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Refinement Kinds
A Theory of Type-Safe Meta-Programming

LUÍS CAIRES, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and NOVA-LINCS, Portugal
BERNARDO TONINHO, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and NOVA-

LINCS, Portugal

This work introduces the novel concept of kind refinement, which we technically develop in the context of

an explicitly polymorphic ML-like language with type-level computation. As type refinements embed rich

specifications by means of comprehension principles expressed by predicates over values in the type domain,

kind refinements provide rich kind specifications by means of predicates over types in the kind domain. By

leveraging our powerful refinement kind discipline, types in our language are not just used to statically classify

program expressions and values, but also conveniently manipulated as tree-like data structures, with their

kinds refined by logical constraints on such structures. Remarkably, the resulting typing and kinding disciplines

allow for powerful forms of type reflection, ad-hoc polymorphism, and type-safe type meta-programming

which are common in modern software development, but hardly expressible in extant type theories.

CCS Concepts: • Theory of computation→ Type theory; • Software and its engineering→ Functional
languages; Domain specific languages;

Additional Key Words and Phrases: Refinement Kinds, Typed Meta-Programming, Type Theory

1 INTRODUCTION
Current software development ecosystems increasingly rely on automation, often based on tools

that generate code from various types of specifications, leveraging the various reflection and

meta-programming facilities that modern languages provide: an example of such a tool could be

a generator that given as input a XML database schema, produces the complete code of a web

application. Automated code generation, domain specific languages, and meta-programming are

increasingly becoming productivity drivers for the software industry, while also making bringing

programmingmore accessible to non-experts, and, more generally, increasing the level of abstraction

of languages and tools for program construction.

These concepts are more commonly supported by so-called dynamic languages and related

frameworks, such as Ruby and Ruby on Rails, JavaScript and Node.js, but are also present in

static languages such as Java, Scala, Go and F#, that provide support for reflection and general

meta-programming facilities, allowing code, and more frequently types, to be manipulated as data

by programs. Unfortunately, meta-programming constructs and idioms aggressively challenge the

safety guarantees of static typing, which becomes especially problematic given that meta-programs

are notoriously hard to test for correctness.

This paper introduces for the first time the concept of refinement kinds and illustrates how the

associated discipline cleanly supports static type checking of type-level reflection, parametric and

ad-hoc polymorphism, which can all be combined to implement interesting meta-programming

idioms. Refinement kinds, presented for the first time in this work, are a natural transposition

of the well-known concept of refinement types (of values) [Bengtson et al. 2011; Rondon et al.

2008; Vazou et al. 2013] to the realm of kinds (of types). Several systems of refinement types
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1:2 Luís Caires and Bernardo Toninho

have been proposed in the literature, generally motivated as a pragmatic compromise between

usability and the expressiveness of full-fledged dependent types, which require proof objects to be

explicitly constructed by programmers. Our work aims to show that the simple and arguably natural

notion of introducing refinements in the kind structure allows us to cleanly support sophisticated

statically typed meta-programming concepts, which we illustrate in the context of a higher-order

polymorphic λ-calculus with imperative constructs, chosen as a convenient representative for

languages with higher-order store.

Just as refinement types support expressive type specifications by comprehension principles

expressed by predicates over values in the type domains (typically implemented by SMT decidable

Floyd-Hoare assertions [Rushby et al. 1998]), refinement kinds support rich and flexible kind

specifications by means of comprehension principles expressed by predicates over types in the

kind domains. They also naturally support a natural notion of subkinding by entailment in the

refinement logic. For example, we introduce in our language one least upper bound kind for each

small type kinds, from which more concrete kinds and types may be defined by refinement, adding

an unusual degree of plasticity to subkinding.

Crucially, types in our language may be reflectively manipulated as first-class (abstract-syntax)

labelled trees (cf. XML data), both statically and at runtime. We expect that the deduction of

relevant structural properties of such tree representations of types to be amenable to rather efficient

implementation, unlike typical value domains (e.g., integers, arrays) manipulated by mainstream

programming languages, and easier to automate using off-the-shelf SMT solvers (e.g. [de Moura

and Bjørner 2008]). Remarkably, even if types in our system can be essentially manipulated by

type-level functions and operators as abstract-syntax trees, our system statically ensures the sound

inhabitation of the outcomes of type-level computations by the associated program-level terms,

enforcing type safety. This allows our language to express challenging reflection idioms in a type-

safe way, that we have no clear perspective on how to cleanly and effectively embed in extant

(dependent) type theories.

To make the design of our framework more concrete, we briefly detail our treatment of record

types. Usually, a record type is represented by a tuple of label-and-type pairs, subject to the

constraint that all the labels must be pairwise distinct (e.g. see [Harper and Pierce 1991]). In order

to support more effective manipulation of record types by type-level functions, record types in our

theory are represented by values of a list-like data structure: the record type constructors are the

type of empty records ⟨⟩ and the “cons” cell ⟨L : T ⟩@R, which constructs the record type obtained

by adding a field declaration ⟨L : T ⟩ to the record type R.
The record type destructors are functions headLabel(R), headType(R) and tail(R), which apply

to any non-empty record type R. As will be shown latter, the more usual record field projection

operator r .L and record type field projection operator T .L turn out to be definable in our language

using suitable meta-programs. In our system, record labels (cf. names) are type and term-level

first-class values of kind Nm. Record types also have their own kind, dubbed Rec. As we will see,
our theory provides a range of basic kinds that specialize the kind of all (small) types Type via
subkinding, which can be further specialized via kind refinement.

For example, we may define the record type Person ≜ ⟨name : String⟩@⟨aдe : Int⟩@⟨⟩, which
we conveniently abbreviate by ⟨name : String; age : Int⟩. We then have that headLabel(Person) =
name, headType(Person) = String and tail(Person) = ⟨age : Int⟩. The kinding of the ⟨L : T ⟩@R
type constructor may be clarified in the following type-level function addFieldType

addFieldType :: Πl ::Nm.Πt ::Type.Πr ::{s::Rec | l < lab(s )}. Rec
addFieldType ≜ λl ::Nm.λt ::Type.λr ::{s::Rec | l < lab(s )}.⟨l : t⟩@r
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Refinement Kinds 1:3

The addFieldType type-level function takes a label l , a type t and any record type r that does not
contain label l , and returns the expected extended record type of kind Rec. Notice that the kind of all
record types that do not contain label l is represented by the refinement kind {s::Rec | l < lab(s )}.

A refinement kind in our system is noted {t ::K | φ (t )}, whereK is a (small) kind, and the logical

formula φ (t ) expresses a constraint on the form of the type t that inhabits K . As expected in

refinement type systems [Bengtson et al. 2011; Swamy et al. 2011; Vazou et al. 2014], we expect our

underlying logic of refinements to include a decidable theory for the various finite tree-like data

types used to schematically represent type specifications, as is the case of our record-types-as-lists,

function-types-as-pairs (i.e. a pair of a domain and an image type), and so on. The kind refinement

rule is thus expressed

Γ |= φ{T /t } Γ ⊢ T :: K

Γ ⊢ T :: {t ::K | φ}
(kref)

where Γ |= φ denotes entailment in the refinement logic. Basic formulas of our refinement logic

include propositional logic, equality, and some useful predicates and functions on types, including

the primitive type constructors and destructors, such as lab(R) (record label set), L ∈ S (label

membership), S#S ′ (label set apartness), R@S (concatenation), dom(F ) (function domain selector).

Interestingly, given the presence of equality in refinements, it is always possible to define for any

type T of kind K a precise singleton kind S(T ) of the form {t :: K | t ≡ T :: K }. As another simple

example, consider the kind Auto of automorphisms, defined as {t :: Fun | dom(t ) ≡ img(t ) :: Type}.
A use of the type-level function addFieldType given above is, for instance, the definition of the

following term-level polymorphic record extension function

addField : ∀l ::Nm.∀t ::Type.∀r ::{s::Rec | l < lab(s )}.t → r → addFieldType l t r
addField ≜ Λl ::Nm.Λt ::Type.Λr ::{s::Rec | l < lab(s )}.λx :t .λy:r .⟨l = x⟩@y

The addField function takes a label l , a type t , a record type r that does not contain label l , and
values of types t and r , respectively, returning a record of type addFieldType l t r .

The type-level and term-level functions addFieldType and addField respectively illustrate some of

the key insights of our type theory, namely the use of types and their refined kinds as specifications

that can be manipulated as tree-like structures by programs in a fully type-safe way. For instance,

the following judgment, expressing the correspondence between the term-level computation

addField l t r x y and the type-level computation addFieldType l t r , is derivable:

l :Nm, t :Type, r :{s::Rec | l < lab(s )},x :t ,y:r ⊢ addField l t r x y : addFieldType l t r

An instance of this judgement yields:

⊢ addField name String ⟨aдe : Int⟩ “jack” ⟨aдe = 20⟩ : addFieldType name String ⟨aдe : Int⟩

Noting that ⟨age : Int⟩ :: {s::Rec | name < lab(s )} is derivable since name < lab(⟨age : Int⟩) is
provable in the refinement logic, we have the following term and type-level evaluations:

(addField name String ⟨aдe : Int⟩ “jack” ⟨aдe = 20⟩) →∗ ⟨name = “jack”; age = 20⟩

(addFieldType name String ⟨aдe : Int⟩) ≡ ⟨name : String; age : Int⟩

Using the available refinement principles, our system can also derive the following more precise

kinding for the type addFieldType l t r :

l :Nm, t :Type, r :{s::Rec | l < lab(s )} ⊢ addFieldType l t r :: {s::Rec | s ≡ ⟨l : t⟩@r : Rec}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.
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1:4 Luís Caires and Bernardo Toninho

Contributions. We summarise the main contributions of this work: First, we motivate for the

first time the concept of refinement kinds, showing how it supports the flexible and clean definition

of statically typed meta-programs through several examples (Section 2). Second, we technically

develop our refinement kind system (Section 3), using as core language a ML-like polymorphic

λ-calculus (Section 4) with records, references and collections, supporting type-level computation.

Third, we establish the key meta-theoretical result (Section 5) of type safety through type unicity,

type preservation and progress (Theorems 5.8, 5.9 and 5.11, respectively).

We conclude with an overview of key related work (Section 6), and offer some concluding

remarks and discussion on the pragmatics of the language (7). Appendices A, B and C list omitted

definitions of the type theory, its semantics and proof outlines, respectively.

2 PROGRAMMINGWITH REFINEMENT KINDS
Before delving into the technical intricacies of our theory in Section 3 and beyond, we illustrate

the various features and expressiveness of our theory through a series of examples that showcase

how our language supports (in a perhaps surprisingly clean way) challenging (from a static typing

perspective) meta-programming idioms.

