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Throughout the years, several typing disciplines for the π-calculus have been proposed.

Arguably, the most widespread of these typing disciplines consists of session types. Session

types describe the input/output behaviour of processes and traditionally provide strong

guarantees about this behaviour (i.e. deadlock-freedom and fidelity). While these systems

exploit a fundamental notion of linearity, the precise connection between linear logic and

session types has not been well understood.

This paper proposes a type system for the π-calculus that corresponds to a standard sequent

calculus presentation of intuitionistic linear logic, interpreting linear propositions as session

types and thus providing a purely logical account of all key features and properties of session

types. We show the deep correspondence between linear logic and session types by exhibiting

a tight operational correspondence between cut-elimination steps and process reductions. We

also discuss an alternative presentation of linear session types based on classical linear logic,

and compare our development with other more traditional session type systems.

1. Introduction

Linear logic has been intensively explored in the analysis of π-calculus models for

communicating and mobile system, given its essential ability to deal with resources,

effects and noninterference. The fundamental way it provides for analysing notions of

sharing versus uniqueness, captured by the exponential ‘!’, seems to have been a source

of inspiration for Milner when introducing replication in the π-calculus (Milner 1992).

Following the early works of Abramsky (1993), several authors have exploited variants

of π-calculi to express proof reductions (e.g. Bellin and Scott (1994)) or game semantics

(e.g. Hyland and Ong (1995)) in systems of linear logic.

In the field of concurrency, many research directions have also drawn inspiration from

linear logic for developing type-theoretic analyses of mobile processes, motivated by the

works of Kobayashi et al. (1996); a similar influence is already noticeable in the first

publications by Honda on session types (Honda 1993). Many expressive type disciplines

for π-calculi in which linearity frequently plays a key role have been proposed since then

(e.g. Giunti and Vasconcelos (2010), Honda et al. (1998), Kobayashi (1998) and Yoshida

et al. (2007)). However, linearity has been usually employed in such systems in indirect

ways, exploiting the fine grained type context management techniques it provides, or the

assignment of usage multiplicities to channels (Kobayashi et al. 1996), rather than the

deeper type-theoretic significance of linear logical operators.
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In this paper, we present two type systems for the π-calculus that exactly correspond to

the standard dyadic sequent calculus for intuitionistic linear logic (DILL) and for classical

linear logic (CLL), respectively. The former was first introduced in Caires and Pfenning

(2010) and studied in detail in this paper, the latter is introduced here.

The key to our correspondence is a new, perhaps surprising, interpretation of intuition-

istic linear logic formulas as a form of session types (Honda 1993; Honda et al. 1998),

in which the programming language is a session-typed π-calculus, and the type structure

consists precisely of the connectives of intuitionistic linear logic, retaining their standard

proof-theoretic interpretation. We thus introduce the first purely logical account, in the

style of a Curry–Howard interpretation, of both shared and linear features of session

types, as formulated for π-calculus-based session type systems such as Gay and Hole

(2005).

In session-based concurrency, processes communicate through so-called session chan-

nels, connecting exactly two subsystems, and communication is disciplined by session

protocols so that actions always occur in dual pairs: when one partner sends, the other

receives; when one partner offers a selection, the other chooses; when a session terminates,

no further interaction may occur. New sessions may be dynamically created by invocation

of shared servers. Such a model exhibits concurrency in the sense that several sessions,

not necessarily causally related, may be executing simultaneously, although races in

unshared resources are forbidden; in fact this is the common situation in disciplined

concurrent programming idioms. Mobility is also present, since both session and server

names may be passed around (delegated) in communications. Session types have been

introduced to discipline interactions in session-based concurrency, an important paradigm

in communication-centric programming (Dezani-Ciancaglini and de’ Liguoro 2010).

It turns out that the connectives of linear logic suffice to express all the essential features

of finite session disciplines.

While in the linear λ-calculus types are assigned to terms (denoting functions and

values), in our interpretation types are assigned to names (denoting communication

channels) and describe their session protocol. The essence of our interpretation may

already be found in the interpretation of the linear logic multiplicatives as behavioural

prefix operators. Traditionally, an object of type A � B denotes a linear function that

given an object of type A returns an object of type B (Girard and Lafont 1987). In our

interpretation, an object of type A � B denotes a session x that first inputs a session

channel of type A, and then behaves as B, where B specifies again an interactive behaviour,

rather than a closed value. Linearity of � is essential, otherwise the behaviour of the

input session after communication could not be ensured. An object of type A⊗B denotes a

session that first sends a session channel of type A and afterwards behaves as B. But notice

that objects of type A ⊗ B really consist of two objects: the sent session of type A and

the continuation session, of type B. These two sessions are separate and non-interfering,

as enforced by the canonical semantics of the linear multiplicative conjunction (⊗). Our

interpretation of A ⊗ B appears asymmetric, in the sense that, of course, a channel of

type A ⊗ B is in general not typeable by B ⊗ A. In fact, the symmetry captured by the

proof of A ⊗ B � B ⊗ A is realized by an appropriately typed process that coerces any

session of type A ⊗ B to a session of type B ⊗ A. The other linear constructors are also
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given compatible interpretations, in particular, the !A type is naturally interpreted as a

type of a shared server for sessions of type A, and additive product and sum, to branch

and choice session type operators. We thus obtain the first purely logical account of both

shared and linear features of session types.

We briefly summarize the structure and contributions of the paper. After introducing

our basic process model (Section 2), we describe a system of session types for the π-

calculus that corresponds to the DILL (Section 3). The correspondence is bidirectional

and tight, in the sense that (a) any π-calculus computation can be simulated by proof

reductions on typing derivations (Theorem 4.1), thus establishing a strong form of subject

reduction (Theorem 4.4) and (b) that any proof reduction or conversion corresponds either

to a computation step or to a process equivalence on the π-calculus side (Theorems 4.2

and 4.3). An intrinsic consequence of the logical typing is a global progress property, that

ensures the absence of deadlock for systems with an arbitrary number of open sessions

(Theorem 4.5). In (Section 5) we propose a version of our linear session type structure

based on CLL, and offer some preliminary comparison with the intuitionistic formulation.

We close the technical part of the paper with some discussion comparing our session types

based on linear logic with other traditional type systems for session types (Section 6).

Finally, in Section 7 we comment on related work and present some closing remarks.

2. Process model

We briefly introduce the syntax and operational semantics of the process model: the

synchronous π-calculus (Sangiorgi and Walker 2001) extended with (binary) guarded

choice.

Definition 2.1 (processes). Given an infinite set Λ of names (x, y, z, u, v), the set of processes

(P ,Q, R) is defined by

P ::= 0 (inaction)

| P | Q (parallel composition)

| (νy)P (name restriction)

| x〈y〉.P (output)

| x(y).P (input)

| !x(y).P (replicated / shared input)

| x.inl;P (left choice)

| x.inr;P (right choice)

| x.case(P ,Q) (case offer).

The operators 0 (inaction), P | Q (parallel composition), and (νy)P (name restriction)

comprise the static fragment of any π-calculus. We then have x〈y〉.P (send y on x

and proceed as P ), x(y).P (receive a name z on x and proceed as P with the input

parameter y replaced by z) and !x(y).P which denotes replicated (or persistent) input.

The remaining three operators define a minimal labelled choice mechanism, comparable

to the n-ary branching constructs found in standard session π-calculi. The restriction to

guarded choice and replication is standard in the literature (see eg. Honda et al. (1998)).
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For the sake of minimality and without loss of generality we restrict our model to binary

choice. In restriction (νy)P and input x(y).P the distinguished occurrence of the name y is

binding, with scope the process P . For any process P , we denote the set of free names of P

by fn(P ). A process is closed if it does not contain free occurrences of names. We identify

processes up to consistent renaming of bound names, writing ≡α for this congruence. We

write P {x/y} for the process obtained from P by capture avoiding substitution of x for y

in P . Structural congruence expresses basic identities on the structure of processes, while

reduction expresses the behaviour of processes.

Definition 2.2. Structural congruence (P ≡ Q), is the least congruence relation on processes

such that

P | 0 ≡ P (S0) P ≡α Q ⇒ P ≡ Q (Sα)

P | Q ≡ Q | P (S|C) P | (Q | R) ≡ (P | Q) | R (S|A)

(νx)0 ≡ 0 (Sν0) x 	∈ fn(P ) ⇒ P | (νx)Q ≡ (νx)(P | Q) (Sν|)
(νx)(νy)P ≡ (νy)(νx)P (Sνν).

Definition 2.3. Reduction (P → Q), is the binary relation on processes defined by

x〈y〉.Q | x(z).P → Q | P {y/z} (RC)

x〈y〉.Q | !x(z).P → Q | P {y/z} | !x(z).P (R!)

x.inl;P | x.case(Q,R) → P | Q (RL)

x.inr;P | x.case(Q,R) → P | R (RR)

Q → Q′ ⇒ P | Q → P | Q′ (R|)
P → Q ⇒ (νy)P → (νy)Q (Rν)

P ≡ P ′, P ′ → Q′, Q′ ≡ Q ⇒ P → Q (R≡)

Notice that reduction is closed (by definition) under structural congruence. Reduction

specifies the computations a process performs on its own. To characterize the interactions

a process may perform with its environment, we introduce a labelled transition system; the

standard early transition system for the π-calculus (Sangiorgi and Walker 2001) extended

with appropriate labels and transition rules for the choice constructs. A transition P
α→ Q

denotes that process P may evolve to process Q by performing the action represented by

the label α. Transition labels are given by

α ::= x〈y〉 | x(y) | (νy)x〈y〉 | x.inl | x.inr | x.inl | x.inr | τ .

Actions are input x(y), the left/right offers x.inl and x.inr, and their matching co-

actions, respectively the output x〈y〉 and bound output (νy)x〈y〉 actions, and the left/

right selections x.inl and x.inr. The bound output (νy)x〈y〉 denotes extrusion of a fresh

name y along (channel) x. Internal action is denoted by τ , in general an action α (α)

requires a matching α (α) in the environment to enable progress, as specified by the

transition rules. For a label α, we define the sets fn(α) and bn(α) of free and bound

names, respectively, as usual. We denote by s(α) the subject of α (e.g. x in x〈y〉). In our

logical interpretation of sessions that is presented in the following sections we will restrict

ourselves to bound output in the style of Sangiorgi (1996), we detail here a more general

π-calculus for the sake of completeness.
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P
α→ Q

(νy)P
α→ (νy)Q

(res)
P

α→ Q

P | R α→ Q | R
(par)

P
α→ P ′ Q

α→ Q′

P | Q τ→ P ′ | Q′
(com)

P
(νy)x〈y〉

→ P ′ Q
x(y)→ Q′

P | Q τ→ (νy)(P ′ | Q′)
(close)

P
x〈y〉
→ Q

(νy)P
(νy)x〈y〉

→ Q

(open) x〈y〉.P
x〈y〉
→ P (out)

x(y).P
x(z)→ P {z/y}

(in)
!x(y).P

x(z)→ P {z/y} | !x(y).P
(rep)

x.inl;P
x.inl→ P

(lout)

x.inr;P
x.inr→ P

(rout)
x.case(P ,Q)

x.inl→ P
(lin)

x.case(P ,Q)
x.inr→ Q

(rin)

Fig. 1. A π-calculus labelled transition system.

Definition 2.4 (labelled transition system). The relation labelled transition (P
α→ Q) is

defined by the rules in Figure 1, subject to the side conditions: in rule (res), we require

y 	∈ fn(α); in rule (par), we require bn(α)∩ fn(R) = �; in rule (close), we require y 	∈ fn(Q).

We omit the symmetric versions of rules (par), (com), and (close).

We recall some basic facts about reduction, structural congruence and labelled trans-

ition, namely: closure of labelled transitions under structural congruence, and coincidence

of τ -labelled transition and reduction (Sangiorgi and Walker 2001). We write ρ1ρ2 for

relation composition (e.g.
τ→≡).

Proposition 2.5.

1. if P ≡ α→ Q, then P
α→≡ Q.

2. P → Q if and only if P
τ→≡ Q.

3. Intuitionistic linear logic as session types

In this section, we detail our main contribution of interpreting a DILL as a session typing

discipline for the process calculus of the previous section (we name this system πDILL).

We assume some familiarity with linear logic and sequent calculi, but nonetheless we will

introduce each connective and its process interpretation incrementally, for the sake of

presentation.

We consider a sequent calculus for intuitionistic linear logic in the style of DILL (Barber

1997), augmented with a faithful proof term assignment which allows us to refer to proofs

as syntactic objects. A sequent is written as Γ; Δ � D : A, denoting that D is a proof of

proposition A, under the linear assumptions in Δ and the unrestricted (or exponential)

assumptions in Γ. It turns out that the sequent calculus rules can be directly translated

into session typing rules for processes in which the session behaviour is described by

the linear proposition A. We make this correspondence explicit through the judgment

Γ; Δ � D � P :: z : A, denoting that proof D maps to process P , which in turn provides

a session behaviour typed by A along channel z, provided it is composed with processes

implementing the session behaviours specified by Γ and Δ along the appropriate channels.
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Typing is defined modulo structural congruence, as often adopted in systems for process

calculi. Furthermore, we tacitly assume that all channels declared in Δ, Γ and the channel

z are distinct.

As will become clear in the following sections, sequent calculus right rules correspond

to rules which detail how a process can implement the session behaviour described by

the considered connective. Dually, left rules explain how a process can make use of a

session of a given type. Traditionally, session types are equipped with some notion of

behavioural duality, in which the behaviour of the inhabitants of a type is in some sense

symmetric to the behaviour of the inhabitants of its dual (e.g. the output session is dual

to the input session, the choice session is dual to the branch session). In our setting a

notion of behavioural duality also arises naturally from the additive and multiplicative

nature of linear logic propositions.

Multiplicative conjunction ⊗ and implication � are dual in the sense that using a

session of one type is equivalent to implementing a session of the other (the type A ⊗ B

types processes that output a session of type A and proceeds as specified by B, while

the type A� B types processes that input a session of type A and proceed as specified

by B). The same applies to additive conjunction and disjunction (which correspond to

branching and choice, respectively). Namely, the type A ⊕ B types processes that may

choose either a left option of type A or a right option of type B respectively, while the

type A � B types processes that offer a choice between both a type A behaviour and

a type B behaviour. Composition of the two dual endpoints of an open session is then

logically represented by the cut rule, that matches a positive occurrence of a session type

with a negative occurrence of the same type, hiding the communication channel.

Throughout the following section we illustrate our type system with a simple example,

typically used to motivate session based process interactions (see, e.g. Gay and Hole

(2005)), involving a server that offers a buy and a quote operation and the respective

client.

3.1. Linear cut

In logic, the cut rule allows us to reason using lemmas. A proof of C (the theorem) is

well formed if it is obtained by the composition of a proof of C under the assumption of

A (the lemma) and a proof of A. In linear logic, the cut rule is written as

Γ; Δ � D : A Γ; Δ′, x:A � E : C

Γ; Δ,Δ′ � cut D (x. E) : C
cut.

In essence, cut allows us to compose two proofs – one providing A and the other one using

A to provide C . This principle of composition is captured in the process interpretation as

follows:
Γ; Δ � D � P :: x : A Γ; Δ′, x:A � E � Q :: z : C

Γ; Δ,Δ′ � cut D (x. E)� (νx)(P | Q) :: z : C
Tcut.

The process P implements session A along channel x, while process Q implements session

C along channel z, under the assumption that a session of type A is available on x.

Furthermore, since we follow a linear typing discipline, Q requires all the behaviour
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supplied by P along x and therefore composing the two processes must necessarily

restrict the scope of x to the two processes.

This identification of cut with typed composition is not arbitrary, and turns out to be

much deeper than it might first seem. The point of composing two processes is for them

to interact with each other. Generally, both P and Q may interact with the ‘external’

process environment (captured by Δ and Δ′, respectively), but the interesting interactions

are those in which both P and Q communicate with each other and evolve together to

some residual processes P ′ and Q′. All these interactions (both with the environment and

between the two processes) can be understood proof theoretically through the process

of cut elimination in a proof (called interchangeably cut reduction). Throughout this

development, we take the correspondence of principle cut reductions (when a right rule is

cut with the corresponding left rule) and process reductions as the guiding principle in our

design, in the same manner as the correspondence between proof reductions and λ-term

reductions guide the Curry–Howard isomorphism. The interpretation of the logical cut

as composition-plus-hiding over process behaviours was introduced by Abramsky (1993),

even if in a simpler setting of CSP style trace models.

3.2. Linear implication

Implication in linear logic, written A � B, is commonly understood as a proof trans-

formation process: provide me with exactly one proof of A and I shall make full use of it

to produce exactly one proof of B. Dually, using A� B requires us to exhibit a proof of

A, which then warrants the use of a proof of B. The rules for implication are:

Γ; Δ, x : A � D : B

Γ; Δ ��R (x.D) : A� B
�R

Γ; Δ1 � E1 : A Γ; Δ2, x : B � E2 : C

Γ; Δ1,Δ2, x : A� B ��L x E1 (x. E2) : C
�L.

We can also interpret the implication A� B as an object that inputs A and then produces

a B. Using such an object therefore requires an output of A which then allows for the use

of B. Thus, the process interpretation for implication is as input on the right and output

on the left, as follows:

Γ; Δ, x : A � D � P :: z : B

Γ; Δ ��R (x. D)� z(x).P :: z : A� B
T�R

Γ; Δ1 � E1 � P :: y : A Γ; Δ2, x : B � E2 � Q :: z : C

Γ; Δ1,Δ2, x : A� B ��L x E1 (x. E2)� (νy)x〈y〉.(P | Q) :: z : C
T�L.

Note how in the left rule, we output a fresh name y, on which the process P implements

the session behaviour A. The fresh output, combined with the context splitting ensures

that Q does not interfere with P in any way. Throughout our development we will restrict

ourselves to outputs of fresh names, in the style of Sangiorgi (1996).

As mentioned in the previous section, we can validate our correspondence by considering

the principle cut-elimination steps for linear implication, which are given below in proof

term form (⇒ stands for cut reduction and D̂x stands for the process that corresponds to
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proof term D, which depends on name x):

cut (�R (y. Dy)) (x.�L x E1 (x. E2x)) � (νx)((x(y). D̂x) | (νy) x〈y〉. (Êy
1 | Êz

2))
⇒ →
cut (cut E1 (y. Dy)) (x. E2x) � (νx)(νy)(D̂x | Êy

1 | Êz
2).

