes
thesis [52]. Since a spatial logic may distinguish between deadlock and termi-
nation, we immediately conclude that the logical equivalence induced by such a
logic must be strictly finer than usual bisimilarities. However, we don’t need to
necessarily understand this fact as revealing some form of intensionality, but pos-
sibly as a result of an enhanced observational power on our model. In general,
one may consider several natural degrees of observational power, constrained by
the observable structure of each intended spatial model. All studies contributing
to drawing a map of the spectrum of spatial observational power along these lines
are then quite interesting.

The case of the full synchronous π-calculus (with guarded choice and paramet-
ric recursion) is considered in [5], and the separating power and expressiveness of
(a variant of) CBSL interpreted in that model was studied. It is concluded that the
logical equivalence =L lies strictly in between structural congruence and strong
bisimilarity. A (complete) equational axiomatization of =L is also presented, by
means of the relation of “extended structural congruence” ≡e. It consists of all
the usual rules and axioms for structural congruence, plus the two additional prin-
ciples shown in Figure 9. The axiom (Struct Rec Solve) expresses a coinduction
principle, asserting the existence of unique solutions to systems of equations mod-
ulo extended structural congruence; and the axiom (Struct Cho Abs) expresses the
familiar choice idempotency law of strong bisimilarity. Notice that the gap be-
tween the relations ≡e and ∼ is essentially due to the failure of the expansion
law. Clearly, the expansion law is not expected to be valid in spatial models, as it
collapses distributed behavior into centralized behavior.

If one removes from the logic the operators allowing the observation of re-
stricted names (revelation or the hidden name quantifier), an even more coarser
logical equivalence than ≡e is obtained, but still strictly contained in strong bisim-
ilarity. The resulting spatial model seems to be close, for example, to the intended
models of complexation calculi [36] introduced for modeling biological systems.
In this model, processes inside a system appear like collections of “blobs”, that
interact and change behavior as usual, but may also glue to each other, or break a
part in several different blobs, as effect of interactions. To our best knowledge no
precise equational characterization results about such a spatial model have been
published to date. Also related to this line of research are several early studies
on location-based process equivalences (see [28]), addressed for variants of CCS

even before mobile process models have become popular. As far as we are aware,
precise connections between such notions of distributed bisimilarities and process
equivalences induced by spatial logics did not have been much investigated yet.

One may wonder whether extensional observational equivalences, in the tradi-
tional sense, may be captured by purely spatial logics. Along this lines, Hirschkoff
developed a spatial logic characterization of bisimilarity in the (finite) π-calculus
[41]. Key to the characterization is the introduction of formulas characterizing cer-
tain processes up to bisimilarity, and the use of the guarantee operator to express
contextual tests, in the spirit of context barbed congruence (the name occurrence
predicate @n then plays a role similar to barb observation). However, the logic
considered makes a rather weak use of spatial connectives: in the absence of the
composition operator A | B, the guarantee operator may be fairly interpreted in
purely behavioral terms, as a contextual behavioral testing primitive. The results
in [41] are then particularly interesting due to the relationship they establishes be-
tween the guarantee operator and the contextual tests present in the formulation
of context barbed congruences.

On the opposite extreme, it is shown in [17] that there are very natural models
of distributed computation where extensional observational equivalences (in the
standard sense) may be characterized by spatial logics. For simplicity, we have
based this study on a minimalist distributed process calculus, that nevertheless
captures essential features of distributed systems, namely local synchronous com-
munication, local computation, asynchronous remote communication, and partial
failures. As a main result we conclude that standard context barbed congruence
for such a model is characterized by a spatial logic making essential use of the
“intensional” composition A | B and void 0 operators.

In fact, it turns out that in such a case the composition operator A | B is nec-
essary to capture (extensional) observational equivalence, while on the other hand
the guarantee operator is not considered at all in the characterization. These results
support the claim that spatial observations do not need to be always considered in-
tensional, even if expressive enough to talk about the structure of systems. Retro-
spectively, we may realize that the extensional behavioral equivalence considered
by Sangiorgi in [72], already makes several distinctions between processes close
to those realized by spatial observations. For example, by adapting some tech-
niques of [17] to the intended model of [72] (the name-restriction-free Ambient
Calculus), one may show that barbed congruent processes must always have the
same number of ambients at the top level. This suggests that barbed congruence
on the public Ambient Calculus may be not so far from structural congruence as
one might think, and that spatial observations of the kind motivated by spatial
logics may be appropriate, at least in some settings, to characterize extensional
observational equivalences of distributed and mobile computing systems.

6 Decidability and Model-Checking
The study of decision problems and associated algorithms for spatial logics have
been considered by several authors. Such results are important to assess the ex-
pressiveness of the logics, and contribute to guide the design of automated verifi-
cation tools. A first result in the area was presented in [29], where it was shown
that both model-checking and validity checking of pure spatial logics is undecid-
able in the presence of the guarantee, and universal / existential quantifiers over
names. It soon become believed that the guarantee operator, due to the quantifi-
cation over all processes it implicitly performs, and to the fact that it may be used
to represent logical validity at the object level, would be a cause of undecidability
and intractability of spatial logics, thus limiting its use in automatic proof tools.

