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We develop a principled integration of shared mutable state into a proposition-as-types linear logic inter-

pretation of a session-based concurrent programming language. While the foundation of type systems for

the functional core of programming languages often builds on the proposition-as-types correspondence,

automatically ensuring strong safety and liveness properties, imperative features have mostly been handled

by extra-logical constructions. Our system crucially builds on the integration of nondeterminism and sharing,

inspired by logical rules of differential linear logic, and ensures session fidelity, progress, confluence and

normalisation, while being able to handle first-class shareable reference cells storing any persistent object. We

also show how preservation and, perhaps surprisingly, progress, resiliently survive in a natural extension of

our language with first-class locks. We illustrate the expressiveness of our language with examples highlighting

detailed features, up to simple shareable concurrent ADTs.
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1 INTRODUCTION
In this paper we introduce a propositions-as-types (PaT) approach to mutable state, defined as a

conservative extension of the classical linear logic interpretation for session-typed processes [Caires

et al. 2016; Wadler 2012] with first-class shareable reference cells. Modern software construction

depends on imperative state, state sharing, and concurrency, with even mainstream functional

programming languages such as ML variants or Haskell offering explicit typed support for mutable

state. Still, safely programming with state, aliasing and concurrency (and reasoning about the

combination) has always been considered a significant challenge, with the study of programming

abstractions, logics and type systems for disciplining interference being a prolific research topic for

decades [Ahmed et al. 2007; Caires and Seco 2013; Jung et al. 2018a; Nanevski et al. 2008; O’Hearn

and Reynolds 2000; Sunshine et al. 2011].

While the design of type systems for the functional core of programming languages (e.g., the

polymorphic lambda calculus) conveniently connects to the PaT correspondence [Cardelli 1991;

Howard 1980; Wadler 2015]), which intrinsically ensures strong safety and liveness properties, the

notion of mutable state seems to escape from the paradigm, notwithstanding the long identified deep

connections between linear logic and stateful computation [Wadler 1990a], and recent advances

such as [Balzer and Pfenning 2017]. Imperative state is then usually expressed by diverging from
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79:2 Pedro Rocha and Luís Caires

logical principles; a consequence is that many important properties offered “for free" by PaT, such

as type preservation, progress / deadlock freedom, equational reasoning on program behaviour

via proof equivalence, or (strong) normalisation, do not automatically result from the basic typing

discipline, and need in general additional extra-logical techniques to be achieved.

We thus believe that computational models for mutable state subscribing to the full ideology of

PaT (proofs as programs, formulas as types, evaluation as proof simplification) are still lacking.

A main challenge is that while in PaT computation corresponds to proof reduction, that is, the

observable behaviour of a program term does not change under cut reduction / elimination, and the

normal form summarises the program / proof denotation, the execution of programs with shared

state and concurrency typically induces non-deterministic behaviour, e.g, as in concurrent writes

to the same memory cell. Non-determinism in computations is often mentioned as an obstacle for

PaT, since if may lead to loss of confluence in a (candidate) notion of proof simplification. Moreover,

the existence of proof normal forms may be also compromised in the presence of shared state, since

non-termination may be expressed with a higher-order store (e.g., Landin’s knot).

In the seminal PaT correspondences between session processes and linear logic [Caires and

Pfenning 2010; Wadler 2012], there is no “real" non-determinism. Programs exhibit parallelism and

a degree of concurrency, in the sense that many sessions may run simultaneously and indepen-

dently, but the computation is nevertheless confluent. The key reason is that no races occur in

communications within a linear session or even between different linear sessions. Also, processes

may concurrently invoke the same replicated server, however, the typing discipline induced by the

promotion rule for !𝐴 ensures that the server behaviour is identical for each invocation (cf. uniform

receptiveness of shared names [Sangiorgi 1999]). In such a setting, the overall computation remains

essentially “functional" [Toninho and Yoshida 2021], which is not surprising given the well known

interpretations of linear logic as linear lambda calculi.

The question then arises about wether and howmutable shared state might be faithfully expressed

in a PaT model. In this work we approach the issue by exploring the Curry-Howard correspondence

from a programming language perspective, building on a conservative extension of standard classical

linear logic. As suggested by Cardelli [Cardelli 1991], “one can extrapolate [the] correspondence

and turn it into a predictive tool: if a concept is present in type theory but absent in programming,

or vice-versa, it can be very fruitful to both areas to investigate and see what the corresponding

concept might be in the other context".

Our system fully complies with the PaT ideology (proofs as programs, formulas as types, evalua-

tion as proof simplification). Its core ingredients are: (a) the introduction of two dual "exponential"

modalities and the interpretation of their proof rules as language constructs for manipulating

reference cells and (b) a principled integration of the well-known interplay between concurrency

and non-determinism in algebraic concurrency theory [Hennessy and Milner 1985] now emerging

from our proof theoretic analysis. Our typing rules for the imperative fragment are inspired by

those for the exponentials and sum connectives of differential linear logic (DiLL) [Ehrhard 2018;

Ehrhard and Regnier 2006], allowing us to internalise non-determinism equationally (an idea also

explored by Beffara in the context of process algebra [Beffara 2008]), thus allowing us to capture

concurrent interactions on shared state equationally, by cut-reduction / proof simplification.

Propositions-as-types pays back: programs in our basic language naturally enjoy type preserva-

tion, progress, confluence and normalisation. We also show how the key properties of our system,

including progress / deadlock freedom, resiliently survive to a principled extension of our language

with first-class locks. The intrinsic modularity of the PaT approach naturally ensures its compatibil-

ity with all constructs in related work that as well follows PaT, including parametric polymorphism

[Caires et al. 2013; Wadler 2012], dependent types [Toninho et al. 2011], code mobility [Toninho

et al. 2013], or multiparty protocols [Caires and Pérez 2016; Carbone et al. 2016]. As an example,
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we illustrate how the inclusion of second-order quantifiers [Caires et al. 2013; Wadler 2012] allows

us to elegantly express concurrent and shareable stateful ADTs within our basic PaT framework.

1.1 Overview
We provide a high-level overview of 𝜋SS, which is a session-typed 𝜋-calculus with shared state,

anticipating the technical presentation of the next sections. Our basic session discipline (see [Honda

1993; Honda et al. 1998]) applies to concurrent processes which communicate through private

channels connecting two partners and is related to Linear Logic (LL) via a Curry-Howard correspon-

dence: types correspond to propositions and are assigned to session channels, processes to proofs,

and process congruence/reduction to proof simplification. In fact, 𝜋SS is a conservative extension

of the fundamental session-based interpretations of LL [Caires and Pfenning 2010; Wadler 2012].

Within a linear session two parties communicating on each endpoint of the session channel

comply with a certain protocol, characterised by a session type. Duality on types, (𝐴/𝐴) where 𝐴
and 𝐴 are dual types, corresponds to linear logic negation and captures symmetry in interaction:

when one process closes, the other waits for the session to be closed (1/⊥); when one sends, the

other receives (𝐴 ⊗ 𝐵/𝐴 O 𝐵); when one offers a menu, the other chooses an option from the menu

(𝐴 N 𝐵/𝐴 ⊕ 𝐵), and so on. The exponentials (!𝐴/?𝐴) type replicated servers and their invocation

by clients. Composition of two processes 𝑃,𝑄 interacting on a session 𝑥 of type 𝐴 is represented by

the cut rule, written 𝑃 |𝑥 : 𝐴| 𝑄 , where 𝑃 uses channel 𝑥 at type 𝐴 and process 𝑄 uses 𝑥 at type 𝐴.

Let us start by considering the following simple session process.

menu𝑚 ≜ case𝑚 {|inl : recv𝑚(𝑏); send𝑚(𝑏 ′.not 𝑏 𝑏 ′); close𝑚
|inr : recv𝑚(𝑏1); recv𝑚(𝑏2); send𝑚(𝑏 ′.and 𝑏1 𝑏2 𝑏 ′); close𝑚}

Process menu𝑚 offers a menu with two choices: inl or inr. In case the choice is inl, it receives a
boolean 𝑏, computes the negation of 𝑏 (to 𝑏 ′) and sends back the result 𝑏 ′. In case the choice is inr,
it receives two booleans 𝑏1 and 𝑏2, computes their conjunction (to 𝑏 ′) and sends back the result 𝑏 ′.
Both branches finalize the session𝑚 by closing it, no further interactions will take place. Process

menu𝑚 offers on𝑚 a protocol of typeMenu ≜ (BoolO (Bool ⊗1))N (BoolO (Bool O (Bool⊗1))).
Process client𝑚 is a client of menu𝑚, providing at𝑚 the dual typeMenu

client𝑚 ≜ 𝑚.inr; send𝑚(𝑏1.ltrue 𝑏1); send𝑚(𝑏2 .lfalse 𝑏2); recv𝑚(𝑏 ′);wait𝑚; print 𝑏 ′

It chooses the option inr (conjunction), sends two linear booleans, receives a result 𝑏 ′ on𝑚, waits

for the session to be closed and then prints 𝑏 ′. Since menu 𝑚 and client 𝑚 have dual types on

session𝑚 they can be composed with a cut

system0 ≜ menu𝑚 |𝑚 : Menu| client 𝑚

Execution of system
0
will eventually result in the boolean value false to be printed out. Process

menu𝑚 executes and terminates after interacting with the client. Then, one may define a replicated

server on name 𝑠 , by server 𝑠 ≜ !𝑠 (𝑚);menu𝑚 . It is typed by !Menu and persistently offers the

boolean menu, spawning a linear session on a fresh𝑚 (of typeMenu) on each invocation.

Our basic 𝜋CLL language corresponds exactly to second-order Classical Linear Logic with mix.

The main novelty in this paper results from the addition of two duality-related modalities to type

mutable state: �? 𝐴 (read box why not) which type reference cells, and �! 𝐴 (read box bang) which
type cell usage, and which are governed by logical principles that take inspiration in DiLL [Ehrhard

2018]. The associated basic constructs are processes (proofs) that represent first class reference

cells storing persistent values, and cell usage operations read, write and free. For example, consider

system
1
≜ cell 𝑐 (𝑏.true 𝑏) |𝑐 : �? Bool| read 𝑐 (𝑏𝑟 );wrt 𝑐 (𝑏 ′.false 𝑏 ′); free 𝑐; 𝑃 (𝑏𝑟 )
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In system
1
a reference cell at 𝑐 , initialised with the persistent boolean value true and typed by

𝑐 : �? Bool, is composed (by cut) with a process that uses 𝑐 at type �! Bool. It first reads the cell,
then writes the boolean false, frees the usage, and continues as process 𝑃 (𝑏). Reference cells and
usages are handled linearly, therefore cannot be implicitly discarded nor copied. Releasing a cell

usage is expressed by the free operation (which corresponds to co-weakening). In example system
1
,

after the cell usage is released, cell deallocation occurs since there is no other usage of it; notice

that 𝑐 does not occur in 𝑃 (𝑏), as enforced by typing of free. Now, the dynamic semantics of our

language is defined from a structural congruence (≡) and reduction (→) relations (Definitions 6.3,
6.4), where reduction is closed under structural congruence; and we have the reductions

system
1
→ true 𝑏𝑟 |𝑏𝑟 : !Bool| (cell 𝑐 (𝑏.true 𝑏) |𝑐 : �? Bool| wrt 𝑐 (𝑏 ′.false 𝑏 ′); free 𝑐; 𝑃 (𝑏𝑟 ))
→ true 𝑏𝑟 |𝑏𝑟 : !Bool| (cell 𝑐 (𝑏 ′.false 𝑏 ′) |𝑐 : �? Bool| free 𝑐; 𝑃 (𝑏𝑟 ))
→ true 𝑏𝑟 |𝑏𝑟 : !Bool| 𝑃 (𝑏𝑟 )

We now turn to sharing: our language supports sharing of cell usages via the share 𝑐 oper-

ation which corresponds to duplication of a cell usage 𝑐 (typing rule for share corresponds to

co-contraction). Consider the example

system
2
≜ cell 𝑐 (𝑏.true 𝑏) |𝑐 : �? Bool| share 𝑐 {wrt 𝑐 (𝑏1.true 𝑏1); 𝑃1 | | wrt 𝑐 (𝑏2.false 𝑏2); 𝑃2}

system
2
illustrates two concurrent threads sharing a memory cell: one thread writes the boolean

true and continues as 𝑃1, whereas the other thread writes false and continues as 𝑃2.

We look in detail how system
2
executes. First, system

2
is expanded into a sum (𝑃 +𝑄) in which

the two concurrent write operations are interleaved and brought to evidence, using the fundamental

structural conversion law ≡ [AA] which relates concurrency with nondeterminism. This yields

system
2
≡ cell 𝑐 (𝑏.true 𝑏) |𝑐 : �? Bool| (wrt 𝑐 (𝑏1 .true 𝑏1);wrt 𝑐 (𝑏2.false 𝑏2); share 𝑐 {𝑃1 | | 𝑃2} +

wrt 𝑐 (𝑏1 .false 𝑏1);wrt 𝑐 (𝑏2.true 𝑏2); share 𝑐 {𝑃1 | | 𝑃2})

A process of the form 𝑃 +𝑄 represents a non-deterministic choice between alternatives 𝑃 and 𝑄 ,

each offering the same interface and typing, cf. sum in process algebra. Sums are also present in

DiLL [Ehrhard 2018] where cut elimination need to genarate sums of proofs. In our model, sum

satisfy the expected axioms of nondeterministic sums of process algebras [Hennessy and Milner

1985], like commutativity, associativity and idempotency, remarkably modelled as logical proof

conversions. Now, further laws of ≡ allows cut to be distributed over sum, so that

system
2
≡ (cell 𝑐 (𝑏.true 𝑏) |𝑐 : �? Bool| wrt 𝑐 (𝑏1.true 𝑏1);wrt 𝑐 (𝑏2.false 𝑏2); share 𝑐 {𝑃1 | | 𝑃2})
+ (cell 𝑐 (𝑏.true 𝑏) |𝑐 : �? Bool| wrt 𝑐 (𝑏2.false 𝑏2);wrt 𝑐 (𝑏1.true 𝑏1); share 𝑐 {𝑃1 | | 𝑃2})

Using reduction on each summand to execute the write operations, last writer wins, and we obtain

system
2

∗−→ (cell 𝑐 (𝑏2 .false 𝑏2) + cell 𝑐 (𝑏1 .true 𝑏1)) |𝑐 : �? Bool| share 𝑐 {𝑃1 | | 𝑃2}

Notice how sums internalise nondeterminism in processes / proof terms, allowing us to define

confluent proof simplification. In this example, all possible reduction sequences from system
2
reach

a unique process up to structural congruence after performing the four write operations.

As mentioned above, at some point in computation, all cell clients must release their (shared)

cell usages. It is interesting to give an intuitive understanding about how our semantics handles

release of shared cell usages, that lazily leads to ultimate cell deallocation when no usage remains

active; when this happens cells get “deallocated". For example, consider the process

system
3
≜ cell 𝑐 (𝑏.true 𝑏) |𝑐 : �? Bool| share 𝑐 {wrt 𝑐 (𝑏 ′.false 𝑏 ′); free 𝑐; 𝑃 | | free 𝑐;𝑄}
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In this case, when a read or write operation competes with a free operation, the free operation gets

postponed, this is captured by a structural conversion ≡ law [FA].

system
3
≡ cell 𝑐 (𝑏.true 𝑏) |𝑐 : �? Bool| wrt 𝑐 (𝑏 ′.false 𝑏 ′); share 𝑐 {free 𝑐; 𝑃 | | free 𝑐;𝑄}
→ cell 𝑐 (𝑏 ′.false 𝑏 ′) |𝑐 : �? Bool| share 𝑐 {free 𝑐; 𝑃 | | free 𝑐;𝑄}

Then, by ≡ law [FF], the two shared free operations are collapsed into a single one that is then

propagated up in the sharing tree. All free operations executed by threads sharing 𝑐 eventually

collapse into a single free operation, which then causes the cell to be erased.

cell 𝑐 (𝑏 ′.false 𝑏 ′) |𝑐 : �? Bool| share 𝑐 {free 𝑐; 𝑃 | | free 𝑐;𝑄}
≡ cell 𝑐 (𝑏 ′.false 𝑏 ′) |𝑐 : �? Bool| free 𝑐; (𝑃 | | 𝑄) → 𝑃 | | 𝑄

In this example, after freeing up 𝑐 , the thread continuations 𝑃 and 𝑄 will continue running in

parallel (via mix) but of course they are no longer accessing the cell.