Generating Mutable Records. We begin with a simple higher-order meta-program that com-

putes a “generator” for mutable records from a specification of its representation type, expressed as

an arbitrary record type. Consider the following definition of the (recursive) function genConstr:

genConstr ≜ ΛS ::{r ::Rec | nonEmpty(r )}.ΛV ::{v ::Rec | lab(v )#lab(S )}.λv :V .
λx :headType(S ).if nonEmpty(tail(S )) then

genConstr tail(S ) ⟨headLabel(S ) : ref headType(S )⟩@V ⟨headLabel(S ) = ref x⟩@v
else ⟨headLabel(S ) = ref x⟩@v

Given a non-empty record type S , function genConstr returns a constructor function for a mutable

record whose fields are specified by S . We use an informal notation to express recursive definitions,

which in our formal core language is represented by an explicit structural recursion construct.

Parameters V and v are accumulating parameters that track intermediate types, values and a

disjointness invariant on those types during computation (for simplicity, we generate the record

fields in reverse order).

Intuitively, and recovering the record type Person from above, genConstr Person ⟨⟩ ⟨⟩ computes

to a value equivalent to λx :String.λy:Int.⟨age = ref y; name = ref x⟩.
Notice that function genConstr accepts any non-empty record type S , and proceeds by recursion

on the structure on type S , as a list of label-type pairs. The parameter S holds the types of the

fields still pending for addition to the final record type, parameter V holds the types of the fields

already added to the final record type, and v holds the already built mutable record value. To

properly call genConstr, we “initialize”V with ⟨⟩ (i.e. the empty record type), and v to ⟨⟩. Moreover,

the refined kind of V specifies the label apartness constraint needed to type check the recursive

call of genConstr, in particular, given lab(V )#lab(S ), the refinement logic deduces headLabel(S ) <
lab(V ), needed to kind check ⟨headLabel(S ) : ref headType(S )⟩@V ; and lab(⟨headLabel(S ) :

ref headType(S )⟩@V )#lab(tail(S )), required to kind and type check the recursive call. In our

language, genConstr can be typed as follows:

genConstr : ∀S ::{r ::Rec | nonEmpty(r )}.∀V ::{v ::Rec | lab(v )#lab(S )}.(GType S V )

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.
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Refinement Kinds 1:5

where GType is the (recursive) type-level function such that

GType :: ΠS ::{r ::Rec | nonEmpty(r )}.ΠV ::{v ::Rec | lab(v )#lab(S )}. Fun
GType ≜

λS ::{r ::Rec | nonEmpty(r )}.
λV ::{v ::Rec | lab(v )#lab(S )}.
headType(S ) → if nonEmpty(tail(S )) then

GType tail(S ) ⟨headLabel(S ) : ref headType(S )⟩@V elseV

We can see that, in general, the type-level application GType ⟨L1 : T1; ...;Ln : Tn⟩ ⟨⟩ computes the

type T1 → ... → Tn → ⟨Ln : ref Tn ; ...;L1 : ref T1⟩. In particular, we have

genConstr Person ⟨⟩ ⟨⟩ : String→ Int→ ⟨age = ref Int; name = ref String⟩

From Record Types to XML Tables. As a second example, we develop a generic function

MkTable that generates and formats an XML table for any record type, inspired by the example in

Section 2.2 of [Chlipala 2010]. We start by introducing an auxiliary type-level Map function, that

returns the record type obtained from a record type R by applying a type transformation G (of

higher-order kind) to the type of each field of R.

Map :: ΠG::(ΠX :: Type. Type).ΠR::Rec. {r :: Rec | lab(r ) = lab(R)}
Map ≜

λG::(ΠX :: Type. Type).λR::Rec.
if nonEmpty(R) then ⟨headLabel(R) : G headType(R)⟩@(Map G tail(R)) else ⟨⟩

The logical constraint lab(r ) = lab(R) expresses that the result ofMap G R has exactly the same

labels as record type R. This implies that headLabel(R) < lab(Map G tail(R)) in the recursive call,

thus allowing the “cons” to be well-kinded. We now define:

XForm :: Πt :: Type. Type
XForm ≜ λt ::Type.⟨tag : String; toStr : t → String⟩

MkTableType :: λr ::Rec.{r :: Rec | lab(r ) = lab(R)}
MkTableType ≜ λr ::Rec.Map XForm r

MkTable : ∀R::Rec.(MkTableType R) → R → String
MkTable ≜ ΛR::Rec.λM :MkTableType R.λr :R.

if nonEmpty(R) then
“<tr><th>” +M .recHeadLabel(M ).tag + “</th>”+
M .recHeadLabel(M ).toStr r .recHeadLabel(M ) + “</td></tr>”
MkTable tail(R) recTail(M ) recTail(r )

else “”

It is instructive to discuss why and how this code is well-typed, witnessing the expressiveness of

refinement kinds, despite their conceptual simplicity (which can be judged by the arguably parsimo-

nious nature of the definitions above). Let us first consider the expressionM .recHeadLabel(M ).tag.
Notice that, by declaration, R::Rec and r :R. However, the expression under consideration is to be

typed under the assumption that nonEmpty(R), which is added to the current set of refinement

assumptions while typing the then branch. Using TT for the type of M , Since MkTableType R ::

{r ::Rec | lab(r ) = lab(R)}, by refinement we have that lab(TT ) = lab(R) and thus nonEmpty(TT ),

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.
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1:6 Luís Caires and Bernardo Toninho

allowing recHeadLabel(M ) to be defined. SinceM : MkTableType R we have

(MkTableType R) ≡ (Map XForm R) ≡
⟨headLabel(R) : XForm headType(R)⟩@(Map G tail(R))

We thus derive headLabel(TT ) ≡ headLabel(R).Then

headType(MkTableType R) ≡
XForm headType(R) ≡ ⟨tag : String; toStr : headType(R) → String⟩

Hence M .headLabel(M ).tag : String. By a similar reasoning, we conclude r .recHeadLabel(M ) :
headType(R). In Section 4.1, we will see more precisely how refinements augment the simple

type-level function applications in order to make precise the reasoning sketched above.

Generating Getters and Setters. As a final introductory example, we develop a generic func-

tionMkMut that generates a getter/setter wrapper for any mutable record (i.e. a record where all

its fields are of reference type). We first define the auxiliary type-levelMutableRec function, that
returns the mutable record type obtained from a record type R in terms of Map:

MutableRec :: ΠR :: Rec. {r :: Rec | lab(r ) = lab(R)}
MutableRec ≜ Map (λr ::Type.ref r )

We then define the auxiliary type-level SetGet function, that returns the record type that exposes
the getter/setter interface generated from record type R:

SetGetRec :: ΠR :: Rec. {r :: Rec | lab(r ) = set++lab(R) ∪ дet++lab(R)}
SetGetRec ≜ λR::Rec.

if nonEmpty(R) then
⟨дet++headLabel(R) : 1→ headType(R)⟩@
⟨set++headLabel(R) : headType(R) → 1⟩@
SetGetRec tail(R)

else ⟨⟩

Here, n++m denotes the name obtained by appending n to m, and n++S denotes the label set
obtained from S by prefixing every label in S with name n. The function SetGet is well kinded since
the refinement kind constraints imply that the resulting getter/setter interface type is well formed

(i.e. all labels distinct). We can finally depict the type and code of the MkMut function:

MkMut :: ∀R :: Rec.MutableRec R → SetGetRec R
MkMut ≜ ΛR::Rec.

λr :MutableRec R.
if nonEmpty(R) then
⟨дet++headLabel(R) = λx :1.!(r .recHeadLabel(R))⟩@
⟨set++headLabel(R) = λx :headType(R).r .recHeadLabel(R) := x⟩@
MkMut tail(R) recTail(r )

else ⟨⟩

For example, assuming r : MutableRec Person we have thatMkMut Person r computes a record

equivalent to:

⟨дetname = λx :1.!(r .name );
setname = λx :String.r .name := x ;
дetname = λx :1.!(r .name );
setaдe = λx :Int.r .aдe := x⟩

where (MkMut Person r ) : SetGetRec Person.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.
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Refinement Kinds 1:7

Kinds K ,K ′ ::= K | {t ::K | φ} | Πt :K .K ′ Refined and Dependent Kinds

K ::= Rec | Col | Fun | Ref | Nm Base Kinds

| Type | GenK

Types T , S,R ::= t | λt ::K .T | T S Type-level Functions

| µF : (Πt :K .K ′).λt ::K .T Structural Recursion

| ∀t ::K .T | tmap(T ) S Polymorphism

| L | ⟨⟩ | ⟨L : T ⟩@S Record Type constructors

| headLabel(T ) | headType(T ) | tail(T ) Record Type destructors

| T⋆ | colOf (T ) Collection Types

| ref T | refOf (T ) Reference Types

| T → S | dom(T ) | img(T ) Function Types

| if T :: K as t ⇒ S elseU Kind Case

| if φ thenT else S Property Test

| ⊥ | ⊤ Empty and Top Types

| Bool | 1 | . . . Basic Data Types

Refinements φ,ψ ::= P (T1, . . . ,Tn ) Type Predicates

| φ ⊃ ψ | φ ∧ψ | . . . Propositional Logic

| T ≡ S :: K Equality

Fig. 1. Syntax of Kinds, Types and Refinements

3 A TYPE THEORYWITH KIND REFINEMENTS
Having given an informal overview of the various features and expressiveness of our theory, we

now formally develop our theory of refinement kinds, targeting an ML-like functional language

with a higher-order store and the appropriate reference types, collections (i.e. lists) and records.

The typing and kinding systems rely on type-level functions (from types to types) and a novel form

of subkinding and kind refinements. We first address our particular form of (sub)kinding and the

type-level operations enabled by this fine-grained view of kinds, addressing kind refinements and

their interaction types and type-level functions in Section 3.1.

Given that kinds are classifiers for types, we introduce a separate kind for each of the key type

constructs of the language. Thus, we have a kind for records, Rec, which classifies record types; a

kind Col, for collection types; a kind Fun, for function types; a kind Ref, for reference types; a kind
GenK for polymorphic function types (whose type parameter must be of kind K ); and, a kind Nm
for labels in record types (and records). All of these are specialisations (i.e. subkinds) of the kind of

all (small) types, Type. We writeK for any such kind. The language of types (a type-level λ-calculus)
provides the expected constructors for the types described above, but crucially also introduces type

destructors that allow us to inspect the structure of types of a given kind and, in combination with

type-level functions and structural recursion, enable a form of typed meta-programming. Indeed,

our type language is essentially one of (inductive) structures and their various constructors and

destructors (and basic data types Bool and 1). The syntax of types and kinds is given in Figure 1.