However, building on a result of Calcagno, Yang and O’Hearn [19], it was
shown in [18] that the static fragment of spatial logics is in fact decidable (even
if with an extremely high complexity). About the same time, Lozes has proved,
using related techniques, that the guarantee operator may be eliminated (on behalf
of the remaining operators) from the static fragments of spatial logics, even in the
presence of the freshness quantifier and the revelation operator, without any loss of
expressiveness [51, 53]. Clearly, the elimination process is not constructive, since
Ghelli and Conforti have given (almost simultaneously) a proof that static spatial
logics including the freshness quantifiers and the name revelation operator are
undecidable [30] (in fact, the source of undecidability turns out to be the revelation
operator, not the fresh name quantification).

Right after that result became known, we have developed with Lozes an em-
bedding of first-order logic into a fragment of dynamic spatial logic, using as the
underlying model a tiny fragment of CCS. As a result, it was proved [14, 15, 52]
that dynamic spatial logics with the guarantee operator are essentially undecid-
able, and thus that there cannot exist a complete proof system for SLC. An inter-
esting particularity of these results is that they illustrates, in a purely propositional
spatial logic, how one may express the quantifiers and variable bindings needed to
represent satisfaction of first-order formulas by processes of certain special forms,
specified by means of context-system formulas (using the guarantee operator). We
thus obtain an unusual quantifier elimination result that does not build on replac-
ing variables by constants, but rather encodes variables and bindings by means of
the specification of an underlying environment-based abstract machine.

The results described above lead to the conclusion that pure spatial logics, in-
volving the use of composition adjunct (guarantee) operator are very expressive
and very powerful for general compositional specification and reasoning about
the distributed behavior of processes, but also that the associated model and valid-
ity checking problems are undecidable, and incomplete in general. On the other
hand, it is shown shown in [5] that adjunct-free spatial-behavioral logics are still

very expressive and useful for verification purposes, and that the associated model
checking problem is decidable and complete for large classes of processes. A
model-checking algorithm for the full synchronous π-calculus with choice and
recursion against a variant of CSBL with fixpoints is also developed, such devel-
opment provided a foundation for implementation of tools.

7 Model-Checking Tools
The Spatial Logic Model Checker (SLMC) is a tool supporting the automatic
verification of behavioral-spatial properties of distributed concurrent systems ex-
pressed in a version of the synchronous π-calculus. The logic already includes an
extension of MPW logic with parametric fixpoint operators, first-order quantifiers
and definitions, so that the SLMC probably also qualifies as the most complete
freely available tool for analyzing standard behavioral π-calculus logical specifi-
cations. The SLMC system was implemented by Vieira [75, 76], and builds on
the decidable logic and algorithms discussed (and proved correct) in [5]. It is
freely available on the web, both as a binary executable and in (OCaml) source
form. Both the process modeling and logical specification languages are expres-
sive enough to tackle many interesting examples. The system is very easy to use,
and fairly fast (it builds on an on-the-fly algorithm).

We illustrate some of SLMC’s capabilities, and the concrete syntax used for
processes and for logical properties with a toy example inspired by a scenario of
service oriented computing (borrowed from [20]). We thus consider a distributed
system consisting of three partners: a Buyer, a Seller, and a Shipper. Each subsys-
tem is modeled by a single-threaded process; we show in Figure 10 the concrete
SLMC specification.

We now define some properties we may be interested in analyzing. The first
one is (global) deadlock freedom, this is a simple purely behavioral property, that
might already be expressed in a purely behavioral logic with fixed-point operators.

/* GLOBAL DEADLOCK FREEDOM */

defprop aLive = maxfix X. ((<tau>true) and [tau]X);

check System |= aLive;

Processing ...

- Number of states visited: 50 -

* Process System satisfies formula aLive *

We next consider a couple of spatial properties, related to resource usage: local
deadlock absence, race freedom, and choreography conformance. These kinds of
properties cannot be handled by other existing tools that support more standard

defproc Buyer =

new session in (

quoteCh!(session,buyer).

session?(quote).

select {

session!(accept).

session?(deliverydetails).

Buyer;

session!(reject).

Buyer

});

defproc Seller =

quoteCh?(session,bu).

session!(price).

session?(choice).

select {

[choice=accept].

new t in (

deliveryCh!(t,seller).

t?(deliverydetails,sh).

session!(deliverydetails).

Seller);

[choice=reject].

Seller

};

defproc Shipper =

deliveryCh?(t,se).

t!(deliverydetails,shipper).

Shipper;

defproc System = Buyer | Seller | Shipper;

Figure 10: SLMC π-calculus model of the Buyer-Shipper-Seller Scenario.

temporal or behavioral logics. We may specify (and verify) them as follows (see
related examples in Section 3):

/* STUCK (LOCAL DEADLOCK) FREEDOM */

defprop stuck =

inside (exists x. (1 and <x!>true | always (not <x?>true)));

check System |= always (not (stuck));

Processing...

- Number of state visits: 1925 -

* Process System satisfies the formula always (not (stuck)) *

/* RACE FREEDOM */

defprop write(x) = (1 and <x!>true);

defprop read(x) = (1 and <x?>true);

defprop hasRace =

inside (exists x.(write(x) | write(x) | read(x) | true));

defprop raceFree = maxfix X.((not hasRace) and []X);

check System |= raceFree;

Processing ...