1.2 Contributions and Structure of the Paper
In Section 2 we review the polymorphic session-typed calculus 𝜋CLL, which exactly corresponds to

second-order Classical Linear Logic with mix. In Section 3 we introduce our process model and type

system 𝜋SS, which extends 𝜋CLL with shared state, sums, and two novel dual modalities inspired

by principles of differential linear logic. Considerations about the structure of proof reductions

motivate a simple extension 𝜋SSL of our basic system 𝜋SS with locking primitives, which we

present in Section 4. These languages are conservative extensions of classical linear logic according

to 𝜋CLL ⊂ 𝜋SS ⊂ 𝜋SSL. In Section 5 we showcase the expressiveness of our language 𝜋SSL by

implementing a mutable shareable stack and queue objects. This also illustrates how the presence

of standard existential and universal type quantifiers [Cardelli and Wegner 1985; Mitchell and

Plotkin 1988] harmoniously combine with the basic stateful framework of 𝜋SSL, allowing us to

express mutable ADTs. Throughout the paper several other examples are provided. In Section 6

we formalise the reduction semantics of 𝜋SSL and prove that, as a consequence of the proof-

theoretic approach, the language enjoys type preservation (Theorem 6.6) and deadlock-freedom

(Theorem 6.14). In the following Sections, we prove key meta-theoretic properties of our system. In

Section 7 we establish that our system 𝜋SSL, internalising non-determinism with sum processes,

enjoys confluence (Theorem 7.8), thus proof reductions and conversions represent proof identities

or behavioural equivalences. As a consequence, we also reveal a new connection between logic

interpretations of programming languages, concurrency and non-determinism. In Section 8 we

study proof normalisation / cut-elimination (Theorem 8.4) for the sub-calculus of 𝜋SS without

quantifiers. A consequence of the sub-formula property of cut-free proofs (Proposition 8.3) is that

any system that implements standard linear logic based session types (even if it manipulates state)

normalises to a (non-deterministic) cut-free process that does not manipulate state (Corollary 8.5).

In Section 9 we give a brief description of out prototype type checker and interpreter, which was

submitted as an artifact for evaluation [Rocha and Caires 2021b], as companion to this paper. Finally,

in Section 10 we discuss related work, Section 11 offers closing remarks and discusses future work.

Complete definitions and detailed proofs are in the technical report [Rocha and Caires 2021a].

2 THE BASIC LANGUAGE 𝜋CLL
Our starting point is the typed language 𝜋CLL for session-based interacting processes, akin to the

session 𝜋-calculus, related to classical linear logic (with mix) via a Curry-Howard correspondence

[Caires et al. 2013; Caires and Pfenning 2010; Caires et al. 2016; Wadler 2012]: (session) types

correspond to propositions (and types are assigned to session channels), processes correspond to

proofs, and process congruence/reduction corresponds to proof simplification.
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[T0]
0 ⊢ ∅; Γ

𝑃 ⊢ Δ′; Γ 𝑄 ⊢ Δ; Γ
[Tpar]

𝑃 | | 𝑄 ⊢ Δ′,Δ; Γ
[Tfwd]

fwd 𝑥 𝑦 ⊢ 𝑥 : 𝐴,𝑦 : 𝐴; Γ
𝑃 ⊢ Δ′, 𝑥 : 𝐴; Γ 𝑄 ⊢ Δ, 𝑥 : 𝐴; Γ

𝑃 |𝑥 : 𝐴| 𝑄 ⊢ Δ′,Δ; Γ
[Tcut]

[T1]
close 𝑥 ⊢ 𝑥 : 1; Γ

𝑄 ⊢ Δ; Γ
[T⊥]

wait 𝑥 ;𝑄 ⊢ Δ, 𝑥 : ⊥; Γ
𝑃1 ⊢ Δ, 𝑥 : 𝐴; Γ 𝑃2 ⊢ Δ, 𝑥 : 𝐵; Γ

[TN]

case 𝑥 {|inl : 𝑃1 |inr : 𝑃2} ⊢ Δ, 𝑥 : 𝐴 N 𝐵; Γ

𝑄1 ⊢ Δ′, 𝑥 : 𝐴; Γ
[T⊕𝑙 ]

𝑥 .inl;𝑄1 ⊢ Δ′, 𝑥 : 𝐴 ⊕ 𝐵; Γ

𝑄2 ⊢ Δ′, 𝑥 : 𝐵; Γ
[T⊕𝑟 ]

𝑥 .inr;𝑄2 ⊢ Δ′, 𝑥 : 𝐴 ⊕ 𝐵; Γ

𝑃1 ⊢ Δ1, 𝑦 : 𝐴; Γ 𝑃2 ⊢ Δ2, 𝑥 : 𝐵; Γ
[T⊗]

send 𝑥 (𝑦.𝑃1); 𝑃2 ⊢ Δ1,Δ2, 𝑥 : 𝐴 ⊗ 𝐵; Γ
𝑄 ⊢ Δ, 𝑧 : 𝐴, 𝑥 : 𝐵; Γ

[TO]

recv 𝑥 (𝑧);𝑄 ⊢ Δ, 𝑥 : 𝐴 O 𝐵; Γ

𝑃 ⊢ 𝑦 : 𝐴; Γ
[T!]

!𝑥 (𝑦); 𝑃 ⊢ 𝑥 :!𝐴; Γ

𝑄 ⊢ Δ; Γ, 𝑥 : 𝐴
[T?]

?𝑥 ;𝑄 ⊢ Δ, 𝑥 :?𝐴; Γ

𝑃 ⊢ 𝑦 : 𝐴; Γ 𝑄 ⊢ Δ; Γ, 𝑥 : 𝐴
[Tcut!]

𝑦.𝑃 |!𝑥 : 𝐴| 𝑄 ⊢ Δ; Γ
𝑄 ⊢ Δ, 𝑧 : 𝐴; Γ, 𝑥 : 𝐴

[Tcall]

call 𝑥 (𝑧);𝑄 ⊢ Δ; Γ, 𝑥 : 𝐴

𝑃 ⊢ Δ, 𝑥 : {𝐵/𝑋 }𝐴; Γ
[T∃]

send 𝑥 𝐵; 𝑃 ⊢ Δ, 𝑥 : ∃𝑋 .𝐴; Γ

𝑄 ⊢ Δ, 𝑥 : 𝐴; Γ
[T∀]

recv 𝑥 (𝑋 );𝑄 ⊢ Δ, 𝑥 : ∀𝑋 .𝐴; Γ

𝑃 ⊢ 𝑦 :!𝐴; Γ
[Tcell]

cell 𝑥 (𝑦.𝑃) ⊢ 𝑥 : �? 𝐴; Γ

𝑄 ⊢ Δ; Γ
[Tfree]

free 𝑥 ;𝑄 ⊢ Δ, 𝑥 : �! 𝐴; Γ

𝑄 ⊢ Δ, 𝑧 :?𝐴, 𝑥 : �! 𝐴; Γ
[Tread]

read 𝑥 (𝑧);𝑄 ⊢ Δ, 𝑥 : �! 𝐴; Γ

𝑄1 ⊢ 𝑧 :!𝐴; Γ 𝑄2 ⊢ Δ, 𝑥 : �! 𝐴; Γ
[Twrite]

wrt 𝑥 (𝑧.𝑄1);𝑄2 ⊢ Δ, 𝑥 : �! 𝐴; Γ

𝑃 ⊢ Δ′, 𝑥 : �! 𝐴; Γ 𝑄 ⊢ Δ, 𝑥 : �! 𝐴; Γ
[Tshare]

share 𝑥 {𝑃 | | 𝑄} ⊢ Δ′,Δ, 𝑥 : �! 𝐴; Γ

𝑃 ⊢ Δ; Γ 𝑄 ⊢ Δ; Γ
[Tsum]

𝑃 +𝑄 ⊢ Δ; Γ

Fig. 1. Typing Rules 𝑃 ⊢ Δ; Γ for 𝜋SS.

Typing Judgements. Typing judgments are of the form

𝑃 ⊢ 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛︸                  ︷︷                  ︸
Δ

;𝑦1 : 𝐵1, . . . , 𝑦𝑚 : 𝐵𝑚︸                   ︷︷                   ︸
Γ

and mean that a process 𝑃 , seen as a black box, offers a set of channel endpoints 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚
that follow a protocol specified by their respective types 𝐴1, . . . , 𝐴𝑛, 𝐵1, . . . , 𝐵𝑚 . Later, we will see

how to connect two channel endpoints 𝑥 and 𝑦 that have dual protocols 𝑥 : 𝐴 and 𝑦 : 𝐴.

Since we are interpreting a dyadic formulation of CLL, typing contexts are separated (with a

semi-colon) into two parts: a linear part denoted by Δ and an unrestricted (or exponential) part
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denoted by Γ. Δ is linearly handled, which means that we cannot copy nor discard channels, whereas

Γ allows weakening and contraction. This dyadic formulation was introduced in [Andreoli 1992]

and adopted in the session-based interpretations of [Caires and Pfenning 2010; Caires et al. 2016].

We assume that channel names in Δ and Γ are pairwise distinct. The empty context is written

∅. If Γ is empty we write just 𝑃 ⊢ Δ instead of 𝑃 ⊢ Δ; ∅. We write Δ,Δ′ (two comma-separated

contexts) for the disjoint union of Δ and Δ′. All the typing rules of 𝜋SS are displayed in Figure 1.

We now go through each of the connectives of 𝜋CLL, presenting their associated typing rules

(static semantics) and principal cut-reductions (dynamic semantics) in detail.

Inaction, Cut, Parallel. Inaction and composition are typed by the rules

[T0]
0 ⊢ ∅; Γ

𝑃 ⊢ Δ′, 𝑥 : 𝐴; Γ 𝑄 ⊢ Δ, 𝑥 : 𝐴; Γ
[Tcut]

𝑃 |𝑥 : 𝐴| 𝑄 ⊢ Δ′,Δ; Γ
𝑃 ⊢ Δ′; Γ 𝑄 ⊢ Δ; Γ

[Tpar]

𝑃 | | 𝑄 ⊢ Δ′,Δ; Γ

Rule [T0] is computationally interpreted by the inaction 0 process, which types with the empty

linear typing context and an arbitrary unrestricted context Γ, and operationally it does nothing.

The logical cut rule [Tcut] is interpreted by interactive composition. Processes 𝑃 and 𝑄 run

concurrently, interacting on a single private linear session 𝑥 . Process 𝑃 provides a behaviour of

type 𝐴 along 𝑥 , whereas 𝑄 offers on 𝑥 a dual behaviour of type 𝐴. Cut is annotated with the type

of its left argument, but we sometimes omit this annotation.

Finally, rule [Tpar] corresponds to linear logic mix rule and types the independent composition of

two processes 𝑃 and 𝑄 , which run in parallel without ever interfering with each other, but offering

together a common interface. Since the linear typing context is linearly handled, we assume that Δ
and Δ′ are disjoint. The same principle applies to [Tcut].

Session Termination. The dual types 1 (one) and ⊥ (bottom) type session termination

[T1]
close 𝑥 ⊢ 𝑥 : 1; Γ

𝑄 ⊢ Δ; Γ
[T⊥]

wait 𝑥 ;𝑄 ⊢ Δ, 𝑥 : ⊥; Γ
Process close 𝑥 closes a session 𝑥 and wait 𝑥 ;𝑄 waits for the session to be closed, continuing as

𝑄 . The interaction is modelled by the reduction rule

close 𝑥 |𝑥 : 1| wait 𝑥 ;𝑄 → 𝑄 [1⊥]

where, after the interaction, the session on 𝑥 disappears. As already highlighted, process reductions

in our language correspond to adequate proof conversions, and are intrinsically type preserving

(subject reduction holds (Theorem 6.6)). We illustrate this correspondence with rule [1⊥]:

[T1]
close 𝑥 ⊢ 𝑥 : 1; Γ

𝑄 ⊢ Δ; Γ
[T⊥]

wait 𝑥 ;𝑄 ⊢ Δ, 𝑥 : ⊥; Γ
[Tcut]

close 𝑥 |𝑥 | wait 𝑥 ;𝑄 ⊢ Δ; Γ
→ 𝑄 ⊢ Δ; Γ

Forwarding. Process fwd 𝑥 𝑦 interprets the identity axiom (on linear names)

[Tfwd]

fwd 𝑥 𝑦 ⊢ 𝑥 : 𝐴,𝑦 : 𝐴; Γ

Operationally, it acts as a link redirecting all interactions between channels 𝑥 and 𝑦. The associated

reduction is implemented by name substitution [Caires et al. 2012]

fwd 𝑥 𝑦 |𝑦 : 𝐴| 𝑃 → {𝑥/𝑦}𝑃 [fwd]
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Send and Receive. The dual types 𝐴 ⊗ 𝐵 (tensor) and 𝐴 O 𝐵 (par) type session communication

𝑃1 ⊢ Δ1, 𝑦 : 𝐴; Γ 𝑃2 ⊢ Δ2, 𝑥 : 𝐵; Γ
[T⊗]

send 𝑥 (𝑦.𝑃1); 𝑃2 ⊢ Δ1,Δ2, 𝑥 : 𝐴 ⊗ 𝐵; Γ
𝑄 ⊢ Δ, 𝑧 : 𝐴, 𝑥 : 𝐵; Γ

[TO]

recv 𝑥 (𝑧);𝑄 ⊢ Δ, 𝑥 : 𝐴 O 𝐵; Γ

We abbreviate 𝐴 ⊸ 𝐵 ≜ 𝐴 O 𝐵. Process send 𝑥 (𝑦.𝑃1); 𝑃2 sends a fresh session channel 𝑦 on session

𝑥 . Dually, process recv 𝑥 (𝑧);𝑄 receives a name 𝑧 on session 𝑥 . Name 𝑦 is bound in 𝑃1 and 𝑧 is bound

in 𝑄 . The send process is composed of two independent parts: a term 𝑃1 which implements the

session on (fresh) channel 𝑦 : 𝐴 to be sent, and a term 𝑃2 which provides the continuation session

behaviour on 𝑥 : 𝐵. The associated reduction is expressed by

send 𝑥 (𝑦.𝑃1); 𝑃2 |𝑥 : 𝐴 ⊗ 𝐵 | recv 𝑥 (𝑧);𝑄 → 𝑃2 |𝑥 : 𝐵 | (𝑃1 |𝑦 : 𝐴| {𝑦/𝑧}𝑄) [⊗O]

Notice that a cut on a session 𝐴 ⊗ 𝐵 gives origin to two lower rank cuts on sessions 𝐴 and 𝐵. The

inner cut on 𝑦 connects the continuation 𝑄 of the receiver with the provider 𝑃1 of the sent channel,

whereas the outer cut on 𝑥 connects 𝑄 to the continuation 𝑃2 of the sending process. Observe that

the type associated with session 𝑥 evolves from 𝐴 ⊗ 𝐵 to 𝐵 upon communication.