3.3. Multiplicative unit and conjunction

The multiplicative unit of intuitionistic linear logic, written 1, is a proposition that is

shown using no resources. Dually, we use 1 by just silently consuming it. The sequent

calculus rules for this connective are

Γ; · � 1R : 1
1R

Γ; Δ � D : C

Γ; Δ, x : 1 � 1L x D : C
1L.

The process interpretation for the multiplicative unit is the terminated session, or the

inactive process:

Γ; · � 1R� 0 :: z : 1
T1R

Γ; Δ � D � P : C

Γ; Δ, x : 1 � 1L x D � P : C
T1L.

The intuition is that we provide a session of type 1 with the terminated process (no further

ambient resources can be used), and ‘use it’ by simply erasing. This is one of the two cases

where no process reduction actually takes place in composition, since the inactive process

and the scope restriction are erased through structural congruence, not through reduction.

Multiplicative conjunction, written A ⊗ B, requires us to split our resources in order to

provide both an A and a B. Using such a proposition simply adds A and B to the context

Γ; Δ � D1 : A Γ; Δ′ � D2 : B

Γ; Δ,Δ′ � ⊗R D1 D2 : A ⊗ B
⊗R

Γ; Δ, y : A, x : B � E : C

Γ; Δ, x : A ⊗ B � ⊗L x (y.x. E) : C
⊗L.

The process interpretation for ⊗ is the exact behaviour dual of �. While the right rule

for � corresponds to input and the left rule corresponds to output, the right and left

rules for ⊗ correspond to output and input, respectively:

Γ; Δ � D1 � P :: y : A Γ; Δ′ � D2 � Q :: z : B

Γ; Δ,Δ′ � ⊗R D1 D2 � (νy)z〈y〉.(P | Q) :: z : A ⊗ B
T⊗R

Γ; Δ, y : A, x : B � E � P :: z : C

Γ; Δ, x : A ⊗ B � ⊗L x (y.x. E)� x(y).P :: z : C
T⊗L.

Notice how in the right rule for ⊗ we create a fresh name y, along which the session of

type A is offered by process P , while B is offered along the residual channel z, by process

Q. The left rule simply inputs along x, binding the input name to y (which offers session

A) in the continuation P , where x now offers B. The proof reductions that validate this

interpretation (as well as the corresponding process reductions) are given below:

cut (⊗R D1 D2) (x.⊗L x (y.x. Exy)) � (νx)(((νy) x〈y〉. (D̂y
1 | D̂x

2 )) | x(y). Êz)
⇒ →
cut D1 (y. cut D2 (x. Exy)) � (νx)(νy)(D̂y

1 | D̂x
2 | Êz).

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129514000218
Downloaded from https://www.cambridge.org/core. Imperial College London Library, on 08 Feb 2018 at 23:35:16, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129514000218
https://www.cambridge.org/core


Linear logic propositions as session types 375

3.3.1. Example. We now consider a simple example that illustrates the connectives

introduced this far. We model a client process that wishes to perform a ‘buy’ operation

on a remote server. The client does so by sending to the server a product name and a

credit card number, after which it receives back a receipt. From the client perspective, the

session protocol exposed by the server can be specified by the following type:

ServerProto � N � I � (N ⊗ 1).

We assume that, N and I are types representing shareable values such as strings and

integers. To simplify, we set N = I = 1 (an extension of this system with basic and

dependent data types is given in Toninho et al. (2011)). Assuming s to be the name of

the session channel along which the client and the server interact, the following process

implements the client:

BClntBodys � (νtea)s〈tea〉.(νcc)s〈cc〉.s(r).0

The process above specifies a client that buys tea from the server (we abstract away what

the client does with the receipt from the server). First it sends the identification of the

product to the server, then its credit card information and finally receives the appropriate

receipt. We then have that the following is derivable:

·; s : ServerProto � BClntBodys :: − : 1

We write − for an anonymous variable that does not appear in the typed process. This

is possible since the inactive process 0 is typed by x : 1 and does not make use of x. The

server code is as follows:

SrvBodys � s(pn).s(cn)(νrc)s〈rc〉.0

It is straightforward to see that ·; · � SrvBodys :: s : ServerProto is derivable. By

composing the two processes with a cut, we obtain the following:

·; · � (νs)(SrvBodys | BClntBodys) :: − : 1

In this simple example, we have only introduced processes that interact along a single

session. However, our system accommodates the full generality of binary session types (e.g.

a process interacting along multiple sessions is x : A � 1, y : A ⊗ 1 � y(w).(νk)x〈k〉.0 ::

− : 1).

3.4. Additive conjunction and disjunction

We now consider additive conjunction A&B and disjunction A⊕B. Additive conjunction

represents alternative availability of resources (i.e. we can provide A and B, but only one

of them).

Γ; Δ � D1 : A Γ; Δ � D2 : B

Γ; Δ � �R D1 D2 : A � B
�R

Γ; Δ, x : A � E : C

Γ; Δ, x : A � B � �L1 x (x. E) : C
�L1

Γ; Δ, x : B � E : C

Γ; Δ, x : A � B � �L2 x (x. E) : C
�L2.
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The process interpretation of � is a form of (binary) branching. A process implementing

a session of type A�B offers the alternative between a session of type A and one of type

B. Using such a session entails selecting the appropriate alternative (either inl or inr):

Γ;D � D1 � P :: z : A Γ; Δ � D2 � Q :: z : B

Γ; Δ � �R D1 D2 � z.case(P1, P2) :: z : A � B
T�R

Γ; Δ, x : A � E � Q :: z : C

Γ; Δ, x : A � B � �L1 x (x. E)� x.inl;Q :: z : C
T�L1

Γ; Δ, x : B � E � Q :: z : C

Γ; Δ, x : A � B � �L2 x (x. E)� x.inr;Q :: z : C
T�L2.

The proof and process reductions that validate this interpretation are as follows (for

the sake of presentation, we omit the proof reduction for the second left rules since they

are identical):

cut (�R D1 D2) (x.�L1 x (x. Ex)) � (νx)(x.case(D̂x
1 , D̂

x
2 ) | x.inl; Êz)

⇒ →
cut D1 (x. Ex) � (νx)(D̂x

1 | Êz).

Additive disjunction is the dual of additive conjunction. While additive conjunction

represents alternative availability of resources (i.e. both resources are available to the

client, and he chooses which to use), the additive disjunction A ⊕ B represents alternative

availability of resources in which the choice is made by the one supplying the resources,

that is, the client does not know a priori if it is A or B that is actually available (and

hence needs to branch on the two possibilities):

Γ; Δ � D : A

Γ; Δ � ⊕R1 D : A ⊕ B
⊕R1

Γ; Δ � D : B

Γ; Δ � ⊕R2 D : A ⊕ B
⊕R2

Γ; Δ, x : A � E1 : C Γ; Δ � x : B � E2 : C

Γ; Δ, x : A ⊕ B � ⊕L x (x. E1) (x. E2) : C
⊕L.

The process interpretation captures the duality mentioned above in a precise sense. The

right rules for ⊕ correspond to the left rules for additive conjunction (either a choice of

inl or inr, respectively), while the left rule for ⊕ corresponds to the right rule (a case

analysis):

Γ; Δ � D � P :: z : A

Γ; Δ � ⊕R1 D � z.inr;P :: z : A ⊕ B
T⊕R1

Γ; Δ � D � P :: z : B

Γ; Δ � ⊕R2 D � z.inr;P :: z : A ⊕ B
T⊕R2

Γ; Δ, x : A � E1 � Q1 :: z : C Γ; Δ, x : B � E2 � Q2 :: z : C

Γ; Δ, x : A ⊕ B � ⊕L x (x. E1) (x. E2)� x.case(Q1, Q2) :: z : C
T⊕L.

Similarly, we obtain the following proof and process reductions (we show only the

reductions for the first right rule, the reductions for the remaining one are identical):

cut (⊕R1 D) (x.⊕L x (x. E1x) (x. E2x)) � (νx)(x.inl; D̂x | x.case(Êz
1 , Ê

z
2))

⇒ →
cut D (x. E1x) � (νx)(D̂x | Êz

1).
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3.4.1. Extending the example. We can now easily extend our earlier example of the client

and server to include branching. Consider the following type for the server interface:

ServerProto2 � (N � I � (N ⊗ 1)) � (N � (I ⊗ 1)).

The type above models a server that offers the ‘buy’ operation from before, but also a

‘quote’ operation in which the client sends a product name and the server replies with the

price for the respective product. The ability to offer multiple services is modelled with the

additive conjunction. The client code from before can be easily extended by first choosing

the appropriate operation:

BClntBody2s � s.inl; (νtea)s〈tea〉.(νcc)s〈cc〉.s(r).0

The server code is now extended with the appropriate communication steps:

SrvBody2s � s.case(s(pn).s(cn)(νrc)s〈rc〉.0, s(pn).(νpr)s〈pr〉.0)

It is straightforward to see that both the server and client processes have the appropriate

types, and we thus obtain the following composed system through an instance of cut:

·; · � SrvBody2s :: s : ServerProto2 ·; s : ServerProto2 � BClntBody2s :: − : 1

·; · � (νs)(SrvBody2s | BClntBody2s) :: − : 1

3.5. Exponential

The linear logic exponential !A enables a form of controlled weakening and contraction.

A proposition !A provides an arbitrary number of copies of the resource A, including 0.

To prove !A, the usage of linear resources is therefore disallowed (otherwise this would

limit the number of times A can be used):

Γ; · � D : A

Γ; · � !R D : !A
!R

Using a proof of !A simply moves the proposition A to the unrestricted context, accurately

capturing the fact that it can be used arbitrarily often. However, to actually be able to

make use of A, one must explicitly copy it to the linear context (this rule is hence called

copy):

Γ, u : A; Δ � D : C

Γ; Δ, x : !A � !L x (u. D) : C
!L

Γ, u : A; Δ, y : A � D : C

Γ, u : A; Δ � copy u (y. D) : C
copy

The process interpretation of the exponential is a slightly more subtle, albeit not surprising.

Given that !A denotes the ability to offer A arbitrarily often, a process that implements

this behaviour consists of a replicated process implementing a session of type A

Γ; · � D � P :: y : A

Γ; · � !R D � !z(y).P :: z : !A
T !R

We consider only a guarded form of replicated inputs. The process in the above rule waits

for an input along z, after which it will spawn a copy of P that will offer the appropriate

session along the channel that was initially input. The left process rule for ! is silent, since
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it does not actually make use of the replicated process. The actual action takes place in

the copy rule, where the replicated input is matched by a corresponding (fresh) output:

Γ, u : A; Δ � E � Q :: z : C

Γ; Δ, x : !A � !L x E � Q{x/u} :: z : C
T !L

Γ, u : A; Δ, y : A � D � P :: z : C

Γ, u : A; Δ � copy u (y. D)� (νy)u〈y〉.P :: z : C
Tcopy

The use of unrestricted hypotheses requires an additional cut principle, in which the

cut formula is added to the unrestricted context (and the linear context is empty in the

first premise)

Γ; · � D : A Γ, u : A; Δ � E : C

Γ; Δ � cut! D (u. E) : C
cut!

Just as linear cut corresponds to composition of linear resources, the exponential cut

allows for composition of unrestricted resources

Γ; · � D � P :: y : A Γ, u : A; Δ � E � Q :: z : C

Γ; Δ � cut! D (u. E)� (νu)(!u(y).P | Q) :: z : C
cut!.

Similar to the case for 1, the principle (linear) cut for ! does not map to a process

reduction. Proof theoretically, such a cut reduces to an instance of cut!, for which the

following reduction is obtained, whenever an instance of copy is reached:

cut! D (u. copy u (y. Euy)) � (νu)((!u(y). D̂y) | (νy) u〈y〉. Êz)
⇒ →
cut D (y. cut! D (u. Euy)) � (νy)(D̂y | (νu)((!u(y). D̂y) | Êz)).

3.5.1. Replicating the example. We now elaborate on our running example, in order to

illustrate sharing and session initiation. Consider now a different client, that picks the

‘quote’ rather than the ‘buy’ operation, and the corresponding composed system.

QClntBodys � s.inr; (νcof)s〈cof〉.s(pr).0
QSimple � (νs)(SrvBody2s | QClntBodys).

We have the typings ·; s:ServerProto2 � QClntBodys :: −:1 and ·; · � QSimple :: −:1.

In these examples, there is a single installed pair client-server, where the session is already

initiated, and only known to the two partners. To illustrate sharing, we now consider a

replicated server. Such a replicated server is able to spawn a fresh session instance

for each initial invocation, each one conforming to the general behaviour specified by

ServerProto2, and can be typed by !ServerProto2. Correspondingly, clients must initially

invoke the replicated server to instantiate a new session (cf. the Tcopy rule).

QClient � (νs)c〈s〉.QClntBodys
BClient � (νs)c〈s〉.BClntBody2s
Server � !c(s).SrvBody2s
SharSys � (νc)(Server | BClient | QClient)

For the shared server, by T !R, we type ·; · � Server :: c:!ServerProto2. We also

have, for the clients, by Tcopy the typings c:ServerProto2 ; · � BClient :: −:1 and
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c:ServerProto2 ; · � QClient :: −:1. By T!L and Tcut we obtain the intended typing for

the whole system: ·; · � SharSys :: − : 1. Notice how the session instantiation protocol is

naturally explained by the logical interpretation of the ! operator.

3.6. Identity

In proof theory, the identity theorem for a sequent calculus presentation of logic entails

the internal completeness of logic: one can always prove an assumed proposition. Just

as the computational content of cut elimination corresponds to process reduction, the

computational content of the identity theorem yields a form of expansion.

Proposition 3.1. For any type A and distinct names x, y, there is a process idA(x, y) and a

cut-free derivation D such that ·; x : A � D � idA(x, y) :: y : A.

The identity process idA(x, y), containing exactly the free names x, y, implements a

synchronous mediator that carries out the communication protocol specified by the

type A between the two channels x and y. To clarify, we analyse the interpretation of the

sequent A ⊗ B � B ⊗ A as follows:

x : A ⊗ B � F � x(z).(νn)y〈n〉.(idB(x, n) | idA(z, y)) :: y : B ⊗ A

where F = ⊗L x (z.x.⊗R D E), D � idB(x, n) and E � idA(z, y). The process given above

coerces a session of type A ⊗ B on channel x to one of type B ⊗ A on y by first inputting

a session of type A (bound to z) and afterwards sending on y a session of type B (carried

out by coercing the continuation of x to n), after which it progresses with a session of

type A along y (by coercing the continuation of z to y).

3.7. Summary

In this section, we summarize the contributions of this section. Specifically, we present

here the complete type system πDILL that arises from our interpretation of intuitionistic

linear logic, which for the sake of presentation we developed incrementally throughout

this section. The rules are exactly those presented before, obtained by erasing the sequent

calculus proof terms, and are given in Figure 2 (where T stands for z : C).

The extraction � of well-typed processes from sequent calculus proof terms is sum-

marized in Figure 3. Extraction is unique up to structural congruence, since typing is by

definition closed under ≡.

Finally, we summarize the several proof conversions and their correspondent process re-

ductions or equivalences. As detailed throughout the previous sections, process reductions

correspond to computational proof conversions (Figure 4). The structural conversions in

Figure 5 correspond to structural equivalences in the π-calculus, since they just change

the order of cuts, e.g. (cut/−/cut1) translates to

(νx)(D̂x | (νy)(Êy | F̂z)) ≡ (νy)((νx)(D̂x | Êy) | F̂z).

In addition, we have two special conversions. Among those, (cut/1R/1L) is not needed

in order to simulate the π-calculus reduction, while (cut/!R/!L) is. In cut-elimination
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Γ; Δ � P :: T

Γ; Δ, x:1 � P :: T
(T1L)

Γ; · � 0 :: x:1
(T1R)

Γ; Δ, y:A, x:B � P :: T

Γ; Δ, x:A ⊗ B � x(y).P :: T
(T⊗L)

Γ; Δ � P :: y:A Γ; Δ′ � Q :: x:B

Γ; Δ,Δ′ � (νy)x〈y〉.(P | Q) :: x:A ⊗ B
(T⊗R)

Γ; Δ � P :: y:A Γ; Δ′, x:B � Q :: T

Γ; Δ,Δ′, x:A� B � (νy)x〈y〉.(P | Q) :: T
(T�L)

Γ; Δ, y:A � P :: x:B

Γ; Δ � x(y).P :: x:A� B
(T�R)

Γ; Δ � P :: x:A Γ; Δ′, x:A � Q :: T

Γ; Δ,Δ′ � (νx)(P | Q) :: T
(Tcut)

Γ; · � P :: y:A Γ, u:A; Δ � Q :: T

Γ; Δ � (νu)(!u(y).P | Q) :: T
(Tcut!)

Γ, u:A; Δ, y:A � P :: T

Γ, u:A; Δ � (νy)u〈y〉.P :: T
(Tcopy)

Γ, u:A; Δ � P :: T

Γ; Δ, x:!A � P {x/u} :: T
(T!L)

Γ; · � Q :: y:A

Γ; · � !x(y).Q :: x:!A
(T!R)

Γ; Δ, x:A � P :: T Γ; Δ, x:B � Q :: T

Γ; Δ, x:A ⊕ B � x.case(P ,Q) :: T
(T⊕L)

Γ; Δ, x:B � P :: T

Γ; Δ, x:A � B � x.inr;P :: T
(T�L2)

Γ; Δ � P :: x:A Γ; Δ � Q :: x:B

Γ; Δ � x.case(P ,Q) :: x:A � B
(T�R)

Γ; Δ, x:A � P :: T

Γ; Δ, x:A � B � x.inl;P :: T
(T�L1)

Γ; Δ � P :: x:A

Γ; Δ � x.inl;P :: x:A ⊕ B
(T⊕R1)

Γ; Δ � P :: x:B

Γ; Δ � x.inr;P :: x:A ⊕ B
(T⊕R2).

Fig. 2. The type system πDILL.