- Number of states visited: 17648 -

* Process System satisfies formula raceFree *

As our last illustration of SLMC, we present an application of spatial logic
model checking to choreography conformance in web services, using our running
example. We specify the “choreography” as a spatial logic definable property,
and check whether the system verifies it. This is another nice example of spatial
reasoning: one really wants to look at what messages are being sent from partner
to partner inside the distributed system system, what sessions are being created
an so on, in a situation where such interactions are not externally observable.
In particular, we define properties talking about message exchanges inside the
system, for example, sBuyer2Seller(message) states what one usually means
in message sequence descriptions by an assertion of the form message : Buyer→
Seller.

The property sGlobalDescription describes an infinite behaviour (via the
greatest fixed point formula), according to a certain pattern. Namely, Buyer sends
to Seller a message on quoteCh. Then, a new fresh channel session is created,
and Seller replies to Buyer on session. Then Buyer answers the Seller pro-
posal, also on channel session. After that, two situations are possible (captured
by the disjunction in the formula): either the Buyer does not accept the Seller’s
quote, and the protocol restarts, or the Buyer accepts the Seller’s proposal, and

a a sub-interaction between Seller and Shipper proceeds, until the whole trans-
action completes, and a new one may start.

/* CONFORMANCE TO CHOREOGRAPHY */

defprop sArrow(message,src,dst) =

inside(

(1 and @src and <message!>true) |

(1 and @dst and <message?>true) | true);

defprop sBuyer2Seller(message) = sArrow(message,buyer,seller);

defprop sSeller2Buyer(message) = sArrow(message,seller,buyer);

defprop sShipper2Seller(message) = sArrow(message,shipper,seller);

defprop sSeller2Shipper(message) = sArrow(message,seller,shipper);

defprop sGlobalDescription =

maxfix X.(

sBuyer2Seller(quoteCh) and

[] hidden session.

(sSeller2Buyer(session) and

[](sBuyer2Seller(session) and

[][](X

or

(sSeller2Shipper(deliveryCh) and

[] hidden t.

(sShipper2Seller(t) and

[] (sSeller2Buyer(session) and []X)))))));

check System |= sGlobalDescription;

Processing ...

Number of states visited: 469 -

* Process System satisfies formula sGlobalDescription *

Several other examples may be found in the SLMC web site.

8 Spatial Type Systems
What new notions of types for concurrent and distributed processes spatial logics
might motivate in a natural way? This certainly was a natural question to ask
since the very first works on spatial logics started to appear. More recently, we
have investigated notions of spatial types for concurrency and resource control in
systems of distributed objects (or services) [8, 9]. This line of work motivated

a preliminary study of a notion of semantic types for concurrent systems, where
types are interpreted as spatial-logic definable properties [6, 7]. In this section, we
briefly overview these developments.

8.1 Types for Concurrency Control
A notion of spatial typing for systems of concurrent objects was introduced in
[8, 9], the key idea is to expose at the interface level information about possible
concurrent invocation of operations. The proposed type structure reflects a re-
source sensitive model, where a parallel composition type operator expresses re-
source independence, a sequential composition type operator expresses resource
synchronization, and a type modality expresses resource ownership, thus captur-
ing several fundamental constraints on resource access that arise in general con-
current systems. The basic constructors of the type system are the following ones

U,V ::= 0 | l(U)V | U |V | U ∧ V | U; V | U◦ | U . V

to which a recursion operator (and type variables) is added. Types are interpreted
as spatial logic formulas, denoting spatial properties of systems in a precise sense.
Superficially, the underlying structure may seem close to a behavioral algebra,
with parallel and sequential composition operators, and a primitive action opera-
tor (the method call l(U)V). However, the aim now is not just to talk about the
behavior of systems, but also about distribution of objects, and ownership trans-
fer [63] in concurrent systems. For example, the spatial composition type U | V
states that a service may be safely used accordingly to U and V by independent
(in terms of resource usage) clients, one using it as specified by U, the other as
specified by V . In particular, the tasks U and V may be activated concurrently. An
object typed by the Travel type defined as

Travel , (flight | hotel); order

will be able to service the flight (we abbreviate l(0)0 by l) and hotel tasks
simultaneously and after that (and only after that), the order task. The spatial
interpretation of U | V implies further consequences, namely that the (distributed)
resources used by U and V do not interfere; this property is important to ensure
closure under composition of certain safety properties of typed systems. Owned
types, of the form U◦, state not only that the service is usable as specified by
U, but also that such usage is completely owned (so that a object possessing a
reference of owned type may, for example, store it for later use). Owned types
discipline the delegation (or transfer) of resources or service references between
interacting partners. More familiar behavioral types may also be easily expressed
in our type system. For example, using sequential composition and conjunction,
the usage protocol of a file object might be specified thus:

F , f [flight() = · · · | book() = · · · | free() = · · · ‖ ‖]

H , h[hotel() = · · · | book() = · · · | free() = · · · ‖ ‖]

G , gw[pay(s) = if bk.debit() then s.book() else s.free() ‖ ‖]

B , br[flight() = f .flight() | hotel() = h.hotel() |

order() = (gw.pay(f); gw.pay(h)) ‖ ‖]

Figure 11: The Travel Booking Service.

File(V) , (open; (read()V ∧ write(V))?; close)?

where U? , rec α.(0 ∧ (U;α)) expresses iteration. By combining recursion with
spatial types, we may also define shared types. A shared type U! states of an
object it types that it may be used according to an unbounded number of indepen-
dent sessions, each one conforming to type U. By combining such operators, we
may specify fine grained shared access protocols, such as the standard “multiple
readers/unique writer” access pattern for state variables (we may represent state
variables by objects with a “read” and “write” methods):

RW(V) , ((read()V)!; write(V◦))?