As in [Caires and Pfenning 2010; Wadler 2012], only fresh (bound) names are sent in communi-

cation, following the internal mobility discipline of Boreale [Boreale 1996], as opposed to external
mobility in which free names can be transmitted. However, the free output of (free) linear name 𝑦

can be encoded as send 𝑥 𝑦; 𝑃 ≜ send 𝑥 (𝑧. fwd 𝑦 𝑧); 𝑃 . The following typing rule is then admissible

𝑃 ⊢ Δ, 𝑥 : 𝐵; Γ
[T⊗𝑓 ]

send 𝑥 𝑦; 𝑃 ⊢ Δ, 𝑦 : 𝐴, 𝑥 : 𝐴 ⊗ 𝐵; Γ

Offer and Choice. The dual types 𝐴 N 𝐵 (with) and 𝐴 ⊕ 𝐵 (plus) type offer and choice

𝑃1 ⊢ Δ, 𝑥 : 𝐴; Γ 𝑃2 ⊢ Δ, 𝑥 : 𝐵; Γ
[TN]

case 𝑥 {|inl : 𝑃1 |inr : 𝑃2} ⊢ Δ, 𝑥 : 𝐴 N 𝐵; Γ

𝑄1 ⊢ Δ′, 𝑥 : 𝐴; Γ
[T⊕𝑙 ]

𝑥 .inl;𝑄1 ⊢ Δ′, 𝑥 : 𝐴 ⊕ 𝐵; Γ

𝑄2 ⊢ Δ′, 𝑥 : 𝐵; Γ
[T⊕𝑟 ]

𝑥 .inr;𝑄2 ⊢ Δ′, 𝑥 : 𝐴 ⊕ 𝐵; Γ
Process case 𝑥 {|inl : 𝑃1 |inr : 𝑃2} offers a menu of two options: left 𝑃1 and right 𝑃2, whereas

𝑥 .inl;𝑄1 and 𝑥 .inr;𝑄2 choose left and right, respectively. The two associated reduction rules are

case 𝑥 {|inl : 𝑃1 |inr : 𝑃2} |𝑥 : 𝐴 N 𝐵 | 𝑥 .inl;𝑄1 → 𝑃1 |𝑥 : 𝐴| 𝑄1 [N⊕𝑙 ]
case 𝑥 {|inl : 𝑃1 |inr : 𝑃2} |𝑥 : 𝐴 N 𝐵 | 𝑥 .inr;𝑄2 → 𝑃2 |𝑥 : 𝐵 | 𝑄2 [N⊕𝑟 ]

Example 2.1 (Maybe). We define Maybe 𝐴 ≜ 1 ⊕ 𝐴. Processes nothing 𝑥 ⊢ 𝑥 : Maybe 𝐴 and

just 𝑎 𝑥 ⊢ 𝑎 : 𝐴, 𝑥 : Maybe𝐴 are encoded as nothing 𝑥 ≜ 𝑥 .inl; close 𝑥 and just 𝑎 𝑥 ≜ 𝑥 .inr; fwd 𝑎 𝑥 .

Example 2.2 (Linear Booleans). We encode the linear booleans as sessions of type Bool ≜ 1 ⊕ 1

lfalse 𝑏 ⊢ 𝑏 : Bool ltrue 𝑏 ⊢ 𝑏 : Bool lfalse 𝑏 ≜ 𝑏.inl; close 𝑏 ltrue 𝑏 ≜ 𝑏.inr; close 𝑏

Consider processes discard 𝑥 ⊢ 𝑥 : Bool, not 𝑥 𝑦 ⊢ 𝑥 : Bool, 𝑦 : Bool and and 𝑥 𝑦 𝑧 ⊢ 𝑥 : Bool, 𝑦 :

Bool, 𝑧 : Bool which operate on linear booleans and are defined by

discard 𝑥 ≜ case 𝑥 {|inl : wait 𝑥 ; 0 |inr : wait 𝑥 ; 0}
not 𝑥 𝑦 ≜ case 𝑥 {|inl : wait 𝑥 ; true 𝑦 |inr : wait 𝑥 ; false 𝑦}

and 𝑥 𝑦 𝑧 ≜ case 𝑥 {|inl : wait 𝑥 ; (discard 𝑦 | | false 𝑧) |inr : wait 𝑥 ; fwd 𝑦 𝑧}
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Process discard 𝑥 consumes a linear boolean on 𝑥 , not 𝑥 𝑦 consumes a linear boolean on 𝑥 and

produces its negated value on𝑦 and and 𝑥 𝑦 𝑧 consumes booleans on channels 𝑥 and𝑦 and produces

their logical conjunction on channel 𝑧. Process and 𝑥 𝑦 𝑧 starts by performing case analysis on 𝑥 . If

𝑥 chooses left (false), then it waits for the session to be closed and then, in parallel, discards 𝑦 (the

output is false regardless of the input on 𝑦) and produces the boolean false on 𝑧. On the other hand,

if 𝑥 chooses right (true), then it waits for the session to be closed and then links the boolean 𝑦 to 𝑧.

Servers. The dual types !𝐴 (bang) and ?𝐴 (why not) type server definition and client invocation

𝑃 ⊢ 𝑦 : 𝐴; Γ
[T!]

!𝑥 (𝑦); 𝑃 ⊢ 𝑥 :!𝐴; Γ

𝑄 ⊢ Δ; Γ, 𝑥 : 𝐴
[T?]

?𝑥 ;𝑄 ⊢ Δ, 𝑥 :?𝐴; Γ

𝑃 ⊢ 𝑦 : 𝐴; Γ 𝑄 ⊢ Δ; Γ, 𝑥 : 𝐴
[Tcut!]

𝑦.𝑃 |!𝑥 : 𝐴| 𝑄 ⊢ Δ; Γ
𝑄 ⊢ Δ, 𝑧 : 𝐴; Γ, 𝑥 : 𝐴

[Tcall]

call 𝑥 (𝑧);𝑄 ⊢ Δ; Γ, 𝑥 : 𝐴

The term !𝑥 (𝑦); 𝑃 denotes a process that persistently offers on 𝑥 a service of type 𝐴 provided by

P (the server body): it corresponds to the well-known replicated server process in the 𝜋-calculus.

Process ?𝑥 ;𝑄 moves a session 𝑥 :?𝐴 from the linear to the unrestricted context (to be typed as

𝑥 : 𝐴) and proceeds as𝑄 . Whereas [Tcut] acts on the linear context, [Tcut!] acts on the unrestricted

context. The term 𝑦.𝑃 |!𝑥 : 𝐴| 𝑄 composes a server body 𝑃 with a pool of clients represented

by 𝑄 , and which can request a service an unbounded (possibly zero) number of times. Process

call 𝑥 (𝑧);𝑄 calls a service on the server 𝑥 , to be processed on the fresh name 𝑧, and continues as 𝑄 .

The interaction between [T!] and [T?] is expressed by rule [!?]

!𝑥 (𝑦); 𝑃 |𝑥 :!𝐴| ?𝑥 ;𝑄 → 𝑦.𝑃 |!𝑥 : 𝐴| 𝑄 [!?]

where a linear cut on 𝑥 :!𝐴 reduces to an unrestricted cut on 𝑥 : 𝐴. This cut-reduction is standard in

dyadic presentations of linear logic [Pfenning 1995] and it may be computationally understood as

activation of the linear server code in a thread pool, for shared invocation by clients. Then, server

invocation by clients is modelled by rule [call]

𝑦.𝑃 |!𝑥 : 𝐴| call 𝑥 (𝑧);𝑄 → {𝑧/𝑦}𝑃 |𝑧 : 𝐴| (𝑦.𝑃 |!𝑥 : 𝐴| 𝑄) [call]

A linear replica of the server body is instantiated on the fresh name 𝑧 as {𝑧/𝑦}𝑃 . Notice that the
server body is still available to the continuation 𝑄 for (possibly) further requests.

The identity axiom over the unrestricted context is interpreted by the copycat process

fwd! 𝑤 𝑦 ≜ !𝑤 (𝑧); call 𝑦 (𝑧 ′); fwd 𝑧 𝑧 ′ ⊢ 𝑤 :!𝐴; Γ, 𝑦 : 𝐴

Free output on unrestricted names 𝑦 is defined by send 𝑥 𝑦; 𝑃 ≜ send 𝑥 (𝑤.fwd! 𝑤 𝑦); 𝑃 . Notice
that given 𝑃 ⊢ Δ, 𝑥 : 𝐵; Γ, 𝑦 : 𝐴 we have send 𝑥 𝑦; 𝑃 ⊢ Δ, 𝑥 : !𝐴 ⊗ 𝐵; Γ, 𝑦 : 𝐴.

Example 2.3. Consider the boolean-negation server not! 𝑠 ⊢ 𝑠 :!(Bool ⊸ Bool ⊗ 1), defined by

not! 𝑠 ≜ !𝑠 (𝑐); recv 𝑐 (𝑏); send 𝑐 (𝑏 ′. not 𝑏 𝑏 ′); close 𝑐
that persistently, on each call on 𝑠 , spawns a process that receives a boolean 𝑏 on channel 𝑐 , sends

back its negated value 𝑏 ′ and closes 𝑐 . The following process

?𝑠; (𝐶1 𝑠 | | 𝐶2 𝑠) ⊢ 𝑠 :?(Bool ⊗ Bool ⊸ ⊥), where
𝐶1 ≜ call 𝑠 (𝑐); send 𝑐 (𝑏. true 𝑏); recv 𝑐 (𝑏 ′);wait 𝑐;𝐶 ′

1

𝐶1 ≜ call 𝑠 (𝑐); send 𝑐 (𝑏. false 𝑏); recv 𝑐 (𝑏 ′);wait 𝑐;𝐶 ′
1

activates the server on 𝑠 , which is then shared between two clients that run in parallel. Client 𝐶1

calls a service on 𝑠 which is spawned on 𝑐 . Then, on 𝑐 , the client sends true, receives the computed
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boolean 𝑏 ′, waits for the server to close the session and continues as 𝐶 ′
1
. Client 𝐶2 behaves as 𝐶1

but sends the boolean false instead. Both continuations 𝐶 ′
1
,𝐶 ′

2
⊢ 𝑏 ′ : Bool; 𝑠 : Bool ⊗ Bool ⊸ ⊥

consume the received boolean 𝑏 ′ and still have access to the boolean server 𝑠 for further calls.

Polymorphism. The dual pair ∃𝑋 .𝐴 (exists) and ∀𝑋 .𝐴 (for all) of existential and universal

quantifiers implement type abstraction

𝑃 ⊢ Δ, 𝑥 : {𝐵/𝑋 }𝐴; Γ
[T∃]

send 𝑥 𝐵; 𝑃 ⊢ Δ, 𝑥 : ∃𝑋 .𝐴; Γ

𝑄 ⊢ Δ, 𝑥 : 𝐴; Γ
[T∀]

recv 𝑥 (𝑋 );𝑄 ⊢ Δ, 𝑥 : ∀𝑋 .𝐴; Γ

In rule [T∀], 𝑋 does not occur free in Δ, Γ. Process send 𝑥 𝐵; 𝑃 sends the representation type 𝐵

along 𝑥 , and then continues as 𝑃 . Dually, process recv 𝑥 (𝑋 );𝑄 receives on 𝑥 a representation and

continues as 𝑄 . The associated reduction is

send 𝑥 𝐵; 𝑃 |𝑥 : ∃𝑋 . 𝐴| recv 𝑥 (𝑋 );𝑄 → 𝑃 |𝑥 : {𝐵/𝑋 }𝐴| {𝐵/𝑋 }𝑄 [∃∀]
The presence of existential quantifiers allow us to hide the representation datatype (cf. [Mitchell

and Plotkin 1988]) of our concurrent shareable stateful ADTs, as we will show when introducing

the Stack and Queue examples (Section 5). On the other hand, with universal quantifiers we can

express inductive datatypes such as naturals and lists (see [Toninho and Yoshida 2021; Wadler

1990b]), as we illustrate in the following example, by encoding the Church numerals.

Example 2.4 (Inductive types). We illustrate the usage of type quantifiers to encode inductive

types, by implementing the naturals with polymorphic sessions (cf. [Girard et al. 1989])

Nat ≜ ∀𝑋 .𝑋 ⊸!(𝑋 ⊸ 𝑋 ) ⊸ 𝑋

zero 𝑛 ≜ recv 𝑛(𝑋 ); recv 𝑛(𝑧); recv 𝑛(𝑠); ?𝑠; fwd 𝑧 𝑛
succ 𝑛 𝑚 ≜ recv𝑚(𝑋 ); recv𝑚(𝑧); recv𝑚(𝑠); ?𝑠;

send 𝑛 𝑋 ; send 𝑛 𝑧; send 𝑛 𝑠; call 𝑠 (𝑐); send 𝑐 𝑛; fwd 𝑐 𝑚
Terms of type Nat receive a type variable 𝑋 , a value 𝑧 : 𝑋 and a server 𝑠 :!(𝑋 ⊸ 𝑋 ) and
call the server 𝑠 a finite (possibly zero) number of times on 𝑧 to return a value 𝑛 : 𝑋 . Notice

that zero 𝑛 ⊢ 𝑛 : Nat simply forwards 𝑧 on 𝑛 without calling the server 𝑠 . On the other hand,

succ 𝑛 𝑚 ⊢ 𝑛 : Nat,𝑚 : Nat calls the server one more time on the output produced by the calls of 𝑛.

The encoding of the naturals allows for the definition of recursive operations. For example, the

predicate zero? 𝑛 𝑏 ⊢ 𝑛 : Nat, 𝑏 : Bool that consumes a natural 𝑛 and produces the boolean true if 𝑛

is zero and false otherwise is defined by

zero? 𝑛 𝑏 ≜ send 𝑛 Bool; send 𝑛(𝑧. true 𝑧); send 𝑛(𝑠 . kfalse 𝑠); fwd 𝑛 𝑏

where kfalse 𝑠 ⊢ 𝑠 :!(Bool ⊸ Bool) is a server that outputs false regardless of the input.

3 𝜋SS: A LANGUAGEWITH SHARED STATE
In this section we describe 𝜋SS, the main novelty of this paper, which is a PaT conservative extension

of 𝜋CLL with shared state. We present several examples that illustrate the main features of 𝜋SS.

Reference Cells. The modalities �? and �! introduce reference cells and discipline their usage

𝑃 ⊢ 𝑦 :!𝐴; Γ
[Tcell]

cell 𝑥 (𝑦.𝑃) ⊢ 𝑥 : �? 𝐴; Γ

𝑄 ⊢ Δ; Γ
[Tfree]

free 𝑥 ;𝑄 ⊢ Δ, 𝑥 : �! 𝐴; Γ

𝑄 ⊢ Δ, 𝑧 :?𝐴, 𝑥 : �! 𝐴; Γ
[Tread]

read 𝑥 (𝑧);𝑄 ⊢ Δ, 𝑥 : �! 𝐴; Γ

𝑄1 ⊢ 𝑧 :!𝐴; Γ𝑄2 ⊢ Δ, 𝑥 : �! 𝐴; Γ
[Twrite]

wrt 𝑥 (𝑧.𝑄1);𝑄2 ⊢ Δ, 𝑥 : �! 𝐴; Γ
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The cell 𝑥 (𝑦.𝑃) construct denotes a reference cell at 𝑥 storing a process 𝑃 . 𝑃 defines some replicated

session behaviour at 𝑦 (𝑦 binding in 𝑃 ). A thread releases its usage of a cell with free 𝑥 ;𝑄 , typed
by [Tfree]. When a cell is not being shared with any other thread, free will cause the cell to be

"deallocated", as modelled by the reduction rule [�? �! f]

cell 𝑥 (𝑦.𝑃) |𝑥 : �? 𝐴| free 𝑥 ;𝑄 → 𝑄 [�? �! f]

Processes read and write reference cells with constructs read 𝑥 (𝑦);𝑄 and wrt 𝑥 (𝑦.𝑄1);𝑄2. Reading

is modelled by the reduction rule [�? �! r]

cell 𝑥 (𝑦.𝑃) |𝑥 : �? 𝐴| read 𝑥 (𝑧);𝑄 → {𝑧/𝑦}𝑃 |𝑧 :!𝐴| (cell 𝑥 (𝑦.𝑃) |𝑥 : �? 𝐴| 𝑄) [�? �! r]

The contents 𝑃 are atomically read, copied (it is typed 𝑦 :!𝐴) and received by the continuation 𝑄 at

parameter 𝑧, by composition with cut. The system reduces to a process with two cuts. The inner cut

connects the reference cell to the continuation 𝑄 , whereas the outer cut connects 𝑄 to a spawned

copy {𝑧/𝑦}𝑃 of the cell contents. The write operation is expressed by rule [�? �! w]

cell 𝑥 (𝑦.𝑃) |𝑥 : �? 𝐴| wrt 𝑥 (𝑧.𝑄1);𝑄2 → cell 𝑥 (𝑧.𝑄1) |𝑥 : �? 𝐴| 𝑄2 [�? �! w]

Here, the contents of cell 𝑥 are atomically and destructively updated by the write operation. The

cell changes its contents from 𝑦.𝑃 to 𝑧.𝑄1, but its protocol �? 𝐴 is left unchanged.