D � D̂z

1R � 0

1L x D � D̂z

⊗R D E � (νy) z〈y〉. (D̂y | Êz)

⊗L x (y.x. D) � x(y). D̂z

�R (y. D) � z(y). D̂z

�L x D (x. E) � (νy) x〈y〉. (D̂y | Êz)

�R D E � z. case(D̂z , Êz)

�L1 x (x. D) � x. inl; D̂z

�L2 x (x. E) � x. inr; Êz

D � D̂z

⊕R1 D � z.inl; D̂z

⊕R2 E � z.inr; Êz

⊕L x (x. D) (x. E) � x.case(D̂z , Êz)

cut D (x. E) � (νx)(D̂x | Êz)

!R D � !z(y). D̂y

!L x (u. D) � D̂z{x/u}
copy u (y. D) � (νy) u〈y〉. D̂z

cut! D (u. E) � (νu)((!u(y). D̂y) | Êz)

Fig. 3. Proof D extracts to process D̂z .

procedures, these are always used from left to right. Here, they are listed as equivalences

because the corresponding π-calculus terms are structurally congruent. The root cause

for this is that the rules 1L and !L are silent: the extracted terms in the premise and

conclusion are the same, modulo renaming. The structural conversions in Figure 7 push
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cut (⊗R D1 D2) (x.⊗L x (y.x. Exy)) � (νx)(((νy) x〈y〉. (D̂y
1 | D̂x

2 )) | x(y). Êz)
⇒ →
cut D1 (y. cut D2 (x. Exy)) � (νx)(νy)(D̂y

1 | D̂x
2 | Êz)

cut (�R (y. Dy)) (x.�L x E1 (x. E2x)) � (νx)((x(y). D̂x) | (νy) x〈y〉. (Êy
1 | Êz

2 ))
⇒ →
cut (cut E1 (y. Dy)) (x. E2x) � (νx)(νy)(D̂x | Êy

1 | Êz
2 )

cut (�R D1 D2) (x.�Li x (x. Ex)) � (νx)(x.case(D̂x
1 , D̂

x
2 ) | x.inl; Êz)

⇒ →
cut Di (x. Ex) � (νx)(D̂x

i | Êz)

cut (⊕Ri D) (x.⊕L x (x. E1x) (x. E2x)) � (νx)(x.inl; D̂x | x.case(Êz
1 , Ê

z
2 ))

⇒ →
cut D (x. Eix) � (νx)(D̂x | Êz

i )

cut! D (u. copy u (y. Euy)) � (νu)((!u(y). D̂y) | (νy) u〈y〉. Êz)
⇒ →
cut D (y. cut! D (u. Euy)) � (νy)(D̂y | (νu)((!u(y). D̂y) | Êz))

Fig. 4. Computational conversions.

(cut/−/cut1) cut D (x. cut Ex (y. Fy)) ≡ cut (cut D (x. Ex)) (y. Fy)

(cut/−/cut2) cut D (x. cut E (y. Fxy)) ≡ cut E (y. cut D (x. Fxy))

(cut/cut!/−) cut (cut! D (u. Eu)) (x. Fx) ≡ cut! D (u. cut Eu (x. Fx))

(cut/−/cut!) cut D (x. cut! E (u. Fxu)) ≡ cut! E (u. cut D (x. Fxu))

(cut/1R/1L) cut 1R (x. 1L x D) ≡ D

(cut/!R/!L) cut (!R D) (x. !L x (u. E)) ≡ cut! D (u. E)

Fig. 5. Structural conversions (I): cut conversions.

(cut/1L/−) cut (1L y D) (x. Fx) ≡ 1L y (cut D (x. Fx))

(cut/!L/−) cut (!L y (u. Du)) (x. Fx) ≡ !L y (u. cut Du (x. Fx))

(cut!/−/1L) cut! D (u. 1L y Eu) ≡ 1L y (cut! D (u. Eu))

(cut!/−/!L) cut! D (u. !L y (v. Euv)) ≡ !L y (v. cut! D (u. Euv))

Fig. 6. Structural conversions (II): commuting conversions.

cut! into the derivation. From a proof theoretic perspective, since cut! cuts a persistent

variable u, cut! may be duplicated or erased. On the π-calculus side, these no longer

correspond to structural congruences, but, quite remarkably, to behavioural equivalences,

derivable from known properties of typed processes, the (sharpened) replication theorems

(Sangiorgi and Walker 2001). These hold in our system, due to our interpretation of !

types. Our operational correspondence results also depend on six commuting conversions,

four in Figure 6 plus two symmetric versions. The commuting conversions push a cut up

(or inside) the 1L and !L rules. During the usual cut-elimination procedures, these are used

from left to right. In the correspondence with the sequent calculus, the situation is more

complex. Because the 1L and !L rules do not affect the extracted term, cuts have to be

permuted with these two rules in order to simulate π-calculus reduction. From the process

calculus perspective, such conversions correspond to identity. There is a second group of

commuting conversions (not shown), not necessary for our current development. Those

do not correspond to structural congruence nor to strong bisimilarities on π-calculus,

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129514000218
Downloaded from https://www.cambridge.org/core. Imperial College London Library, on 08 Feb 2018 at 23:35:16, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129514000218
https://www.cambridge.org/core


L. Caires, F. Pfenning and B. Toninho 382

cut! D (u. cut Eu (y. Fuy)) � (νu)(!u(y).D̂y | (νy)(Êy | F̂z))
� �
cut (cut! D (u. Eu)) (y. cut! D (u. Fuy)) � (νy)((νu)(!u(y).D̂y | Êy) |

(νu)(!u(y).D̂y | F̂z) )

cut! D (u. cut! Eu (v. Fuv)) � (νu)(!u(y).D̂y | (νv)(!v(y).Êy | F̂z))
� �
cut! (cut! D (u. Eu)) (v. cut! D (u. Fuv)) � (νv)((!v(y).(νu)(!u(y).D̂y | Êy)) |

(νu)(!u(y).D̂y | F̂z) )

cut! (cut! D (u. Eu)) (v. Fv) � (νv)(!v(y).(νu)(!u(y).D̂y | Êy)) | Fz)
� �
cut! D (u. cut! Eu (v. Fv)) � (νu)(!u(y).D̂y | (νv)(!v(y).Êy | F̂z))

cut! D (u. E) � (νu)(!u(y).D̂y | Êz)

� �
E � Êz (for u 	∈ FN(Êz))

Fig. 7. Structural conversions (III): cut! conversions.

as they may not preserve process behaviour in the general untyped setting, since they

promote an action prefix from a subexpression to the top level. Such equations denote

behavioural identities under a natural definition of typed observational congruence for

our calculus (Pérez et al. 2012).

Definition 3.2 (relations on derivations induced by conversions). (1) ≡ : the least congruence

on derivations generated by the structural conversions (I) and the commuting conversions

(II); (2) �s: the least congruence on derivations generated by all structural conversions

(I-III). We extend �s to processes as the congruence generated by the process equations

on the right. (3) �⇒: the reduction on derivations obtained by orienting all conversions in

the direction shown, from left to right or top to bottom.

4. Computational correspondence, progress and preservation

We now present the results stating the key properties of our type system and logical

interpretation. Theorem 4.1, states the existence of a simulation between reductions in the

typed π-calculus and proof conversions / reductions, expressing a strong form of subject

reduction for our type system. The proof relies on several auxiliary lemmas that relate

process reduction with proof reduction at a particular type. The lemmas themselves are

all very similar, so we only present the lemmas for ⊗ and !. The remaining lemmas, and

their proofs, are detailed in Appendix A.

Lemma 4.1. Assume

1. Γ; Δ1 � D1 � P1 :: x:C1 ⊗ C2 with P1

(νy)x〈y〉
→ P ′

1;

2. Γ; Δ2, x:C1 ⊗ C2 � D2 � Q1 :: z:C with Q1

x(y)
→ Q′

1.
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Then,

1. cut D1(x. D2) ≡⇒≡ D for some D;

2. Γ; Δ1,Δ2 � D � Q2 :: z : C for some Q2 ≡ (νx)(P ′
1 | Q′

1).

Proof. See Appendix A.6.

Lemma 4.2. Assume

1. Γ; Δ1 � D1 � P1 :: x:!A with P1

x(y)
→ P ′

1;

2. Γ; Δ2, x:!A � D2 � Q1 :: z:C with Q1

(νy)x〈y〉
→ Q′

1.

Then,

1. cut D1(x. D2) ≡⇒≡ D for some D;

2. Γ; Δ1,Δ2 � D � Q2 :: z : C for some Q2 ≡ (νx)(νy)(P ′
1 | Q′

1).

Proof. See Appendix A.8.

The key idea of the lemmas above is that by relating process reduction with proof

reduction at a given type we can conclude a strong form of type preservation, as follows.

Theorem 4.1. Let Γ; Δ � D � P :: z:A and P → Q. Then there is an E such that

D ≡⇒≡ E and Γ; Δ � E � Q :: z:A.

Proof. See Appendix A.1.

Theorems 4.2 and 4.3 state that any proof reduction or conversion also corresponds to

either a process equivalence or to a reduction step on the π-calculus.

Theorem 4.2. Let Γ; Δ � D � P :: z:A and D �s E. Then there is a Q where P �s Q and

Γ; Δ � E � Q :: z:A.

Proof. Following the commuting squares relating ≡, � and � in Figures 5–7.

Theorem 4.3. Let Γ; Δ � D � P :: z:A and D ⇒ E. Then there is a Q such that P → Q

and Γ; Δ� E � Q :: z:A.

Proof. Following the commuting squares relating ⇒, � and → in Figure 4.

Notice that the simulation of π-calculus reductions by proof term conversions provided by

Theorem 4.1, and from which subject reduction follows, is very tight indeed, as reduction

is simulated up to structural congruence, which is a very fine equivalence on processes. To

that end, structural conversions need to be applied symmetrically (as equations), unlike

in a standard proof of cut elimination, where they are usually considered as directed

computational steps. Under the assumptions of Theorem 4.1, we can also prove that there

is an E such that D ⇒ E and Γ; Δ � E � R :: z:A, for Q �s R. Thus, even if one

considers the proof conversions as directed reduction rules ( �⇒), we still obtain a sound

simulation up to typed strong behavioural congruence.
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We now state type preservation and progress results for our type system. The subject

reduction property (Theorem 4.4) directly follows from Theorem 4.1.

Theorem 4.4 (subject reduction). If Γ;Δ �P ::z:A and P →Q then Γ;Δ �Q ::z:A.

Together with direct consequences of linear typing, Theorem 4.4 ensures session fidelity.

Our type discipline also enforces a global progress property. For any P , define

live(P ) iff P ≡ (νn)(π.Q | R) for some π.Q, R, n

where π.Q is a non-replicated guarded process. We first establish the following contextual

progress property, from which Theorem 4.5 follows as a corollary. Lemma 4.3 relies on an

inversion lemma that relates types with action labels (Lemma A.1) and on a lemma that

characterizes the typing of non-live processes (Lemma A.11). Note that the restriction on

the contexts and on the type for the distinguished channel x in Theorem 4.5 is without

loss of generality since using cut and cut! we can compose arbitrary well-typed processes

together and x need not occur in P due to rule 1R.

Lemma 4.3. Let Γ; Δ � D � P :: z:C . If live(P ) then there is a Q such that either

1. P → Q, or

2. P
α→ Q for α where s(α) ∈ (z,Γ,Δ). More: if C = !A for some A, then s(α) 	= z.

Proof. See Appendix A.12

Theorem 4.5 (progress). If ·; · � D � P :: x:1 then either P is terminated, P is a

composition of replicated servers or there exists Q s.t P → Q.

Proof. See Appendix A.2

5. On duality, and a classical linear logic interpretation

Although we have based our development on intuitionistic linear logic, the linear logic

interpretation of session types also naturally extends to the classical setting. In this

section, we briefly discuss such an alternative system, leaving a more comprehensive

analysis for future investigation. The main characteristic of the classical interpretation is

that it supports a full duality on the type structure. In traditional session type systems,

e.g. Gay and Hole (2005), a duality relation is defined on session types, in such a way that

every session type S has a unique dual S , given by

end � end

T?.S � T !.S T !.S � T?.S

S ⊕ T � S � T S � T � S ⊕ T .

In our case, this would correspond to

1 � 1

T � S � T ⊗ S T ⊗ S � T � S

S ⊕ T � S � T S � T � S ⊕ T .

This duality relation does not talk about the type of shared channels. In traditional session

types, the type structure is stratified, so that one distinguishes between ‘session types’ and
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‘standard types’, the latter intended to type (shared) session initiation channels. In our

case, shared channels are naturally typed by the exponential !A, without any stratification

on the type structure whatsoever. Nevertheless, in our system a related notion of polarity

on types is already implicitly reflected by the left/right duality of intuitionistic sequents,

in the sense that we can move all channels to the left-hand side of the sequent.

Proposition 5.1. Let A be an exponential-free type.

Then Γ; Δ � P :: x:A implies Γ; Δ, x:A � P :: −:1.

Proof. By induction on the structure of the given proof (see Appendix A.4).

So, if we have P :: x:A and Q :: x:A (where A has no occurrence of ‘!’) we can compose

P and Q as (νx)(P | Q) :: −:1 using the above proposition and the cut rule.

A key distinctive aspects of our intuitionistic interpretation is the natural reading

it offers of session typed processes as systems that implement a provided session (or

service) based on a set of required sessions (or services). Another essential aspect is the

asymmetry it introduces in the treatment of the exponential !A, whose ‘dual’ behaviour,

in the sense discussed above, is not available in the type structure (interestingly, like in

traditional session types). Intuitively, while the type of a shared server located at name s

and providing protocols of type A is !A, and expresses the capability to receive (at s) an

unbounded number of concurrent incoming service request messages, the dual behaviour

should express the capability to send (to s) an unbounded number of concurrent incoming

service request messages for a local endpoint satisfying the protocol A.

A full duality in the context of the interpretation just sketched may be recovered by

resorting to an interpretation in CLL, which assigns a dual type to every session type, in

particular to !A, by introducing the ‘why-not’ exponential connective ?A. We may then

consider the following type structure

Definition 5.2 (C-types). C-types (A,B, C) are given by

A,B ::= ⊥ | 1 | !A | ?A | A ⊗ B | A � B | A ⊕ B | A � B.

The input session type A� B is here modelled by A � B, following the interpretation of

the linear implication in CLL. The interpretation of A � B poses no problems: it types

a session that inputs a channel of type A, and continues as B. It should be clear that

the issues of the apparent asymmetry of A � B can be explained as we did for A ⊗ B in

Section 3.6. Moreover, we may define a full duality on C-types, which exactly corresponds

to the negation operator of CLL (·)⊥.

1 = ⊥ ⊥ = 1

!A = ?A ?A = !A

A ⊗ B = A � B A � B = A ⊗ B

A ⊕ B = A � B A � B = A ⊕ B.

To be absolutely faithful to the classical interpretation, and without loss of expressiveness

with respect to traditional session types, we split the ‘session termination’ type end

into two different types: 1 and ⊥, the units for A ⊗ B and A � B. These may be

understood as representing the session closure behaviours implemented by matching
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0 � x:1; Θ
(T1)

P � Δ; Θ

P � x:⊥,Δ; Θ
(T⊥)

P � Δ, y:A, x:B; Θ

x(y).P � Δ, x:A � B; Θ
(T�)

P � Δ, y:A; Θ Q � Δ′, x:B; Θ

(νy)x〈y〉.(P | Q) � Δ,Δ′, x:A ⊗ B; Θ
(T⊗)

P � Δ, x:A; Θ Q � Δ′, x:A; Θ

(νx)(P | Q) � Δ,Δ′; Θ
(Tcut)

P � y:A; Θ Q � Δ; u:A,Θ

(νu)(!u(y).P | Q) � Δ; Θ
(Tcut?)

P � Δ, y:A; u:A,Θ

(νy)u〈y〉.P � Δ; u:A,Θ
(Tcopy)

P � Δ; u:A,Θ

P {x/u} � Δ, x:?A; Θ
(T?)

Q � y:A; Θ

!x(y).Q � x:!A; Θ
(T!)

P � Δ, x:A; Θ

x.inl;P � Δ, x:A ⊕ B; Θ
(T⊕1)

P � Δ, x:B; Θ

� x.inr;P � Δ, x:A ⊕ B; Θ
(T⊕2)

P � Δ, x:A; Θ Q � Δ, x:B; Θ

x.case(P ,Q) � Δ, x:A � B; Θ
(T�)

Fig. 8. The type system πCLL.

endpoints. Alternatively, we could postulate 1 = 1 (cf. end = end) which would lead to a

slight deviation from CLL and validate the nullary version of the mix rule (Girard 1987),

making � · derivable. This, and a further discussion of the general mix rule, are beyond

the scope of this paper.

C-types may be assigned to π-calculus processes by following the key ideas of our

interpretation, by a type system πCLL that corresponds this time (exactly) to Andreoli’s

dyadic system (Andreoli 1992). We present πCLL in Figure 8.

Typing judgments in πCLL have the (one sided) form P � Δ; Θ, where P is a π-calculus

process, Δ is a linear context, and Θ is a context with declarations u:A which may be

read as u:?A in the original one-sided formulation of CLL. A remarkable consequence of

the classical discipline is the loss of the locality property (Merro and Sangiorgi 2004) on

shared channels, considered in general the most sensible for distributed implementations

of shared channels. In the π-calculus, locality enforces that processes may not receive

messages on previously received channel names, that is, only the output capability of

a communication channel may be delegated in a distributed communication. In a very

informal sense, non-locality means that a receiver may create a local stub for receiving a

message on a shared channel created elsewhere, possibly causing undesirable interference.

In πCLL, a well-typed process may input a channel of type ?A, as the type ?A� B now

becomes expressible, thus breaking locality on shared channels, a behaviour excluded by

the intuitionistic discipline.

We give an example of such a process. Let

C � (νx)(x(y).!y(z).Px | (νq)x〈q〉.(Qq | Rx))
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where, Qq � ((νk1)q〈k1〉.Q1 | (νk2)q〈k2〉.Q2). Notice that C contains the subsystem

Sx � x(y).!y(z).Px.

The process Sx cannot be typed in πDILL. We may interpret Sx as a generator of remotely

located shared server. Sx starts off by receiving a fresh channel name n from the sender

client (on x) and then instantiates a replicated (receiver) shared server of the form !n(z).Pn.

We illustrate the type derivation for subprocess Sx

1. Pv � z:A; v:G (assumption, for some Pv)

2. !y(z).Pv � y:!A; v:G (T! from 1)

3. !y(z).Px � y:!A, x:?G; · (T? from 2)

4. x(y).!y(z).Px � x:!A�?G (T� from 3, notice that !A�?G =?A�?G)

On the other hand, the subprocess (νq)x〈q〉.(Qq | Rx) sends on x a fresh channel of type

?A, in which two (in this case) different requests will be issued to the remotely allocated

server (see the definition of Qq above).

Notice that most standard session type systems for the π-calculus, such as Gay and

Hole (2005), also do not enforce locality of shared channels, so this feature of πCLL

is not to be seen as a deviation from traditional session type systems. However, this

non-local behaviour of shared channel names is not expressible in πDILL; we consider

quite remarkable how moving from a classical to an intuitionistic session typing discipline

(from a logical point of view), enforces the locality property, a behavioural concept related

to high level properties of distributed communicating systems.