Finally, and crucially, guarantee types U . V allow us to compose subsystems
into larger systems, while preserving the properties ensured by their typings.

Before summarizing the type system, and to illustrate the intended distributed
object model, we sketch a toy scenario of service composition, where several sites
cooperate to provide a travel booking service (see Figure 11). First, there is an
object F implementing a service for finding and booking flights. It provides three
methods: flight to look for and reserve a flight, book to commit the booking,
and free to release a reservation. A similar service is provided by object H,
used for booking hotel rooms. We elide method implementations in F and G,
but assume that the operations must be called in good order to avoid disruption,
namely that after calling flight, a client is supposed to call either book or free.
The broker B, that implements the front-end of the whole system, is client of F
and H, and also of a payment gateway G. The gateway books items if succeeds
in processing their payment through a remote bank service named bk. Our travel
booking service, available at br, is used by first invoking the flight and hotel
operations in any order. In fact, these operations may be called concurrently,
since they trigger separate computations. Afterwards, the order operation may
be invoked to book and pay for both items, delegating access to f and h to the
gateway. The session will then terminate, and the broker will become ready for
another round.

We show below how usage patterns such as these may be specified by typing,
and how the type of a whole system may be compositionally defined from the
types of its components. Intuitively, a type T describes a usage pattern for a given
object. An assertion of the form n : T states that the object named n may be safely
used as specified by the type T . In general, the type of a network P is expressed
by a composite assertion

n1 : T1 | . . . | nk : Tk

specifying types of various objects named n1, . . . , nk available from P to the exter-
nal environment. Such an assertion (or typing environment) states that the system
provides independent services at the names ni, each one able to be safely used as
specified by the type Ti respectively. We now explain the intuitive meaning of the
various kinds of types, by interpreting them as properties of objects.

• An object satisfies n : 0 if it is idle, that is, if it has no running threads.

• An object satisfies n : T | U if it can independently satisfy both n : T and
n : U. We may also understand such a typing as the specification of two
independent views for the object n. More precisely, a n : T | U typing says
that the interfaces T and U provided by object n are based in disjoint (in
a sense to be made precise below) sets of resources / subsystems, and thus
may be safely invoked concurrently.

• An object satisfies n : T ∧ U if it can satisfy both n : T and n : U, although
not necessarily concurrently. Conservatively, such an object may only be
used either as specified by n : T or as specified by n : U, being the choice
made by the object’s client.

• An object satisfies n : T ; U if it can satisfy first n : T and afterwards n : U,
in sequence. In particular, it will only be obliged to satisfy n : U after being
used as specified by n : T . Implicit in this description is the notion of usage
according to a type, and termination of such an usage; we will get back to
this point later.

• The owned type n : T ◦ means that the object may be used as specified by T ,
but furthermore (and crucially) that this T view is exclusively owned. For
example, a reference of type n : T ◦ may be stored in the local state of an
object, or returned by a method call, although a reference of type n : T may
not, because of possible liveness constraints associated to the type T .

• An object satisfies n : l(U)V if it offers a method l that whenever passed
an argument of type U is ensured to return back a result of type V , and
exercise, during the call, an usage of the argument conforming to type U.
Thus, method types specify both safety and liveness properties.

• Recursive types are interpreted as greatest fixed points, as expected.

The type system is then based on the following forms of formal judgments, related
to the three syntactical categories of the calculus, plus subtyping:

A <: B (Subtyping) P :: A . B (Networks)
[M; t] :: A σ . B δ[U] (Objects) e :: A σ . B δ[U] (Expressions)

The main judgment is the network typing assignment judgment, of the form P ::
A . B. Intuitively, a judgment P :: A . B asserts that if a network P is composed
with any network Q that satisfies the typing A, one is guaranteed to obtain a
network (P | Q) that satisfies the typing B. Getting back to the travel booking
example, we may show how types may be assigned to the system components.
For F and H we may expect the typings F :: . f : T f and H :: . h : Th, where

T f , rec α.flight(); (book() ∧ free());α
Th , rec α.hotel(); (book() ∧ free());α

For the gateway G, we let G :: bk : Tbank . gw : Tgw where

Tbk , rec α.debit()bool;α Tgw , rec α.pay(book() ∧ free());α

We set Tbr , rec α.(flight() | hotel()); order();α. Then, the following judg-
ment is derivable

(F | H | G | B) :: bk : Tbk . br : Tbr

This judgment asserts that the network (F | H | G | B), when composed with any
system providing the Tbk type at bk, will be safe for use at br as specified by type
Tbr. Such typing may be obtained compositionally from the types of the subsys-
tems in many ways. A possible root level split of the system may be between the
broker B :: gw : Tgw, f : T f , h : Th . br : Tbr and the back-end subsystem
(G | H | F) :: bk : Tbk . gw : Tgw, f : T f , h : Th, where we conclude by the
forward composition typing rule (TComp).

The proof of soundness of our spatial type system is obtained by semantic
means, building on a interpretation of types as properties expressible in a spatial
logic. This approach may be seen as an instance of the general method of logical
relations, well understood in the setting of functional programming, but still quite
unexplored in a concurrency setting. A full description of the spatial type system
briefly described in this section, and of the related safety results, may be found in
[9], where a treatment of sharing and shared types is also further developed.