A cell is a persistent object in the sense that it may be sequentially read and written an arbitrary

number of times, until freed by all clients. The basic cell protocol �? 𝐴 may be expressed by the

recursive equation �? 𝐴 = N{free : 1, read :!𝐴 ⊗ �? 𝐴, write :!𝐴 ⊸ �? 𝐴}. A cell usage name is a

linear object (it lies in the linear context) and therefore cannot be implicitly copied and discarded (as

opposed to unrestricted names). However, cell usages are explicitly released with the free operation

and cell aliases can be created via an explicit share operation, which shall be introduced shortly.

A (replicated) value stored in a cell cannot depend on free linear names (see the premise of

[Tcell]), in particular, it cannot depend on free cell references, so our language cannot express

circular data structures. Particularly, we cannot express the Landin’s knot, which is sensible, since

otherwise this would break normalisation. However, a (replicated) value stored in a cell may of

course allocate and use reference cells locally.

Our rules for reference cells take inspiration in the proof rules for the DiLL [Ehrhard 2018]

modalities ?𝐴 and !𝐴 (which are operations with a very different semantics from the usual linear

logic exponentials). In general, our �? 𝐴 and �! 𝐴 modalities follow principles of DiLL ?𝐴 and !𝐴

modalities respectively. In this sense, [Tcell] corresponds to �? -dereliction and [Tfree] corresponds

to �! -co-weakening. Typing rules [Tread] and [Twrite] are new, they incorporate �! -co-dereliction,
but also follow the general structure of the typing rules for receive ([TO]) and send ([T⊗]).

Example 3.1 (First-Class Cells). Our references cells are first-class (as in e.g., ML). In particular,

cell references may be passed along session channels as in the following code

(cell 𝑐 (𝑣 .𝑉 ) |𝑐 : �? 𝐴| send 𝑥 𝑐; 𝑆) |𝑥 : �? 𝐴 ⊗ 𝐵 | recv 𝑥 (𝑐 ′); free 𝑐 ′;𝑅 +−→ 𝑆 |𝑥 : 𝐵 | 𝑅

In this example, an usage to cell reference 𝑐 is sent along channel 𝑥 to the receiver, that frees it

upon reception on the input parameter 𝑐 ′. Typing information is shown in detail below
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(1) 𝑉 ⊢ 𝑣 :!𝐴; Γ (2) 𝑆 ⊢ Δ1, 𝑥 : 𝐵; Γ (3) 𝑅 ⊢ Δ2, 𝑥 : 𝐵; Γ
(4) cell 𝑐 (𝑣 .𝑉 ) ⊢ 𝑐 : �? 𝐴; Γ ([Tcell], (1))

(5) send 𝑥 𝑐 ; 𝑆 ⊢ Δ1, 𝑐 : �! 𝐴, 𝑥 : �? 𝐴 ⊗ 𝐵; Γ ([T⊗𝑓 ], (2))
(6) free 𝑐 ′;𝑅 ⊢ Δ2, 𝑐

′�! 𝐴, 𝑥 : 𝐵; Γ ([Tfree], (3))

(7) recv 𝑥 (𝑐 ′); free 𝑐 ′;𝑅 ⊢ Δ2, 𝑥 : �? 𝐴 ⊸ 𝐵; Γ ([TO], (6))

(8) cell 𝑐 (𝑣 .𝑉 ) |𝑐 | send 𝑥 𝑐; 𝑆 ⊢ Δ1, 𝑧 : �? 𝐴 ⊗ 𝐵; Γ ([Tcut], (4), (5))

(9) (cell 𝑐 (𝑣 .𝑉 ) |𝑐 | send 𝑥 𝑐; 𝑆) |𝑥 | recv 𝑥 (𝑐 ′); free 𝑐 ′;𝑅 ⊢ Δ1,Δ2; Γ ([Tcut], (7), (8))

Notice that the sending process loses access to the reference cell 𝑐 as shown by typing judgement

(2): the name 𝑐 is not available in its continuation 𝑆 .

Example 3.2 (Higher-Order Store). We illustrate the use of higher-order store by giving an (inef-

ficient) array implementation [Pierce 2002] in 𝜋SS. Let Array ≜ �? (!Nat ⊸ Nat). An array is a

reference cell to a function from naturals to naturals. Let

init 𝑎 ≜ cell 𝑎(𝑠 .!𝑠 (𝑓 ); recv 𝑓 (𝑛); ?𝑛; zero 𝑓 )
lookup 𝑎 𝑛 𝑚 𝑎′ ≜ read 𝑎(𝑠); ?𝑠; call 𝑠 (𝑓 ); send 𝑓 𝑛; (fwd 𝑓 𝑚 | | fwd 𝑎 𝑎′)

Process init 𝑎 ⊢ 𝑎 : Array allocates a reference cell 𝑎 with a function 𝑓 that outputs the natural zero

on each inputed index 𝑛. Process lookup 𝑎 𝑛 𝑚 𝑎′ ⊢ 𝑎 : Array, 𝑛 : !Nat,𝑚 : Nat, 𝑎 : Array computes

the 𝑛-th entry of the array 𝑎 on𝑚 and forwards the unmodified array on 𝑎′. Code for the operation
update 𝑎 𝑛 𝑚 𝑎′ ⊢ 𝑎 : Array, 𝑛 : !Nat,𝑚 : !Nat, 𝑎 : Array, that updates the 𝑛-th entry of the array

𝑎 with𝑚, producing the updated array on 𝑎′, is given in the technical report [Rocha and Caires

2021a].

Sharing and Nondeterminism. Share and sum are typed by the rules

𝑃 ⊢ Δ′, 𝑥 : �! 𝐴; Γ 𝑄 ⊢ Δ, 𝑥 : �! 𝐴; Γ

share 𝑥 {𝑃 | | 𝑄} ⊢ Δ′,Δ, 𝑥 : �! 𝐴; Γ
[Tshare]

𝑃 ⊢ Δ; Γ 𝑄 ⊢ Δ; Γ
𝑃 +𝑄 ⊢ Δ; Γ

[Tsum]

The share 𝑥 {𝑃 | | 𝑄} construct allows a reference cell at 𝑥 to be aliased and manipulated by

multiple threads, as the following example involving concurrent writers illustrates

cell 𝑥 (𝑦.𝑉 ) |𝑥 | share 𝑥 {wrt 𝑥 (𝑦.𝑉1); 𝑃 | | wrt 𝑥 (𝑦.𝑉2);𝑄}

Here the cell at 𝑥 is being accessed by concurrent threads wrt 𝑥 (𝑦.𝑉1); 𝑃 and wrt 𝑥 (𝑦.𝑉2);𝑄 . In-
tuitively, the final state of the cell depends on the order of writes. In our PaT interpretation the

process above reduces (via cut-reduction) to a sum that shows the alternative states of the cell after

both writes (last writer wins), and corresponds to non-deterministic sum of process algebras.

(cell 𝑥 (𝑦.𝑉1) + cell 𝑥 (𝑦.𝑉2)) |𝑥 | share 𝑥 {𝑃 | | 𝑄}

The typing rule for share precisely corresponds to �! -co-contraction (cf. DiLL). Co-contraction

enforces that processes 𝑃 and 𝑄 may linearly interact at the shared reference 𝑥 , but not on other

linear objects - the linear context is handled multiplicatively. This condition is important for

deadlock freedom, and related with the relevance of acyclicity for cut-elimination in linear logic

proofs (e.g., as in the session type systems [Caires and Pfenning 2010; Wadler 2012], in which

interaction is expressed by the cut, different threads cannot share more than one communication

channel). However, notice that (1) a single shared cell may store all the state shared by the two

threads (e.g. in a resource bundle, a sequence of values) and (2) a reference cell can be used by any

number of client threads, by iterated use of the share construct.
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Example 3.3 (Dynamic Sharing). Notwithstanding the seemingly static character of the share

construct (which appears as a special form of parallel composition where two threads are allowed

to share a single mutable cell), notice that the topology of the sharing trees arising from nested

share blocks may actually change dynamically during computation, because of the extrusion of cell

references along session channels to outside the share block. Consider the following reduction

share 𝑥 {𝑅 | | send 𝑧 𝑥 ; 𝑃} |𝑧 | recv 𝑧 (𝑦); share 𝑦 {𝑄 | | 𝑆}
+−→ 𝑃 |𝑧 | share 𝑥 {𝑅 | | share 𝑥 {{𝑥/𝑦}𝑄 | | {𝑥/𝑦}𝑆}}

Here, a shared alias of 𝑥 is sent along 𝑧 to a partner receive process, that inputs the alias and

further shares it between threads𝑄 and 𝑆 . Hence, access to 𝑥 , initially only shared between the two

threads 𝑅 and send 𝑧 𝑥 ; 𝑃 , ends up being shared among the three threads 𝑅, {𝑥/𝑦}𝑄 and {𝑥/𝑦}𝑆 .
The thread send 𝑧 𝑥 ; 𝑃 transfers ownership of 𝑥 on output – references aliases are linear values,

whose visibility may only be duplicated by the share construct. Indeed, linear typing of session

send ensures that 𝑃 must lose access to 𝑥 . We show typings for components of the above reduction

(1) 𝑅 ⊢ Δ1, 𝑥 : �! 𝐴; Γ (2) 𝑃 ⊢ Δ2, 𝑧 : 𝐵; Γ (3) 𝑄 ⊢ Δ3, 𝑦 : �! 𝐴, 𝑧 : 𝐵; Γ (4) 𝑆 ⊢ Δ4, 𝑦 : �! 𝐴; Γ
(5) send 𝑧 𝑥 ; 𝑃 ⊢ Δ2, 𝑥 : �! 𝐴, 𝑧 : �? 𝐴 ⊗ 𝐵; Γ ([T⊗𝑓 ], (2))
(6) share 𝑥 {𝑅 | | send 𝑧 𝑥 ; 𝑃} ⊢ Δ1,Δ2, 𝑥 : �! 𝐴, 𝑧 : �? 𝐴 ⊗ 𝐵; Γ ([Tshare], (1), (5))

(7) share 𝑦 {𝑄 | | 𝑆} ⊢ Δ3,Δ4, 𝑦 : �! 𝐴, 𝑧 : 𝐵; Γ ([Tshare], (3), (4))

(8) recv 𝑧 (𝑦); share 𝑦 {𝑄 | | 𝑆} ⊢ Δ3,Δ4, 𝑧 : �? 𝐴 ⊸ 𝐵; Γ ([TO], (7))

(9) share 𝑥 {𝑅 | | send 𝑧 𝑥 ; 𝑃} |𝑧 | recv 𝑧 (𝑦); share 𝑦 {𝑄 | | 𝑆} ⊢ Δ1,Δ2,Δ3,Δ4, 𝑥 : �! 𝐴; Γ
([Tcut], (6), (8))

We revisit this example in Section 6, providing a step-by-step derivation for the reduction above.

4 𝜋SSL: A LANGUAGEWITH SHARED STATE AND LOCKS
In this Section, we extend our basic stateful language 𝜋SS with typed locking primitives, without

breaking the key property of deadlock freedom. Although one could suspect that locking behaviour

may break the progress property, the linear logic type discipline resiliently preserves the deadlock

freedom property, where typing ensures acyclicity in communication, herein in locking. The key

insight is that reductions in the components of share 𝑥 {𝑃 | | 𝑄} are independent (apart from 𝑥 , 𝑃

and 𝑄 are typed in disjoint linear contexts, as in e.g., 𝑃 | | 𝑄), and concurrent operations on 𝑥 are

always converted to a sum via interleaving, before they interact with the cell at 𝑥 . In particular,

reductions are always available in any component of the resulting sum, and of course, progress

in one component of a sum does not depend on progress of the other branch. The presence of

locks will drop some summands that otherwise would break atomicity of the critical sections, but,

intuitively, dropping a summand will never break progress.

To the collection of types we thus add a pair of dual modalities �? 𝐴 (locked box why not) and

�! 𝐴 (locked box bang) that represent a locked state and that act as "mirror" of the basic modalities

�? 𝐴,�! 𝐴, which in turn represent the unlocked state. A key property enforced by the locked usage

modality�! 𝐴 is that only a single thread usage may be actively interacting with the (locked) memory

cell. Lock and unlock operations essentially alternate between the two states

𝑄 ⊢ Δ, 𝑥 : �! 𝐴; Γ
[Tlock]

lock 𝑥 ;𝑄 ⊢ Δ, 𝑥 : �! 𝐴; Γ

𝑄 ⊢ Δ, 𝑥 : �! 𝐴; Γ
[Tunlock]

unlock 𝑥 ;𝑄 ⊢ Δ, 𝑥 : �! 𝐴; Γ
The associated reductions are

cell 𝑥 (𝑦.𝑃) |𝑥 : �? 𝐴| lock 𝑥 ;𝑄 → cell 𝑥 (𝑦.𝑃) |𝑥 : �? 𝐴| 𝑄 [�? �! l]
cell 𝑥 (𝑦.𝑃) |𝑥 : �? 𝐴| unlock 𝑥 ;𝑄 → cell 𝑥 (𝑦.𝑃) |𝑥 : �? 𝐴| 𝑄 [�? �! u]
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The previously introduced typing rules [Tcell], [Tread] and [Twrite] have now a mirrored version,

corresponding to (unique) locked usage.

𝑃 ⊢ 𝑦 :!𝐴; Γ

cell 𝑥 (𝑦.𝑃) ⊢ 𝑥 : �? 𝐴; Γ
𝑄 ⊢ Δ, 𝑦 :?𝐴, 𝑥 : �! 𝐴; Γ

read 𝑥 (𝑦);𝑄 ⊢ Δ, 𝑥 : �! 𝐴; Γ

𝑃 ⊢ 𝑦 :!𝐴; Γ 𝑄 ⊢ Δ, 𝑥 : �! 𝐴; Γ

wrt 𝑥 (𝑦.𝑃);𝑄 ⊢ Δ, 𝑥 : �! 𝐴; Γ

Similarly, the principal cut conversions [�? �! r] and [�? �! w] have a mirrored version [�? �! r] and
[�? �! w], respectively. Rule [�? �! r] (resp., [�? �! w]) is written as [�? �! r] (resp., [�? �! w]) but with the

type annotation �? 𝐴 replaced by �? 𝐴. Therefore, the behavioural 1-state protocol of cells is extended
to a 2-state protocol, which we may write as

�? 𝐴 = N{free : 1, read :!𝐴 ⊗ �? 𝐴, write :!𝐴 ⊸ �? 𝐴, lock : �? 𝐴}
�? 𝐴 = N{read :!𝐴 ⊗ �? 𝐴, write :!𝐴 ⊸ �? 𝐴, unlock : �? 𝐴}

Besides [Tshare], two additional co-contraction rules are now added for taming locked usage:

𝑃 ⊢ Δ′, 𝑥 : �! 𝐴; Γ 𝑄 ⊢ Δ, 𝑥 : �! 𝐴; Γ
[TshareL]

shareL 𝑥 {𝑃 | | 𝑄} ⊢ Δ′,Δ, 𝑥 : �! 𝐴; Γ

𝑃 ⊢ Δ′, 𝑥 : �! 𝐴; Γ 𝑄 ⊢ Δ, 𝑥 : �! 𝐴; Γ
[TshareR]

shareR 𝑥 {𝑃 | | 𝑄} ⊢ Δ′,Δ, 𝑥 : �! 𝐴; Γ

These constructs are slight variations of [Tshare] keeping track of the component currently holding

the lock, left ( shareL 𝑥 {𝑃 | | 𝑄}), and right ( shareR 𝑥 {𝑃 | | 𝑄}), and particular congruence rules

apply to them (see Fig. 5). For example, consider system

cell 𝑐 (𝑏.true 𝑏) |𝑐 : �? Bool| share 𝑐 {lock 𝑐;wrt 𝑐 (𝑏 ′.false 𝑏 ′); unlock 𝑐; 𝑃 | | lock 𝑐;𝑄}

Here, two concurrent lock actions are competing for exclusive access of the boolean cell. By ≡ law

[LL] this process is rewritten into an ≡-equivalent nondeterministic sum 𝑆1 + 𝑆2, where the two
lock instructions get interleaved. Each summand 𝑆𝑖 is then

𝑆1 ≜ cell 𝑐 (𝑏.true 𝑏) |𝑐 : �? Bool| lock 𝑐; shareL 𝑐 {wrt 𝑐 (𝑏 ′.false 𝑏 ′); unlock 𝑐; 𝑃 | | lock 𝑐;𝑄}
𝑆2 ≜ cell 𝑐 (𝑏.true 𝑏) |𝑐 : �? Bool| lock 𝑐; shareR 𝑐 {lock 𝑐;wrt 𝑐 (𝑏 ′.false 𝑏 ′); unlock 𝑐; 𝑃 | | 𝑄}

Notice that reductions in summands 𝑆1, 𝑆2 of process 𝑆1 + 𝑆2 are now completely independent. We

will then continue by illustrating reduction for 𝑆1, the case of 𝑆2 being similar. We have

𝑆1 → cell 𝑐 (𝑏.true 𝑏) |𝑐 : �? Bool| shareL 𝑐 {wrt 𝑐 (𝑏 ′.false 𝑏 ′); unlock 𝑐; 𝑃 | | lock 𝑐;𝑄} (→ [�? �! l])
≡ cell 𝑐 (𝑏.true 𝑏) |𝑐 : �? Bool| wrt 𝑐 (𝑏 ′.false 𝑏 ′); shareL 𝑐 {unlock 𝑐; 𝑃 | | lock 𝑐;𝑄} (≡ [leftA])

→ cell 𝑐 (𝑏 ′.false 𝑏 ′) |𝑐 : �? Bool| shareL 𝑐 {unlock 𝑐; 𝑃 | | lock 𝑐;𝑄} (→ [�? �! w])
≡ cell 𝑐 (𝑏 ′.false 𝑏 ′) |𝑐 : �? Bool| unlock 𝑐; share 𝑐 {𝑃 | | lock 𝑐;𝑄} (≡ [leftU])

→ cell 𝑐 (𝑏 ′.false 𝑏 ′) |𝑐 : �? Bool| share 𝑐 {𝑃 | | lock 𝑐;𝑄} (→ [�? �! u])

First, the process locks and gives exclusive cell access to the left component of shareL. The congru-
ence rules only allows cell operations on the left component to commute to the front of the shareL,
as expressed by ≡ law [leftA]. Therefore, the write operation takes precedence over the pending

lock operation of the right component. When the left component unlocks, the shareL is converted

back to a share via ≡ rule [leftU]. Afterwards, process 𝑃 loses exclusive access to the cell and now

all operations on 𝑐 coming from 𝑃 (except for free) compete with the lock operation of the right

component (≡ rules [LA] and [LL]).