6. Further discussion

We further compare our linear type system for (finite) session types with more familiar

session type systems (Kobayashi et al. 1996; Honda et al. 1998; Gay and Hole 2005).

Arguably, apart from subtyping issues, which are out of the scope of this work, our type

system is closely related to the one in Gay and Hole (2005), which presented the first

session type system for the pure π-calculus.

An immediate observation is that in our case types are freely generated, while

traditionally there is a stratification of types in ‘session’ and ‘standard types’ (the later

corresponding to our !A types, typing session initiation channels). In our interpretation,

a session may either terminate (1), or become a replicated server (!A), which reveals

a more general and uniform type structure than the ones proposed in Gay and Hole

(2005), Honda et al. (1998) and Kobayashi et al. (1996) which cannot express a type

such as A � !S , which describes a process than inputs a session of type A and then

behaves as a replicated server of type !S . The possibility of finalizing a linear session

with a replicated behaviour was also considered in Giunti and Vasconcelos (2010), as an

addition to standard session types. In our setting, this arises naturally by accepting what

the linear type structure offers us, for free.

Channel ‘polarities’ are captured in our system by the left-right distinction of sequents,

rather than by annotations on channels (cf. x+, x−). Session and linear type systems

(Kobayashi et al. 1996; Honda et al. 1998; Gay and Hole 2005) also include a typing rule
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for output of the form

Γ; Δ � P :: x:U

Γ; Δ, y:S � x〈y〉.P :: x:S!.U
(T-Out)

which in our system would correspond (by analogy) to

Γ; Δ � P :: x:C

Γ; Δ, y:A � x〈y〉.P :: x:A ⊗ C

In our case, an analogous rule may be derived by ⊗R and the copycat construction,

where a ‘proxy’ for the free name y, bidirectionally copying behaviour A, is linked to z.

Γ; Δ � P :: x:C

Γ; Δ, y:A � (νz)x〈z〉.(idA(y, z) | P ) :: x:A ⊗ C
.

The copycat idA(y, z) plays the role of the ‘link’ processes of Boreale (1998) and

Sangiorgi (1996). Notice that in our case the definition of the ‘link’ is obtained for free

by the interpretation of identity axioms (Proposition 3.1). The two processes depicted

above can be shown to be behaviourally equivalent, under an adequate notion of typed

observational equivalence, along the lines of Boreale (1998).

Concerning parallel composition of processes, usually two rules can be found, one rule

corresponding to the interconnection of two dual session endpoints (implemented by a

name restriction rule), and other rule corresponding to independent parallel composition,

also present in most linear type systems for mobile processes. In our case, the cut rule

combines both principles, and the following rule is derivable:

Γ; Δ � P :: −:1 Γ; Δ′ � Q :: T

Γ; Δ,Δ′ � P | Q :: T
(comp).

A consequence of the logical nature of our composition principles cut and cut! is that

our typing discipline intrinsically enforces global progress, unlike with traditional session

type systems (Honda et al. 1998; Gay and Hole 2005), which do not ensure progress in

general, as we achieve in this work. The session composition rule found in such systems

does not take into account the causal dependency between different sessions, and validates

the connection of two session endpoints just by requiring duality of their polarity. For

example, the system of Gay and Hole (2005) contains a type rule of the form

Γ, x+:S, x−:S ′ � P S⊥S ′

Γ � (νx:S)P

where S⊥S ′ expresses the duality of the session types S and S ′. This rule ensures that only

dual protocols are connected to form a session, but of course does not prevent causality

cycles from appearing in systems with multiple open sessions. Techniques to ensure

progress in traditional session type systems, typically building on extraneous devices such

as well-founded orderings on events, have been proposed by several authors (Kobayashi

1998; Dezani-Ciancaglini et al. 2008). We note that our formulation of progress is similar

to that of Carbone and Debois (2010), which uses reduction contexts and live channels,

making the reasoning more complex than in our formulation.
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A minor difference of our system and those typically presented in the literature is

the inclusion of recursive types, which is largely orthogonal to our development. Adding

recursive types to our system is straightforward, but similarly to what happens in λ-calculi

the connections with logic disappear. The study of inductive and co-inductive session

types can re-establish this connection and is a goal of future work.

We find it important to identify systems of session types such as the one we have

identified, in which progress (deadlock-freedom) is an essential meta-theoretical property,

as is the case of basic type systems for foundational programming languages, in particular,

for typed λ-calculi. Moreover, we have not been able to find an example of an interesting

session typed system not typeable in our framework. A simple example of a system

typeable in Gay and Hole (2005) is

Γ � (νx)(νy)(x〈z〉.y〈s〉.0 | x(w).y(v).0).

This process progresses by the coordination of two different sessions, one on x and another

on y, terminating (reducing to 0) in two communication steps. Likewise, the type system

in Gay and Hole (2005) also types the process

Γ � (νx)(νy)(x〈z〉.y〈s〉.0 | y(v).x(w).0)

which is stuck (standard type systems for session types do not satisfy general progress).

Our type system does not type any of these two examples, as the global progress property

it enforces relies on forbidding certain forms of inter-session causal dependence, that

the first example above fails to comply with. Essentially, note that sessions x and y are

globally coordinated as if they were the same single session nxy , cf. the following (typeable

in πDILL) process:

Γ � (νnxy)(nxy〈z〉.nxy〈s〉.0 | nxy(w).nxy(v).0).

Processes typeable in our system satisfy such inter-session causal independence property,

which in turn enforces global progress, as stated in Theorem 4.5. In Pérez et al. (2012),

we discuss these interesting issues in the context of typed observational equivalences for

our session typed language.

The work reported in this paper started a research program in which structured

concurrency communication is approached from several perspectives, always based on

canonical logical principles. For example, in Toninho et al. (2011) we have shown how

to specify rich interface contracts with dependent types, while in Pfenning et al. (2011)

we have introduced proof-carrying code with digital certificates in our basic framework,

always based on purely logical constructions.

There are not many studies comparing the expressiveness of session type systems, and

that also clearly seems a challenging research direction. An important instrument towards

that goal is, we believe, a better understanding of observational equivalences under the

session type discipline.
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7. Related work and conclusion

We have established a tight correspondence between a session-based type discipline for

the π-calculus and intuitionistic linear logic: typing rules correspond to dual intuitionistic

linear sequent calculus proof rules, moreover process reduction may be simulated in a

type preserving way by proof conversions and reductions, and vice versa. As a result,

we obtain the subject reduction property, from which session fidelity follows. Our basic

typing discipline intrinsically ensures global progress, beyond the restricted ‘progress on a

single session’ property obtained in pure session type systems.

Other works have investigated π-calculus models of linear logic proofs. Bellin and

Scott (1994) establish a mapping from linear logic proofs to a variant of the π-calculus

and some connections between proof reduction and π-calculus reduction. However, this

mapping results in complex encodings, so that their system could hardly be considered a

type assignment system for processes, which has been achieved in this work. Moreover,

no relation between behavioural descriptions and logical propositions was identified, as

put by the authors: ‘[our encodings] have less to do with logic than one might think, they

are essentially only about the abstract pluggings in proof structures’.

A realizability interpretation for a linear logic augmented with temporal modalities (cf.

Hennessy–Milner) was proposed in Beffara (2006), also based on a π-calculus variant.

A recent related development is Honda and Laurent (2010), where a correspondence

between (independently formulated) proof nets and an IO-typed π-calculus is established.

In our case, the type system and the logic proof system are exactly the same, and we

reveal a direct connection between pure linear logic propositions and behavioural types

on π-calculus, that covers all (both shared and linear) features of finite session types. A

development of session types as linear process types (in the sense of Kobayashi et al.

(1996)) is presented in Giunti and Vasconcelos (2010), where linearity and sharing are

expressed by special annotations, unrelated to a linear logic interpretation.

We have also analysed the relation between our type discipline and (finite, deadlock-

free) session types. It is important to notice that our interpretation does not require

locality (Merro and Sangiorgi 2004) for linear session channels, under which only the

output capability of names could be transmitted, which seems required in other works

on linearity for π-calculi (e.g. Yoshida et al. (2007)). On the other hand, our intuitionistic

discipline enforces locality of shared channels, which, quite interestingly, seems to be the

sensible choice for distributed implementations of sessions. Further related topics would

be the accommodation of recursive types and logical relations (Caires 2007).

One important motivation for choosing a purely logical approach to typing is that it

often suggests uniform and expressive generalizations. In ongoing work, we have also

established an explicit relationship between session-based concurrency and typed func-

tional computation where in both cases determinacy (no races) and progress (deadlock-

freedom) are expected properties. In particular, we have investigated new encodings of

λ-calculi into the π-calculus that arise from translations from DILL natural deduction

into sequent calculus and the reduction strategies they induce (Toninho et al. 2012). We

have also explored a dependent generalization of our system of simple linear types, which

successfully captures many additional properties of communication behaviour in a purely
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logical manner (Toninho et al. 2011). Furthermore, the combination of dependent session

types, proof irrelevance and a notion of affirmation allows us to capture a high-level

model of certified, distributed code (Pfenning et al. 2011). In Caires et al. (2012) we have

extended our interpretation to second-order intuitionistic linear logic, bringing session

polymorphism within the scope of our work. We have also studied reasoning techniques

based on relational parametricity. Building on Caires and Pfenning (2010) and Wadler

(2012) develops an interpretation of second-order CLL as a polymorphic session calculus.

Wadler’s system is substantially more distant from a typical process calculus since it

admits prefix commutations and reduction under prefixes as primitive reductions, while we

map commuting conversions to structural congruence and observational equivalence, and

computational conversions to reduction. Moreover, his presentation of linear logic follows

more closely the original one of Girard, using explicit rules for weakening, contraction

and dereliction instead of a copy rule and the dual formulation. Thus, server replication

is internalized through a cut of the ! rule and the contraction rule. Since contraction is

mapped to a meta-level renaming in the style of our T? rule, the operational interpretation

of spawning a server becomes a bit unnatural from a process calculus perspective.
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Appendix A. Proofs

A.1. Inversion lemmas

Lemma A.1. Let Γ; Δ � D � P :: x : C .

1. If P
α→ Q and C = 1 then s(α) 	= x.

2. If P
α→ Q and y : 1 ∈ Δ then s(α) 	= y.

3. If P
α→ Q and s(α) = x and C = A ⊗ B then α = (νy)x〈y〉.

4. If P
α→ Q and s(α) = y and y : A ⊗ B ∈ Δ then α = y(z).

5. If P
α→ Q and s(α) = x and C = A� B then α = x(y).

6. If P
α→ Q and s(α) = y and y : A� B ∈ Δ then α = (νz)y〈z〉.

7. If P
α→ Q and s(α) = x and C = A � B then α = x.inl or α = x.inr.

8. If P
α→ Q and s(α) = y and y : A � B ∈ Δ then α = y.inl or α = y.inr.

9. If P
α→ Q and s(α) = x and C = A ⊕ B then α = x.inl or α = x.inr.

10. If P
α→ Q and s(α) = y and y : A ⊕ B ∈ Δ then α = y.inl or α = y.inr.

11. If P
α→ Q and s(α) = x and C = !A then α = x(y).
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12. If P
α→ Q and s(α) = y and y : !A or y ∈ Γ then α = (νz)y〈z〉.

Proof. By induction on the structure of D.

1. If P
α→ Q and C = 1 then s(α) 	= x.

Case:copy, all left rules except 1L and !L

s(α) 	= x by the definition of the l.t.s.

Case:1L or !L

s(α) 	= x by i.h.

Case:cut D1 (y. D2)

D1 � P1 and D2 � P2

Subcase: P1
α→ Q1

s(α) 	= x trivial, since x 	∈ fn(P1) by typing

Subcase: P2
α→ Q2

s(α) 	= x by i.h. on D2

Case:cut! D1 (u. D2)

D1 � P1 and D2 � P2

Subcase: P1
α→ Q1

s(α) 	= x trivial, since x 	∈ fn(P1) by typing

Subcase: P2
α→ Q2

s(α) 	= x by i.h. on D2

Case:all other rules do not offer
α→ or C 	= 1

2. If P
α→ Q and y : 1 ∈ Δ then s(α) 	= y.

Case:copy, all left rules except 1L and !L

s(α) 	= y by the definition of the l.t.s.

Case:1L or !L

s(α) 	= y by i.h.

Case:Γ; Δ1,Δ2 � cut D1 (z. D2)� P :: x : C , with D1 � P1 and D2 � P2

Subcase: y : 1 ∈ Δ1

s(α) 	= y by i.h. and y 	∈ fn(P2)

Subcase: y : 1 ∈ Δ2 with z 	= y

s(α) 	= y by i.h. and y 	∈ fn(P1)

Case:cut! D1 (u. D2) with D1 � P1 and D2 � P2

Subcase: P1
α→ Q1

s(α) 	= y trivial, since linear ctxt. is empty for D1 and y : 1

Subcase: P2
α→ Q2

s(α) 	= y by i.h.
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3. If P
α→ Q and s(α) = x and C = A ⊗ B then α = (νy)x〈y〉.

Case:1L or !L

α = (νy)x〈y〉 by i.h.

Case:⊗R

α = (νy)x〈y〉 by the l.t.s

Case:cut D1 (y. D2) with D1 � P1 and D2 � P2

α = (νy)x〈y〉 by i.h. on D2 and x 	∈ fn(P1)

Case:cut! D1 (u. D2) with D1 � P1 and D2 � P2

α = (νy)x〈y〉 by i.h. on D2

Case:All other rules do not have s(α) = x and C = A ⊗ B

4. If P
α→ Q and s(α) = y and y : A ⊗ B ∈ Δ then α = y(z).

Case:1L or !L

α = y(z) by i.h.

Case:⊗L

α = y(z) by the l.t.s

Case:Γ; Δ1,Δ2 � cut D1 (z. D2)� P :: x : C with D1 � P1 and D2 � P2

Subcase: y ∈ Δ1

α = y(z) by i.h. on D1 and y 	∈ fn(P2)

Subcase: y ∈ Δ2

α = y(z) by i.h. on D2 and y 	∈ fn(P1)

Case:cut! D1 (u. D2) with D1 � P1 and D2 � P2

α = y(z) by i.h. on D2

5. If P
α→ Q and s(α) = x and C = A� B then α = x(y).

Case:1L or !L

α = x(y) by i.h.

Case:�R

α = x(y) by the l.t.s

Case:cut D1 (y. D2) with D1 � P1 and D2 � P2

α = x(y) by i.h. on D2 and x 	∈ fn(P1)

Case:cut! D1 (u. D2) with D1 � P1 and D2 � P2

α = x(y) by i.h. on D2

Case:All other rules do not have s(α) = x and C = A� B

6. If P
α→ Q and s(α) = y and y : A� B ∈ Δ then α = (νz)y〈z〉.

Case:1L or !L

α = (νz)y〈z〉 by i.h.
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Case:�L

α = (νz)y〈z〉 by the l.t.s

Case:Γ; Δ1,Δ2 � cut D1 (w.D2)� P :: x : C with D1 � P1 and D2 � P2

Subcase: y ∈ Δ1

α = (νz)y〈z〉 by i.h. on D1 and y 	∈ fn(P2)

Subcase: y ∈ Δ2

α = (νz)y〈z〉 by i.h. on D2 and y 	∈ fn(P1)

Case:cut! D1 (u. D2) with D1 � P1 and D2 � P2

α = (νz)y〈z〉 by i.h. on D2

7. If P
α→ Q and s(α) = x and C = A � B then α = x.inl or α = x.inr.

Case:1L or !L

α = x.inl or α = x.inr by i.h.

Case:�R

α = x.inl or α = x.inr by the l.t.s

Case:cut D1 (y. D2) with D1 � P1 and D2 � P2

α = x(y) by i.h. on D2 and x 	∈ fn(P1)

Case:cut! D1 (u. D2) with D1 � P1 and D2 � P2

α = x(y) by i.h. on D2

Case:All other rules do not have s(α) = x and C = A � B

8. If P
α→ Q and s(α) = y and y : A � B ∈ Δ then α = y.inl or α = y.inr.

Case:1L or !L

α = y.inl or α = y.inr by i.h.

Case:�L1

α = y.inl by the l.t.s

Case:�L2

α = y.inr by the l.t.s

Case:Γ; Δ1,Δ2 � cut D1 (w.D2)� P :: x : C with D1 � P1 and D2 � P2

Subcase: y ∈ Δ1

α = y.inl or α = y.inr by i.h. on D1 and y 	∈ fn(P2)

Subcase: y ∈ Δ2

α = y.inl or α = y.inr by i.h. on D2 and y 	∈ fn(P1)

Case:cut! D1 (u. D2) with D1 � P1 and D2 � P2

α = y.inl or α = y.inr by i.h. on D2

9. If P
α→ Q and s(α) = x and C = A ⊕ B then α = x.inl or α = x.inr.

Case:1L or !L
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α = x.inl or α = x.inr by i.h.

Case:⊕R1

α = x.inl by the l.t.s

Case:⊕R2

α = x.inr by the l.t.s

Case:cut D1 (y. D2) with D1 � P1 and D2 � P2

α = x.inl or α = x.inr by i.h. on D2 and x 	∈ fn(P1)

Case:cut! D1 (u. D2) with D1 � P1 and D2 � P2

α = x.inl or α = x.inr by i.h. on D2

Case:All other rules do not have s(α) = x and C = A ⊕ B

10. If P
α→ Q and s(α) = y and y : A ⊕ B ∈ Δ then α = y.inl or α = y.inr.

Case:1L or !L

α = y.inl or α = y.inr by i.h.

Case:⊕L

α = y.inl or α = y.inr by the l.t.s

Case:Γ; Δ1,Δ2 � cut D1 (w.D2)� P :: x : C with D1 � P1 and D2 � P2

Subcase: y ∈ Δ1

α = y.inl or α = y.inr by i.h. on D1 and y 	∈ fn(P2)

Subcase: y ∈ Δ2

α = y.inl or α = y.inr by i.h. on D2 and y 	∈ fn(P1)

Case:cut! D1 (u. D2) with D1 � P1 and D2 � P2

α = y.inl or α = y.inr by i.h. on D2

11. If P
α→ Q and s(α) = x and C = !A then α = x(y).

Case:1L or !L

α = x(y) by i.h.