Record Types. Our notion of record type, as explored in Section 2, is essentially a type-level list

of pairs of labels and types which maintains the invariant that all labels in a record must be distinct.

We thus have the type of empty records ⟨⟩, and the constructor ⟨L : T ⟩@R, which given a record

type R that does not contain the label L, generates a record type that is an extension of R with the

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.
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1:8 Luís Caires and Bernardo Toninho

label L associated with type T . Record types are associated with three destructors: headLabel(T ),
which projects the label of the head of the record T (when seen as a list); headType(T ) which
projects the type at the head of the record T ; and tail(T ) which produces the tail of the record T
(i.e. drops its first label and type pair). As we will see (Example 3.1), since our type-level λ-calculus
allows for (structural) recursion, we can define a suitable record projection type construct in terms

of these lower-level primitives.

Function Types and Polymorphism. Functions between terms of type T and S are typed by

the usual T → S . Given a function type T , we can inspect its domain and image via the destructors

dom(T ) and img(T ), respectively.
Polymorphic function types are represented by∀t ::K .T (with t bound inT , as usual). Note that the

kind annotation for the type variable t allows us to express not only general parametric polymorphic

functions (by specifying the kind as Type) but also some form of subkinding polymorphism, since

we can restrict the kind of t to a specialized basic kind such as Ref or Fun.
For instance, we can specify the type ∀t ::Fun.t → dom(t ) → img(t ) of functions that, given a

function type t , a function of such a type and a value in its domain produce a value in its image (i.e.

the type of function application). The destructor for such a type, tmap(T ) S , takes a polymorphic

function type T (of functions from types of kind K to some type T ′) and a type S of kind K and

constructs the appropriately instantiated type T ′{S/t }.

Collections and References. The type of collections of elements of type T is written as T⋆
,

with the associated type destructor colOf (T ), which projects out the type of the collection elements.

Similarly, reference types ref T are bundled with a destructor refOf (T ) which determines the type

of of the referenced elements.

Kind Test. Just as many programming languages have a type case construct [Abadi et al. 1991]

that allows for the runtime testing of the type of a given expression, our λ-calculus of types has
a kind case construct, if T :: K as t ⇒ S elseU , which checks the kind of type T against kind K ,

computing to type S if the kinds match and toU otherwise. Combined with a term-level analogue,

such constructs enable ad-hoc polymorphism, insofar as we can express non-parametric function

types.

3.1 Type-level Functions and Refinements
The language of types that we have introduced up to this point consists essentially of a language of

tree-like structures and their various constructors and destructors. As we have mentioned, our type

language is actually a λ-calculus for the manipulation of such structures and so includes functions

from types to types, λt ::K .T , and their respective application, written T S . We also include a type-

level structural recursion operator µF : (Πt :K .K ′).λt ::K .T , which allows us to define recursive

type functions from kind K to K ′. While written as a fixpoint operator, we syntactically enforce

that recursive calls must always take structurally smaller arguments to ensure well-foundedness.

Type-level functions are dependently kinded, with kind Πt :K .K ′ (i.e. the kind of T in a type

λ-abstraction can refer to the type of its argument), where the dependencies manifest themselves in

kind refinements. Just as the concept of type refinements allow for rich type specifications through

the integration of predicates over values of a given type in the type structure, our notion of kind

refinements integrate predicates over types in the kind structure, enabling for the kinding system

to specify and enforce logical constraints on the structure of types. A kind refinement, written

{t ::K | φ}, where K is a basic kind, and φ is a logical formula (with t bound in φ), characterises
typesT of kindK such that the propertyφ holds ofT (i.e.φ{T /t } is true). The language of properties
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Refinement Kinds 1:9

φ consists of (type) predicates, propositional logic connectives and type equality, providing a form

of equational reasoning on types.

Such a seemingly simple extension already provides a significant boost in expressiveness. For

instance, by using equality in the refinement formula we can encode singleton-like patterns

such as {t ::Fun | img(t ) ≡ Bool :: Type}, the kind of function types whose image is a Bool.
Moreover, by combining kind refinements and type-level functions, we can express non-trivial

type transformations in a fully typed (or kinded) way. For instance consider the following:

dropField ≜ λl :Nm.µF : (Πt :{r ::Rec | l ∈ lab(r )}. {r ::Rec | l < lab(r )}).λt ::{r ::Rec | l ∈ lab(r )}.
if headLabel(t ) ≡ l :: Nm then tail(t ) else ⟨headLabel(t ) : headType(t )⟩@(F (tail(t )))

The function dropField above takes label l and a record type with a field labelled by l and removes

the corresponding field and type pair from the record type (recall that lab(r ) denotes the refinement-

level set of labels of r ). Such a function combines structural recursion (where tail(t ) is correctly
deemed as structurally smaller than t ) with our type-level refinement test, if φ thenT else S . We

note that the well-kindedness of such a function relies crucially on the ability to derive that, when

the record label headLabel(t ) is not l , since we know that l must be in t , then tail(t ) is still a record
type containing l (we make this kind of reasoning precise in Section 4.1).

3.2 Kinding and Type Equality
Having formally introduced the key components of our kind and type language, we now detail the

kinding and type equality of our theory, making precise the intuitions of the previous sections.

The kinding judgment is written Γ ⊢ T :: K , denoting that type T has kind K under the

assumptions in the structural context Γ. Contexts contain assumptions of the form t :K , x :T and

φ – t stands for a type of kind K , x stands for a term of type T and refinement φ is assumed to

hold, respectively. Kinding relies on a context well-formedness judgment, written Γ ⊢, a kind well-

formedness judgment Γ ⊢ K , subkinding judgment Γ ⊢ K ≤ K ′ and the refinement well-formedness

and entailment judgments, Γ ⊢ φ and Γ |= φ. Context well-formedness simply checks that all types,

kinds and refinements in Γ are well-formed. Kind well-formedness is defined in the standard way,

relying on refinement well-formedness (see Appendix A.1), which requires that formulae and types

in refinements must be well-formed. Subkinding codifies the informal reasoning from the beginning

of this section, specifying that all basic kinds are a specialization of Type; and captures equality of

kinds. Kind equality, written Γ ⊢ K ≡ K ′, identifies definitionally equal kinds, which due to the

presence of kind refinements requires reasoning about equivalent refinements (and the types that

may appear therein).

Kinding (and typing) presupposes the existence of a signature Σ that specifies the arities and

kindings of all type predicates, as well as any extensions to the reasoning principles of definitional

equality. Moreover, we assume the signature also contains the constants (and kinding) of Figure 2,

which is a form of “pre-kinding” for all the type destructors, indicating that they expect arguments

of the appropriate kinds and produce types of kind Type. We note that the three record type

destructors are only well-kinded when applied to a non-empty record type. As we will see, this

basic kinding can be further specialized by the kinding rules through kind refinements.

We now introduce the key kinding rules for the various types in our theory and their associated

definitional equality rules. The type equality judgment is written Γ |= T ≡ S :: K , denoting that T
and S are equal types of kind K .

Refinements, Type Properties and Destructors. A kind refinement is introduced by the rule

Γ |= φ{T /t } Γ ⊢ T :: K

Γ ⊢ T :: {t ::K | φ}
(kref)
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1:10 Luís Caires and Bernardo Toninho

headLabel :: Πt :{r ::Rec | nonEmpty(r )}.Nm colOf :: Πt :Col.Type
headType :: Πt :{r ::Rec | nonEmpty(r )}.Type dom :: Πt :Fun.Type
tail :: Πt :{r ::Rec | nonEmpty(r )}.Rec img :: Πt :Fun.Type
refOf :: Πt :Ref.Type tmap :: Πt :GenK .Πs:K .Type

Fig. 2. Simple Kinding for Type Destructors

Given a type T of kind K and a valid property φ of T , then we are justified in stating that T is of

kind {t ::K | φ}. Crucially, since equality can be reflected in refinements, the rule above may be

used to derive refinements that specify the shape of the refined types, for instance, the expected

β-like equational reasoning for records allows us to derive ⟨ℓ : Bool → Bool⟩@⟨⟩ :: {t ::Rec |
headType(t ) ≡ Bool→ Bool :: Type}. In general, we provide a form of equality elimination rule in

refinements, stating that (for a well-formed property φ) the validity of a property φ of some type T
is closed under type equality:

Γ |= T ≡ S :: K Γ,x : K ⊢ φ Γ |= φ{T /x }

Γ |= φ{S/x }
(r-eqelim)

As we have previously illustrated, properties can also be tested for validity in types through a

conditional construct if φ thenT else S . Provided that the property φ is well-formed, if T is of kind

K assuming φ and S of kind K assuming ¬φ, then the conditional test is well-kinded, as specified

by the rule (k-ite). The equality principals for the property test rely of validity of the specified

property, as expected (with a degenerate case where both branches are equal types).

Γ ⊢ φ Γ,φ ⊢ T :: K Γ,¬φ ⊢ S :: K

Γ ⊢ if φ thenT else S :: K
(k-ite)

Γ |= φ Γ,φ ⊢ T1 :: K Γ,¬φ ⊢ T2 :: K

Γ |= if φ thenT1 elseT2 ≡ T1 :: K
(eq-iteT)

Γ |= ¬φ Γ,φ ⊢ T1 :: K Γ,¬φ ⊢ T2 :: K

Γ |= if φ thenT1 elseT2 ≡ T2 :: K
(eq-iteE)

Γ ⊢ φ Γ,φ ⊢ T :: K Γ,¬φ ⊢ T :: K

Γ |= if φ thenT elseT ≡ T :: K
(eq-iteEq)

Given the basic kinding for type destructors that is present in the base signature Σ, we further
generalise the kinding of type destructors (and their associated equality principles) via kind refine-

ment. For conciseness, we write elimK to stand for any destructor for kind K (e.g. if K is GenK
then elimK is tmap, if K is Rec then elimK can be headLabel, headType or tail, and so on):

Γ ⊢ T :: {t ::K | elimK (t ) ≡ T ′ :: K ′} Γ ⊢ T ′{T /t } :: K ′{T /t }

Γ ⊢ elimK (T ) :: K ′{T /t }
(k-elim)

Γ |= T ≡ S :: {t ::K | elimK (T ) ≡ T ′ :: K ′} Γ ⊢ T ′{T /t } :: K ′{T /t }

Γ |= elimK (T ) ≡ T ′{T /t } :: K ′{T /t }
(eq-elim)

The kinding and corresponding equality rules above allow for equalities in refinements that mention

destructors to be reflected in the kinding (and equalities) of the given destructor (the instantiation

of t with T is required to ensure well-formedness of kinds and types outside the refinement).