Typing rules [Tshare], [TshareL] and [TshareR] ensure that at most one process is holding the

lock in a share topology. Interestingly, lock ownership may be freely communicated.
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Example 4.1 (Counter). Let Nat be the type of the natural numbers of Example 2.4 and consider

persistent versions of the previously defined processes zero 𝑛 and succ 𝑛 𝑚

zero! 𝑛 ≜ !𝑛(𝑛0); zero 𝑛0 ⊢ 𝑛 :!Nat

succ! 𝑛 𝑚 ≜ !𝑚(𝑚0); call 𝑛(𝑛0); succ 𝑛0𝑚0 ⊢𝑚 :!Nat;𝑛 : Nat

Define COUNTER = �? Nat and the following processes

c_zero 𝑐 ≜ cell 𝑐 (𝑛. zero! 𝑛) ⊢ 𝑐 : COUNTER

client1 𝑐 ≜ read 𝑐 (𝑛); ?𝑛;wrt 𝑐 (𝑚. succ! 𝑛 𝑚); free 𝑐; 0 ⊢ 𝑐 : COUNTER

client2 𝑐 ≜ lock 𝑐; read 𝑐 (𝑛); ?𝑛;wrt 𝑐 (𝑚.(succ! 𝑛 𝑚)); unlock 𝑐; free 𝑐; 0 ⊢ 𝑐 : COUNTER

systemi ≜ c_zero 𝑐 |𝑐 | share 𝑐 {client𝑖 𝑐 | | client𝑖 𝑐}, 𝑖 ∈ {1, 2}

Process c_zero is a counter set to zero and client1 𝑐 and client2 𝑐 are two clients. client1 𝑐 reads
the counter, writes back its incremented value, frees its usage and continues as the inaction process.

client2 𝑐 is a variant of client1 𝑐 in which the read-and-increment sequence is within a critical

section. system𝑖 is the result of sharing the counter with two concurrent threads, each being clienti.
After the read-and-increment sequences being executed, system

1
leaves the cell in a nondeter-

ministic superposition of two states cell 𝑐 (𝑛.one! 𝑛) + cell 𝑐 (𝑛.two! 𝑛), where one! 𝑛 and two! 𝑛
offer persistently the naturals one and two on channel 𝑛. On the other hand, system

2
evolves to a

single state cell 𝑐 (𝑛.two! 𝑛). This is because the interleavings that break the intended atomicity of

read-and-increment are dropped in the presence of locks.

5 MUTABLE SHAREABLE ADTS
We illustrate how shared mutable state fits together with 𝜋CLL by presenting two ADTs: a shared

stack and a queue object. The representation type of both ADTs is hidden from the client through

existential types. All the client gets is a menu of operations to act on the ADT, among which, as we

shall see for the stack, lies the capability to share the representation with another client.

5.1 A Shared Stack
Code for the Stack, together with type definitions, is provided in Figure 2. An object of type Stack𝐴
sends some representation type 𝑋 , then outputs a persistent server of type 𝑋 ⊸ Menu(𝑋 ) and
continues as 𝑋 . The type expression Menu(𝑋 ), which depends on the representation type 𝑋 ,offers

a menu with four options: push, pop, share and free. In this example, we use a labelled version of

offer and choice, which is a standard generalisation, (see e.g. [Caires and Pérez 2017]).

Process stack 𝑠 is an object of type 𝑠 : Stack 𝐴 whose representation type is List !𝐴 (lists of

elements of type !𝐴) and whose persistent server body is given my menu 𝑐 ⊢ 𝑐 : �? List 𝐴 ⊸
Menu(�? List 𝐴). Note that the stack is initially empty (cell 𝑠 (𝑙 .nil! 𝑙)).

In the companion artifact [Rocha and Caires 2021b] we encode the list datatype List 𝐴, together
with the following operations: nil!𝑙 ⊢ 𝑙 :!List !𝐴 offers persistently the empty list, cons! 𝑎 𝑙 𝑙 ′ ⊢ 𝑙 ′ :
!List !𝐴;𝑎 : 𝐴, 𝑙 : List !𝐴 computes on 𝑙 ′ the result of prepending 𝑎 to the head of 𝑙 , head! 𝑙 ℎ ⊢ ℎ :

Maybe !𝐴; 𝑙 : List !𝐴 produces on 𝑥 the head of the list 𝑙 (which might be none if the list is empty)

and tail! 𝑙 𝑙 ′ ⊢ 𝑙 ′ :!List !𝐴; List !𝐴 produces on 𝑙 ′ the tail of list 𝑙 .
Methodmpush 𝑐 𝑠 ⊢ 𝑐 :!𝐴 ⊸ �? List !𝐴⊗ 1, 𝑠 : �! List !𝐴 locks the stack 𝑠 and then gets the current

state in 𝑙 :!List !𝐴, through a read operation. Then receives on channel 𝑐 an element 𝑎 :!𝐴 to be

inserted on top of the stack. The persistent names 𝑎 and 𝑙 are then activated before being used. The

stack is updated with a new list 𝑙 ′ that is the result of prepending 𝑎 to 𝑙 . The updated stack is then

unlocked and sent back to the client, after which the communication session 𝑐 is closed.
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Stack 𝐴 ≜ ∃𝑋 .!(𝑋 ⊸ Menu(𝑋 )) ⊗ 𝑋
Menu(𝑋 ) ≜ N{
push :!𝐴 ⊸ 𝑋 ⊗ 1,
pop : Maybe !𝐴 ⊗ 𝑋 ⊗ 1,
share : 𝑋 O 𝑋 O ⊥,
free : 1}

stack 𝑠 ≜
send 𝑠 (�? List !𝐴);
send 𝑠 (𝑚. !𝑚(𝑐); menu 𝑐);
cell 𝑠 (𝑙 . nil! 𝑙)

menu 𝑐 ≜
recv 𝑐 (𝑠);
case 𝑐{
|push : mpush 𝑐 𝑠

|pop : mpop 𝑐 𝑠
|share : mshare 𝑐 𝑠
|free : mfree 𝑐 𝑠}

mpush 𝑐 𝑠 ≜
lock 𝑠;
read 𝑠 (𝑙);
recv 𝑐 (𝑎);
?𝑎; ?𝑙 ;

wrt 𝑠 (𝑙 ′. cons! 𝑎 𝑙 𝑙 ′);
unlock 𝑠;
send 𝑐 𝑠;
close 𝑐

mpop 𝑐 𝑠 ≜
lock 𝑠;
read 𝑠 (𝑙);
?𝑙 ;

send 𝑐 (ℎ. head! 𝑙 ℎ);
wrt 𝑠 (𝑙 ′. tail! 𝑙 𝑙 ′);
unlock 𝑠;
send 𝑐 𝑠;
close 𝑐

mshare 𝑐 𝑠 ≜
recv 𝑐 (𝑠1);
recv 𝑐 (𝑠2);
wait 𝑐;
share 𝑠 {

fwd 𝑠 𝑠1 | |
fwd 𝑠 𝑠2}

mfree 𝑐 𝑠 ≜
free 𝑠;
close 𝑐

Fig. 2. A Shared Stack - Server.

Method mpop 𝑐 𝑠 accesses the contents of the stack 𝑠 on 𝑙 and sends its head element ℎ :

⊕{Nothing : 1, Just :!𝐴}. The head of the list 𝑙 might be Nothing if it is empty or Just an element

𝑥 :!𝐴. Then, the stack is updated with the tail of list 𝑙 . Notice that, like in method mpush, all the
stack’s critical accesses are protected within lock-unlock sections.

Stack clients will not be able to tamper with the representation reference, being forced to

manipulate it via the provided methods. Thus, the process operations that share and free a cell are

exported with the ADT methods mshare 𝑐 𝑠 and mfree 𝑐 𝑠 . Process mfree 𝑐 𝑠 frees its usage to the

stack 𝑠 and closes the session on 𝑐 . Method mshare 𝑐 𝑠 ⊢ 𝑐 : 𝑋 O𝑋 O⊥, 𝑠 : 𝑋 (where 𝑋 = �? List !𝐴)
receives two stack handlers 𝑠1 and 𝑠2, waits for the client to terminate the session and proceeds

as an operation that shares the stack 𝑠 between 𝑠1 and 𝑠2. We find it quite satisfying how the type

interface of mshare expresses the co-contraction principle in an abstract and extremely clean way.

Code defining client operations is in Figure 3. Process unpack 𝑠 ⊢ 𝑠 : Stack 𝐴 receives the opaque

abstract type 𝑋 and a communication channel𝑚 to invoke the stack menu, continuing as client𝑚 𝑠 .

Process client𝑚 𝑠 can be defined composing the available protocols: cpush𝑚 , cpop𝑚 , cshare𝑚 and

cfree𝑚 . cpush𝑚 𝑠 𝑎; (𝑃 𝑠 ′) pushes the element 𝑎 on stack 𝑠 and continues as 𝑃 𝑠 ′ (we use 𝑠 ′ to denote
the returned updated stack after a method call). cpop𝑚 𝑠; [𝑃 𝑠 ′, 𝑄 𝑠 ′ 𝑎]: pops an element from the

stack 𝑠 and continues as 𝑃 𝑠 ′ if the stack is empty and as 𝑄 𝑠 ′ 𝑎 if the stack’s top element is 𝑎.

cshare𝑚 𝑠 in[𝑃1 𝑠1, 𝑃2 𝑠2] shares the stack 𝑠 between handlers 𝑠1 and 𝑠2 which are implemented by

processes 𝑃1 and 𝑃2 (respectively). cfree𝑚𝑠; 𝑃 : frees the handler 𝑠 to the stack and continue as 𝑃 .

Client protocol push𝑚 𝑠 𝑎; (𝑃 𝑠 ′) starts by requesting a service on the stack’s menu server, which

will be handled on 𝑐 . Then, sends the stack, selects the operation push and sends the element 𝑎 to be

inserted. Then, it receives the updated stack 𝑠 ′, waits for the server to terminate the communication

on 𝑐 and continues as 𝑃 𝑠 ′. The other client protocols follow a similar pattern.
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unpack s ≜
recv 𝑠 (𝑋 );
recv 𝑠 (𝑚);
?𝑚;

client𝑚 𝑠

csharem 𝑠 in [𝑃1 𝑠1, 𝑃2 𝑠2] ≜
call𝑚(𝑐);
send 𝑐 𝑠 ;
𝑐.share;
send 𝑐 (𝑠1. 𝑃1 𝑠1);
send 𝑐 (𝑠2. 𝑃2 𝑠2);
close 𝑐

cfree𝑚 𝑠; 𝑃 ≜
call𝑚(𝑐);
send 𝑐 𝑠 ;
𝑐.free;
wait 𝑐;
𝑃

cpushm 𝑠 𝑎; (𝑃 𝑠 ′) ≜
call𝑚(𝑐);
send 𝑐 𝑠 ;
𝑐.push;
send 𝑐 𝑎;
recv 𝑐 (𝑠 ′);
wait 𝑐;
𝑃 𝑠 ′

cpop𝑚 𝑠; [𝑃 𝑠 ′, 𝑄 𝑠 ′ 𝑎] ≜
call𝑚(𝑐);
send 𝑐 𝑠;
𝑐.pop;
recv 𝑐 (ℎ);
case ℎ{
Nothing : recv 𝑐 (𝑠 ′);

wait 𝑐;
𝑃 𝑠 ′,

Just : recv 𝑐 (𝑎);
recv 𝑐 (𝑠 ′);
wait 𝑐;
𝑄 𝑠 ′ 𝑎}

Fig. 3. A Shared Stack - Client Operations.

We now consider two sample systems system1
and system2

which are the result of composing

the stack with two alternative client codes client1𝑚 and client2𝑚

system𝑖 ≜ stack 𝑠 |𝑠 | recv 𝑠 (𝑋 ); recv 𝑠 (𝑚); ?𝑚; client𝑖𝑚 𝑠, 𝑖 ∈ {1, 2}
client1𝑚 ≜ cpush𝑚 𝑠 𝑎; cpop𝑚𝑠; [𝑃 𝑠 ′, 𝑄 𝑠 ′ 𝑏]
client2𝑚 ≜ cshare𝑚 𝑠 in [cpush𝑚 𝑠 𝑎; (𝑃 𝑠 ′), cpop𝑚 𝑠; [𝑄 𝑠 ′, 𝑅 𝑠 ′ 𝑏]]

client1𝑚 defines a thread that calls methods push and pop sequentially, whereas client2𝑚 call

those methods concurrently. As expected, the computation of system1
is deterministic: after the

interactions the client continues as 𝑄 𝑠 ′ 𝑏 where 𝑏 = 𝑎 and 𝑠 ′ is an empty stack. On the other

hand, system2
evolves to a nondeterministic sum of two systems. In one of these systems, the pop

operation occurred after the push, and so client2𝑚 continues as cshare𝑚 𝑠 ′ in [𝑃 𝑠 ′, 𝑅 𝑠 ′ 𝑏], where
𝑠 ′ is an empty stack and 𝑎 = 𝑏. On the hand, if push occurs after pop, then client2𝑚 evolves to

cshare𝑚 𝑠 ′ in [𝑃 𝑠 ′, 𝑄 𝑠 ′] where 𝑠 ′ is a stack with one element 𝑎.