Case:!R

α = x(y) by the l.t.s

Case:cut D1 (z. D2) with D1 � P1 and D2 � P2

α = x(y) by i.h. on D2 and x 	∈ fn(P1)

Case:cut! D1 (u. D2) with D1 � P1 and D2 � P2

α = x(y) by i.h. on D2

Case:All other rules do not have s(α) = x and C = !A

12. If P
α→ Q and s(α) = y and y : !A or y ∈ Γ then α = (νz)y〈z〉.

Case:1L or !L

α = (νz)y〈z〉 by i.h.
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Case:copy

α = (νz)y〈z〉 by the l.t.s

Case:Γ; Δ1,Δ2 � cut D1 (w.D2)� P :: x : C with D1 � P1 and D2 � P2

Subcase: y : !A and y ∈ Δ1

α = (νz)y〈z〉 by i.h. on D1 and y 	∈ fn(P2)

Subcase: y : !A and y ∈ Δ2

α = (νz)y〈z〉 by i.h. on D2 and y 	∈ fn(P1)

Subcase: y ∈ Γ and P
α→ Q from P1

α→ Q1

α = (νz)y〈z〉 by i.h. on D1

Subcase: y ∈ Γ and P
α→ Q from P2

α→ Q2

α = (νz)y〈z〉 by i.h. on D2

Case:cut! D1 (u. D2) with D1 � P1 and D2 � P2

Subcase: y : !A

α = (νz)y〈z〉 by i.h. on D2

Subcase: y ∈ Γ

α = (νz)y〈z〉 by i.h. on D2

A.2. Preservation lemmas

Lemma A.2. Assume

a. Γ; Δ1 � D � P :: x:C1 � C2 with P
x.inl→ P ′;

b. Γ; Δ2, x:C1 � C2 � E � Q :: z:C with Q
x.inl→ Q′.

Then,

c. cut D(x. E) ≡⇒≡ F for some F;

d. Γ; Δ1,Δ2 � F � R :: z : C for some R ≡ (νx)(P ′ | Q′).

Proof. By simultaneous induction on D and E. That is, in each appeal to the induction

hypothesis either D becomes smaller and E remains the same, or D remains the same and

E becomes smaller.

The possible cases for D are �R, 1L, !L, cut and cut!. In all other cases Px cannot offer

x.inl. The possible cases for E are �L1, 1L, !L, cut and cut!.

Case:D = �R D1 D2 and E = �L1 x (x. E1).

cut D (x. E) = cut (�R D1 D2) (�L1 x (x. E1)) = F [a]

F � (νx)(x.case(Px
1 , P

x
2 ) | x.inl;Qz

1) = (νx)(Px | Qz) [b]

F ⇒ cut D1 (x. E1) = F ′ by reduction (cut/�R/�L1) [c]

F ′ � (νx)(Px
1 | Qz

1) ≡ R′ with Px
1 = P ′x and Qz

1 = Q′z . [d]

Case:D = 1L y D1 and E arbitrary.
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cut D (x. E) = cut (1L y D1) (x. E)

≡ 1L y (cut D1 (x. E)) = F by rule (cut/1L/−) [a]

F � (νx)(Px | Qz) = R since D1 � Px [b]

cut D1 (x. E) ≡ F1 for some F1;

F1 � Rz
1 ≡ (νx)(Px | Qz);

F1 ⇒ F ′
1;

F ′
1 � R′z

1 ≡ (νx)(P ′x | Q′z) by i.h. on D1, E

F = 1L y F1 ⇒ 1L y F ′
1 = F ′ by congruence [c]

F ′ � Rz
1 ≡ (νx)(P ′x | Q′z) [d]

Case:D = !L y (u. D1) and E arbitrary.

cut D (x. E) = cut (!L y (u. D1)) (x. E)

≡ !L y (u. cut D1 (x. E)) = F by rule (cut/!L/−) [a]

F � (νx)(Px | Qz) = R since D1 � Px{u/y} [b]

cut D1 (x. E) ≡ F1 for some F1;

F1 � Rz
1 ≡ (νx)(Px | Qz);

F1 ⇒ F ′
1;

F ′
1 � R′z

1 ≡ (νx)(P ′x | Q′z) by i.h. on D1, E

F = !L y (u. F1) ⇒ !L y (u. F ′
1) = F ′ by congruence [c]

F ′ � Rz
1 ≡ (νx)(P ′x | Q′z) [d]

Case:D = cut D1 (y. D2) and E arbitrary.

cut D (x. E) = cut (cut D1 (y. D2)) (x. E)

≡ cut D1 (y. cut D2 (x. E)) = F by rule (cut/−/cut1) [a]

F � (νy)(Py
1 | ((νx)(Px

2 | Qz))) ≡ (νx)((νy)(Py
1 | Px

2 ) | Qz) = R [b]

cut D2 (x. E) ≡ F2 with

F2 � R2 and R2 ≡ (νx)(Px
2 | Qz) and

F2 ⇒ F ′
2 with

F ′
2 � R′

2 ≡ (νx)(P ′x
2 | Q′z) by i.h. on D2, E

F ⇒ cut D1 (y. F ′
2) = F ′ by congruence [c]

F ′ � (νy)(Py
1 | (νx)(P ′x

2 | Q′z)) ≡ (νx)((νy)(Py
1 | P ′x

2 ) | Q′z)

= (νx)(P ′x | Q′z) [d]

Case:D = cut! D1 (u. D2) and E arbitrary.

cut D (x. E) = cut (cut! D1 (u. D2)) (x. E)

≡ cut! D1 (u. cut D2 (x. E)) = F by rule (cut/cut!/−) [a]

F � (νu)((!u(y).P y
1 ) | (νx)(Px

2 | Qz))

≡ (νx)((νu)((!u(y).P y
1 ) | Px

2 ) | Qz) = R by struct. cong. [b]

cut D2 (x. E) ≡ F2 with

F2 � R2 and R2 ≡ (νx)(Px
2 | Qz) and

F2 ⇒ F ′
2 with

F ′
2 � R′

2 ≡ (νx)(P ′x
2 | Q′z) by i.h. on D2, E
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F ⇒ cut! D1 (u. F ′
2) = F ′ by congruence [c]

F ′ � (νu)((!u(y).P y
1 ) | (νx)(P ′x

2 | Q′z))

≡ (νx)((νu)((!u(y).P y
1 ) | P ′x

2 ) | Q′z) = (νx)(P ′x | Q′z) [d]

Case:E = 1L y E1 and D arbitrary.

cut D (x. E) = cut D (x. 1L y E1)

≡ 1L y (cut D (x. E1)) = F by rule (cut/−/1L) [a]

F � (νx)(Px | Qz) = R [b]

cut D (x. E1) ≡ F1 for some F1;

F1 � Rz
1 ≡ (νx)(Px | Qz);

F1 ⇒ F ′
1;

F ′
1 � R′

1 ≡ (νx)(P ′x | Q′z) by i.h. on D,E1

F = 1L y F1 ⇒ 1L y F ′
1 = F ′ by congruence [c]

F ′ � Rz
1 ≡ (νx)(P ′x | Q′z) [d]

Case:E = !L y (u. E1) and D arbitrary.

cut D (x. E) = cut D (x. !L y (u. E1))

≡ !L y (u. cut D (x. E1)) = F by rule (cut/−/!L) [a]

F � (νx)(Px | Qz) = R since E1 � Qz{u/y} [b]

cut D (x. E1) ≡ F1 for some F1;

F1 � Rz
1 ≡ (νx)(Px | Qz);

F1 ⇒ F ′
1;

F ′
1 � R′

1 ≡ (νx)(P ′x | Q′z) by i.h. on D,E1

F = !L y (u. F1) ⇒ 1L y (u. F ′
1) = F ′ by congruence [c]

F ′ � Rz
1 ≡ (νx)(P ′x | Q′z) [d]

Case:E = cut E1 (y. E2) with x ∈ FV (E1) and D arbitrary.

cut D (x. E) = cut D (x. cut E1 (y. E2))

≡ cut (cut D (x. E1)) (y. E2) = F by reduction (cut/−/cut1) [a]

F � (νy)((νx)(Px | Qy
1) | Qz

2) ≡ (νx)(Px | (νy)(Qy
1 | Qz

2)) = R [b]

cut D (x. E1) ≡ F1 with

F1 � R1 ≡ (νx)(Px | Qy
1) and

F1 ⇒ F ′
1 with

F ′
1 � R′

1 ≡ (νx)(P ′x | Q′y
1 ) by i.h. on D,E1

F ⇒ cut F ′
1 (y. E2) = F ′ by congruence [c]

F ′ � (νy)((νx)(P ′x | Q′y
1 ) | Qz

2) ≡ (νx)(P ′x | (νy)(Q′y
1 | Qz

2))

= (νx)(P ′x | Q′z) [d]

Case:E = cut E1 (y. E2) with x ∈ FV (E2) and D arbitrary.

cut D (x. E) = cut D (x. cut E1 (y. E2))

≡ cut E1 (y. cut D (x. E2)) = F by reduction (cut/−/cut2) [a]

F � (νy)(Qy
1 | (νx)(Px | Qz

2)) ≡ (νx)(Px | (νy)(Qy
1 | Qz

2)) = R [b]
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cut D (x. E2) ≡ F2 with

F2 � R2 ≡ (νx)(Px | Qz
2) and

F2 ⇒ F ′
2 with

F ′
2 � R′

2 ≡ (νx)(P ′x | Q′z
2 ) by i.h. on D,E2

F ⇒ cut E1 (y. F ′
2) = F ′ by congruence [c]

F ′ � (νy)(Qy
1 | (νx)(P ′x | Q′z

2 )) ≡ (νx)(P ′x | (νy)(Qy
1 | Q′z

2 ))

= (νx)(P ′x | Q′z) [d]

Case:E = cut! E1 (u. E2) with x ∈ FV (E1) and D arbitrary. This case is impossible because

E1 contains no free linear variables.

Case:E = cut! E1 (u. E2) with x ∈ FV (E2) and D arbitrary.

cut D (x. E) = cut D (x. cut! E1 (u. E2))

≡ cut! E1 (u. cut D (x. E2)) = F by reduction (cut/−/cut!) [a]

F � (νu)((!u(y).Qy
1) | (νx)(Px | Qz

2)) ≡
(νx)(Px | (νu)((!u(y).Qy

1) | Qz
2)) = R [b]

cut D (x. E2) ≡ F2 with

F2 � R2 ≡ (νx)(Px | Qz
2) and

F2 ⇒ F ′
2 with

F ′
2 � R′

2 ≡ (νx)(P ′x | Q′z
2 ) by i.h. on D,E2

F ⇒ cut! E1 (u. F ′
2) = F ′ by congruence [c]

F ′ � (νu)((!u(y).Qy
1) | (νx)(P ′x | Q′z

2 ))

≡ (νx)(P ′x | (νu)((!u(y).Qy
1) | Q′z

2 )) = (νx)(P ′x | Q′z) [d]

Lemma A.3. Assume

a. Γ; Δ1 � D � P :: x:C1 � C2 with P
x.inr→ P ′;

b. Γ; Δ2, x:C1 � C2 � E � Q :: z:C with Q
x.inr→ Q′.

Then

c. cut D(x. E) ≡⇒≡ F for some F;

d. Γ; Δ1,Δ2 � F � R :: z : C for some R ≡ (νx)(P ′ | Q′).

Proof. Completely symmetric to the previous lemma.

Lemma A.4. Assume

a. Γ; Δ1 � D � P :: x:C1 ⊕ C2 with P
x.inl→ P ′;

b. Γ; Δ2, x:C1 ⊕ C2 � E � Q :: z:C with Q
x.inl→ Q′.

Then

c. cut D(x. E) ≡⇒≡ F for some F;

d. Γ; Δ1,Δ2 � F � R :: z : C for some R ≡ (νx)(P ′ | Q′).

Proof. By simultaneous induction on D and E. That is, in each appeal to the induction

hypothesis either D becomes smaller and E remains the same, or D remains the same and

E becomes smaller.
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The possible cases for D are ⊕R1, 1L, !L, cut and cut!. In all other cases Px cannot

offer x.inl. The possible cases for E are ⊕L, 1L, !L, cut and cut!.

Case:D = ⊕R1 D1 and E = ⊕L x (x. E1) (x. E2).

cut D (x. E) = cut (⊕R1 D1) (⊕L x (x. E1) (x. E2)) = F [a]

F � (νx)(x.inl;Px
1 | x.case(Qz

1, Q
z
2)) = (νx)(Px | Qz) [b]

F ⇒ cut D1 (x. E1) = F ′ by reduction (cut/⊕R1/⊕L) [c]

F ′ � (νx)(Px
1 | Qz

1) ≡ R′ with Px
1 = P ′x and Qz

1 = Q′z [d]

Case:D = 1L y D1 and E arbitrary.

cut D (x. E) = cut (1L y D1) (x. E)

≡ 1L y (cut D1 (x. E)) = F by rule (cut/1L/−) [a]

F � (νx)(Px | Qz) = R since D1 � Px [b]

cut D1 (x. E) ≡ F1 for some F1;

F1 � Rz
1 ≡ (νx)(Px | Qz);

F1 ⇒ F ′
1;

F ′
1 � R′z

1 ≡ (νx)(P ′x | Q′z) by i.h. on D1, E

F = 1L y F1 ⇒ 1L y F ′
1 = F ′ by congruence [c]

F ′ � Rz
1 ≡ (νx)(P ′x | Q′z) [d]

Case:D = !L y (u. D1) and E arbitrary.

cut D (x. E) = cut (!L y (u. D1)) (x. E)

≡ !L y (u. cut D1 (x. E)) = F by rule (cut/!L/−) [a]

F � (νx)(Px | Qz) = R since D1 � Px{u/y} [b]

cut D1 (x. E) ≡ F1 for some F1;

F1 � Rz
1 ≡ (νx)(Px | Qz);

F1 ⇒ F ′
1;

F ′
1 � R′z

1 ≡ (νx)(P ′x | Q′z) by i.h. on D1, E

F = !L y (u. F1) ⇒ !L y (u. F ′
1) = F ′ by congruence [c]

F ′ � Rz
1 ≡ (νx)(P ′x | Q′z) [d]

Case:D = cut D1 (y. D2) and E arbitrary.

cut D (x. E) = cut (cut D1 (y. D2)) (x. E)

≡ cut D1 (y. cut D2 (x. E)) = F by rule (cut/−/cut1) [a]

F � (νy)(Py
1 | ((νx)(Px

2 | Qz))) ≡ (νx)((νy)(Py
1 | Px

2 ) | Qz) = R [b]

cut D2 (x. E) ≡ F2 with

F2 � R2 and R2 ≡ (νx)(Px
2 | Qz) and

F2 ⇒ F ′
2 with

F ′
2 � R′

2 ≡ (νx)(P ′x
2 | Q′z) by i.h. on D2, E

F ⇒ cut D1 (y. F ′
2) = F ′ by congruence [c]

F ′ � (νy)(Py
1 | (νx)(P ′x

2 | Q′z)) ≡ (νx)((νy)(Py
1 | P ′x

2 ) | Q′z)

= (νx)(P ′x | Q′z) [d]
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Case:D = cut! D1 (u. D2) and E arbitrary.

cut D (x. E) = cut (cut! D1 (u. D2)) (x. E)

≡ cut! D1 (u. cut D2 (x. E)) = F by rule (cut/cut!/−) [a]

F � (νu)((!u(y).P y
1 ) | (νx)(Px

2 | Qz))

≡ (νx)((νu)((!u(y).P y
1 ) | Px

2 ) | Qz) = R by struct. cong. [b]

cut D2 (x. E) ≡ F2 with

F2 � R2 and R2 ≡ (νx)(Px
2 | Qz) and

F2 ⇒ F ′
2 with

F ′
2 � R′

2 ≡ (νx)(P ′x
2 | Q′z) by i.h. on D2, E

F ⇒ cut! D1 (u. F ′
2) = F ′ by congruence [c]

F ′ � (νu)((!u(y).P y
1 ) | (νx)(P ′x

2 | Q′z))

≡ (νx)((νu)((!u(y).P y
1 ) | P ′x

2 ) | Q′z) = (νx)(P ′x | Q′z) [d]

Case:E = 1L y E1 and D arbitrary.

cut D (x. E) = cut D (x. 1L y E1)

≡ 1L y (cut D (x. E1)) = F by rule (cut/−/1L) [a]

F � (νx)(Px | Qz) = R [b]

cut D (x. E1) ≡ F1 for some F1;

F1 � Rz
1 ≡ (νx)(Px | Qz);

F1 ⇒ F ′
1;

F ′
1 � R′

1 ≡ (νx)(P ′x | Q′z) by i.h. on D,E1

F = 1L y F1 ⇒ 1L y F ′
1 = F ′ by congruence [c]

F ′ � Rz
1 ≡ (νx)(P ′x | Q′z) [d]

Case:E = !L y (u. E1) and D arbitrary.

cut D (x. E) = cut D (x. !L y (u. E1))

≡ !L y (u. cut D (x. E1)) = F by rule (cut/−/!L) [a]

F � (νx)(Px | Qz) = R since E1 � Qz{u/y} [b]

cut D (x. E1) ≡ F1 for some F1;

F1 � Rz
1 ≡ (νx)(Px | Qz);

F1 ⇒ F ′
1;

F ′
1 � R′

1 ≡ (νx)(P ′x | Q′z) by i.h. on D,E1

F = !L y (u. F1) ⇒ 1L y (u. F ′
1) = F ′ by congruence [c]

F ′ � Rz
1 ≡ (νx)(P ′x | Q′z) [d]

Case:E = cut E1 (y. E2) with x ∈ FV (E1) and D arbitrary.

cut D (x. E) = cut D (x. cut E1 (y. E2))

≡ cut (cut D (x. E1)) (y. E2) = F by reduction (cut/−/cut1) [a]

F � (νy)((νx)(Px | Qy
1) | Qz

2) ≡ (νx)(Px | (νy)(Qy
1 | Qz

2)) = R [b]

cut D (x. E1) ≡ F1 with

F1 � R1 ≡ (νx)(Px | Qy
1) and
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F1 ⇒ F ′
1 with

F ′
1 � R′

1 ≡ (νx)(P ′x | Q′y
1 ) by i.h. on D,E1

F ⇒ cut F ′
1 (y. E2) = F ′ by congruence [c]

F ′ � (νy)((νx)(P ′x | Q′y
1 ) | Qz

2) ≡ (νx)(P ′x | (νy)(Q′y
1 | Qz

2))

= (νx)(P ′x | Q′z). [d]

Case:E = cut E1 (y. E2) with x ∈ FV (E2) and D arbitrary.

cut D (x. E) = cut D (x. cut E1 (y. E2))

≡ cut E1 (y. cut D (x. E2)) = F by reduction (cut/−/cut2) [a]

F � (νy)(Qy
1 | (νx)(Px | Qz

2)) ≡ (νx)(Px | (νy)(Qy
1 | Qz

2)) = R [b]

cut D (x. E2) ≡ F2 with

F2 � R2 ≡ (νx)(Px | Qz
2) and

F2 ⇒ F ′
2 with

F ′
2 � R′

2 ≡ (νx)(P ′x | Q′z
2 ) by i.h. on D,E2

F ⇒ cut E1 (y. F ′
2) = F ′ by congruence [c]

F ′ � (νy)(Qy
1 | (νx)(P ′x | Q′z

2 )) ≡ (νx)(P ′x | (νy)(Qy
1 | Q′z

2 ))

= (νx)(P ′x | Q′z) [d]

Case:E = cut! E1 (u. E2) with x ∈ FV (E1) and D arbitrary. This case is impossible because

E1 contains no free linear variables.