8.2 Logical Semantics of Types
The original understanding of types as predicates has not been a formal guiding
principle for the design of types for concurrent calculi, where a syntactical view
prevails (an exception is [27], where semantic subtyping for names was proposed).

In recent work [6, 7], it was demonstrated a semantic approach to types in
concurrency, based on an interpretation of types as spatial logic definable prop-
erties. More precisely, it is show how the semantics of a general type structure
for processes modeled in the π-calculus may be inductively (and compositionally)
defined by resorting to a logical interpretation, reminiscent of the logical rela-
tions method, and considering as underlying semantic model the standard labeled
transition system. A formal type system T then assigns types to processes by in-
duction on the structure of processes (as expected from a type system) rather than
by induction on the structure of types / formulas (as in the proof system of [11, 13]
already mentioned in Section 4).

This semantic approach extends in scope other proposals to generic typing [46],
that rely on standard syntactic techniques. Further advantages result from the way
the several properties of interest are factored out in definitions and proofs. Sound-
ness of each typing rule is proven separately by showing that it preserves validity:
this is a standard technique in semantic proofs of soundness for formal systems,
but quite alien to the common practice in type systems for concurrency, where the
syntactic and monolithic (even if extremely well-succeeded and practical) subject-
reduction technique [78] prevails. Subtyping may be dealt with as a completely
orthogonal (with respect to typing) aspect, so that the soundness proofs do not
depend on the syntactic presentation of subtyping, but only on its semantic prop-
erties. We can then pick for the subtyping relation any sound axiomatization of
semantic entailment in the underlying logic; soundness of each instance of T is
immediately granted as a consequence of the modular approach.

As we have already argued, most interesting process properties of the kinds
considered by type systems (e.g., channel arity mismatch, local deadlock) are not
invariant under standard behavioral equivalences of processes, for instance, bisim-
ilarities. Therefore, to characterize such kinds of properties traditional behavioral
logics are not adequate. It turns out that spatial logics for concurrency offer an ap-
propriate expressiveness. An important feature of spatial logics, shared by other
resource-sensitive logics such as the separation logics [70, 62], is that its oper-
ators are able to separate and count resources; this sometimes understood as an
“intensional” flavor to spatial logics. It is precisely such intensional character that
seems necessary for the logical characterization of many “type-like” properties.

The system T manipulates type judgment of the form P :: A ` B where A and
B are spatial-behavioral types, and the turnstyle ` is interpreted as the composition
adjunct (guarantee). A sample rule of system T is the composition rule (Seq).

(fn(B) not free in the conclusion.)
P :: A ` A′ | B Q :: B | B′ ` C

(νB)(P | Q) :: A | B′ ` A′ | C

The logical characterizations of certain kinds of types we have introduced in

this work allowed us to understand certain familiar notions in types for concur-
rency, such as sharing and linearity [48], in a rather abstract setting. For example,
we give a semantically defined notion of sharing type. Roughly, a type A is shar-
ing if A | A |= A (i.e., if it enjoys a contraction principle with respect to spatial
decomposition). It turns out that kinds of types such as simple types [55] and I/O
types [67] are sharing in this sense. We may show that simple types and I/O types
may be embedded in T, by extending the basic subtyping relation ST <: with
additional subtyping axioms. Certain forms of session types [45] may also be em-
bedded in the generic type system T, by combining behavioral types with simple
types. Again, soundness of the obtained type system is obtained for “free”, after
one proves certain abstract properties (e.g., sharing) of new type constructions.

9 Concluding Remarks
In our tutorial overview of dynamic spatial logics for distributed concurrent sys-
tems we have attempted to find a balance between the variety of covered aspects
and the depth of the analysis; our aim was fundamentally to provide the key in-
tuitions, concepts and results, while hinting to further developments and related
work. In the initial sections, we have reviewed the technical context needed for
the introduction of dynamic spatial logics, and introduced some of the key mo-
tivations and concepts in the area. The last sections have been devoted to the
discussion of a selection of results, and applications. We now add some remarks
on closely related work.

The general notion of spatial observation has motivated the introduction of
logics for models with various kinds of static and dynamic structure, in particular
for models where the dynamic aspects are not relevant at all. These include logics
for trees [23], for graphs [21], and for XML-like semi-structured data [22].

Many of these logics, and the static fragment of dynamic spatial logics, are
closely related to Bunched Logic [61], in particular to boolean BI, at least for-
mally. BI is also behind the foundations of separation logic [70] developed by
O’Hearn and Reynolds, and then of the development of applications of separation
logic to shared variable concurrency [63].

The distinctive characteristic of spatial logics for concurrency, when compared
with the separation logics, is their original aim of talking about structural dynam-
ics. The difference of standpoint is also manifest in the underlying technical tools
and approaches: process calculi, abstract interaction models, and modal logics in
the case of dynamic spatial logics, and imperative programs, communicating pro-
cesses, and assertion logics in the case of the separation logics; in line with the
two main established approaches to concurrency in computer science for several
decades now. The intent of dynamic spatial logics is to express general properties

of active structures evolving in space-time, while the separation logics aim is to
express, at the logical level, independence constraints on passive resource spaces
(such as the heap of imperative programs). The separation logic view of the com-
position operator is strongly motivated by notions of non-interference [69] in state
manipulating programs; if a program gets past the proof rules of separation logic
then (implicitly) it must also necessarily be race-free. In the case of dynamic spa-
tial logic, this does not be the case, although properties such as race-freedom (as
race-presence) may be expressed (explicitly) in such a logic. On the other hand,
separation logic is proving to be quite successful in providing effective concepts,
techniques and models to reason about programs written in practical low-level
programming languages. The two views are not exclusive, and ideas arising in
one field may hopefully inspire developments in the other, for example, applica-
tions of separation logic to process calculi [64], and introduction of separation (as
a form of non-interference) in dynamic spatial logics [8].