5.2 Queue
Wenow implement an efficient queue, which uses a pair of lists as its representation type (see [Okasaki

1998]). One of the lists (say 𝑙𝑒 ) is used for enqueueing and the other (say 𝑙𝑑 ) for dequeueing. Elements

are inserted in the front of 𝑙𝑒 and removed from the front of 𝑙𝑑 . When 𝑙𝑑 is empty it is updated with

the reverse of 𝑙𝑒 , and then 𝑙𝑒 becomes empty. Let Queue ≜ Eview O Dview. A queue is an object

with two views: one for enqueueing (Eview) and another for dequeueing (Dview). Similarly to the

stack implementation, we use existential types to encode each view

Eview ≜ ∃𝑋 .!(𝑋 ⊸ 𝐸 (𝑋 )) ⊗ 𝑋 , where 𝐸 (𝑋 ) ≜!𝐴 ⊸ 𝑋 ⊗ 1
Dview ≜ ∃𝑋 .!(𝑋 ⊸ 𝐷 (𝑋 )) ⊗ 𝑋 , where 𝐷 (𝑋 ) ≜ Maybe !𝐴 ⊗ 𝑋 ⊗ 1

The signatures of 𝐸 (𝑋 ) and 𝐷 (𝑋 ) are same as for methods push and pop (respectively) from the

previous stack example. Code for queue(𝑑) ⊢ 𝑑 : Queue, eview(𝑒, 𝑐𝑒 ) ⊢ 𝑒 : Eview, 𝑐𝑒 : �? List !𝐴 and
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N ::= 𝑥,𝑦, 𝑧, . . . (names)

𝑃,𝑄 ::= 0 (inaction) | fwd 𝑥 𝑦 (forwarder) | 𝑃 | | 𝑄 (par) |
𝑃 |𝑥 : 𝐴| 𝑄 (cut) | 𝑦.𝑃 |!𝑥 : 𝐴| 𝑄 (cut!) | share 𝑥 {𝑃 | | 𝑄} (share) |
𝑃 +𝑄 (sum) | shareL 𝑥 {𝑃 | | 𝑄} (share-left) | shareR 𝑥 {𝑃 | | 𝑄} (share-right)

(A,B ::=) close 𝑥 (close) | wait 𝑥 ; 𝑃 (co-close) |
𝑥 .inl; 𝑃 (choose left) | 𝑥 .inr; 𝑃 (choose right) | case 𝑥 {|inl : 𝑃 |inr : 𝑄} (offer) |
send 𝑥 (𝑦.𝑃);𝑄 (send) | recv 𝑥 (𝑦); 𝑃 (receive) |
!𝑥 (𝑦); 𝑃 (server) | ?𝑥 ; 𝑃 (activation) | call 𝑥 (𝑦); 𝑃 (call) |
send 𝑥 𝐴; 𝑃 (type send) | recv 𝑥 (𝑋 ); 𝑃 (type receive) |
cell 𝑥 (𝑦.𝑃) (cell) | free 𝑥 ; 𝑃 (free) | read 𝑥 (𝑦); 𝑃 (read) |
wrt 𝑥 (𝑦.𝑃);𝑄 (write) | lock 𝑥 ; 𝑃 (lock) | unlock 𝑥 ; 𝑃 (unlock)

Fig. 4. Processes 𝑃 .

dview(𝑑, 𝑐𝑒 ) ⊢ 𝑑 : Dview, 𝑐𝑒 : �? List !𝐴 is given below

queue(𝑑) ≜ recv 𝑑 (𝑒); cell 𝑐𝑒 (𝑙𝑒 . nil! 𝑙𝑒 ) |𝑐𝑒 | share 𝑐𝑒 {eview(𝑒, 𝑐𝑒 ) | | dview(𝑑, 𝑐𝑒 )}
eview(𝑒, 𝑐𝑒 ) ≜ send 𝑒 (�? List !𝐴); send 𝑒 (𝑐!. !𝑐! (𝑐);menq 𝑐); fwd 𝑒 𝑐𝑒
dview(𝑑, 𝑐𝑒 ) ≜ send 𝑑 (�? List !𝐴 ⊗ �? List !𝐴); send 𝑑 (𝑐!. !𝑐! (𝑐);mdeq 𝑐);

send 𝑑 (𝑐𝑑 . cell 𝑐𝑑 (𝑙𝑑 . nil! 𝑙𝑑 )); fwd 𝑑 𝑐𝑒

Queue receives on channel 𝑑 name 𝑒 and continues as a configuration in which the reference 𝑐𝑒 , to

the initially empty list 𝑙𝑒 for enqueueing, is being shared between the two views. eview(𝑒, 𝑐𝑒 ) sends
on 𝑒 its representation type (a reference to a list), then sends the persistent server for enqueueing

and continues as process that forwards 𝑐𝑒 . dview(𝑑, 𝑐𝑒 ) sends its representation type (a tensor of of

two cells), sends the server for dequeueing, sends 𝑐𝑑 and continues as process that forwards 𝑐𝑒 .

Notice that the conjunction that puts together the two views to form theQueue protocol is a par
(O) and not a tensor (⊗) since the two views share a reference cell and therefore are not orthogonal.
Nevertheless, when 𝑙𝑑 is nonempty, the operations of enqueueing and dequeueing can be performed

in parallel. The complete definition is provided in the technical report [Rocha and Caires 2021a].

6 SEMANTICS, TYPE PRESERVATION AND PROGRESS
We present the syntax and the operational semantics of 𝜋SSL, which is defined from structural

congruence ≡ and reduction→. We then prove that the semantics is type preserving and deadlock-

free. Since the process syntax depends on types due to polymorphism, types are introduced first.

Definition 6.1 (Types). Types are defined by

𝐴, 𝐵 ::= 1 | ⊥ | 𝐴⊕𝐵 | 𝐴 N 𝐵 | 𝐴⊗𝐵 | 𝐴 O 𝐵 | !𝐴 | ?𝐴 | ∃𝑋 .𝐴 | ∀𝑋 .𝐴 | �? 𝐴 | �! 𝐴 | �? 𝐴 | �! 𝐴

where 𝑋 denotes a type variable. Duality 𝐴 is the involution on types defined by

1 ≜ ⊥ 𝐴 ⊗ 𝐵 ≜ 𝐴 O 𝐵 𝐴 ⊕ 𝐵 ≜ 𝐴 N 𝐵 !𝐴 ≜?𝐵 ∃𝑋 .𝐴 ≜ ∀𝑋 .𝐴 �? 𝐴 ≜ �! 𝐴 �? 𝐴 ≜ �! 𝐴

Definition 6.2 (Processes). The syntax of process terms is defined in Fig. 4.
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The static part of the syntax comprises inaction, par, cut, cut!, share, sum, share-left and share-

right; the dynamic part includes actions A,B, and forwarder. An action is typically a process

𝛼 ; 𝑃 , where 𝛼 is an action-prefix and 𝑃 is the continuation. The subject 𝑠 (A) of an action A is the

leftmost name occurrence of A. For example, the subject of the action send 𝑥 (𝑦.𝑃);𝑄 is 𝑥 .

The expression 𝑃 |𝑥 | 𝑄 binds the name 𝑥 on processes 𝑃 and𝑄 .𝑦.𝑃 |!𝑥 | 𝑄 binds𝑦 in 𝑃 and 𝑥 in𝑄 .

Actions send 𝑥 (𝑦.𝑃);𝑄 , recv 𝑥 (𝑦); 𝑃 , !𝑥 (𝑦); 𝑃 , call 𝑥 (𝑦); 𝑃 , cell 𝑥 (𝑦.𝑃), read 𝑥 (𝑦); 𝑃 , wrt 𝑥 (𝑦.𝑃);𝑄
bind 𝑦 on 𝑃 . All other name occurrences are free. The set of free names of 𝑃 is denoted by fn(𝑃); if
fn(𝑃) = ∅, we say 𝑃 is closed. The expressions recv 𝑥 (𝑋 ); 𝑃 , ∃𝑋 .𝐴 and ∀𝑋 .𝐴 bind the type variable

𝑋 on process 𝑃 and type 𝐴. Capture-avoiding substitution and 𝛼-conversion are defined as usual.

We denote by {𝑥/𝑦}𝑃 the process obtained by replacing the name 𝑦 by 𝑥 on 𝑃 . Similarly, we denote

by {𝐴/𝑋 }𝐵 (resp., {𝐴/𝑋 }𝑃 ) the type (resp., process) obtained by replacing 𝑋 by 𝐴 in 𝐵 (resp., 𝑃 ).

Definition 6.3 (Structural Congruence 𝑃 ≡ 𝑄). Structural congruence ≡ is the least congruence on

processes that includes 𝛼-conversion and

• commutative laws for forwarder, par, cut, share and sum;

• commuting conversions for each pair of operations par, cut, cut!, share, share-left and sum;

• laws that distribute cut! over par, cut, cut!, share, share-left and share-right;

• laws that distribute par,cut, cut!, share, share-left and share-right over sum;

• and the conversions in Fig. 5.

N.B.:𝑥 .𝛼 and 𝑥 .𝛽 are read/write actions with subject 𝑥 .

Basic rules of ≡ essentially reflect the expected static laws, along the lines of the structural

congruences / conversions in [Caires and Pfenning 2010; Wadler 2012]. For example, the commuting

laws between cut and cut and between cut and share are written as

𝑃 |𝑥 | (𝑄 |𝑦 | 𝑅) ≡ (𝑃 |𝑥 | 𝑄) |𝑦 | 𝑅 [C-CC]

𝑃 |𝑥 | (share 𝑦 {𝑄 | | 𝑅}) ≡ share 𝑦 {(𝑃 |𝑥 | 𝑄) | | 𝑅} [C-CSh]
provided 𝑥,𝑦 ∈ fn(𝑄). The laws that distribute cut! over static constructors and that distribute

static constructors over sum can be written in the following form

𝑦.𝑃 |!𝑥 : 𝐴| (𝑄 ∗ 𝑅) ≡ (𝑦.𝑃 |!𝑥 : 𝐴| 𝑄) ∗ (𝑦.𝑃 |!𝑥 : 𝐴| 𝑅) [D-Cut!]
𝑃 ∗ (𝑄 + 𝑅) ≡ (𝑃 ∗𝑄) + (𝑃 ∗ 𝑅) [D-Sm]

where ∗ stands for any of the static constructors par, cut, cut!, share, share-left and share-right.

More interesting are the share commuting conversions of Figure 5, which commute a share with

a cell action, a sum of cell actions or a share. In [FF] two concurrent free actions are merged into a

single free with the continuations being executed independently. [FA] commutes a share (on 𝑥)

with read/write action (of subject 𝑥) on one thread and a free on the other with the read/write

action (free is postponed).Similarly, [FL] postpones a free over a lock. [AA], [LA] and [LL] capture

the interleaving laws for the atomic actions read, write and lock: it commutes a share with two

concurrent actions with a sum that represents the two possible interleavings, thereby expressing

the fundamental interplay between concurrency and nondeterminism. Notice that when a lock

is commuted, the share becomes annotated with either an 𝐿 or 𝑅 to indicate the component that

holds the lock and then only actions from that component are commuted as expressed by [leftA].

Rule [leftU] commutes a share-left with an unlock operation on the left argument with an unlock

followed by a share. Finally, rule [symm] commutes a share-left with a share-right. Notice that

the argument position is swapped. [symm] allow us to derive a right-version of each share-left

rule and vice-versa. For example, by composing [symm] (on both ends) with [leftA] we obtain a

right-version of rule [leftA]

shareR 𝑥 {𝑃 | | 𝑥 .𝛼 ;𝑄} ≡ shareL 𝑥 {𝑥 .𝛼 ;𝑄 | | 𝑃} ≡ 𝑥 .𝛼 ; shareL 𝑥 {𝑄 | | 𝑃} ≡ 𝑥 .𝛼 ; shareR 𝑥 {𝑃 | | 𝑄}
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Share Commuting Conversions
share 𝑥 {free 𝑥 ; 𝑃 | | free 𝑥 ;𝑄} ≡ free 𝑥 ; (𝑃 | | 𝑄) [FF]
share 𝑥 {free 𝑥 ; 𝑃 | | 𝑥 .𝛼 ;𝑄} ≡ 𝑥 .𝛼 ; share 𝑥 {free 𝑥 ; 𝑃 | | 𝑄} [FA]
share 𝑥 {free 𝑥 ; 𝑃 | | lock 𝑥 ;𝑄} ≡ lock 𝑥 ; shareR 𝑥 {free 𝑥 ; 𝑃 | | 𝑄} [FL]
share 𝑥 {𝑥 .𝛼 ; 𝑃 | | 𝑥 .𝛽 ;𝑄} ≡ 𝑥 .𝛼 ; share 𝑥 {𝑃 | | 𝑥 .𝛽 ;𝑄} + 𝑥 .𝛽 ; share 𝑥 {𝑥 .𝛼 ; 𝑃 | | 𝑄} [AA]
share 𝑥 {lock 𝑥 ; 𝑃 | | 𝑥 .𝛼 ;𝑄} ≡ lock 𝑥 ; shareL 𝑥 {𝑃 | | 𝛼 ;𝑄} + 𝑥 .𝛼 ; share 𝑥 {lock 𝑥 ; 𝑃 | | 𝑄} [LA]
share 𝑥 {lock 𝑥 ; 𝑃 | | lock 𝑥 ;𝑄} ≡

lock 𝑥 ; shareL 𝑥 {𝑃 | | lock 𝑥 ;𝑄} + lock 𝑥 ; shareR 𝑥 {lock 𝑥 ; 𝑃 | | 𝑄} [LL]
shareL 𝑥 {𝑥 .𝛼 ; 𝑃 | | 𝑄} ≡ 𝑥 .𝛼 ; shareL 𝑥 {𝑃 | | 𝑄} [leftA]
shareL 𝑥 {unlock 𝑥 ; 𝑃 | | 𝑄} ≡ unlock 𝑥 ; share 𝑥 {𝑃 | | 𝑄} [leftU]
shareL 𝑥 {𝑃 | | 𝑄} ≡ shareR 𝑥 {𝑄 | | 𝑃} [symm]

Inaction Conversions
𝑃 | | 0 ≡ 𝑃 [0M] 0 + 0 ≡ 0 [0Sm]

Fig. 5. Selected Structural Congruence Rules 𝑃 ≡ 𝑄 .

Interestingly, idempotency of inaction (Fig. 5 [0Sm]) w.r.t. sum is sufficient to derive idempotency

of all processes w.r.t. sum, as we have 𝑃 ≡ 𝑃 | | 0 ≡ 𝑃 | | (0 + 0) ≡ (𝑃 | | 0) + (𝑃 | | 0) ≡ 𝑃 + 𝑃 . Before
defining reduction, we introduce static contexts, which are defined by

C ::= − | C || 𝑃 | 𝑃 | | C | C |𝑥 | 𝑃 | 𝑃 |𝑥 | C | 𝑦.𝑃 |!𝑥 | C | share 𝑥 {C || 𝑃} |share 𝑥 {𝑃 | | C} |
C + 𝑃 | 𝑃 + C | shareL 𝑥 {C || 𝑃} | shareL 𝑥 {𝑃 | | C} | shareR 𝑥 {𝑃 | | C} | shareR 𝑥 {C || 𝑃}

A static context is a context where the hole is neither guarded by any action nor lies in the server

body 𝑃 of a cut! 𝑦.𝑃 |!𝑥 | 𝑄 . We write − for the empty context and C[𝑃] for the process obtained by

replacing the hole in C by 𝑃 (notice that in C[𝑃] the context C may bind free names of process 𝑃 ).

Definition 6.4 (Reduction 𝑃 → 𝑄). Reduction→ is the least relation on processes defined by the

previously introduced principal cut-reductions and by the rules

𝑃 ≡ 𝑃 ′ 𝑃 ′→ 𝑄 ′ 𝑄 ′ ≡ 𝑄
[≡]

𝑃 → 𝑄

𝑃 → 𝑄
[cong]

C[𝑃] → C[𝑄]

where C is an arbitrary static context. Let⇒ stand for the transitive closure of→ ∪ ≡.

Example 6.5. We illustrate our operational semantics by deriving the reduction of Example 3.3

step-by-step

share 𝑥 {𝑅 | | send 𝑧 𝑥 ; 𝑃} |𝑧 | recv 𝑧 (𝑦); share 𝑦 {𝑄 | | 𝑆} (≡ rule [C-CSh])

≡ share 𝑥 {𝑅 | | send 𝑧 𝑥 ; 𝑃 |𝑧 | recv 𝑧 (𝑦); share 𝑦 {𝑄 | | 𝑆}} (def. free ouput)

= share 𝑥 {𝑅 | | send 𝑧 (𝑤. fwd𝑤 𝑥); 𝑃 |𝑧 | recv 𝑧 (𝑦); share 𝑦 {𝑄 | | 𝑆}} (→ rule [⊗O])

→ share 𝑥 {𝑅 | | 𝑃 |𝑧 | (fwd𝑤 𝑥 |𝑤 | {𝑤/𝑦}share 𝑦 {𝑄 | | 𝑆})} (→ rule [fwd])

→ share 𝑥 {𝑅 | | 𝑃 |𝑧 | {𝑥/𝑤}{𝑤/𝑦}share 𝑦 {𝑄 | | 𝑆}} (name substitution)

= share 𝑥 {𝑅 | | 𝑃 |𝑧 | share 𝑥 {{𝑥/𝑦}𝑄 | | {𝑥/𝑦}𝑆}} (≡ rule [C-CSh])

≡ 𝑃 |𝑧 | share 𝑥 {𝑅 | | share 𝑥 {{𝑥/𝑦}𝑄 | | {𝑥/𝑦}𝑆}}
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6.1 Subject Reduction for 𝜋SSL
We establish the fundamental type safety properties: subject reduction (Theorem 6.6) and progress

(Theorem 6.11). In the context of our session typed language these properties entail session fidelity

and deadlock-freedom.