Case:E = cut! E1 (u. E2) with x ∈ FV (E2) and D arbitrary.

cut D (x. E) = cut D (x. cut! E1 (u. E2))

≡ cut! E1 (u. cut D (x. E2)) = F by reduction (cut/−/cut!) [a]

F � (νu)((!u(y).Qy
1) | (νx)(Px | Qz

2)) ≡
(νx)(Px | (νu)((!u(y).Qy

1) | Qz
2)) = R [b]

cut D (x. E2) ≡ F2 with

F2 � R2 ≡ (νx)(Px | Qz
2) and

F2 ⇒ F ′
2 with

F ′
2 � R′

2 ≡ (νx)(P ′x | Q′z
2 ) by i.h. on D,E2

F ⇒ cut! E1 (u. F ′
2) = F ′ by congruence [c]

F ′ � (νu)((!u(y).Qy
1) | (νx)(P ′x | Q′z

2 ))

≡ (νx)(P ′x | (νu)((!u(y).Qy
1) | Q′z

2 )) = (νx)(P ′x | Q′z) [d]

Lemma A.5. Assume

a. Γ; Δ1 � D � P :: x:C1 ⊕ C2 with P
x.inr→ P ′;

b. Γ; Δ2, x:C1 ⊕ C2 � E � Q :: z:C with Q
x.inr→ Q′.

Then,

c. cut D (x. E) ≡⇒≡ F for some F;

d. Γ; Δ1,Δ2 � F � R :: z : C for some R ≡ (νx)(P ′ | Q′).

Proof. Symmetric to the previous lemma.
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Lemma A.6. Assume

a. Γ; Δ1 � D � P :: x:C1 ⊗ C2 with P
(νy)x〈y〉

→ P ′;

b. Γ; Δ2, x:C1 ⊗ C2 � E � Q :: z:C with Q
x(y)
→ Q′.

Then,

c. cut D(x. E) ≡⇒≡ F for some F;

d. Γ; Δ1,Δ2 � F � R :: z : C for some R ≡ (νx)(P ′ | Q′).

Proof.

By simultaneous induction on D and E. The possible cases for D are ⊗R, 1L, !L, cut

and cut!. The possible cases for E are ⊗L, 1L, !L, cut and cut!.

Case:D = ⊗R D1 D2 and E = ⊗L x (y.x. E ′).

D1 � P
y
1 and D2 � Px

2 where

Px = (νy)(x〈y〉. (Py
1 | Px

2 ))
(νy)x〈y〉

→ (νy)(Py
1 | Px

2 ) = P ′x by inversion

E ′ � Q′z where Qz = x(y).Q′z x(y)
→ Q′z by inversion

cut D (x. E) = cut (⊗R D1 D2) (⊗L x (y.x. E ′))

⇒ cut D1 (y. cut D2 (x. E ′)) = F by rule (cut/⊗R/⊗L)

F � (νy)(Py
1 | (νx)(Px

2 | Q′z)) ≡ (νx)((νy)(Py
1 | Px

2 ) | Q′z) = (νx)(P ′x | Q′z).

Case:D = 1L n D′ and E arbitrary.

D′ � P by inversion

cut D (x. E) = cut (1L n D′) (x. E)

≡ 1L n (cut D′ (x. E)) by rule (cut/1L/−)

⇒ 1L n F ′ = F for some F ′ � (νx)(P ′ | Q′) by i.h. on D′ and E

F � (νx)(P ′ | Q′)

Case:D = !L n (u. D′) and E arbitrary.

D′ � P by inversion

cut D (x. E) = cut (!L n (u. D′)) (x. E)

≡ !L n (u. cut D′ (x. E)) by rule (cut/!L/−)

⇒ !L n (u. F ′) = F for some F ′ � (νx)(P ′ | Q′) by i.h. on D′ and E

F � (νx)(P ′ | Q′)

Case:D = cut D1 (n. D2) and E arbitrary.

D1 � Pn
1 and D2 � Px

2 and Px
2

(νy)x〈y〉
→ P ′x

2 where

P = (νn)(Pn
1 | Px

2 )
(νy)x〈y〉

→ (νn)(Pn
1 | P ′x

2 ) = P ′x by inversion

cut D (x. E) = cut (cut D1 (n. D2)) (x. E)

≡ cut D1 (n. cut D2 (x. E)) by rule (cut/cut/−)

⇒ cut D1 (n. F2) = F where F2 � (νx)(P ′x
2 | Q′z) by i.h. on D2 and E

F � (νn)(Pn
1 | (νx)(P ′x

2 | Q′z))

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129514000218
Downloaded from https://www.cambridge.org/core. Imperial College London Library, on 08 Feb 2018 at 23:35:16, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129514000218
https://www.cambridge.org/core


L. Caires, F. Pfenning and B. Toninho 404

≡ (νx)((νn)(Pn
1 | P ′x

2 ) | Q′z)

= (νx)(P ′x | Q′z)

Case:D = cut! D1 (u. D2) and E arbitrary.

D1 � (!u(n).P n
1 ) and D2 � Px

2 and Px
2

(νy)x〈y〉
→ P ′x

2 where

P = (νu)((!u(n).P n
1 ) | Px

2 )
(νy)x〈y〉

→ (νu)((!u(n).P n
1 ) | P ′x

2 ) = P ′x by inversion

cut D (x. E) = cut (cut! D1 (u. D2)) (x. E)

≡ cut! D1 (u. cut D2 (x. E)) by rule (cut/cut!/−)

⇒ cut D1 (u. F2) = F where F2 � (νx)(P ′x
2 | Q′z) by i.h. on D2 and E

F � (νu)((!u(n).P n
1 ) | (νx)(P ′x

2 | Q′z))

≡ (νx)((νu)((!u(n).P n
1 ) | P ′x

2 ) | Q′z)

= (νx)(P ′x | Q′z)

Case:E = 1L n E ′ and D arbitrary.

E ′ � Qz by inversion

cut D (x. E) = cut D (x. 1L n E ′)

≡ 1L n (cut D (x. E ′)) by rule (cut/−/1L)

⇒ 1L n F ′ = F for some F ′ � (νx)(P ′x | Q′z) by i.h. on D and E ′

F � (νx)(P ′x | Q′z)

Case:E = !L n (u. E ′) and D arbitrary.

E ′ � Qz by inversion

cut D (x. E) = cut D (x. !L n (u. E ′)

≡ !L n (u. cut D (x. E ′)) by rule (cut/−/!L)

⇒ !L n (u. F ′) = F for some F ′ � (νx)(P ′x | Q′z) by i.h. on D and E ′

F � (νx)(P ′x | Q′z)

Case:E = cut E1 (n. E2) and x ∈ FV (E1).

E1 � Qn
1 and E2 � Qz

2 for Qn
1

x(y)
→ Q′n

1 where

Q = (νn)(Qn
1 | Qz

2)
x(y)
→ (νn)(Q′n

1 | Qz
2) by inversion

cut D (x. E) = cut D (x. cut E1 (n. E2))

= cut (cut D (x. E1)) (n. E2) by rule (cut/cut/−) and x 	∈ FV (E2)

⇒ cut F1 (n. E2) = F for some F1 � (νx)(P ′x | Q′n
1 ) by i.h. on D and E1

F � (νn)((νx)(P ′x | Q′n
1 ) | Qz

2)

≡ (νx)(P ′x | (νn)(Q′n
1 | Qz

2))

= (νx)(P ′x | Q′z)

Case:E = cut E1 (n. E2) and x ∈ FV (E2).

E1 � Qn
1 and E2 � Qz

2 for Qz
2

x(y)
→ Q′z

2 where

Q = (νn)(Qn
1 | Qz

2)
x(y)
→ (νn)(Qn

1 | Q′z
2 ) by inversion

cut D (x. E) = cut D (x. cut E1 (n. E2))

= cut E1 (n. cut D (x. E2)) by rule (cut/−/cut) and x 	∈ FV (E1)

⇒ cut E1 (n. F2) = F for some F2 � (νx)(P ′x | Q′z
2 ) by i.h. on D and E2
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F � (νn)(Qn
1 | (νx)(P ′x | Q′z

2 ))

≡ (νx)(P ′x | (νn)(Qn
1 | Q′z

2 ))

= (νx)(P ′x | Q′z)

Case:E = cut! E1 (u. E2)

x ∈ FV (E2) by inversion

E1 � (!u(n).Qn
1) and E2 � Qz

2 for Qz
2

x(y)
→ Q′z

2 where

Q = (νu)((!u(n).Qn
1) | Qz

2)
x(y)
→ (νu)((!u(n).Qn

1) | Q′z
2 ) by inversion

cut D (x. E) = cut D (x. cut! E1 (u. E2))

= cut! E1 (u. cut D (x. E2)) by rule (cut/−/cut!)

⇒ cut! E1 (u. F2) = F for some F2 � (νx)(P ′x | Q′z
2 ) by i.h. on D and E2

F � (νu)((!u(n).Qn
1) | (νx)(P ′x | Q′z

2 ))

≡ (νx)(P ′x | (νu)((!u(n).Qn
1) | Q′z

2 ))

= (νx)(P ′x | Q′z)

Lemma A.7. Assume

a. Γ; Δ1 � D � P :: x:C1 � C2 with P
x(y)
→ P ′;

b. Γ; Δ2, x:C1 � C2 � E � Q :: z:C with Q
(νy)x〈y〉

→ Q′.

Then,

c. cut D(x. E) ≡⇒≡ F for some F;

d. Γ; Δ1,Δ2 � F � R :: z : C for some R ≡ (νx)(νy)(P ′ | Q′).

Proof. By simultaneous induction on D and E. The possible cases for D are �R, 1L,

!L, cut and cut!. The possible cases for E are�L, 1L, !L, cut and cut!.

Case:D =�R (x. D1) and E =�L x E1 (x. E2).

E1 � Q
y
1 and E2 � Qz

2 where

Qz = (νy)(x〈y〉. (Qy
1 | Qz

2))
(νy)x〈y〉

→ (νy)(Qy
1 | Qz

2) = Q′x by inversion

D1 � P ′x where Px = x(y).P ′x x(y)
→ P ′x by inversion

cut D (x. E) = cut (�R (x. D1)) (�L x E1 (x. E2))

⇒ cut E1 (y. cut D1 (x. E2)) = F by rule (cut/�R/�L)

F � (νy)(Qy
1 | (νx)(Px

1 | Qz
2)) ≡ (νx)((νy)Px

1 | (Qy
1 | Qz

2)) = (νx)(P ′x | Q′z)

Case:D = 1L n D′ and E arbitrary.

D′ � P by inversion

cut D (x. E) = cut (1L n D′) (x. E)

≡ 1L n (cut D′ (x. E)) by rule (cut/1L/−)

⇒ 1L n F ′ = F for some F ′ � (νx)(P ′ | Q′) by i.h. on D′ and E

F � (νx)(P ′ | Q′)

Case:D = !L n (u. D′) and E arbitrary.
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D′ � P by inversion

cut D (x. E) = cut (!L n (u. D′)) (x. E)

≡ !L n (u. cut D′ (x. E)) by rule (cut/!L/−)

⇒ !L n (u. F ′) = F for some F ′ � (νx)(P ′ | Q′) by i.h. on D′ and E

F � (νx)(P ′ | Q′)

Case:D = cut D1 (n. D2) and E arbitrary.

D1 � Pn
1 and D2 � Px

2 and Px
2

(νy)x〈y〉
→ P ′x

2 where

P = (νn)(Pn
1 | Px

2 )
(νy)x〈y〉

→ (νn)(Pn
1 | P ′x

2 ) = P ′x by inversion

cut D (x. E) = cut (cut D1 (n. D2)) (x. E)

≡ cut D1 (n. cut D2 (x. E)) by rule (cut/cut/−)

⇒ cut D1 (n. F2) = F where F2 � (νx)(P ′x
2 | Q′z) by i.h. on D2 and E

F � (νn)(Pn
1 | (νx)(P ′x

2 | Q′z))

≡ (νx)((νn)(Pn
1 | P ′x

2 ) | Q′z)

= (νx)(P ′x | Q′z)

Case:D = cut! D1 (u. D2) and E arbitrary.

D1 � (!u(n).P n
1 ) and D2 � Px

2 and Px
2

(νy)x〈y〉
→ P ′x

2 where

P = (νu)((!u(n).P n
1 ) | Px

2 )
(νy)x〈y〉

→ (νu)((!u(n).P n
1 ) | P ′x

2 ) = P ′x by inversion

cut D (x. E) = cut (cut! D1 (u. D2)) (x. E)

≡ cut! D1 (u. cut D2 (x. E)) by rule (cut/cut!/−)

⇒ cut D1 (u. F2) = F where F2 � (νx)(P ′x
2 | Q′z) by i.h. on D2 and E

F � (νu)((!u(n).P n
1 ) | (νx)(P ′x

2 | Q′z))

≡ (νx)((νu)((!u(n).P n
1 ) | P ′x

2 ) | Q′z)

= (νx)(P ′x | Q′z)

Case:E = 1L n E ′ and D arbitrary.

E ′ � Qz by inversion

cut D (x. E) = cut D (x. 1L n E ′)

≡ 1L n (cut D (x. E ′)) by rule (cut/−/1L)

⇒ 1L n F ′ = F for some F ′ � (νx)(P ′x | Q′z) by i.h. on D and E ′

F � (νx)(P ′x | Q′z)

Case:E = !L n (u. E ′) and D arbitrary.

E ′ � Qz by inversion

cut D (x. E) = cut D (x. !L n (u. E ′)

≡ !L n (u. cut D (x. E ′)) by rule (cut/−/!L)

⇒ !L n (u. F ′) = F for some F ′ � (νx)(P ′x | Q′z) by i.h. on D and E ′

F � (νx)(P ′x | Q′z)

Case:E = cut E1 (n. E2) and x ∈ FV (E1).

E1 � Qn
1 and E2 � Qz

2 for Qn
1

x(y)
→ Q′n

1 where

Q = (νn)(Qn
1 | Qz

2)
x(y)
→ (νn)(Q′n

1 | Qz
2) by inversion
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cut D (x. E) = cut D (x. cut E1 (n. E2))

= cut (cut D (x. E1)) (n. E2) by rule (cut/cut/−) and x 	∈ FV (E2)

⇒ cut F1 (n. E2) = F for some F1 � (νx)(P ′x | Q′n
1 ) by i.h. on D and E1

F � (νn)((νx)(P ′x | Q′n
1 ) | Qz

2)

≡ (νx)(P ′x | (νn)(Q′n
1 | Qz

2))

= (νx)(P ′x | Q′z)

Case:E = cut E1 (n. E2) and x ∈ FV (E2).

E1 � Qn
1 and E2 � Qz

2 for Qz
2

x(y)
→ Q′z

2 where

Q = (νn)(Qn
1 | Qz

2)
x(y)
→ (νn)(Qn

1 | Q′z
2 ) by inversion

cut D (x. E) = cut D (x. cut E1 (n. E2))

= cut E1 (n. cut D (x. E2)) by rule (cut/−/cut) and x 	∈ FV (E1)

⇒ cut E1 (n. F2) = F for some F2 � (νx)(P ′x | Q′z
2 ) by i.h. on D and E2

F � (νn)(Qn
1 | (νx)(P ′x | Q′z

2 ))

≡ (νx)(P ′x | (νn)(Qn
1 | Q′z

2 ))

= (νx)(P ′x | Q′z)

Case:E = cut! E1 (u. E2)

x ∈ FV (E2) by inversion

E1 � (!u(n).Qn
1) and E2 � Qz

2 for Qz
2

x(y)
→ Q′z

2 where

Q = (νu)((!u(n).Qn
1) | Qz

2)
x(y)
→ (νu)((!u(n).Qn

1) | Q′z
2 ) by inversion

cut D (x. E) = cut D (x. cut! E1 (u. E2))

= cut! E1 (u. cut D (x. E2)) by rule (cut/−/cut!)

⇒ cut! E1 (u. F2) = F for some F2 � (νx)(P ′x | Q′z
2 ) by i.h. on D and E2

F � (νu)((!u(n).Qn
1) | (νx)(P ′x | Q′z

2 ))

≡ (νx)(P ′x | (νu)((!u(n).Qn
1) | Q′z

2 ))

= (νx)(P ′x | Q′z)

Lemma A.8. Assume

a. Γ; Δ1 � D � P :: x:!A with P
x(y)
→ P ′;

b. Γ; Δ2, x:!A � E � Q :: z:C with Q
(νy)x〈y〉

→ Q′.

Then,

c. cut D(x. E) ≡⇒≡ F for some F;

d. Γ; Δ1,Δ2 � F � R :: z : C for some R ≡ (νx)(νy)(P ′ | Q′).

Proof. By simultaneous induction on the structure of D, E. There are only five possible

cases for D: !R D′
1, 1L n D′

1, !L n (u. D1), cut D′
1 (n. D′′

1 ), and cut! D′
1 (u. D′′

1 ). In all other

cases P cannot offer x(y), which follows by analysis of the typed extraction rules and

the definition of
α→. There are only four possible cases for E: !L n (u. E ′

2), 1L n E ′
2,

cut E ′
2 (n. E ′′

2 ), and cut! E ′
2 (u. E ′′

2 ). In all other cases Q cannot offer (νy)x〈y〉, which follows

by analysis of the typed extraction rules and the definition of
α→.
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Case:D = !R D′
1, E = !L x (u. E ′

2).