As the general concept of space is becoming increasingly recognized as a fun-
damental ingredient in models for distributed interactive systems, as witnessed
by the development of Mobile Ambients and more recently of bigraphs, we be-
lieve that logics combining spatial and behavioral observations are likely to play
an important rule in the analysis of such models, both for increasing our funda-
mental understanding about concurrency and distributed computation, but also for
the development of applications to the specification and verification of concrete
technological artifacts.
Acknowledgments I thank Luca Aceto for the invitation to contribute for the
Concurrency Column. Parts of this tutorial are based on joint work with Luca
Cardelli, Etienne Lozes, and Hugo Vieira. Some of the views expressed also
benefited from suggestions and challenging remarks in various moments from
Daniel Hirshkoff, Luis Monteiro, Peter O’Hearn, and Davide Sangiorgi.

References
[1] R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asyn-

chronous pi-calculus. Theoretical Computer Science, 195(2):291–324, March 1998.

[2] G. Berry and G. Boudol. The Chemical Abstract Machine. Theoretical Computer
Science, 96(1):217–248, April 1992.

[3] L. Caires. A Model for Declarative Programming and Specification with Concur-
rency and Mobility. PhD thesis, Dept. de Informática, FCT, Universidade Nova de
Lisboa, 1999.

[4] L. Caires. A Specification Logic for Mobility. Technical report, Universidade Nova
de Lisboa, DI/FCT, 2000.

[5] L. Caires. Behavioral and Spatial Properties in a Logic for the Pi-Calculus. In
I. Walukiewicz, editor, Foundations of Software Science and Computation Struc-
tures, number 2987 in Lecture Notes in Computer Science. Springer Verlag, 2004.

[6] L. Caires. Logical Semantics of Types for Concurrency. In U. Montanari and
T. Mossakowski, editors, Calco’07, 2nd Conference on Algebra and Coalgebra in
Computer Science, Lecture Notes in Computer Science. Springer-Verlag, 2007.

[7] L. Caires. Logical Semantics of Types for Concurrency. Technical Report 2/07,
Departamento de Informatica FCT/UNL, 2007.

[8] L. Caires. Spatial-Behavioral Types, Distributed Services, and Resources. In
U. Montanari and D. Sanella, editors, TGC 2006 2dn Intl. Symp. on Trustworthy
Global Computing, Lecture Notes in Computer Science. Springer-Verlag, 2007.

[9] L. Caires. Spatial-Behavioral Types for Concurrency and Resource Control in Dis-
tributed Systems. Technical Report 3/07, Departamento de Informática FCT/UNL,
2007.

[10] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). In N. Kobayashi
and B.C. Pierce, editors, 10th Symposium on Theoretical Aspects of Computer Sci-
ence, volume 2215 of Lecture Notes in Computer Science, pages 1–30. Springer-
Verlag, 2001.

[11] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part II). In CON-
CUR 2002 (13th International Conference), Lecture Notes in Computer Science.
Springer-Verlag, 2002.

[12] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). Information
and Computation, 186(2):194–235, 2003.

[13] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part II). Theoretical
Computer Science, 3(322):517–565, 2004.

[14] L. Caires and E. Lozes. Elimination of Quantifiers and Undecidability in Spatial
Logics for Concurrency. In P. Gardner and N. Yoshida, editors, CONCUR 2004 -
Concurrency Theory, 15th International Conference,Proceedings, volume 3170 of
Lecture Notes in Computer Science, pages 240–257. Springer-Verlag, 2004.

[15] L. Caires and E. Lozes. Elimination of Quantifiers and Undecidability in Spatial
Logics for Concurrency. Theoretical Computer Science, 3(358):293–314, 2006.

[16] L. Caires and L. Monteiro. Verifiable and Executable Specifications of Concurrent
Objects in Lπ. In C. Hankin, editor, 7th European Symp. on Programming (ESOP
1998), number 1381 in Lecture Notes in Computer Science, pages 42–56. Springer-
Verlag, 1998.

[17] L. Caires and H. Vieira. Extensionality of Spatial Observations in Distributed Sys-
tems. Electronic Notes in Theoretical Computer Science, 2007.

[18] C. Calcagno, L. Cardelli, and A. D. Gordon. Deciding Validity in a Spatial Logic of
Trees. In ACM Workshop on Types in Language Design and Implementation, pages
62–73, New Orleans, USA, 2003. ACM Press.

[19] C. Calcagno, H. Yang, and O’Hearn. Computability and complexity results for a
spatial assertion language for data structures. In R. Hariharan, M. Mukund, and
V. Vinay, editors, FSTTCS’2001, volume 2245. Springer-Verlag, 2001.

[20] M. Carbone, K. Honda, and N. Yoshida. Structured Communication-Centred Pro-
gramming for Web Services. In R. De Nicola, editor, Programming Languages and
Systems, 8th European Symposium on Programming, ESOP’07, volume 1576 of
Lecture Notes in Computer Science, pages 91–108. Springer-Verlag, 2007.