Theorem 6.6 (Subject Congruence and Subject Reduction for 𝜋SSL ). Assume 𝑃 ⊢ Δ; Γ.
Then (1) If 𝑃 ≡ 𝑄 then 𝑄 ⊢ Δ; Γ and (2) If 𝑃 → 𝑄 then 𝑄 ⊢ Δ; Γ.

Proof. We verify that all conversions included in ≡ and → rules are type-preserving, and

conclude by induction on derivations of 𝑃 ≡ 𝑄 and 𝑃 → 𝑄 . □

6.2 Progress for 𝜋SS
To state and prove progress (Theorem 6.11) we introduce the notion of live process.

Definition 6.7 (Live). A process 𝑃 is live if 𝑃 = C[A] or 𝑃 = C[fwd 𝑥 𝑦] for some static context

C and action A.

Intuitively, a process is live if it presents an unguarded action prefix (or forwarder) waiting to

interact. To compositionally prove progress we need to characterise the potential interactions of

(possibly open) typed processes, for which we define the following notion of interaction offering,

which is akin to the 𝜋-calculus observability (cf. [Sangiorgi and Walker 2001]).

Definition 6.8 (𝑃 offers an interaction at 𝑥). 𝑃 ↓𝑥 is defined by rules

[fwd]

fwd 𝑥 𝑦 ↓𝑥
𝑠 (A) = 𝑥

[act]

A ↓𝑥
𝑃 ↓𝑥

[par]

(𝑃 | | 𝑄) ↓𝑥

𝑃 ↓𝑦 𝑦 ≠ 𝑥
[cut]

(𝑃 |𝑥 | 𝑄) ↓𝑦

𝑄 ↓𝑧 𝑧 ≠ 𝑥
[cut!]

(𝑦.𝑃 |!𝑥 | 𝑄) ↓𝑧

𝑃 ↓𝑦 𝑦 ≠ 𝑥
[share]

(share 𝑥 {𝑃 | | 𝑄}) ↓𝑦
𝑃 ↓𝑥

[sum]

(𝑃 +𝑄) ↓𝑥
𝑃 ≡ 𝑄 𝑄 ↓𝑥

[≡]
𝑃 ↓𝑥

The definition of 𝑃 ↓𝑥 is explicitly closed under ≡ and propagates offers on the various operators.

For example, a mix offers an interaction on a name 𝑥 provided one of its arguments does. The

interactions of the left argument are explicitly offered by rule [par], whereas those of the right

argument are derivable through rule [≡] followed by [par], since the mix construct is commutative.

In a share share 𝑥 {𝑃 | | 𝑄}, processes 𝑃 and 𝑄 run in parallel, freely communicating with the

external context, but sharing memory cell 𝑥 . As a consequence, actions on names other than 𝑥 will

always be offered (rule [share]). Additionally, actions on 𝑥 will be offered if they are offered by both

𝑃 and𝑄 (Lemma 6.9(1)). For example, share 𝑥 {free 𝑥 ; 𝑃 | | read 𝑥 (𝑦);𝑄} offers an action on 𝑥 , since

it can be written in the equivalent form read 𝑥 (𝑦); (share 𝑥 {free 𝑥 ; 𝑃 | | 𝑄}) by applying the ≡ rule

[FA] (Fig. 5). We annotate 𝑃 ↓𝑥 with 𝑃 ↓𝑥 :fwd or 𝑃 ↓𝑥 :act, depending on whether the interaction is

introduced by a forwarder or an action, respectively.

Lemma 6.9. The following properties of 𝑃 ↓𝑥 hold
(1) Let 𝑃 ⊢ Δ, 𝑥 : �! 𝐴; Γ, 𝑄 ⊢ Δ′, 𝑥 : �! 𝐴; Γ, 𝑃 ↓𝑥 :act and 𝑄 ↓𝑥 :act. Then, share 𝑥 {𝑃 | | 𝑄} ↓𝑥 :act.
(2) Let 𝑃 ⊢ Δ, 𝑥 : 𝐴; Γ, 𝑄 ⊢ Δ′, 𝑥 : 𝐴; Γ,𝑃 ↓𝑥 :act and 𝑄 ↓𝑥 :act. Then, 𝑃 |𝑥 | 𝑄 reduces.
(3) Let 𝑃 ⊢ Δ, 𝑥 : 𝐴; Γ, 𝑄 ⊢ Δ′, 𝑥 : 𝐴; Γ and 𝑃 ↓𝑥 :fwd. Then, 𝑃 |𝑥 | 𝑄 reduces.
(4) Let 𝑃 ⊢ 𝑦 : 𝐴; Γ, 𝑄 ⊢ Δ; Γ, 𝑥 : 𝐴 and 𝑄 ↓𝑥 . Then, 𝑦.𝑃 |!𝑥 | 𝑄 reduces.
(5) Let 𝑃 ⊢ Δ, 𝑥 : 𝐴; Γ and suppose that 𝐴 is not of the form �? 𝐵. If 𝑃 ↓𝑥 :fwd, then either 𝑃 ↓𝑦:fwd

for some 𝑦 : 𝐴 ∈ Δ or 𝑃 reduces.

Proof. By induction on the derivations of 𝑃 ↓𝑥 . □
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Lemma 6.9(5) describes how the interactions offered by a forwarder fwd 𝑥 𝑦 propagate in 𝑃 .

Either name 𝑦 occurs free, and 𝑃 offers a forwarder interaction at 𝑦, or lies in the scope of a cut

− |𝑦 | −, in which case a reduction can be triggered (Lemma 6.9(3)). The typing constraint 𝐴 ≠ �? 𝐵
excludes processes like share 𝑦 {fwd 𝑥 𝑦 | | wait 𝑧;𝑄}, that neither reduce nor offer an interaction

at 𝑦. Intuitively, the share is suspended on the availability of cell usages at name 𝑦. We will see

later that this kind of processes will play a key role in defining 𝜋SS normal forms (Section 8).

Lemma 6.10. Let 𝑃 ⊢ Δ; Γ be a live process. Then either 𝑃 ↓𝑥 or 𝑃 reduces.

Proof. By induction on the typing derivation for 𝑃 ⊢ Δ; Γ and Lemma 6.9. □

Theorem 6.11 (Progress for 𝜋SS). Let 𝑃 ⊢ ∅; ∅ be a live process of 𝜋SS. Then, 𝑃 reduces.

Proof. Follows from Lemma 6.10, since fn(𝑃) = ∅. □

6.3 Progress for 𝜋SSL
We prove that our extension 𝜋SSL of 𝜋SS with locks also satisfies progress.

Definition 6.12 (𝑃 offers an interaction at 𝑥). We define 𝑃 ↓𝑥 by extending Definition 6.8 with

𝑃 ↓𝑦 𝑦 ≠ 𝑥
[shareL1]

(shareL 𝑥 {𝑃 | | 𝑄}) ↓𝑦

𝑄 ↓𝑦 𝑦 ≠ 𝑥
[shareL2]

(shareL 𝑥 {𝑃 | | 𝑄}) ↓𝑦
We show the following key properties of the interaction offering relation.

Lemma 6.13. The following properties of 𝑃 ↓𝑥 hold
(1) Let 𝑃 ⊢ Δ, 𝑥 : �! 𝐴; Γ, 𝑄 ⊢ Δ′, 𝑥 : �! 𝐴; Γ and 𝑃 ↓𝑥 :act. Then, shareL 𝑥 {𝑃 | | 𝑄} ↓𝑥 :act.
(2) Let 𝑃 ⊢ Δ, 𝑥 : 𝐴; Γ and suppose that 𝐴 is not of the form �? 𝐵. If 𝑃 ↓𝑥 :fwd, then either 𝑃 ↓𝑦:fwd

for some 𝑦 : 𝐴 ∈ Δ or 𝑃 reduces.

Actions on the left component of a share-left are always propagated (Lemma 6.13(1)), as expressed

by ≡ rules [leftA] and [leftU]. From ≡ [symm] and the fact that − ↓𝑥 is closed by ≡, we obtain that

actions of the right component of a share-right are always propagated as well

(1’) Let 𝑃 ⊢ Δ, 𝑥 : �! 𝐴; Γ, 𝑄 ⊢ Δ′, 𝑥 : �! 𝐴; Γ and 𝑄 ↓𝑥 :act. Then, shareR 𝑥 {𝑃 | | 𝑄} ↓𝑥 :act
Theorem 6.14 (Progress for 𝜋SSL). Let 𝑃 ⊢ ∅; ∅ be a live process of 𝜋SSL. Then, 𝑃 reduces.

7 CONFLUENCE
In this section we prove that the relation ⇒ of language 𝜋SSL satisfies the diamond property,

thereby substantiating the claim that⇒ can be understood as a proof equivalence relation (cf. PaT).

Since⇒ ≜ (→ ∪ ≡)+, a natural proof strategy would be demonstrating the diamond property for

→ ∪ ≡, but this property fails. To see why, consider the process 𝑃 | | (𝑄1 +𝑄2 +𝑄2) and assume

that 𝑃 ′← 𝑃 → 𝑃 ′′. Then, we can form the→-reductions

𝑃 | | (𝑄1 +𝑄2 +𝑄2) → 𝑃 ′ | | 𝑄1 + 𝑃 ′ | | 𝑄2 + 𝑃 | | 𝑄3 ≜ 𝑅

𝑃 | | (𝑄1 +𝑄2 +𝑄2) → 𝑃 | | 𝑄1 + 𝑃 ′′ | | 𝑄2 + 𝑃 ′′ | | 𝑄3 ≜ 𝑆

Assume as well that 𝑃 ′ and 𝑃 ′′ reduce to a common form 𝑃∗ in one single step: 𝑃 ′ → 𝑃∗ ← 𝑃 ′′.
Note, however, that we need two→-reduction steps to bring processes 𝑅 and 𝑆 to a common term

𝑅
2−→ 𝑃 ′ | | 𝑄1 + 𝑃∗ | | 𝑄2 + 𝑃 ′′ | | 𝑄3

2←− 𝑆

The solution is to allow, in one single step, to perform parallel independent→-reductions of sum

components (cf. Definition 7.1). This is a well-known technique due to Tait and Martin-Löf and
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which is often employed when establishing the confluence of calculi that involve nondeterministic

sums (see, for example, [Ehrhard and Regnier 2003; Pagani and Tranquilli 2009]).

Definition 7.1 (Parallel Sum Reduction ↠). Let ↠ be the least relation that contains → and

satisfies the rule [+par] 𝑃 ↠ 𝑃 ′, 𝑄 ↠ 𝑄 ′ ⊃ 𝑃 +𝑄 ↠ 𝑃 ′ +𝑄 ′.

Lemma 7.2. The following (in)equalities hold: (1)→ ⊆↠, (2)↠ ⊆ +−→ and (3)⇒ = (↠ ∪ ≡)+.

Proof. (1) follows directly from Definition 7.1. (2) is by induction on↠. (1) and (2) imply (3). □

Since⇒ = (↠ ∪ ≡)+, we establish our main theorem by showing the diamond property for

↠ ∪ ≡ (Lemma 7.6). To handle the complexity of the ≡-commuting conversions, we show first

that we can write each process in a ≡-normal form by interleaving all the concurrent cell actions

and distributing the static operators over sums (Lemma 7.4). This essentially computes a normal

form for the left-to-right oriented ≡-rules that distribute over sum [D-Sm] and that interleave cell

usages [AA], [LA] and [LL]. Each↠-reduction is then obtained by evaluating the summands of the

normal form with a restricted form of reduction (Definition 7.3) that does not manipulate sums

(Lemma 7.4) and for which a diamond property is straightforward to establish (Lemma 7.6).

Definition 7.3 (Relation→𝑑 ). Let ≡𝑑 be defined by all the rules of ≡ except rules [D-Sm], [AA],

[LA], [LL] and [0Sm]. Let→𝑑 be the least relation that satisfies all the rules of→ except [≡] and
for which the rule [≡𝑑 ] 𝑃 ≡𝑑 𝑃 ′→𝑑 𝑄 ′ ≡𝑑 𝑄 ⊃ 𝑃 →𝑑 𝑄 holds. Furthermore, in rule [cong], the

hole in the context C is not guarded by a sum.

Lemma 7.4. For each process 𝑃 there is a sum of processes
∑

𝑖∈I 𝑃𝑖 s.t. 𝑃 ≡
∑

𝑖∈I 𝑃𝑖 and for which
the following property holds

(1) If 𝑃 ↠ 𝑄 , then exists {𝑄𝑖 𝑗 }𝑖∈I, 𝑗 ∈J𝑖 with 𝑄 ≡
∑

𝑖∈I, 𝑗 ∈J𝑖 𝑄𝑖 𝑗 and s.t. for all 𝑖 ∈ I, 𝑗 ∈ J𝑖 either
𝑃𝑖 ≡𝑑 𝑄𝑖 𝑗 or 𝑃𝑖 →𝑑 𝑄𝑖 𝑗 .

Proof. For each process 𝑃 , we define its sum expansion S(𝑃) inductively. In the following, X
stands for 0, fwd 𝑥 𝑦 or any action. Assume S(𝑃) = ∑

𝑖∈I 𝑃𝑖 and S(𝑄) =
∑

𝑗 ∈J 𝑄 𝑗 and let I𝑥 (𝑃𝑖 , 𝑄 𝑗 )
be an auxiliary map that computes all the interleavings of process share 𝑥 {𝑃𝑖 | | 𝑄 𝑗 }. Then
S(X) ≜ X S(𝑃 | | 𝑄) ≜ ∑

𝑖∈I, 𝑗 ∈J 𝑃𝑖 | | 𝑄 𝑗 𝑆 (𝑃 |𝑥 | 𝑄) ≜ ∑
𝑖∈I, 𝑗 ∈J 𝑃𝑖 |𝑥 | 𝑄 𝑗

S(𝑦.𝑃 |!𝑥 | 𝑄) ≜ ∑
𝑗 ∈J 𝑦.𝑃 |!𝑥 | 𝑄 𝑗 S(shareL 𝑥 {𝑃 | | 𝑄}) ≜

∑
𝑖∈I, 𝑗 ∈J shareL 𝑥 {𝑃𝑖 | | 𝑄 𝑗 }

S(shareR 𝑥 {𝑃 | | 𝑄}) ≜ ∑
𝑖∈I, 𝑗 ∈J shareR 𝑥 {𝑃𝑖 | | 𝑄 𝑗 }

𝑆 (share 𝑥 {𝑃 | | 𝑄}) ≜ ∑
𝑖∈I, 𝑗 ∈J I𝑥 (𝑃𝑖 , 𝑄 𝑗 ) S(𝑃 +𝑄) ≜

∑
𝑖∈I 𝑃𝑖 +

∑
𝑗 ∈J 𝑄 𝑗

Sum expansions of ≡-equivalent processes 𝑃,𝑄 are related in the following way: for all 𝑖 ∈ I there

exists 𝑗 ∈ J s.t. 𝑃𝑖 ≡𝑑 𝑄 𝑗 . Property (1) is established by induction on 𝑃 ↠ 𝑄 . □

Corollary 7.5. Suppose 𝑃 ↠ 𝑄 and 𝑃 ↠ 𝑅. There are sum of processes
∑

𝑖∈I 𝑃𝑖 ≡ 𝑃 ,
∑

𝑖∈I 𝑄𝑖 ≡ 𝑄
and

∑
𝑖∈I 𝑅𝑖 ≡ 𝑅 s.t. the following property holds

(1) For all 𝑖 ∈ I, 𝑃𝑖 (→𝑑 ∪ ≡𝑑 ) 𝑄𝑖 and 𝑃𝑖 (→𝑑 ∪ ≡𝑑 ) 𝑅𝑖 .