Δ1 = (·)
Γ; · � D′

1 � R1 :: u:A where P = !x(u).R1

Γ, u : A; Δ2 � E ′ � Q1 :: z:C where Q = (νy)x〈y〉.Q′
1 by inversion

cut D (x. E) = this case

cut (!R D′
1) (x. !L x (u. E ′

2))

≡ cut! D′
1 (u. E ′

2) by (cut/!R/!L)

cut! D′
1 (u. E ′

2) ≡⇒≡ cut! D′
1 (u. E∗) for some E∗

Γ, u : A; Δ2 � E∗ � R′ :: z:C with R′ ≡ (νy)(R1{y/u} | Q′
1) by Lemma !Red

Pick F = cut! D′
1 (u. E∗) [satisfying (c)]

Γ; Δ � F � R :: z:C by cut

with R = (νx)(!x(u).R1 | (νy)(R1{y/u} | Q′
1))

≡ (νy)(νx)(!x(u).P1 | R1{y/u} | Q′
1)

≡ (νy)(νx)(P ′
1 | Q′

1) since P ′
1 ≡ !x(u).R1 | R1{y/u} [satisfying (d)]

Case:D arbitrary, E = !L y (u. E ′
2).

Δ2 = (Δ∗, y : !B)

Γ, u : B; Δ∗, x : !A � E ′
2 � Q1 :: z:C by inversion

cut D (x. E ′
2) ≡⇒≡ E∗ for some E∗

Γ, u : B; Δ∗ � E∗ � R′ :: z:C with R′ ≡ (νy)(νx)(P ′
1 | Q′

1) by i.h.

cut D (x. E) = cut D (x. !L y (u. E ′
2))

≡ !L y (u. cut D (x. E ′
2)) by (cut/ − /!L)

≡⇒≡ !L y (u. E∗) by congruence

Pick F = !L y (u. E∗) [satisfying (c)]

Γ; Δ � F � R :: z:C by !L

with R = R′ [satisfying (d)]

Case:D = !L y (u. D′
1), E arbitrary.

Δ1 = (Δ∗, y : !B)

Γ, u : B; Δ∗ � D′
1 � P1 :: x:!A by inversion

cut D′
1 (x. E) ≡⇒≡ D∗ for some D∗

Γ, u : B; Δ∗ � D∗ � R′ :: z:C with R′ ≡ (νy)(νx)(P ′
1 | Q′

1) by i.h.

cut D (x. E) = cut (!L y (u. D′
1)) (x. E)

≡ !L y (u. cut D′
1 (x. E)) by (cut/!L/−)

≡⇒≡ !L y (u. D∗) by congruence

Pick F = !L y (u. D∗) [satisfying (c)]

Γ; Δ � F � R :: z:C by !L

with R = R′ [satisfying (d)]

Case:D arbitrary, E = 1L n E ′
2.

Δ2 = (Δ∗, n : 1)

Γ, x : A; Δ∗ � E ′
2 � Q1 :: z:C by inversion

cut D (x. E ′
2) ≡⇒≡ E∗ for some E∗

Γ; Δ∗ � E∗ � R′ :: z:C with R′ ≡ (νy)(νx)(P ′
1 | Q′

1) by i.h.
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cut D (x. E) = cut D (x. 1L n E ′
2)

≡ 1L n (cut D (x. E ′
2)) by (cut/−/1L)

≡⇒≡ 1L n E∗ by congruence

Pick F = 1L n E∗ [satisfying (c)]

Γ; Δ � F � R :: z:C by 1L

with R = R′ [satisfying (d)]

Case:D = 1L n D′
1, E arbitrary.

Δ1 = (Δ∗, n : 1)

Γ; Δ∗ � D′
1 � P1 :: x:!A by inversion

cut D′
1 (x. E) ≡⇒≡ D∗ for some D∗

Γ; Δ∗ � D∗ � R′ :: z:C with R′ ≡ (νy)(νx)(P ′
1 | Q′

1) by i.h.

cut D (x. E) = cut (1L n. D′
1) (x. E)

≡ 1L n. (cut D′
1 (x. E)) by (cut/1L/−)

≡⇒≡ 1L n D∗ by congruence

Pick F = 1L n D∗ [satisfying (c)]

Γ; Δ � F � R :: z:C by 1L

with R = R′ [satisfying (d)]

Case:D arbitrary, E = cut E ′
2 (n. E ′′

2 ).

Δ2 = (Δ′
2,Δ

′′
2)

Q1 = (νn)(R1 | R2)

Γ, x : A; Δ′
2 � E ′

2 � R1 :: n:B

Γ, x : A; Δ′′
2 , n : B � E ′′

2 � R2 :: z:C by inversion

Subcase: R1

(νy)x〈y〉
→ R′

1 and Q′
1 = (νn)(R′

1 | R2)

cut D (x. E ′
2) ≡⇒≡ D∗ for some D∗

Γ; Δ′
2 � D∗ � R′ :: n:B with R′ ≡ (νy)(νx)(P ′

1 | R′
1) by i.h.

cut D (x. E) = cut D (x. cut E ′
2 (n. E ′′

2 ))

≡ cut (cut D (x. E ′
2)) (n. E ′′

2 ) by (cut/ − /cut1)

≡⇒≡ cut D∗ (n. E ′′
2 ) by congruence

Pick F = cut D∗ (n. E ′′
2 ) [satisfying (c)]

Γ; Δ � F � R :: z:C by cut

with R = (νn)(R′ | R2)

≡ (νn)((νy)(νx)(P ′
1 | R′

1) | R2)

≡ (νn)(νy)(νx)(P ′
1 | R′

1 | R2)

≡ (νy)(νx)(P ′
1 | (νn)(R′

1 | R2))

≡ (νy)(νx)(P ′
1 | Q′

1) [satisfying (d)]

Subcase: R2

(νy)x〈y〉
→ R′

2 and Q′
1 = (νn)(R1 | R′

2)

cut D (x. E ′′
2 ) ≡⇒≡ D∗ for some D∗

Γ; Δ′′
2 , n : B � D∗ � R′ :: z:C with R′ ≡ (νy)(νx)(P ′

1 | R′
2) by i.h.

cut D1 (x. D2) = cut D (x. cut E ′
2 (n. E ′′

2 ))

≡ cut E ′
2 (n. cut D (x. E ′′

2 )) by (cut/ − /cut2)

≡⇒≡ cut E ′
2 (n. D∗) by congruence

Pick F = cut E ′
2 (n. D∗) [satisfying (c)]
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Γ; Δ � F � R :: z:C by cut

with R = (νn)(R1 | R′)

≡ (νn)(R1 | (νy)(νx)(P ′
1 | R′

2))

≡ (νy)(νx)(νn)(R1 | P ′
1 | R′

2)

≡ (νy)(νx)(νn)(P ′
1 | R1 | R′

2)

≡ (νy)(νx)(P ′
1 | (νn)(R1 | R′

2))

≡ (νy)(νx)(P ′
1 | Q′

1) [satisfying (d)]

Case:D = cut D′
1 (n. D′′

1 ), E arbitrary.

Δ1 = (Δ′
1,Δ

′′
1)

P1 = (νn)(R1 | R2)

Γ; Δ′
1 � D′

1 � R1 :: n:B

Γ; Δ′′
1 , n:B � D′′

1 � R2 :: x:!A by inversion

R2

x(y)
→ R′

2 and P ′
1 = (νn)(R1 | R′

2)

cut D′′
1 (x. E) ≡⇒≡ D∗ for some D∗

Γ; Δ′′
1 , n:B,Δ2 � D∗ � R′ :: z:C with R′ ≡ (νy)(νx)(R′

2 | Q′
1) by i.h.

cut D (x. E) = cut (cut D′
1 (n. D′′

1 )) (x. E)

≡ cut D′
1 (n. cut D′′

1 (x. E)) by (cut/ − /cut1)

≡⇒≡ cut D′
1 (n. D∗) by congruence

Pick F = cut D′
1 (n. D∗) [satisfying (c)]

Γ; Δ � F � R :: z:C by cut

with R = (νn)(R1 | R′)

≡ (νn)(R1 | (νy)(νx)(R′
2 | Q′

1)

≡ (νy)(νx)(νn)(R1 | R′
2 | Q′

1)

≡ (νy)(νx)(νn)(R1 | R′
2) | Q1))

≡ (νy)(νx)(P ′
1 | Q′

1) [satisfying (d)]

Case:D arbitrary, E = cut! E ′
2 (u. E ′′

2 ).

Q1 = (νu)(!u(w).R1 | R2)

Γ; · � E ′
2 � R1 :: w:B

Γ, u : B; Δ2, x : !A � E ′′
2 � R2 :: z:C by inversion

R2

(νy)x〈y〉
→ R′

2 and Q′
1 = (νu)(!u(w).R1 | R′

2)

cut D (x. E ′′
2 ) ≡⇒≡ D∗ for some D∗

Γ, u : B; Δ2 � D∗ � R′ :: z:C with R′ ≡ (νy)(νx)(P ′
1 | R′

2) by i.h.

cut D (x. E) = cut D (x. cut! E ′
2 (u. E ′′

2 ))

≡ cut! E ′
2 (u. cut D (x. E ′′

2 )) by (cut/ − /cut!)

≡⇒≡ cut! E ′
2 (u. D∗) by congruence

Pick F = cut! E ′
2 (u. D∗) [satisfying (c)]

Γ; Δ � F � R :: z:C by cut!

with R = (νu)(!u(w).R1 | R′)

≡ (νu)(!u(w).R1 | (νy)(νx)(P ′
1 | R′

2))

≡ (νy)(νx)(νu)(!u(w).R1 | P ′
1 | R′

2)
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≡ (νy)(νx)(νu)(P ′
1 | !u(w).R1 | R′

2)

≡ (νy)(νx)(P ′
1 | (νu)(!u(w).R1 | R′

2))

≡ (νy)(νx)(P ′
1 | Q′

1) [satisfying (d)]

Case:D1 = cut! D′
1 (u. D′′

1 ), E arbitrary.

P1 = (νu)(!u(w).R1 | R2)

Γ � D′
1 � R1 :: w:B

Γ, u : B; Δ1 � D′′
1 � R2 :: x:!A by inversion

R2

x(y)
→ R′

2 and P ′
1 = (νu)(!u(w).R1 | R′

2)

cut D′′
1 (x. E) ≡⇒≡ D∗ for some D∗

Γ, u : B; Δ � D∗ � R′ :: z:C with R′ ≡ (νy)(νx)(R′
2 | Q′

1) by i.h.

cut D1 (x. E) = cut (cut! D′
1 (u. D′′

1 )) (x. E)

≡ cut! D′
1 (u. cut D′′

1 (x. E)) by (cut/cut!/−)

≡⇒≡ cut! D′
1 (u. D∗) by congruence

Pick F = cut! D′
1 (u. D∗) [satisfying (c)]

Γ; Δ � F � R :: z:C by cut!

with R = (νu)(!u(w).R1 | (νy)(νx)(R′
2 | Q′

1))

≡ (νy)(νx)(νu)(!u(w).R1 | R′
2 | Q′

1))

≡ (νy)(νx)((νu)(!u(w).R1 | R′
2) | Q′

1))

≡ (νy)(νx)(P ′
1 | Q′

1) [satisfying (d)]

Lemma A.9. Assume

a. Γ; · � D � P :: u:A and

b. Γ, u:A; Δ � E � Q :: z:C with Q
(νy)u〈y〉

→ Q′.

Then,

c. cut! D1 (u. D2) ≡⇒≡ cut! D1 (u. F) for some F;

d. Γ, u:A; Δ � F � R :: z:C with R ≡ (νy)(P {y/u} | Q′).

Proof. By induction on the structure of E. There are only five possible cases for E:

1L n E ′
2, copy u (x. E ′

2), !L n (u. E ′
2), cut E ′

2 (n. E ′′
2 ) and cut! E ′

2 (v. E ′′
2 ). In all other cases

Q1 cannot offer (νy)u〈y〉, which follows by analysis of the typed extraction rules and the

definition of
α→.

Case:E = copy u (x. E ′
2).

Q1 ≡ (νy)u〈y〉.Q′
1

Γ, u : A; Δ, y : A � E ′
2 � Q′

1 :: z : C by inversion

cut! D (u. (copy u (y. E ′
2))

⇒ cut D (y. cut! D (u. E ′
2)) by (cut!/ − /copy)

≡ cut! D (u. cut D (y. E ′
2)) by (cut/ − /cut!)

Pick F = cut D (y. E ′
2) [satisfying (c)]

Γ, u : A; Δ � F � R :: z:C with R ≡ (νy)(P1{y/u} | Q′
1) [satisfying (d)]
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Case:E = 1L n E ′
2.

Δ = (Δ∗, n : 1)

Γ, u:A; Δ∗ � E ′
2 � Q1 :: z:C with Q1

(νy)u〈y〉
→ Q′

1 by inversion

cut! D (u. E ′
2) ≡⇒≡ cut! D (u. D∗) for some D∗

Γ; Δ∗ � D∗ � R′ :: z:C with R′ ≡ (νy)(P1{y/u} | Q′
1) by i.h.

cut! D (u. 1L n E ′
2)

≡ 1L n (cut! D (u. E ′
2)) by (cut!/ − /1L)

≡⇒≡ 1L n (cut! D (u. D∗)) by congruence

≡ cut! D (u. 1L n D∗) by (cut!/ − /1L)

Pick F = 1L n D∗ [satisfying (c)]

Pick R = R′

Γ, u : A; Δ � F � R :: z:C with R ≡ (νy)(P1{y/u} | Q′
1) by 1L [satisfying (d)]

Case:E = !L x (v. E ′
2).

Δ = (Δ∗, x : !B)

Γ, v:B, u:A; Δ∗ � E ′
2 � Q1 :: z:C with Q1

(νy)u〈y〉
→ Q′

1 by inversion

cut! D (u. E ′
2) ≡⇒≡ cut! D (u. D∗) for some D∗

Γ, v:B; Δ∗ � D∗ � R′ :: z:C with R′ ≡ (νy)(P1{y/u} | Q′
1) by i.h.

cut! D (u. (!L x (v.E ′
2)))

≡ !L x (v.cut! D (u. E ′
2)) by (cut!/ − /!L)

≡⇒≡ !L x (v. cut! D (u. D∗)) by congruence

≡ cut! D (u. !L x (v. D∗)) by (cut!/ − /!L)

Pick F = !L x (v. D∗)) [satisfying (a)]

Pick R = R′

Γ, u : A; Δ � F � R :: z:C with R ≡ (νy)(P1{y/u} | Q′
1) by !L [satisfying (b)]

Case:E = cut E ′
2 (n. E ′′

2 ).

Δ = (Δ1,Δ2)

Γ, x : A; Δ1 � E ′
2 � R1 :: n:B

Γ, x : A; Δ2, n:B � E ′′
2 � R2 :: z:C by inversion

Q1 = (νn)(R1 | R2)

Either R1

(νy)x〈y〉
→ R′

1 and Q′
1 ≡ (νn)(R′

1 | R2), or

R2

(νy)x〈y〉
→ R′

2 and Q′
1 ≡ (νn)(R1 | R′

2)

Subcase: R1

(νy)x〈y〉
→ R′

1

cut! D (u. E ′
2) ≡⇒≡ cut! D (u. D∗) for some D∗

Γ, u : A; Δ1 � D∗ � S :: n:B

with S ≡ (νy)(P1{y/u} | R′
1) by i.h.
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cut! D (u. cut E ′
2 (n. E ′′

2 ))

≡ cut (cut! D (u. E ′
2)) (n. cut! D (u. E ′′

2 )) by (cut!/ − /cut)

≡ cut (cut! D (u. D∗)) (n. cut! D (u. E ′′
2 )) by congruence

≡ cut! D (u. cut D∗ (n. E ′′
2 )) by (cut!/ − /cut)

Pick D = cut D∗ (n. D′′
2 ) [satisfying (c)]

Pick R = (νn)(S | R2)

Γ, u : A; Δ � D � R :: z:C by cut

with R = (νn)((νy)(P1{y/u} | R′
1) | R2)

≡ (νy)(P1{y/u} | (νn)(R′
1 | R2))

≡ (νy)(P1{y/u} | Q′
1) [satisfying (d)]

Subcase: R2

(νy)x〈y〉
→ R′

2

cut! D (u. E ′′
2 ) ≡⇒≡ cut! D (u. D∗) for some D∗

Γ, u : A; Δ2, n : B � D∗ � S :: z:C

with S ≡ (νy)(P1{y/u} | R′
2) by i.h.

cut! D (u. cut E ′
2 (n. E ′′

2 ))

≡ cut (cut! D (u. E ′
2)) (n. cut! D (u. E ′′

2 )) by (cut!/ − /cut)

≡ cut (cut! D (u. E ′
2)) (n. cut! D (u. D∗)) by congruence

≡ cut! D (u. cut E ′
2 (n. D∗)) by (cut!/ − /cut)

Pick F = cut E ′
2 (n. D∗) [satisfying (c)]

Pick R = (νn)(R1 | S)

Γ, u : A; Δ � D � R :: z:C by cut

with R = (νn)(R1 | (νy)(P1{y/u} | R′
2))

≡ (νy)(P1{y/u} | (νn)(R1 | R′
2))

≡ (νy)(P1{y/u} | Q′
1). [satisfying (d)]

Case:E = cut! E ′
2 (v. E ′′

2 ).

Γ, u : A; � E ′
2 � R1 :: w:B

Γ, v:B, u : A; Δ2,� E ′′
2 � R2 :: z:C by inversion

Q1 = (νv)(!v(w).R1 | R2)

R2

(νy)x〈y〉
→ R′

2 and Q′
1 ≡ (νv)(!v(w).R1 | R′

2)

cut! D (v. E ′′
2 ) ≡⇒≡ cut! D (v. D∗) for some D∗

Γ, v : B, u : A; Δ2 � D∗ � S :: z:C

with S ≡ (νy)(P1{y/u} | R′
2) by i.h.

cut! D (u. cut! E ′
2 (v. E ′′

2 ))

≡ cut! (cut! D (u. E ′
2)) (v. cut! D (u. E ′′

2 )) by (cut!/ − /cut!)

≡ cut! (cut! D (u. E ′
2)) (v. cut! D (u. D∗)) by congruence

≡ cut! D (u. cut! E ′
2 (v. D∗)) by (cut!/ − /cut!)

Pick F = cut! E ′
2 (v. D∗) [satisfying (c)]

Γ, u : A; Δ � F � R :: z:C by cut
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with R = (νv)(!v(w).R1 | S)

≡ (νv)(!v(w).R1 | (νy)(P1{y/u} | R′
2))

≡ (νy)(νv)(!v(w).R1 | P1{y/u} | R′
2)

≡ (νy)(νv)(P1{y/u} | !v(w).R1 | R′
2)

≡ (νy)(P1{y/u} | (νv)(!v(w).R1 | R′
2))

≡ (νy)(P1{y/u} | Q′
1) [satisfying (d)]

Lemma A.10. Assume

a. Γ; · � D � P :: u:A and

b. Γ, u:A; Δ2 � E � Q :: z:C with Q
(νy)u〈y〉

→ Q′.