[21] L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs. In
29td Colloquium on Automata, Languages and Programming (ICALP 2002), Lec-
ture Notes in Computer Science. Springer-Verlag, 2002.

[22] L. Cardelli, P. Gardner, and G. Ghelli. Manipulating trees with hidden labels. Electr.
Notes Theor. Comput. Sci., 172:177–201, 2007.

[23] L. Cardelli and G. Ghelli. A Query Language Based on the Ambient Logic. In
D. Sands, editor, 10th European Symposium on Programming (ESOP 2001), volume
2028 of Lecture Notes in Computer Science, pages 1–22. Springer-Verlag, 2001.

[24] L. Cardelli and A. Gordon. Logical Properties of Name Restriction. In S. Abramsky,
editor, Typed Lambda Calculi and Applications, number 2044 in Lecture Notes in
Computer Science. Springer-Verlag, 2001.

[25] L. Cardelli and A. D. Gordon. Mobile ambients. In Maurice Nivat, editor, Proceed-
ings of the First International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS ’98), volume 1378 of Lecture Notes in Computer
Science. Springer-Verlag, 1998.

[26] L. Cardelli and A. D. Gordon. Anytime, Anywhere. Modal Logics for Mobile Ambi-
ents. In 27th ACM Symp. on Principles of Programming Languages, pages 365–377.
ACM, 2000.

[27] G. Castagna, R. De Nicola, and D. Varacca. Semantic Subtyping for the π-Calculus.
In 20th IEEE Symposium on Logic in Computer Science (LICS 2005), pages 92–101.
IEEE Computer Society, 2005.

[28] I. Castellani. Process Algebras with Localities. In J. Bergstra, A. Ponse, and
S. Smolka, editors, Handbook of Process Algebra. North-Holland, 2001.

[29] W. Charatonik and J.-M. Talbot. The Decidability of Model-Checking Mobile Am-
bients. In D. Metayer, editor, 11th European Symposium on Programming (ESOP
2002), number 2305 in Lecture Notes in Computer Science. Springer-Verlag, 2001.

[30] G. Conforti and G. Ghelli. Decidability of Freshness, Undecidability of Revelation.
In Igor Walukiwicz, editor, Proc. of Foundations of Software Science and Computa-
tion Structures’2004, number 2987 in Lecture Notes in Computer Science. Springer
Verlag, 2004.

[31] G. Conforti, D. Macedonio, and V. Sassone. Spatial Logics for Bigraphs. In
L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors,
Automata, Languages and Programming, 32nd International Colloquium, ICALP

2005, volume 3580 of Lecture Notes in Computer Science, pages 766–778. Springer-
Verlag, 2005.

[32] Silvano Dal Zilio and Denis Lugiez. A logic you can count on. In POPL 2004
– 31st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 2004.

[33] M. Dam. Relevance Logic and Concurrent Composition. PhD thesis, University of
Edinburgh, 1989.

[34] M. Dam. Model checking mobile processes. Information and Computation,
129(1):35–51, 1996.

[35] M. Dam. Proof Systems for π-calculus Logics. In Logic for concurrency and syn-
chronisation, pages 145–212. Kluwer Academic Publishers, 2003.

[36] V. Danos and Laneve C. Formal molecular biology. Theoretical Computer Science,
325(1):69–110, 2004.

[37] M. J. Demmer and M. Herlihy. The Arrow Distributed Directory Protocol. In S. Kut-
ten, editor, Distributed Computing, 12th International Symposium, DISC ’98, vol-
ume 1499 of Lecture Notes in Computer Science, pages 119–133. Springer-Verlag,
1998.

[38] J. Engelfriet and Tj. Gelsema. Multisets and Structural Congruence of the π-calculus
with Replication. Theoretical Computer Science, 211(1-2):311–337, 1999.

[39] M. Gabbay and A. Pitts. A New Approach to Abstract Syntax Involving Binders.
In 14th Annual Symposium on Logic in Computer Science, pages 214–224. IEEE
Computer Society Press, Washington, 1999.

[40] M. Hennessy and R. Milner. Algebraic Laws for Nondeterminism and Concurrency.
JACM, 32(1):137–161, 1985.

[41] D. Hirschkoff. An Extensional Spatial Logic for Mobile Processes. In P. Gardner
and N. Yoshida, editors, CONCUR - Concurrency Theory, 15th International Con-
ference,Proceedings, volume 3170 of Lecture Notes in Computer Science, pages
325–339. Springer-Verlag, 2004.

[42] D. Hirschkoff, E. Lozes, and D. Sangiorgi. Separability, Expressiveness and Decid-
ability in the Ambient Logic. In Third Annual Symposium on Logic in Computer
Science, Copenhagen, Denmark, 2002. IEEE Computer Society.

[43] D. Hirschkoff, E. Lozes, and D. Sangiorgi. Minimality results for the spatial logics.
In Proc. of FSTTCS’2003, LNCS. Springer Verlag, 2003.

[44] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1984.

[45] K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type Disci-
pline for Structured Communication-Based Programming. In C. Hankin, editor, 7th
European Symposium on Programming, volume 1381 of Lecture Notes in Computer
Science, pages 122–138. Springer-Verlag, 1998.