These principles become particularly interesting when reasoning from refinements that appear

in type variables. For instance, the type ∀t ::{ f :Fun | dom( f ) ≡ Bool :: Type ∧ img( f ) ≡ Bool ::
Type}.t → Bool can be used to type the term Λt ::{ f :Fun | dom( f ) ≡ Bool :: Type ∧ img( f ) ≡
Bool :: Type}.λf :t .( f true), where Λ is the binder for polymorphic functions, as usual. Crucially,
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Refinement Kinds 1:11

typing (and kinding) exploits not only the fact that we know that the type variable t stands for
a function type, but also the fact that the domain and codomain are the type Bool, which then

warrants the application of f to a boolean in order to produce a boolean, despite the basic kinding

information only specifying that f is a function.

Type Functions and FunctionTypes. The rules that govern the kinding of type-level functions
are the standard kinding rules from a suitable type theory (to streamline the presentation, we omit

the congruence rules for equality):

Γ ⊢ K Γ, t :K ⊢ T :: K ′

Γ ⊢ λt ::K .T :: Πt :K .K ′
(k-fun)

Γ ⊢ T :: Πt :K .K ′ Γ ⊢ S :: K

Γ ⊢ T S :: K ′{S/t }
(k-app)

t :K ∈ Γ Γ ⊢

Γ ⊢ t :: K
(k-var)

Γ, t :K ⊢ T :: K ′ Γ ⊢ S :: K

Γ |= (λt ::K .T ) S ≡ T {S/t } :: K ′{S/t }
(eq-funapp)

Structural recursive functions, defined via a fixpoint construct, are defined by the following

rules:

Γ, F :Πt :K .K ′, t :K ⊢ T :: K ′ structural(T , F , t )

Γ ⊢ µF : (Πt :K .K ′).λt ::K .T :: Πt :K .K ′
(k-fix)

Γ, t :K1 ⊢ K2 Γ, F :Πt :K1.K2, t :K1 ⊢ T :: K2 Γ ⊢ S :: K1 structural(T , F , t )

Γ |= (µF : (Πt :K1.K2).λt ::K1.T ) S ≡ T {S/t }{(µF : (Πt :K1.K2).λt ::K1.T )/F } :: K2{S/t }
(eq-fixunf)

The predicate structural(T , F , t ) enforces that calls of F in T must take arguments that are struc-

turally smaller than t (i.e. the arguments must be syntactically equal to t applied to a destructor).

More precisely, the predicate structural(T , F , t ) holds iff all occurrences of F in T are applied to

terms smaller than t , where the notion of size is given by elimK (t ) < t , with K is any basic kind,

with the exception of GenK , for any K .
The equality rule allows for the appropriate unfolding of the recursion to take place. Polymorphic

function types are assigned kind GenK , as expected, and the β-like equality principle for the

elimination form tmap(∀t ::K .T ) S performs the appropriate instantiation of t with S in T .

Γ ⊢ K Γ, t :K ⊢ T :: K

Γ ⊢ ∀t ::K .T :: GenK
(k-∀)

Γ, t :K ⊢ T :: K Γ ⊢ S :: K

Γ |= tmap(∀t ::K .T ) S ≡ T {S/t } :: Type
(eq-tmap)

Our manipulation of function types as essentially a pair of types (a domain type and an image type)

gives rise to the following natural equalities:

Γ ⊢ T :: K Γ ⊢ S :: K ′

Γ |= dom(T → S ) ≡ T :: Type
(eq-dom)

Γ ⊢ T :: K Γ ⊢ S :: K ′

Γ |= img(T → S ) ≡ S :: Type
(eq-img)

Records and Labels. The kinding rules the govern record type constructors and field labels are:

(k-recnil)

Γ ⊢

Γ ⊢ ⟨⟩ :: Rec

(k-reccons)

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t : Rec | L < lab(t )}

Γ ⊢ ⟨L : T ⟩@S :: Rec

(k-label)

Γ ⊢ ℓ ∈ N

Γ ⊢ ℓ :: Nm

The rule for non-empty records crucially requires that the tail S of the record type must not
contain the field label L. The equality principles for the three destructors are fairly straightforward,
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1:12 Luís Caires and Bernardo Toninho

projecting out the appropriate record type component, provided the record is well-kinded.

(eq-headlabel)

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t : Rec | L < lab(t )}

Γ |= headLabel(⟨L : T ⟩@S ) ≡ L :: Nm

(eq-headtype)

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t : Rec | L < lab(t )}

Γ |= headType(⟨L : T ⟩@S ) ≡ T :: Type

(eq-tail)

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t : Rec | L < lab(t )}

Γ |= tail(⟨L : T ⟩@S ) ≡ S :: Rec

Collections and Reference Types. At the level of kinding, there is little difference between a

collection type and a reference type. They both denote a structure that “wraps” a single type (the

type of the collection elements for the former and the type of the referenced values in the latter).

Thus, the respective destructor simply unwraps the underlying type.

(k-col)

Γ ⊢ T :: K

Γ ⊢ T⋆
:: Col

(k-ref)

Γ ⊢ T :: K

Γ ⊢ ref T :: Ref

(eq-col)

Γ ⊢ T :: K

Γ |= colOf (T⋆) ≡ T :: Type

(eq-ref)

Γ ⊢ T :: K

Γ |= refOf (ref T ) ≡ T :: Type

Conversion and Subkinding. As we have informally described earlier, our theory of kinds is

predicated on the idea that we can distinguish between the different types of our language at the

kind level, such that given a general kind Type, the kind of record types Rec is a specialisation
of Type, and similarly for the other type-level base constructs of the theory. We formalise this

idea through a subkinding relation, which also internalises kind equality, and the corresponding

subsumption rule:

Γ ⊢ T :: K Γ ⊢ K ≤ K ′

Γ ⊢ T :: K ′
(K-sub)

Γ ⊢ K ≡ K ′

Γ ⊢ K ≤ K ′
(sub-eq)

Γ ⊢

Γ ⊢ K ≤ Type
(sub-type)

Γ ⊢ K Γ, t :K ⊢ φ

Γ ⊢ {t ::K | φ} ≤ K
(sub-refkind)

Γ ⊢ K ≤ K ′ Γ, t :K ′ |= φ ≡ φ ′

Γ ⊢ {t ::K | φ} ≤ {t : K ′ | φ ′}
(sub-ref)

Rule (sub-refkind) specifies that a refined kind is always a subkind of its unrefined variant. Rule

(sub-ref) allows for subkinding between refined kinds, by requiring that the basic kind respects

subkinding and that the refinements are equivalent (i.e. equi-provable).

Kind Case and Bottom. The kind case type-level mechanism is kinded in a natural way (rule

(k-kcase)), accounting for the case where the kind of type T matches the specified kind K ′ with

type S and with typeU otherwise.

Γ ⊢ K Γ ⊢ T :: K ′′ Γ, t :K ⊢ S :: K ′ Γ ⊢ U :: K ′

Γ ⊢ if T :: K as t ⇒ S elseU :: K ′
(k-kcase)

Γ |= ⊥ Γ ⊢ K

Γ ⊢ ⊥ :: K
(k-bot)

Our treatment of ⊥ allows for ⊥ to be of any (well-formed) kind, provided one can conclude ⊥

is valid. The associated equality principles implement the kind case by testing the specified kind

against the derivable kind of type T . When ⊥ is provable from Γ then we can derive any equality

via rule (eq-bot).
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Refinement Kinds 1:13

Γ |= φ{T /t } Γ ⊢ T :: K

Γ ⊢ T :: {t ::K | φ}
(kref)

Γ |= T ≡ S :: K Γ,x : K ⊢ φ Γ |= φ{T /x }

Γ |= φ{S/x }
(r-eqelim)

Γ ⊢ φ Γ,φ ⊢ T :: K Γ,¬φ ⊢ S :: K

Γ ⊢ if φ thenT else S :: K
(k-ite)

Γ |= φ Γ,φ ⊢ T1 :: K Γ,¬φ ⊢ T2 :: K

Γ |= if φ thenT1 elseT2 ≡ T1 :: K
(eq-iteT)

Γ |= ¬φ Γ,φ ⊢ T1 :: K Γ,¬φ ⊢ T2 :: K

Γ |= if φ thenT1 elseT2 ≡ T2 :: K
(eq-iteE)

Γ ⊢ φ Γ,φ ⊢ T :: K Γ,¬φ ⊢ T :: K

Γ |= if φ thenT elseT ≡ T :: K
(eq-iteEq)

Γ ⊢ T :: {t : K | elimK (t ) ≡ T ′ :: K ′} Γ ⊢ T ′{T /t } :: K ′{T /t }

Γ ⊢ elimK (T ) :: K ′{T /t }
(k-elim)

Γ |= T ≡ S :: {t ::K | elimK (T ) ≡ T ′ :: K ′} Γ ⊢ T ′{T /t } :: K ′{T /t }

Γ |= elimK (T ) ≡ T ′{T /t } :: K ′{T /t }
(eq-elim)

Γ ⊢ K Γ, t :K ⊢ T :: K ′

Γ ⊢ λt :K .T :: Πt :K .K ′
(k-fun)

Γ ⊢ T :: Πt :K .K ′ Γ ⊢ S :: K

Γ ⊢ T S :: K ′{S/t }
(k-app)

t :K ∈ Γ Γ ⊢

Γ ⊢ t :: K
(k-var)

Γ, t :K ⊢ T :: K ′ Γ ⊢ S :: K

Γ |= (λt ::K .T ) S ≡ T {S/t } :: K ′{S/t }
(eq-funapp)

Γ, F :Πt :K .K ′, t :K ⊢ T :: K ′ structural(T , F , t )

Γ ⊢ µF : (Πt :K .K ′).λt ::K .T :: Πt :K .K ′
(k-fix)

Γ, t :K1 ⊢ K2 Γ, F :Πt :K1.K2, t :K1 ⊢ T :: K2 Γ ⊢ S :: K1 structural(T , F , t )

Γ |= (µF : (Πt :K1.K2).λt ::K1.T ) S ≡ T {S/t }{(µF : (Πt :K1.K2).λt ::K1.T )/F } :: K2{S/t }
(eq-fixunf)

Fig. 3. Kinding and Type Equality rules – 1 (Excerpt)

Γ ⊢ T :: K Γ, t :K ⊢ S :: K ′ Γ ⊢ U :: K ′

Γ |= if T :: K as t ⇒ S elseU ≡ S {T /t } :: K ′
(eq-kcaseT)

Γ |= ⊥ Γ ⊢ T :: K

Γ |= ⊥ ≡ T :: K
(eq-bot)

Γ ⊢ T :: K0 Γ ⊢ K0 . K Γ, t :K ⊢ S :: K ′ Γ ⊢ U :: K ′

Γ |= if T :: K as t ⇒ S elseU ≡ U :: K ′
(eq-kcaseF)

A summary of the kinding and type equality rules is given in Figures 3 and 4.