Then,

c. cut! D (u. E) ≡⇒≡ F for some F and

d. Γ; Δ � F � R :: z : C for some R ≡ (νu)(!u(x).P | (νy)(P {y/u} | Q′)).

Proof. Directly from Lemma A.9 and the typed extraction rule for cut!.

Theorem A.1. Assume Γ; Δ � D � P :: z:A and P → Q.

Then there is E such that D ≡⇒≡ E and Γ; Δ � E � Q :: z:A

Proof. By induction on the structure of D. The possible cases for D are 1L, !L, cut, and

cut!. In all other cases P cannot offer τ.

Case:D = 1L n D′.

Δ = (Δ∗, n : 1)

Γ; Δ∗ � D′ � P :: z:A by inversion

Γ; Δ∗ � E ′ � Q :: z:A for some E ′ with D′ ≡⇒≡ E ′ by i.h.

Pick E = 1L n E ′.

D ≡⇒≡ E by congruence

Γ; Δ � E � Q :: z:A by 1L

Case:D = !L x (u. D′).

Δ = (Δ∗, x : !B)

Γ, u : B; Δ∗ � D′ � P :: z:A by inversion

Γ, u : B; Δ∗ � E ′ � Q :: z:A for some E ′ with D′ ≡⇒≡ E ′ by i.h.

Pick E = !L x (u. E ′).

D ≡⇒≡ E by congruence

Γ : Δ � E � Q :: z:A by 1L

Case:D = cut! D1 (u. D2).

P ≡ (νu)(!u(w).P1 | P2)

Γ; � D1 � P1 :: u:C

Γ, u : C; Δ � D2 � P2 :: z:A by inversion

From P → Q either

(1) P2 → Q2 and Q = (νu)(!u(w).P1 | Q2)
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(2) P2

(νy)u〈y〉
→ Q2 and Q = (νu(!u(w).P1 | (νy)(P1{y/u} | Q2))

Subcase (1):

Γ, u : C; Δ � D � Q2 :: z:A for some E ′ with D2 ≡⇒≡ E by i.h.

cut! D1 (u. D2) ≡⇒≡ cut! D1 (u. E ′)

Pick E = cut! D1 (u. E ′)

Γ; Δ � E � Q :: z:A by cut!

Subcase (2):

cut! D1 (u. D2) ≡⇒≡ E for some E

Γ; Δ � E � R :: z:A with R ≡ Q by Corollary A.10

Case:D = cut D1 (x. D2).

P ≡ (νx)(P1 | P2)

Δ = (Δ1,Δ2)

Γ; Δ1 � D1 � P1 :: x:C

Γ; Δ2, x : C � D2 � P1 :: z:A by inversion

Since P → Q there are four subcases:

(1) P1 → Q1 and Q = (νx)(Q1 | P2)

(2) P2 → Q2 and Q = (νx)(P1 | Q2)

(3) P1
α→ Q1 and P2

α→ Q2

(4) P1
α→ Q1 and P2

α→ Q2

Subcase (1): P1 → Q1

D1 ≡⇒≡ E1 for some E1

Γ; Δ1 � E1 � Q1 :: x:C by i.h.

D = cut D1 (x. D2)

≡⇒≡ cut E1 (x. D2) by congruence

Pick E = cut E1 (x. D2)

Γ; Δ � E � Q :: z:A

Subcase (2): P2 → Q2

Symmetric to Subcase (1).

Subcase (3): P1
α→ Q1 and P2

α→ Q2

Subsubcase: C = 1

not possible

Subsubcase: C = C1 � C2

α = x.inl or α = x.inr by Lemma A.1

cut D1 (x. D2) ≡⇒≡ D for some D

Γ; Δ � D � R :: z : C

with R ≡ (νx)(Q1 | Q2) = Q by Lemmas A.2 and A.3

Subsubcase: C = C1 ⊕ C2

not possible

Subsubcase: C = C1 ⊗ C2

not possible
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Subsubcase: C = C1 � C2

α = x(y) and α = (νy)x〈y〉 by Lemma A.1

cut D1 (x. D2) ≡⇒≡ D for some D

Γ; Δ � D � Q :: z : C

with R ≡ (νx)(νy)(Q1 | Q2) = Q by Lemma A.7

Subsubcase: C = !C1

α = x(y) and α = (νy)x〈y〉 by Lemma A.1

cut D1 (x. D2) ≡⇒≡ D for some D

Γ; Δ � D � Q :: z : C

with R ≡ (νx)(νy)(Q1 | Q2) = Q by Lemma A.8

Subcase (4): P1
α→ Q1 and P2

α→ Q2

Subsubcase: C = 1

not possible

Subsubcase: C = C1 � C2

not possible

Subsubcase: C = C1 ⊕ C2

α = x.inl or α = x.inr by Lemma A.1

cut D1 (x. D2) ≡⇒≡ D for some D

Γ; Δ � D � R :: z : C

with R ≡ (νx)(Q1 | Q2) = Q by Lemmas A.4 and A.5

Subsubcase: C = C1 ⊗ C2

α = (νy)x〈y〉 and α = x(y) by Lemma A.1

cut D1 (x. D2) ≡⇒≡ D for some D

Γ; Δ � D � Q :: z : C

with R ≡ (νx)(νy)(Q1 | Q2) = Q

Subsubcase: C = C1 � C2

not possible

Subsubcase: C = !C1

not possible

A.3. Progress lemmas

Lemma A.11. Assume Γ,Δ � D � P :: z : C and not live(P ); then

1. C = 1 or C = !C ′ for some C ′.

2. (x : Ai) ∈ Δ implies Ai = 1 or there is Bi with Ai = !Bi.

3. C = !C ′ implies P ≡ (νx)(!z(y).R | R′).

Proof. By structural induction on the structure of D. The only possible cases for D are

1R, 1L D′, !L x (u. D′), cut D′ (x. D′′), R! D′ and cut! D′ (x. D′′) , which follows by analysis

of the typing rules.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129514000218
Downloaded from https://www.cambridge.org/core. Imperial College London Library, on 08 Feb 2018 at 23:35:16, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129514000218
https://www.cambridge.org/core


Linear logic propositions as session types 417

Case:D = cut D′ (x. D′′)

Δ = (Δ1, D2)

P ≡ (νx)(P1 | P2)

Γ; Δ1 � D′ � P1 :: x:A

Γ; Δ2, x : A � D′′ � P2 :: z:C by inversion

not live(P1) and not live(P2) since not live(P2)

C = 1 or C = !C ′ for some C ′ [satisfying (1)]

(xi : Ai) ∈ (Δ2, x : A) implies Ai = 1 or there is Bi with Ai = !Bi

C = !C ′ implies P2 ≡ (νn)(!z(y).P ′
2 | P ′′′

2 ) by i.h.

A = 1 or A = !A′ for some A′

(xi : Ai) ∈ Δ1 implies Ai = 1 or there is Bi with Ai = !Bi

A = !A′ implies P1 ≡ (νm)(!x(y).P ′
1 | P ′′′

1 ) by i.h.

(xi : Ai) ∈ (Δ1,Δ2) = Δ implies Ai = 1

or there is Bj with Ai = !Bi [satisfying (2)]

C = !C ′ implies P ≡ (νx)(P1 | P2)

≡ (νx)((νm)(!x(y).P ′
1 | P ′′

1 ) | (νn)(!z(y).P ′
2 | P ′′

2 ))

≡ (νx)(νm)(νn)(!x(y).P ′
1 | P ′′

1 | !z(y).P ′
2 | P ′′

2 )

≡ (νx)(νm)(νn)(z(y).R | R′)

with R = P ′
2 and R′ = !x(y).P ′

1 | P ′′
1 | !z(y).P ′

2 | P ′′
2 [satisfying (3)]

Case:D = cut! D′ (u. D′′)

P ≡ (νx)(!x(y).P1 | P2)

Γ; � D′ � P1 :: y:A

Γ, u : A; Δ � D′′ � P2 :: z:C by inversion

not live(P2) since not live(P2)

C = 1 or C = !C ′ for some C ′ [satisfying (1)]

(xi : Ai) ∈ Δ implies Ai = 1 or there is Bi with Ai = !Bi [satisfying (2)]

C = !C ′ implies P2 ≡ (νn)(!z(y).P ′
2 | P ′′

2 ) by i.h.

C = !C ′ implies P ≡ (νx)(!x(y).P1 | P2)

≡ (νx)(!x(y).P1 | (νn)(!z(y).P ′
2 | P ′′

2 ))

≡ (νx)(νn)(!x(y).P1 | !z(y).P ′
2 | P ′′

2 ))

≡ (νx)(νn)(z(y).R | R′)

with R = P ′
2 and R′ = !x(y).P1 | P ′′

2 [satisfying (3)]

Lemma A.12. Let Γ; Δ � D � P :: z : C . If live(P ) then there is Q such that one of the

following holds:

a. P → Q,

b. P
α→ Q for some α where s(α) ∈ z,Γ,Δ and s(α) ∈ Γ,Δ if C = !A.
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Proof. By induction on the structure of D. All cases are possible for D except 1R and

!R D′, which follows by analysis of the typing rules.

Case:D = 1L n D′

Δ = (Δ∗, n : 1)

Γ; Δ∗ � D′ � P :: z:C by inversion

There is Q such that either P → Q, or P
α→ Q

for some α with s(α) ∈ z,Γ,Δ∗ and s(α) ∈ Γ,Δ∗ if C = !A. by i.h.

There is Q such that either P → Q, or P
α→ Q

for some α with s(α) ∈ z,Γ,Δ and s(α) ∈ Γ,Δ if C = !A.

Case:D = !L n (u. D′)

Δ = (n : !A,Δ∗)

Γ, u : A; Δ∗ � D′ � P :: z:C by inversion

There is Q such that either P → Q, or P
α→ Q

for some α with s(α) ∈ z,Γ, u,Δ∗ and s(α) ∈ Γ, u,Δ∗ if C = !A. by i.h.

There is Q such that either P → Q, or P
α→ Q

for some α with s(α) ∈ z,Γ,Δ and s(α) ∈ Γ,Δ if C = !A.

Case:D = ⊗R D1 D2

Δ = (Δ1,Δ2), C = C1 ⊗ C2.

Γ; Δ1 � D1 � Q :: y:C1

Γ; Δ2 � D′
2 � R :: z:C2

P ≡ (νy)z〈y〉.(Q | R) by inversion

P
(νy)z〈y〉

→ Q with z ∈ z,Γ,Δ and C 	= !A.

Case:D = ⊗L (y. D1)

Δ = (D∗, x : C1 ⊗ C2)

Γ; Δ∗, y : C1, x : C2 � D1 � Q :: z:C

P ≡ x(y).Q by inversion

P
x(y)
→ Q with x ∈ Γ,Δ

Case:D =�R D1

C = C1 � C2.

Γ; Δ, y : C1 � D1 � Q :: z:C2

P ≡ z(y).Q by inversion

P
z(y)
→ Q with z ∈ z,Γ,Δ and C 	= !A.

Case:D =�L D1 D2

Δ = (Δ1,Δ2, x : C1 � C2)

Γ; Δ1 � D1 � Q :: y:C1

Γ; Δ2, x : C2 � D′
2 � R :: z:C2

P ≡ (νy)x〈y〉.(Q | R) by inversion

P
(νy)x〈y〉

→ Q with x ∈ Γ,Δ

Case:D = cut D1 (x. D2)
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Δ = (Δ1,Δ2)

Γ; Δ1 � D1 � P1 :: x:A

Γ; Δ2, x : A � D2 � P2 :: z:C

P ≡ (νx)(P1 | P2) by inversion

live(P1) or live(P2) since live(P )

Case (1): live(P1) and live(P2).

There is P ′
1 such that either P1 → P ′

1, or P1
α1→ P ′

1

for some α1 with s(α1) ∈ x,Γ,Δ1 and s(α1) ∈ Γ,Δ1 if A = !B1.

There is P ′
2 such that either P2 → P ′

2, or P2
α2→ P ′

2

for some α2 with s(α2) ∈ x,Γ,Δ2, z and s(α2) ∈ x,Γ,Δ2 if C = !B2. by i.h.

Subcase (0.1): P1 → P ′
1 or P2 → P ′

2

P → Q [satisfying (a)]

Subcase (1.1): s(α1) 	= x

P
α1→ Q ≡ (νx)(P ′

1 | P2) with α1 ∈ Γ,Δ [satisfying (b)]

Subcase (1.2): s(α2) 	= x

P
α2→ Q ≡ (νx)(P1 | P ′

2) with α2 ∈ z,Γ,Δ [satisfying (b)]

Subcase (1.3): s(α1) = s(α2) = x

α2 = α1 by Lemma A.1

P → Q with Q ≡ (νx)(νy)(P ′
1 | P ′

2) or Q ≡ (νx)(P ′
1 | P ′

2) [satisfying (a)]

Case (2): not live(P1) and live(P2)

There is P ′
2 such that either P2 → P ′

2, or P2
α2→ P ′

2

for some α2 with s(α2) ∈ x,Γ,Δ2, z and s(α2) ∈ x,Γ,Δ2 if C = !B2 by i.h.

Subcase (2.1): P2 → P ′
2

P → Q with Q ≡ (νx)(P1 | P ′
2) [satisfying (a)]

Subcase (2.2): P2
α2→ P ′

2

Subcase (2.2.1): s(α2) 	= x

P
α2→ Q with Q ≡ (νx)(P1 | P ′

2) [satisfying (b)]

Subcase (2.2.2): s(α2) = x

A 	= 1 by Lemma A.1

P1 ≡ (νy)(!x(w).R′
1 | R′′

1 )

A = !B by Lemma A.11

P1

x(y)
→ P1

α2 = (νy)x〈w〉 by Lemma A.1

P → Q with Q ≡ (νx)(νy)(P1 | P ′
2) [satisfying (a)]

Case (3): live(P1) and not live(P2)

There is P ′
1 such that either P1 → P ′

1, or P1
α1→ P ′

1

for some α1 with s(α1) ∈ Γ,Δ1, x and s(α1) ∈ Γ,Δ1 if C = !B2 by i.h.

Subcase (3.1): P1 → P ′
1

P → Q with Q ≡ (νx)(P ′
1 | P2) [satisfying (a)]
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Subcase (3.1): P1
α1→ P ′

1

for some α1 with s(α1) ∈ Γ,Δ1, x and s(α1) ∈ Γ,Δ1 if A = !B for some B

Subcase (3.1.1) s(α1) = x

A = 1 or A = !B for some B by Lemma A.11

Subcase (3.1.1.1) A = 1

Impossible, since P1
α1→ P ′

1 and s(α1) = x by Lemma A.1

Subcase (3.1.1.2) A = !B for some B

Impossible, since s(α1) = x contradicts x ∈ Γ,Δ1.

Case:D = cut! D1 (u. D2)

Γ; � D1 � P1 :: y:A

Γ, u : A; Δ � D2 � P2 :: z:C

P ≡ (νu)(!u(y).P1 | P2) by inversion

live(P2) since live(P )

There is P ′
2 such that either P2 → P ′

2, or P2
α2→ P ′

2

for some α2 with s(α2) ∈ u,Γ,Δ, z and s(α2) ∈ u,Γ,Δ if C = !B.

Subcase (1): P2 → P ′
2

P → Q with Q ≡ (νu)(P1 | P ′
2) [satisfying (a)]

Subcase (2): P2
α2→ P ′

2

Subcase (2.1): s(α2) 	= u

P
α2→ Q with Q ≡ (νu)(P1 | P ′

2)

where s(α2) ∈ Γ,Δ, z and s(α1) ∈ Γ,Δ if C = !B [satisfying (b)]

Subcase (2.2): s(α2) = u

P2

(νy)u〈y〉
→ P ′

2 by Lemma A.1

!u(y).P1

u(y)
→ (P1 | !u(y).P1)

P → Q with Q ≡ (νx)(νy)(P1 | !u(y).P1 | P ′
2) [satisfying (a)]

Theorem A.2. Let ·; · � D � P :: x : 1, then either P is terminated, P is a composition of

replicated servers or there exists Q st. P → Q.

Proof. If the typing derivation consists of 1R then we are done. If the typing derivation

consists solely of instances of cut! then we are done since P is a composition of replicated

servers. Otherwise we note that our definition of live process accounts for the remaining

cases and thus the following reasoning applies: (a) P → Q, or (b) P
α→ Q for some α

where s(α) = x, by Lemma A.12. But P
α→ Q with s(α) = x is not possible since x : 1, by

Lemma A.1. So P → Q.

A.4. Intuitionistic duality

Proposition A.3. Let A be a !-free type. Then Γ; Δ � P :: x:A implies Γ; Δ, x:A � P :: −:1.
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Proof. We make the proof term explicit, writing Γ; Δ � D � P :: x:A, and proceed by

induction on the structure of D, constructing Γ; Δ, x:A � P :: −:1 in each case (eliding a

D′). We show a few representative cases.

Case:D = 1R

Δ = · and P = 0 by inversion

Γ; x:1 � 0 :: −:1 by 1R and 1L

Case:D = ⊗R D1 D2

Δ = (Δ1,Δ2), P = (νy)x〈y〉. (P1 | P2), A = A1 ⊗ A2,

Γ; Δ1 � D1 � P1 :: y:A1

Γ; Δ2 � D2 � P2 :: x:A2 by inversion

Γ; Δ2, x:A2 � P2 :: −:1 by i.h. on D2

Γ; Δ1,Δ2, x:A1 � A2 � (νy)x〈y〉. (P1 | P2) :: −:1 by rule �L

Case:D = cutD1 (y. D2)

Δ = (Δ1,Δ2), P = (νy)(P1 | P2),

Γ; Δ1 � D1 � P1 :: y:B

Γ; Δ2, y:B � D2 � P2 :: x:A by inversion

Γ; Δ2, y:B, x:A � P2 :: −:1 by i.h. on D2

Γ; Δ1,Δ2, x:A � (νy)(P1 | P2) :: −:1 by rule cut

Case:D = cut! D1 (u. D2)

P = (νu)(!u(z).P1 | P2),

Γ; � D1 � P1 :: z:B

Γ, u:B; Δ � D2 � P2 :: x:A by inversion

Γ, u:B; Δ, x:A � P2 :: −:1 by i.h. on D2

Γ; Δ, x:A � (νu)(!u(z).P1 | P2) :: −:1 by rule cut!

Case:D = !R. This case is impossible, since A was assumed to be !-free.
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