[46] A. Igarashi and N. Kobayashi. A Generic Type System for the Pi-Calculus. In POPL
2001: 28th ACM Symp. on Principles of Programming Languages, 2001.

[47] Cliff B. Jones. Tentative Steps Toward a Development Method for Interfering Pro-
grams. ACM Trans. Program. Lang. Syst., 5(4):596–619, 1983.

[48] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the Pi-Calculus. ACM
Trans. Program. Lang. Syst., 21(5):914–947, 1999.

[49] D. Kozen. Results on the Propositional µ-Calculus. Theoretical Computer Science,
27(3):333–354, 1983.

[50] J. J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems.
In Catuscia Palamidessi, editor, CONCUR 2000 - Concurrency Theory, 11th In-
ternational Conference, Proceedings, volume 1877 of Lecture Notes in Computer
Science, pages 243–258. Springer-Verlag, 2000.

[51] E. Lozes. Adjuncts Elimination in the Static Ambient Logic. Electr. Notes Theor.
Comput. Sci., 96:51–72, 2004.

[52] E. Lozes. Expressivit des Logiques d’Espaces. PhD thesis, Ecole Normal Superieure
de Lyon - Universidade Nova de Lisboa, 2004.

[53] E. Lozes. Elimination of Spatial Connectives in Static Spatial Logics. Theoretical
Computer Science, 330(3):475–499, 2005.

[54] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[55] R. Milner. The Polyadic π-Calculus: A Tutorial. Technical Report 180, University
of Edinburgh LFCS, 1991.

[56] R. Milner. Functions as Processes. Math. Struc. in Computer Sciences, 2(2):119–
141, 1992.

[57] R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge Uni-
versity Press, 1999.

[58] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part I + II.
Information and Computation, 100(1):1–77, 1992.

[59] R. Milner, J. Parrow, and D. Walker. Modal Logics for Mobile Processes. Theoreti-
cal Computer Science, 114:149–171, 1993.

[60] Robin Milner. Pure bigraphs: Structure and dynamics. Information and Computa-
tion, 204(1):60–122, 2006.

[61] P. O’Hearn and D. Pym. The Logic of Bunched Implications. The Bulletin of Sym-
bolic Logic, 5(2):215–243, 1999.

[62] P. W. O’Hearn. Resources, Concurrency and Local Reasoning. In P. Gardner and
N. Yoshida, editors, Concur 15th Intl. Conf. on Concurrency Theory, volume 3170
of Lecture Notes in Computer Science, pages 49–67. Springer-Verlag, 2004.

[63] P. W. O’Hearn. Resources, Concurrency, and Local Reasoning. Theoretical Com-
puter Science, 375(1-3):271–307, 2007.

[64] P. W. O’Hearn. Separation Logic Semantics for Communicating Processes. In In-
vited Lecture at Concur’07 - Unpublished, 2007.

[65] D. M. R. Park. Concurrency and Automata on Infinite Sequences. In Theoretical
Computer Science, 5th GI-Conference, Proceedings, volume 104 of Lecture Notes
in Computer Science. Springer-Verlag, 1980.

[66] B. Pierce. Foundational calculi for programming languages. In Computer Science
and Engineering Handbook. CRC Press, 1996.

[67] B. C. Pierce and D. Sangiorgi. Typing and Subtyping for Mobile Processes. Mathe-
matical Structures in Computer Science, 6(5):409–453, 1996.

[68] A. Pitts. Nominal Logic: A First Order Theory of Names and Binding. In B.C. Pierce
N. Kobayashi, editor, 10th Symposium on Theoretical Aspects of Computer Science
(TACS 2001), volume 2215 of Lecture Notes in Computer Science, pages 219–235.
Springer-Verlag, 2001.

[69] J. C. Reynolds. Syntactic control of interference. In Conference Record of the
Fifth Annual ACM Symposium on Principles of Programming Languages, Tucson,
Arizona, January 1978, pages 39–46, 1978.

[70] J. C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In
Third Annual Symposium on Logic in Computer Science, Copenhagen, Denmark,
2002. IEEE Computer Society.

[71] A. Ribeiro, L. Caires, and L. Monteiro. Verifying the Arrow Distributed Protocol in
a Spatial Logic. Technical Report 4, DI/FCT/UNL, December 2004.

[72] D. Sangiorgi. Extensionality and Intensionality of the Ambient Logics. In 28th
Annual Symposium on Principles of Programming Languages, pages 4–13. ACM,
2001.

[73] D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes. Cam-
bridge University Press, 2001.

[74] B. Victor and F. Moller. The mobility workbench - a tool for the pi-calculus. In
D. L. Dill, editor, Computer Aided Verification, 6th International Conference, CAV
’94, volume 818 of Lecture Notes in Computer Science, pages 428–440. Springer-
Verlag, 1994.

[75] H. Vieira and L. Caires. Spatial Model Checker User’s Manual and Tutorial (v0.9).
Technical Report 2/05, Departamento de Informatica FCT/UNL, 2005.

[76] H. Vieira, L. Caires, and R. Viegas. Spatial Model Checker User’s Manual and
Tutorial (v1.0). Technical Report 5/05, Departamento de Informatica FCT/UNL,
2005.

[77] D. Walker. Objects in the π-calculus. Journal of Information and Computation,
116(2):253–271, 1995.

[78] A. K. Wright and M. Felleisen. A Syntactic Approach to Type Soundness. Inf.
Comput., 115(1):38–94, 1994.