Example 3.1 (Representing Record Field Selection in types and values). With the development

presented up to this point we can already implement the more usual record selection operator T .L,
where T is a record type and L is a field label of T . We represent such a construct as a type-level

function that given some L :: Nm produces a recursive type-function that essentially iterates over
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1:14 Luís Caires and Bernardo Toninho

Γ ⊢ K Γ, t :K ⊢ T :: K

Γ ⊢ ∀t :K .T :: GenK
(k-∀)

Γ, t :K ⊢ T :: K Γ ⊢ S :: K

Γ |= tmap(∀t ::K .T ) S ≡ T {S/t } :: Type
(eq-tmap)

Γ ⊢ T :: K Γ ⊢ S :: K ′

Γ |= dom(T → S ) ≡ T :: Type
(eq-dom)

Γ ⊢ T :: K Γ ⊢ S :: K ′

Γ |= img(T → S ) ≡ S :: Type
(eq-img)

(k-recnil)

Γ ⊢

Γ ⊢ ⟨⟩ :: Rec

(k-reccons)

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t : Rec | L < lab(t )}

Γ ⊢ ⟨L : T ⟩@S :: Rec

(k-label)

Γ ⊢ ℓ ∈ N

Γ ⊢ ℓ :: Nm

(eq-headlabel)

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t : Rec | L < lab(t )}

Γ |= headLabel(⟨L : T ⟩@S ) ≡ L :: Nm

(eq-headtype)

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t : Rec | L < lab(t )}

Γ |= headType(⟨L : T ⟩@S ) ≡ T :: Type

(eq-tail)

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t : Rec | L < lab(t )}

Γ |= tail(⟨L : T ⟩@S ) ≡ S :: Rec

(k-col)

Γ ⊢ T :: K

Γ ⊢ T⋆
:: Col

(k-ref)

Γ ⊢ T :: K

Γ ⊢ ref T :: Ref

(eq-col)

Γ ⊢ T :: K

Γ |= colOf (T⋆) ≡ T :: Type

(eq-ref)

Γ ⊢ T :: K

Γ |= refOf (ref T ) ≡ T :: Type

Γ ⊢ T :: K Γ ⊢ K ≤ K ′

Γ ⊢ T :: K ′
(K-sub)

Γ ⊢ K ≡ K ′

Γ ⊢ K ≤ K ′
(sub-eq)

Γ ⊢

Γ ⊢ K ≤ Type
(sub-type)

Γ ⊢ K Γ, t :K ⊢ φ

Γ ⊢ {t ::K | φ} ≤ K
(sub-refkind)

Γ ⊢ K ≤ K ′ Γ, t :K ′ |= φ ≡ φ ′

Γ ⊢ {t ::K | φ} ≤ {t : K ′ | φ ′}
(sub-ref)

Fig. 4. Kinding and Type Equality rules – 2 (Excerpt)

a type record of kind {r ::Rec | ℓ ∈ lab(r )}:

λL::Nm.µF : (Πt :{r ::Rec | L ∈ lab(r )}. Type).λt ::{r ::Rec | L ∈ lab(r )}.
if headLabel(t ) ≡ L :: Nm then headType(t ) else F (tail(t ))

The function iteratively tests the label at the head of the record against L, producing the type at

the head of the record when the labels match and recursing otherwise. It is instructive to consider

the kinding for the property test construct (let Γ0 be L:Nm, F :Πt :{r ::Rec | L ∈ lab(r )}.Type, t :{r :Rec |
L ∈ lab(r )}):

Γ0 ⊢ headLabel(t ) ≡ L :: Nm D E

Γ0 ⊢ if headLabel(t ) ≡ L :: Nm then headType(t ) else F (tail(t )) :: Type
(k-ite)
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Terms M,N ::= x | λx :T .M | M N Functions

| Λt ::K .M | M[T ] Type Abstraction and Application

| ⟨⟩ | ⟨ℓ = M⟩@N | recTail(M )
| recHeadLabel(M ) | recHeadTerm(M ) Records

| ⋄ Unit Element

| if M thenN1 elseN2

| true | false Booleans

| if φ thenM elseN Property Test

| if T :: K as t ⇒ M elseN Kind Case

| ε | M :: N
| colHead(M ) | colTail(M ) Collections

| ref M | !M | M := N | l References

| µF :T .M Recursion

Fig. 5. Syntax of Terms

whereD is a straightforward derivation of Γ0, headLabel(t ) ≡ L :: Nm ⊢ headType(t ) :: Type and E
is a derivation of Γ0,¬headLabel(t ) ≡ L :: Nm ⊢ F (tail(t )) :: Type. To show that headLabel(t ) ≡ L
is well-formed we must be able to derive t :: {r ::Rec | nonEmpty(r )} from t :: {r ::Rec | L ∈ lab(r )},
which is achieved via the reasoning principles built into our theory of refinements (see Section 4.1).

Similarly, the derivation E requires the ability to conclude that tail(t ) :: {r ::Rec | L ∈ lab(r )}, using
the information that t :: {r ::Rec | L ∈ lab(r )} and ¬headLabel(t ) ≡ L :: Nm, which is also achieved

via logical refinement reasoning.

4 A PROGRAMMING LANGUAGEWITH KIND REFINEMENTS
Having covered the key details of the kinding system and how type equality captures the appropriate

type-level computations induced by our type manipulation constructs, we finally introduce the

syntax and typing for our programming language per se.
The syntax of terms is given in Figure 5. Most constructs are standard. We highlight our treatment

of records, mirroring that of record types, as (heterogeneous) lists of pairings of field labels and

terms equipped with the appropriate destructors. Collections are built from the empty collection

ε and the concatenation of an elementM with a collection N ,M :: N , with the usual destructors

(dubbed colHead(M ) and colTail(M )) that project the head or the tail of such an homogeneous list.

We allow for recursive terms via a fixpoint construct µF :T .M , which we enforce to be structural

(i.e. identical to the type-level recursion) to simplify the theory, noting that since there are no

dependencies from terms in types, non-termination in the term language does not affect the overall

soundness of the development. We also mirror the type-level property test and kind case constructs

in the term language as if φ thenM elseN and if T :: K as t ⇒ M elseN , respectively. As we have

initially stated, our language has general higher-order references, represented with the constructs

ref M , !M andM := N , which create a reference toM , dereference a referenceM and assign N to

the referenceM , respectively. As usual in languages with a store, we use l to stand for the runtime

values of memory locations.

The typing rules for the language are given in Figure 6. The typing judgment is written as

Γ ⊢S M : T , where S is a location typing environment. We write Γ; S ⊢ to state that S is a valid

mapping from locations to well-kinded types, according to the typing context Γ.
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(var)

(x :T ) ∈ Γ Γ; S ⊢ Γ ⊢

Γ ⊢S x : T

(1I)
Γ ⊢

Γ ⊢ ⋄ : 1

(→I)

Γ ⊢S T :: Type Γ,x :T ⊢S M : U

Γ ⊢S λx :T .M : T → U

(→E)

Γ ⊢ T1 :: {t ::Fun | dom(t ) ≡ T2 :: K ∧ img(t ) = U :: K ′}

Γ ⊢S M : T1 Γ ⊢S N : T2

Γ ⊢S M N : U {T1/t }

(∀I)

Γ ⊢ K Γ, t :K ⊢S M : T

Γ ⊢S Λt ::K .M : ∀t ::K .T

(∀E)

Γ ⊢ T ′ :: { f ::GenK | tmap( f )T ≡ U :: K }

Γ ⊢S M : T ′ Γ ⊢ T :: K Γ ⊢ U :: K

Γ ⊢S M[T ] : U

(⟨⟩I1)

Γ ⊢ Γ; S ⊢

Γ ⊢S ⟨⟩ : ⟨⟩

(⟨⟩I2)

Γ ⊢S L :: Nm Γ ⊢ S :: {t ::Rec | L < lab(t )} Γ ⊢S M : T Γ ⊢S N : U

Γ ⊢S ⟨L = M⟩@N : ⟨L : T ⟩@U

(reclabel)

Γ ⊢S M : U Γ ⊢ U :: {t ::Rec | headLabel(t ) ≡ L :: Nm}

Γ ⊢S recHeadLabel(M ) : L{U /t }

(recterm)

Γ ⊢S M : U Γ ⊢ U :: {t ::Rec | headType(t ) ≡ T :: K }

Γ ⊢S recHeadTerm(M ) : T {U /t }

(rectail)

Γ ⊢S M : U Γ ⊢ U :: {t ::Rec | tail(t ) ≡ T :: K }

Γ ⊢S tail(M ) : T {U /t }

(true)

Γ ⊢ Γ; S ⊢

Γ ⊢S true : Bool

(false)

Γ ⊢ Γ; S ⊢

Γ ⊢S false : Bool

(bool-ite)

Γ ⊢S M : Bool Γ ⊢S N1 : T Γ ⊢S N2 : T

Γ ⊢S if M thenN1 elseN2 : T

(emp)

Γ ⊢ T :: Type Γ; S ⊢

Γ ⊢S ε : T
⋆

(cons)

Γ ⊢ U :: {t ::Col | colOf (t ) ≡ T :: K }

Γ ⊢S M : T {U /t } ΓS ⊢ N : U

Γ ⊢S M :: N : U

(head)

Γ ⊢ Tc :: {t ::Col | colOf (t ) ≡ T :: K }

Γ ⊢ M : Tc

Γ ⊢ colHead(M ) : T

(tail)

Γ ⊢ M : Tc Γ ⊢ Tc :: {t ::Col | colOf (t ) ≡ T :: K }

Γ ⊢ colTail(M ) : T {Tc/t }

(loc)

Γ ⊢ Γ; S ⊢ S (l ) = T

Γ ⊢S l : ref T

(ref)

Γ ⊢S M : T

Γ ⊢S ref M : ref T

(deref)

Γ ⊢ U :: {t ::Ref | refOf (t ) ≡ T :: K }

Γ ⊢S M : U

Γ ⊢S !M : T {U /t }

(assign)

Γ ⊢ U :: {t ::Ref | refOf (t ) ≡ T :: K }

Γ ⊢S M : U Γ ⊢S N : T

Γ ⊢S M := N : 1

(prop-ite)

Γ ⊢ φ Γ,φ ⊢S M : T1 Γ,¬φ ⊢S N : T2

Γ ⊢S if φ thenM elseN : if φ thenT1 elseT2

(kindcase)

Γ ⊢ T :: K ′ Γ ⊢ K Γ, t :K ⊢S M : U Γ ⊢S N : U

Γ ⊢S if T :: K as t ⇒ M elseN : U

(conv)

Γ ⊢S M : U Γ |= U ≡ T :: K

Γ ⊢S M : T

(fix)

Γ, F : T ⊢S M : T structural(F ,M )

Γ ⊢S µF :T .M : T

Fig. 6. Typing Rules

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.