Proof. Compute a sum expansion {𝑃 ′𝑖 }1≤𝑖≤𝑛 for 𝑃 (lemma 7.4) and repeat the terms 𝑃 ′𝑖 as many

times as necessary (≡-equivalence is preserved because sum is idempotent). □

As opposed to→ and↠, the reductions of→𝑑 cannot partially overlap, which justifies

Lemma 7.6. If 𝑃 →𝑑 𝑄 and 𝑃 →𝑑 𝑅, then either 𝑄 ≡𝑑 𝑅 or exists 𝑆 s.t. 𝑄 →𝑑 𝑆 and 𝑅 →𝑑 𝑆 .

Proof. Write 𝑃 as 𝑃 ≡𝑑 C[𝑅1] . . . [𝑅𝑛] where 𝑅1, . . . , 𝑅𝑛 lists all→𝑑 -redexes of 𝑃 . We then verify

that all→𝑑 -reductions at the 𝑅𝑖 commute. □
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Lemma 7.7. Suppose 𝑃 ↠ 𝑄 and 𝑃 ↠ 𝑅. Either 𝑄 ≡ 𝑅 or exists 𝑆 s.t. 𝑄 ↠ 𝑆 and 𝑅 ↠ 𝑆 .

Proof. By applying Corollary 7.5 to 𝑃 ↠ 𝑄 and 𝑃 ↠ 𝑅. □

Theorem 7.8 (Diamond⇒). Suppose 𝑃 ⇒ 𝑄 and 𝑃 ⇒ 𝑅. There exists 𝑆 s.t. 𝑄 ⇒ 𝑆 and 𝑅 ⇒ 𝑆 .

Proof. Follows from Lemma 7.7 and Lemma 7.2(3). □

8 PROOF NORMALISATION AND CUT-ELIMINATION
In this section we study normalisation and cut-elimination for open processes 𝑃 ⊢ Δ; Γ of the

language 𝜋SS without quantifiers. We show that every process can be reduced to a normal form on

which there are no cuts, except on open identity axioms on shared aliases: we call open cells to

such trivial cuts. Open cells have a simple form cell 𝑥 (𝑦.𝑃) |𝑥 | share 𝑥 {fwd 𝑥 𝑧 | | 𝑄}, where the
shared alias 𝑥 is forwarded to a free name 𝑧 : �! 𝐴. The share in the open cell cannot be converted to

a (sum of) �! introduction forms (since fwd 𝑥 𝑧 is not a �! introduction form, and offers no structure

at 𝑧). There is no real redex in an open cell: the share is suspended on the availability of cell usages

at 𝑧 from the environment; justifying open cells as normal forms.

Definition 8.1 (Open Cell). An open cell is a process of the form

cell 𝑥 (𝑦.𝑃) |𝑥 | share 𝑥 {fwd 𝑥 𝑧 | | 𝑄}
Definition 8.2 (Normal form). A process is a normal form if it contains no cuts except open cells.

Proposition 8.3 (Sub-formula Property). If 𝑃 ⊢ Δ; Γ is normal form, then the derivation only
contains sub-formulas (up to duality) of the types in Δ, Γ.

Proof. By induction on the typing derivation. □

To obtain normalisation we introduce a conversion relation≈ on proofs, which includes structural
congruence ≡ and reduction→, but adds a complete set of commuting conversions for linear logic

along standard lines [Caires and Pfenning 2010; Caires et al. 2016; Wadler 2012], and some specific

conversions for our new constructs (full definition in the technical report [Rocha and Caires 2021a]).

Theorem 8.4 (Normalisation). If 𝑃 ⊢ Δ; Γ then there exists normal 𝑄 s.t. 𝑃 ≈ 𝑄 .
Proof. We extend Pfenning’s structural cut-elimination technique [Pfenning 1995] to our setting,

and explicitly construct a normal form for each proof 𝑃 ⊢ Δ; Γ. We show how a normal form

𝑅 ≈ 𝑃 |𝑥 | 𝑄 can be constructed from normal forms 𝑃 and 𝑄 , by lexicographical induction on

(𝐴, #(𝑃 |𝑥 | 𝑄)), where 𝐴 is the cut formula (we consider that �! 𝐵 >!𝐵) and # is a measure on

processes. Instrumentally, we first show that any share share 𝑥 {− || −} is ≈-equivalent to a sum of

#-smaller processes or to an open cell. □

The following corollary exposes a strong conservativeness and expressiveness result about our

language, which follows from the sub-formula property.

Corollary 8.5 (Conservativity). Let process 𝑃 ⊢ Δ; Γ be a sequent in classical linear logic with
mix. Then there is a cut-free process 𝑄 s.t. 𝑃 ≈ 𝑄 .

Corollary 8.5 implies that any process in our language with shared state but that implements an

interface only manifesting standard propositional linear logic based session types (that is without

�? , �! modalities in its typing) is equivalent to a (possibly non-deterministic and larger) process

that does not use imperative constructs at all. This normal form expresses the externally observable

behaviour of the original stateful open process. For example, consider the conversion

cell 𝑥 (𝑏.true𝑏) |𝑥 | share 𝑥 {wrt 𝑥 (𝑏.false𝑏); free 𝑥 ; 0 | | read 𝑥 (𝑏); free 𝑥 ; send 𝑦 𝑏; close 𝑦}
≈ send 𝑦 (𝑧.!𝑧 (𝑏); true𝑏); close 𝑦 + send 𝑦 (𝑧.!𝑧 (𝑏); false𝑏); close 𝑦 ⊢ 𝑦 :!Bool ⊗ 1; ∅
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The cut-free process on the right hand side of ≈ is behaviourally equivalent to the imperative

unreduced one on the left hand side, and summarises its behaviour as a nondeterministic “state-free"

process. For the sake of simplicity we opted to prove normalisation of 𝜋SS, without polymorphism.

Extending the proof with locks can be done along predictable lines. Extending the proof with

the impredicative polymorphic types would require a different technique however, such as linear

logical relations [Pérez et al. 2012].

9 TYPE CHECKER AND INTERPRETER
We developed a type checker and interpreter in Java (∼ 11k loc) using the JavaCC parser generator,

which was submitted as a companion artifact for this paper [Rocha and Caires 2021b]. All the

examples in the paper are validated by the implementation, and we also have developed many

others (∼ 3k loc), ranging from the definition of inductive datatypes (Naturals, Lists) using System-F

style encodings, to concurrent ADTs (Counter, Stack, Queue), as well as a test suite. The supported

language includes efficient pragmatic extensions (native basic datatypes int, boolean and string).

Our type checker deals with linearity and context splitting by lazy propagation of context resid-

uals [Hodas and Miller 1994], and imperative update of the typing environments. The interpreter is

a fine-grain concurrent runtime system, relying on the java.util.concurrent.* package. Our imple-

mentation exposes nondeterminism arising from concurrency as real committed nondeterminism,

so that the sum operator introduced in the paper, while crucial to establish a PaT model and to

characterise the semantics of our language, is not present in our practical runtime system, that is,

the implementation commits to one of the summands in sums, while any of such may be nonde-

terministically picked. The share construct is simply implemented by aliasing. We use reference

counting instrumented by the share constructs to garbage collect reference cells. Importantly,

structural congruence does not play any explicit role in the implementation model. Types are not

used at runtime, but to orient forwarders at state types, and handle polymorphic type variables.

When running complex examples involving the concurrent shareable ADTs, such as the Queue,

where we intensively use session processes to implement everything down to basic inductive data

types such as lists (along the lines of [Wadler 1990b]), our implementation spawns thousands of

short-lived processes. In order to reduce the overhead associated with thread creation/destruction

we have opted to manage the execution of concurrent tasks through a cached thread pool.

10 RELATEDWORK
In this paper, we develop a propositions-as-types (PaT) interpretation connecting a programming

language with concurrency and shared state constructs within a conservative extension of classical

linear logic. The notion of PaT goes back to the functional interpretation of intuitionistic logic due

to Brouwer, Heyting and Kolmogorov, but was only brought under the spotlight after the famous

notes of Curry and Howard [Howard 1980]. It has been since then considered both an intriguing

and prolific concept, with many instances and consequences (see [Wadler 2015]).

We base our development on the sessions-as-types interpretation of linear logic [Caires and

Pfenning 2010; Caires et al. 2016; Wadler 2012], which yields an expressive typed programming

language related to the session 𝜋-calculus, while ensuring "for-free“ progress (deadlock-freedom),

confluence, and normalisation as a consequence of the correspondence between computation and

proof reduction. Many works have explored linearity (or affinity) and mutable state, e.g., [Ahmed

et al. 2007; Caires and Seco 2013; Nanevski et al. 2008; O’Hearn and Reynolds 2000; Sunshine et al.

2011; Wadler 1990a]. Recently, Rust [Jung et al. 2018a; Matsakis and Klock 2014] has introduced

affine types and forms of ownership types [Clarke et al. 1998; DeLine and Fähndrich 2001] to the

world of widely adopted programming languages. In our system, a simple form of ownership and

ownership transfer results naturally from the underlying linear typing discipline.
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We believe that our work is the first to address the challenge of defining a PaT interpretation for

shared state, which we have accomplished by internalising nondeterminism in the logic using sums,

thus ensuring confluence. From the proof-theoretic side, we have built on ideas from DiLL [Ehrhard

2018] to obtain a logical perspective of the interplay between concurrency and non-determinism as

captured by algebraic interleaving laws [Hennessy and Milner 1985]. In the presence of interactions

between competing resources, for example, such as concurrent accesses to reference cells as

in our language, or matching of quantities of resources in DiLL (e.g., in cut-reduction between

co-contraction and contraction), finding an adequate model in which confluence must hold has

motivated the introduction of sums (or linear combinations) 𝑃 +𝑄 of objects [Ehrhard 2018], to

be understood as "superposition" or nondeterministic choice of "incompatible" alternatives. The

idea of using formal sums to recover, in an algebraic form, confluence and normalisation for an

untyped CCS-like process calculus was also explored in [Beffara 2008]. Sums allow confluence

of cut-reduction to be preserved, allowing nondeterminisic proof-reductions to be understood

equationally, cf. behavioural equivalence in process algebras [Hennessy andMilner 1985] or program

equivalence in power-domain denotational semantics [Plotkin 1976]. It is also used crucially in our

PaT interpretation, where interleaving of concurrent imperative actions leads to sum of states.

In our system, constructs for modelling state are represented by proof terms. Particularly, our

“store" is represented by proof objects itself, thus approaching a pure algebraic theory where

imperative computation can be reasoned about equationally, in the spirit of the syntactic store of

[Felleisen and Friedman 1989], distinct of the monadic approaches [Peyton Jones and Wadler 1993].

The works [Balzer and Pfenning 2017; Balzer et al. 2019] introduced manifest sharing, the first

proposal to represent shared state on top of a session types linear logic interpretation. Although the

resulting system is grounded on the Curry-Howard correspondences of [Caires and Pfenning 2010;

Caires et al. 2016; Wadler 2012] it departs from a pure PaT interpretation in its stateful extension,

unlike the work presented in this paper, and explores a different route, based on a special purpose

operational semantics, designed to keep track of shared channels availability to control resource

acquisition and perform context switching. Therefore, their work does not address how to achieve

deadlock freedom or confluence from the basic linear logic type discipline. As a consequence

manifest sharing supports programs with linear stored state, such as an imperative linked-list based

queue, or with cyclic dependencies, such as the the dining philosophers. These examples are out

of the scope of our PaT system, which is nevertheless expressive enough to represent imperative

ADTs like stacks and queues within a pure logical approach. Thus both manifest sharing and our

PaT approach tackle a common theme with different contributions, directions, and merits.

We further detail our discussion. The key idea of manifest sharing is to serialise concurrent access

to linear objects by two modal operators (acquire and release), which induce a stratification [Pfen-

ning and Griffith 2015] of session types in two layers, and provide locking / unlocking behaviour

at computation points where a resource invariant holds. Reduction in [Balzer and Pfenning 2017;

Balzer et al. 2019] cannot solely be seen as proof simplification, as the operational semantics relies

on proof construction / deconstruction steps, where the “wait" computation states are seen as an

“incomplete proof", possibly introducing deadlock. Moreover, in manifest sharing, computation is

not confluent, and thus cannot be seen as a proof simplification. This is unlike our system in which

confluence holds due to the introduction of sums and co-contraction based sharing.

In [Balzer et al. 2019] the authors further extend the framework of [Balzer and Pfenning 2017]

with an additional type system to enforce deadlock freedom, by relying on (extra-logical) partial

orders on events to ensure acyclicity [Dezani-Ciancaglini et al. 2008; Lynch 1980]. Those partial

orders on locks impose some restrictions on the type system, for example: every process must have

released all its acquired resources before communicating along its offering channel and the linear

forwarder cannot be typed. Furthermore, in manifest sharing, partial orders on locks have to be
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manually defined by the programmer. In our case, even in the presence of locks, deadlock freedom

results directly from typing and the progress theorem as a consequence of acyclicity in linear logic

proofs. Moreover, the partial order approach of [Balzer et al. 2019] does not type processes that

spawn a statically undetermined number of shared objects, while in our work such systems are

naturally allowed and intrinsically covered by PaT.

Earlier work established relationships between variants of the 𝜋-calculus and proof-net reduction

in DiLL [Ehrhard and Laurent 2010]. Recently, [Atkey et al. 2016; Kokke et al. 2019] also studied

non-determinism in the setting of logical interpretations of session types. The work [Atkey et al.

2016] suggests the introduction of concurrency on extensions of the system of Wadler using

conflation, but this carries the cost of losing confluence and deadlock absence as present in the basic

system. The work [Kokke et al. 2019] draws on bounded linear logic, by introducing two integer-

subscripted modalities that keep track of the number of statically fixed client-server interactions.

On the other hand, our reference cells can be shared by an arbitrary number of clients that evolves

dynamically (see Example 3.3). Recently, [Qian et al. 2021] have introduced coexponentials to

Classical Linear Logic in order to model interactions between stateful servers and several clients.

This work also draws inspiration on DiLL but, as opposed to DiLL and our calculus, they do not

internalise non-determinism with sums. In [Caires and Pérez 2017], the authors extend the linear

logic interpretation of session types [Caires and Pfenning 2010; Caires et al. 2016; Wadler 2012]

with modalities to model effects and non-determinism, following a monadic approach, that excludes

the emergence of non-determinism as the effect of races in memory access as we do in this paper.

11 CONCLUDING REMARKS
We introduced a PaT approach to state, in the context of linear logic interpretations of session types.

Our model handles first-class mutable and shareable reference cells, and enjoys basic properties of

PaT, namely proofs as programs, formulas as types, and evaluation as proof simplification, justified

by key meta-theoretical results: preservation, progress, confluence and normalisation.

Our results shed light on the relationship between concurrency and nondeterminism from a

logical viewpoint, and reconcile nondeterminism with proof identity by internalising choice. Our

concrete implementation collapses nondeterminism into particular choices during execution, while

our model still captures all possible choices, cf. the confluence property. We presented an extension

that allows critical sections to be represented using locks, while keeping faithful to PaT, and

preserving the crucial progress property.

We have developed a type checker and interpreter (using multi-threading), submitted as a

companion artifact [Rocha and Caires 2021b]. All the examples in the paper are validated by our

implementation ranging from the definition of inductive datatypes to concurrent ADTs.

Currently, our approach only handles shared cells holding persistent values which do not depend

on free linear names and, as such, we cannot express cyclic data structures. However, we have

shown how our language is already quite expressive, see e.g. the implementation of shareable

mutable ADTs, such as Stacks and Queues. Extending our framework to handle linear stored state

is object of ongoing work and would require a more fine grained analysis of the state manipulation

primitives, of the recursive behaviour of cells, and the consideration of sharing protocols [Jung

et al. 2018b; Militão et al. 2016]. We would also like to explore how dependent types may express

resource invariants and possibly notions of abstract separation [Dinsdale-Young et al. 2013; Jung

et al. 2018b; Krishnaswami et al. 2012].
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