785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833
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The main difference with respect to the standard rules for a language of this nature appears in

the rules for the various elimination forms. Consider the function application rule:

Γ ⊢ T1 :: {t ::Fun | dom(t ) ≡ T2 :: K ∧ img(t ) ≡ U :: K ′}

Γ ⊢S M : T1 Γ ⊢S N : T2

Γ ⊢S M N : U {T1/t }
(→E)

Instead of stating thatM is of type T2 → U , we use the refinement kind information to specify that

M is of some type T1 whose kind is Fun with domain type T2 and image type U . The formulation

via kind refinement subsumes the standard formulation, since (assumingT2 andU are well-formed)

we can trivially derive that T2 → U :: { f :Fun | dom(t ) ≡ T2 :: K ∧ img(t ) ≡ U :: K ′} from the

equality principles of the function type destructors. The key advantage in our presentation is that

it allows us to derive typings of the form

⊢ Λs:Type.Λt :{ f ::Fun | dom( f ) ≡ s :: Type ∧ img( f ) ≡ Bool :: Type}.
λx :t .λy:s .(x y) : ∀s:Type.∀t ::{ f ::Fun | dom( f ) ≡ s :: Type ∧ img( f ) ≡ Bool :: Type}.Bool

Despite not knowing the exact form of the function type that is to be instantiated for t , by specifying
its domain and image types we can type applications of terms of type t correctly. This is in contrast

with what happens in existing type theories (even those with sophisticated dependent types such

as Agda [Norell 2007] or that of Coq [CoqDevelopmentTeam 2004]), where the leveraging of

dependent types, explicit equality proofs and equality elimination would be needed to provide an

“equivalently” typed term. Thus, all our elimination rules follow this general pattern, where we

exploit the kind of the type of the term being deconstructed to inform the typing. We also highlight

the typing of the property test term construct,

(prop-ite)

Γ ⊢ φ Γ,φ ⊢S M : T1 Γ,¬φ ⊢S N : T2

Γ ⊢S if φ thenM elseN : if φ thenT1 elseT2

which types the term if φ thenM elseN with the type if φ thenT1 elseT2 and thus allows for a

conditional branching where the types of the branches differ. Rule (kindcase) mirrors the equivalent

rule for the type-level kind case, typing the term if T :: K as t ⇒ M elseN with the type U of

both M and N but testing the kind of type T against K . Such a construct enables us to define

non-parametric polymorphic functions, and introduce forms of ad-hoc polymorphism. For instance,

we can derive the following:

Λs::Type.λx :s .if s :: Ref as t ⇒ (if refOf (t ) ≡ Int :: Type then !x else 0) else 0 : ∀s::Type.s → Int

The function above takes a type s , a term x of that type and, if s is of kind Ref such that s is a
reference type for integers (note the use of reflection using destructor refOf (−) on type s), returns
!x , otherwise simply returns 0. The typing exploits the equality rule for the property test where

both branches are the same type.

Finally, as expected, the type conversion rule (conv) allows us to coerce between equal types of

a basic kind, allowing for type-level computation to manifest itself in the typing of terms.

Example 4.1 (Record Selection). Using the record selection type of Example 3.1 we can construct a

term-level analogue of record selection. Given a label L and a termM of typeT of kind {r ::Rec | L ∈
r }, we define the record selection constructM .L as (for conciseness, let R = {r ::Rec | L ∈ lab(r )}):

M .L ≜ (µF :∀t :: R .t → (t .L).Λt :: R .λx :t .
if headLabel(t ) ≡ L :: Nm then recHeadTerm(x ) else F [tail(t )](tail(x )))T M
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such thatM .L : T .L. The typing requires crucial use of type conversion to allow for the unfolding

of the recursive type function to take place (let Γ0 be F :∀t :: R .t → (t .L),x :T ):

(conv)

D Γ0 |= if headLabel(T ) ≡ L :: Nm then headType(T ) else tail(T ).L ≡ T .L :: Type

Γ0 ⊢ if headLabel(T ) ≡ L :: Nm then recHeadTerm(x ) else F [tail(T )](tail(x )) : T .L

with D a derivation of

Γ0 ⊢ if (headLabel(T ) ≡ L :: Nm) then recHeadTerm(x ) else F [tail(T )](tail(x )) : T0

where T0 is if (headLabel(T ) ≡ L :: Nm) then headType(T ) else tail(T ).L, requiring a similar ex-

tended equational reasoning to that of Example 3.1. Specifically, in the then branch we must show

that Γ0, headLabel(T ) ≡ L :: Nm ⊢ recHeadTerm(x ) : headType(T ), which is derivable from x :T
and T :: {r ::Rec | headType(r ) ≡ headType(r ) :: Type} – the latter following from refinement and

reflexivity of equality – via typing rule (recterm).

The else branch requires showing that Γ0,¬headLabel(T ) ≡ L :: Nm ⊢ F [tail(T )](tail(x )) :

tail(T ).L, which is derivable from F : ∀t :: R .t → (t .L) and x :T as follows: tail(T ) :: R is follows

from ¬headLabel(T ) ≡ L and T :: R (see Section 4.1), thus F [tail(T )] : tail(T ) → tail(T ).L. Since
tail(x ) : tail(T ) from x : T and T :: {r ::Rec | tail(t ) ≡ tail(t ) :: Rec} via rule (rectail), we conclude
using the application rule.

Thus, combining the type and term-level record projection constructs we have that the following

is admissible:

Γ ⊢ L :: Nm Γ ⊢ M : T Γ ⊢ T :: {r ::Rec | L ∈ lab(r )}

Γ ⊢ M .L : T .L

4.1 Reasoning in Refinements
In the various examples and code snippets throughout this paper we have used reasoning princi-

ples on refinements (and the equalities present therein) that go beyond the standard definitional

equality principles of β-conversion of types (i.e. type-level computation combined with congruence

principles).

From a foundational point of view, enriching the type-theoretic definitional equality (i.e. the

internal equality of the theory that does not require the explicit construction of proof objects)

beyond the simple principles of β-conversion and related computation principles can easily make

type-checking undecidable. The tension between the power and decidability of definitional equality

is essentially the major design choice of any type theory. Broadly speaking, type theories either

have a very powerful and undecidable definitional equality (i.e. extensional type theories) or a

limited but decidable definitional equality (i.e. intensional type theories) [Hofmann 1997]. For

instance, the theories underlying Coq and Agda fall under the latter category, whereas the theory

underlying a system such as those in the NuPRL family [Constable et al. 1986] are of the former

variety.

Languages with refinement types such as Liquid Haskell [Vazou et al. 2014], F-Star [Swamy

et al. 2011] (or with constrained forms of dependent types such as Dependent ML [Xi 2007]) live

somewhere in the middle of the spectrum, effectively equipping types with a richer notion of

equality (via the automated reasoning associated with the logic of refinements) but disallowing the

full power of extensional theories in order to preserve decidability of type-checking. Our approach

follows in this tradition, and so we allow for limited forms of additional logical reasoning on

refinements, extending equality with axiom schemas that pertain to the manipulation of type-level

records and finite sets of record labels, as well as (decidable) predicates on types which are left

unspecified since they can be defined according to the specific domain-specific needs. Thus, the full
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R ≡ ⟨⟩ ∨ R ≡ ⟨headLabel(R) : headType(R)⟩@tail(R) (Rec-EmpOrCons)

R ≡ ⟨⟩ ∨ headLabel(R) < lab(tail(R)) (Rec-DisjointLabels)

L < lab(⟨⟩) (Lab-NotInEmpty)

L ∈ lab(R) ⇔ (L ≡ headLabel(R) ∨ L ∈ lab(tail(R))) (Lab-InHeadTail)

L ≡ L′ ⇔ N++L ≡ N++L′ (LabConcatEq)

lab(R) = lab(L) ∧ L ∈ lab(R) ⇒ L ∈ lab(L) (LabelSet-InEq)

L ∈ lab(S ) ⇔ N++L ∈ N++lab(S ) (LabConcat-SetConcat)

lab(R) = lab(L) ⇔ N++lab(R) = N++lab(L) (LabelSet-Concat)

Fig. 7. Axiom Schemas for Record Types and Labels

logic of refinements consists of (classical) propositional logic, conversion of types and the reasoning

that follows from type predicates and the axiom schemas of Figure 7.

We adopt the following notational conventions: capital letters R, S,L,N stand for universally

quantified objects of the appropriate kind (omitted for conciseness); as mentioned in Section 2,

lab(R) stands for a refinement level operation that given a record R produces a finite set containing

all the field labels of R; field labels can be concatenated using operation N++L, appending L to N ,

which is overloaded on finite sets of labels (e.g. N++lab(R), denoting the set obtained by prefixing

N to all labels in lab(R)). The (label) set operations of membership test L ∈ S , apartness S#S ′,
equality S = S and union S ∪ S ′ have the obvious meanings and their axiomatization is omitted for

conciseness. Finally, the predicate nonEmpty(R) is defined as notation for ¬(R ≡ ⟨⟩).
Thus, axiom (Rec-EmpOrCons) characterizes the fact that a record type must be the empty

record or the concatenation of its head elements to its tail; axiom (Rec-DisjointLabels) codifies

the disjointness principle of record field labels, where in all but the empty record, the label at

the head of a record cannot be in the label set of its tail; Axioms (Lab-NotInEmpty) and (Lab-

InHeadTail) specify that no label is in the label set of the empty record and moreover, a label is in

the label set of R iff it is the label at the head of the record or in the label set of the tail of R; axiom
(LabConcatEq) specifies label or name concatenation; axiom (LabelSet-InEq) allows for combined

reasoning of inclusion and label set equality; finally, the axioms (LabConcat-SetConcat) and

(LabelSet-Concat) deal with field or name concatenation, respectively specifying that a label L
being a member of the label set of S is equivalent to the prefixing of N to L being a member of

the (set-level) concatenation on N to the set of labels of S , and that labels sets are closed under

prefixing.

All the various examples throughout the paper are derivable via the reasoning principles codified

above. For instance, as mentioned in Example 4.1, given L ∈ lab(T ) and ¬(headLabel(T ) ≡ L) we
can derive that L ∈ lab(tail(T )) through axiom (Lab-InHeadTail) and some basic propositional

reasoning. Similarly, in Example 3.1 we derive nonEmpty(t ) from L ∈ lab(t ) via axiom (Lab-

NotInEmpty) and propositional reasoning. In the XML table example of Section 2, we derive

nonEmpty(TT ) from nonEmpty(R) and lab(TT ) = lab(R) via (LabelSet-InEq).
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5 OPERATIONAL SEMANTICS AND METATHEORY
We now formulate the operational semantics of our language and develop the standard type safety

results in terms of uniqueness of types, type preservation and progress.

Since the programming language includes a higher-order store, we formulate its semantics in a

(small-step) store-based reduction semantics. Recalling that the syntax of the language includes the

runtime representation of store locations l , we represent the store (H ,H ′) as a finite map from labels

l to values v . Given that kinding and refinement information is needed at runtime for the property

and kind test constructs, we tacitly thread a typing environment in the reduction semantics.

Moreover, since types in our language are themselves structured objects with computational

significance, we make use of a type reduction relation, written T → T ′, defined as a call-by-

value reduction semantics on types given by orienting the type equality rules of Figures 3 and 4,

excluding rule (eq-elim), left-to-right, plus congruence rules (for the sake of brevity, and due to its

straightforward nature, we omit a complete definition of type reduction). It is convenient to define

a notion of type value, denoted by Tv , Sv and given by the following grammar:

Tv , Sv ::= λt ::K .T | ∀t ::K .T | ℓ | ⟨⟩ | ⟨ℓ : Tv ⟩@Sv | Tv
⋆ | ref Tv | Tv → Sv | ⊥ | Bool | 1 | t

We note that it follows naturally that type reduction is strongly normalizing. The values of the

term language are defined by the grammar:

v,v ′ ::= true | false | ⟨⟩ | ⟨ℓ = v⟩@v ′ | λx :T .M | Λt ::K .M | v :: v ′ | ε | l

Values consist of the booleans true and false (extensions to other basic data types are straightforward
as usual); the empty record ⟨⟩; the non-empty record that assigns fields to values, ⟨ℓ = v⟩@v ′; the
empty collection, ε , and the non-empty collection of values,v :: v ′; as well as type and λ-abstraction.
For convenience of notation we write ⟨ℓ1 : T1, . . . , ℓn : Tn⟩ for ⟨ℓ1 : T1⟩@ . . .@⟨ℓn : Tn⟩@⟨⟩, and
similarly ⟨ℓ1 = M1, . . . , ℓn = Mn⟩ for ⟨ℓ1 = M1⟩@ · · ·@⟨ℓn = Mn⟩@⟨⟩.

The operational semantics are defined in terms of the judgment ⟨H ;M⟩ −→ ⟨H ′;M ′⟩, indicating
that term M with store H reduces to M ′, resulting in the store H ′. For conciseness, we omit

congruence rules such as:

(R-RecConsL)

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; ⟨ℓ = M⟩@N ⟩ −→ ⟨H ′; ⟨ℓ = M ′⟩@N ⟩

where the record field labelled by ℓ is evaluated (and the resulting modifications in store H to H ′

are propagated accordingly). The reduction rules enforce a call-by-value, left-to-right evaluation

order and are listed in Figure 8 (note that we require types occurring in an active position to be first

reduced to a type value, following the call-by-value discipline). We refer the reader to Appendix B

for the complete set of rules.

The three rules for the record destructors project the appropriate record element as needed. The

treatment of references also standard, with rule (R-RefV) creating a new location l in the store

which then stores value v; rule (R-DerefV) querying the store for the contents of location l ; and
rule for (R-AssignV) replacing the contents of location l with v and returning v . Rules (R-PropT)
and (R-PropF) are the only ones that appeal to the entailment relation for refinements, making use

of the running environment Γ which is threaded through the reduction rules straightforwardly.

Similarly, rules (R-KindL) and (R-KindR) mimic the equality rules of the kind case construct, testing

the kind of type T against K .
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(R-RecHdLabV)

⟨H ; recHeadLabel(⟨ℓ = v⟩@v ′)⟩ −→ ⟨H ; ℓ⟩

(R-RecHdValV)

⟨H ; recHeadTerm(⟨ℓ = v⟩@v ′)⟩ −→ ⟨H ;v⟩

(R-RecTailV)

⟨H ; recTail(⟨ℓ = v⟩@v ′)⟩ −→ ⟨H ;v ′⟩

(R-RefV)

l < dom(H )

⟨H ; ref v⟩ −→ ⟨H [l 7→ v]; l⟩

(R-DerefV)

H (l ) = v

⟨H ; !l⟩ −→ ⟨H ;v⟩

(R-AssignV)

⟨H ; l := v⟩ −→ ⟨H [l 7→ v];⋄⟩

(R-PropT)

Γ |= φ

⟨H ; if φ thenM elseN ⟩ −→ ⟨H ;M⟩

(R-PropF)

Γ |= ¬φ

⟨H ; if φ thenM elseN ⟩ −→ ⟨H ;N ⟩

(R-IfT)

⟨H ; if true thenM elseN ⟩ −→ ⟨H ;M⟩

(R-IfF)

⟨H ; if false thenM elseN ⟩ −→ ⟨H ;N ⟩

(R-Fix)

⟨H ; µF :T .M⟩ −→ ⟨H ;M {µF :T .M/F }⟩

(R-TAppTRed)

T → T ′

⟨H ; (Λt ::K .M )[T ]⟩ −→ ⟨H ; (Λt ::K .M )[T ′]⟩

(R-TApp)

⟨H ; (Λt ::K .M )[Tv ]⟩ −→ ⟨H ;M {Tv/t }⟩

(R-AppV)

⟨H ; (λx : T .M )v⟩ −→ ⟨H ;M {v/x }⟩

(R-ColHdV)

⟨H ; colHead(v :: v ′)⟩ −→ ⟨H ;v⟩

(R-ColTlV)

⟨H ; colTail(v :: v ′)⟩ −→ ⟨H ;v ′⟩

(R-KindTRed)

T −→ T ′

⟨H ; if T :: K as t ⇒ M elseN ⟩ −→ ⟨H ; if T ′ :: K as t ⇒ M elseN ⟩

(R-KindL)

Γ ⊢ Tv :: K

⟨H ; if Tv :: K as t ⇒ M elseN ⟩ −→ ⟨H ;M {T /t }⟩

(R-KindR)

Γ ⊢ T :: K0 Γ ⊢ K0 . K

⟨H ; if Tv :: K as t ⇒ M elseN ⟩ −→ ⟨H ;N ⟩

Fig. 8. Operational Semantics (Excerpt)

5.1 Metatheory
We now develop the main metatheoretical results for our theory of type preservation, progress and

uniqueness of kinding and typing. We begin by noting that types and their kinding system are not

significantly more complex than a minimal type theory such as LF [Harper et al. 1993; Harper and

Pfenning 2005], given that types form a λ-calculus that is then “dependently typed” by kinds and

kind refinements (plus the additional equational reasoning on refinements). Without refinements,

the type level constructs are essentially those of Fω [Girard 1986] augmented with our primitives to
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manipulate types as data and conditional types. Further, when we consider terms and their typing

there is no significant additional complexity since types occur in terms but not vice-versa.

In the remainder of this section we write Γ ⊢ J to stand for a typing, kinding, entailment or

equality judgment as appropriate. Since the refinement language is not fully specified, we must

assume some basic properties of (non-equality) refinements, which we summarise in Proposition 5.1

below, where we use refinements φ andψ to stand for refinements that are not derived using the

equality rules of Section 3.2 – for those we develop the necessary properties by appealing to these

basic principles of the incompletely specified refinement language.

Postulate 5.1 (Assumed Properties of Refinements).

Substitution: If Γ ⊢ T :: K and Γ, t :K , Γ′ |= φ then Γ, Γ′{T /k } |= φ{T /t };
Weakening: If Γ |= φ then Γ′ |= φ where Γ ⊆ Γ′;
Cut: If Γ |= φ and Γ,φ |= ψ then Γ |= ψ
Identity: Γ,φ, Γ′ |= φ, for any φ;
Functionality: If Γ |= T ≡ S :: K and Γ, t : K , Γ′ ⊢ φ then Γ |= φ{T /t } ≡ φ{S/t }.
Decidability: Γ |= φ is decidable.

The general structure of the development is as follows: we first establish basic structural properties

of substitution (Lemma 5.1) and weakening, which we can then use to show that we can apply

type and kind conversion inside contexts (Lemma 5.2), which then can be used to show a so-called

validity property for equality (Theorem 5.3), stating that equality derivations only manipulate

well-formed objects (from which kind preservation – Corollary 5.4 – follows immediately).

Lemma 5.1 (Substitution).

(a) If Γ ⊢ T :: K and Γ, t :K , Γ′ ⊢ J then Γ, Γ′{T /t } ⊢ J {T /t }.
(b) If Γ ⊢ M : T and Γ,x :T , Γ′ ⊢ N : S then Γ, Γ′ ⊢ N {M/x } : S .

Lemma 5.2 (Context Conversion).

(a) Let Γ,x :T ⊢ and Γ ⊢ T ′ :: K . If Γ,x :T ⊢ J and Γ |= T ≡ T ′ :: K then Γ,x :T ′ ⊢ J .
(b) Let Γ, t :K ⊢ and Γ ⊢ K ′. If Γ, t :K ⊢ J and Γ ⊢ K ≡ K ′ then Γ, t :K ′ ⊢ J .

Theorem 5.3 (Validity for Eqality).

(a) If Γ ⊢ K ≡ K ′ then Γ ⊢ K and Γ ⊢ K ′.
(b) If Γ |= T ≡ T ′ :: K then Γ ⊢ K , Γ ⊢ T :: K and Γ ⊢ T ′ :: K .
(c) If Γ ⊢ φ ≡ ψ then Γ ⊢ φ and Γ ⊢ ψ

Corollary 5.4 (Kind Preservation). If Γ ⊢ T :: K and T → T ′ then Γ ⊢ T ′ :: K .

This setup then allows us to show functionality properties of kinding and equality (Lemmas 5.5

and 5.6). Lemma 5.5 essentially states that substitution is consistent with the theory’s internal

equality judgment (i.e. substituting an object X in some Y is equal to substituting any object X ′,
equal toX , in Y ). Similarly, Lemma 5.6 shows that equality is compatible with substitution of equals.

Lemma 5.5 (Functionality of Kinding and Refinements).

Assume Γ |= T ≡ S :: K , Γ ⊢ T :: K and Γ ⊢ S :: K :
(a) If Γ, t :K , Γ′ ⊢ T ′ :: K ′ then Γ, Γ′{T /t } |= T ′{T /t } ≡ T ′{S/t } :: K ′{T /t }
(b) If Γ, t :K , Γ′ ⊢ K ′ then Γ, Γ′{T /t } ⊢ K {T /t } ≡ K {S/t }.
(c) If Γ, t :K , Γ′ |= φ then Γ, Γ′{T /t } |= φ{T /t } ≡ φ{S/t }

Lemma 5.6 (Functionality of Eqality). Assume Γ |= T0 ≡ S0 :: K :
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(a) If Γ, t :K |= T ≡ S :: K ′ then Γ |= T {T0/t } ≡ S {S0/t } :: K
′{T0/t }.

(b) If Γ, t :K ⊢ K1 ≡ K2 then Γ ⊢ K1{T0/t } ≡ K2{S0/t }.
(c) If Γ, t :K ⊢ φ ≡ ψ then Γ ⊢ φ{T0/t } ≡ ψ {S0/t }.

With functionality and the previous properties we can then establish the so-called validity

theorem (Theorem 5.7) for our theory, which is a general well-formedness property of the judgments

of the language. Validity is crucial in establishing the various inversion principles (note that the

inversion principles become non-trivial due to the closure of typing and kinding under equality)

necessary to show uniqueness of types and kinds (Theorem 5.8) and type preservation (Theorem 5.9).

The inversion principles can be found in Appendix C.

Theorem 5.7 (Validity).

(a) If Γ ⊢ K then Γ ⊢
(b) If Γ ⊢ T :: K then Γ ⊢ K
(c) If Γ ⊢ M : T then Γ ⊢ T :: Type.

Theorem 5.8 (Unicity of Types and Kinds).

(1) If Γ ⊢ M : T and Γ ⊢ M : S then Γ ⊢ T ≡ S :: K and Γ ⊢ K ≤ Type.
(2) If Γ ⊢ T :: K and Γ ⊢ T :: K ′ then Γ ⊢ K ≤ K ′ or Γ ⊢ K ′ ≤ K .

In order to state type preservation we first define the usual notion of well-typed store, written

Γ ⊢S H , denoting that for every l in dom(H ) we have that Γ ⊢S l : ref T with · ⊢ H (l ) : T . We write

S ⊆ S ′ to denote that S ′ is an extension of S (i.e. it preserves the location typings of S).

Theorem 5.9 (Type Preservation). Let Γ ⊢S M : T and Γ ⊢s H . If ⟨H ;M⟩ −→ ⟨H ′;M ′⟩ then there
exists S ′ such that S ⊆ S ′, Γ ⊢S ′ H ′ and Γ ⊢S ′ M

′
: T .

Finally, progress can be established in a fairly direct manner (relying on a straightforward

notion of progress for the type reduction relation). The main interesting aspect is that progress

relies crucially on the decidability of entailment due to the term-level and type-level predicate test

construct.

Lemma 5.10 (Type Progress). If Γ ⊢ T :: K then either T is a type value or T → T ′, for some T ′.

Theorem 5.11 (Progress). Let · ⊢S M : T and · ⊢S H . Then eitherM is a value or there exists S ′

andM ′ such that ⟨H ;M⟩ −→ ⟨H ′;M ′⟩.

6 RELATEDWORK
To the best of our knowledge, ours is the first work to explore the concept of refinement kinds and

illustrate their expressiveness as a convenient programming language feature that cleanly integrates

statically typed meta-programming features such as type reflection, ad-hoc polymorphism, and

type-level computation.

The concept of refinement kind is a natural extension of the well-known notion of refinement

type [Bengtson et al. 2011; Rondon et al. 2008; Vazou et al. 2013], which effectively extends type

specifications with (SMT decidable) logical assertions. Refinement types have been applied to

various verification domains such as security [Bengtson et al. 2011] or the verification of data-

structures [Kawaguchi et al. 2009; Xi and Pfenning 1998], and are being incorporated in full-fledged

programming languages, e.g., ML [Freeman and Pfenning 1991] Haskell [Vazou et al. 2014], F*

[Swamy et al. 2011], JavaScript [Vekris et al. 2016].

With the aim of supporting common meta-programming idioms in the domain of web pro-

gramming, [Chlipala 2010] developed a type system that supports type-level record computations
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with similar aims as ours, fully avoiding type dependency. In our case, we generalise type-level

computations to other types as data, and rely on more amenable explicit type dependency, in

the style of System-F polymorphism. Therefore, we still avoid the need to pollute programs with

explicit proof terms, but through our development of a principled theory of kind refinements.

Our extension of the concept of refinements to kinds, together with the introduction of primitives

to reflectively manipulate types as data (cf. ASTs) and express constraints on those data also

highlights how kind refinements match fairly well with the programming practice of our time (e.g.,

interface reflection in Java-like languages), contrasting the focus of our work with the goals of

other approaches to meta-programming such as [Altenkirch and McBride 2002; Calcagno et al.

2003]. The work of [Weirich et al. 2013] studies an extension to the core language (System FC)

of the Glasgow Haskell Compiler (GHC) with a notion of kind equality proofs, in order to allow

type-level computation in Haskell to refer to kind-level functions. Their development, being based

on System FC, is designed to manipulate explicit type (and kind) coercions as part of the core

language itself, which have a non-trivial structure (as required by the various type features of GHC),

and thus differs significantly from our work which is designed to keep type and kind conversion as

implicit as possible. However, their work can be seen as a stepping stone towards the integration of

refinement kinds and related constructs in a general purpose functional language such as Haskell.

The relationship between refinement types and dependent types through proof irrelevance,

allowing the programmer to avoid explicitly writing proof witnesses for refinements, was clarified

by [Freeman and Pfenning 1991]. The idea of expressing constraints (e.g., disjointness) on record

labels with predicates goes back to [Harper and Pierce 1991], although in our system we admit in

the refinement logic convenient predicates and operators applicable to not just record types, but

also to other kinds of types such as function types, collections types and even polymorphic function

types. The basic concept of a statically checked type-case construct was introduced in [Abadi et al.

1991]; however, our refinement kind checking of dynamic type conditionals on types and kinds

if φ then e1 else e2 and if T :: K as t ⇒ e1 else e2 greatly extends the precision of type and kind

checking, and naturally supports very flexible forms of statically checked ad-hoc polymorphism, as

we have shown.

Some works [Fähndrich et al. 2006; Huang and Smaragdakis 2008; Smaragdakis et al. 2015]

have addressed the challenge of typing specific meta-programming idioms in concrete languages

such as Java and C#. Our work shows instead how the fundamental concept of refinement kinds

suggests itself as a general type-theoretic principle towards statically checked typeful [Cardelli

1991] meta-programming, including programs that manipulate types as data, or build types and

programs from data (e.g., as the type providers of F# [Petricek et al. 2016]) which seems to be

out of reach for existing static type systems. Our language conveniently expresses programs that

automatically generate types and operations from data specifications, while statically ensuring that

generated types satisfy the intended invariants, as expressed by refinements.

7 CONCLUDING REMARKS
We have introduced the concept refinement kinds and developed the associated type theory, in

the context of higher-order polymorphic λ-calculus with imperative constructs, several kinds of

datatypes, and type-level computation. The resulting programming language cleanly supports static

typing of sophisticated features such as type-level reflection, ad-hoc and parametric polymorphism

which can be elegantly combined in order to provide non-trivial meta-programming idioms, which

we have illustrated with several examples.

While the full development of an algorithmic formulation of our type system is under development

(together with an implementation) implementation we note that, given that the type derivations rely

on the entailment for refinements (which include type equalities in general), it is crucial that such a
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judgment remain decidable. While the interaction of type equality and logical kind refinements can

be non-trivial, the type equality principles defined in Section 3.2 essentially amount to normalising

(which can require deciding logical refinement) the types and comparing normal forms. Kinding,

typing and refinements also require reasoning about equality up-to type predicates and the axiom

schemas of Section 4.1. However, just as modern refinement type systems make extensive use of

SMT solvers to offload the reasoning about refinement properties (which can refer to data values

and thus make the reasoning significantly more complex than our manipulation of types as simple

tree-like structures), a reasonable algorithmic development of our theory relies on a combination

of type normalisation and SMT solvers to derive the necessary refinements.

There are many interesting avenues of exploration that have been opened by this work. From

a theoretical point-of-view, it would be instructive to study the tension imposed on shallow

embeddings of our system in general dependent type theories such as Coq. After including existential

types, variant types and higher-type imperative state (e.g., the ability to introduce references storing

types at the term-level), which have been left out of this presentation for the sake of focus, it would

be relevant to further investigate limited forms of dependent types or refinement types. It would

be also interesting to investigate how refinement kinds and stateful types (e.g., typestate or other

forms of behavioral types) may be used to express and type-check invariants on meta-programs

with challenging scenarios of strong updates, e.g., involving changes in representation of abstract

data types.
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Appendix
Refinement Kinds

A Theory of Type-Safe Meta-Programming

Additional definitions and proofs of the main materials.
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A FULL SYNTAX, JUDGMENTS AND RULES
We define the syntax of kinds K ,K ′, refinements φ,φ ′, types T , S,R, and terms M,N below. We

assume countably infinite sets of type variables X, names N and term variablesV . We range over

type variables with t , t ′, s, s ′, name variables with n,m and term variables with x ,y, z.

Kinds K ,K ′ ::= K | {t ::K | φ} | Πt :K .K ′ Refined and Dependent Kinds

K ::= Rec | Col | Fun | Ref | Nm Base Kinds

| Type | GenK

Types T , S,R ::= t | λt ::K .T | T S Type-level Functions

| µF : (Πt :K .K ′).λt ::K .T Structural Recursion

| ∀t ::K .T | tmap(T ) S Polymorphism

| L | ⟨⟩ | ⟨L : T ⟩@S Record Type constructors

| headLabel(T ) | headType(T ) | tail(T ) Record Type destructors

| T⋆ | colOf (T ) Collection Types

| ref T | refOf (T ) Reference Types

| T → S | dom(T ) | img(T ) Function Types

| if T :: K as t ⇒ S elseU Kind Case

| if φ thenT else S Property Test

| ⊥ | ⊤ Empty and Top Types

| Bool | 1 | . . . Basic Data Types

Refinements φ,ψ ::= P (T1, . . . ,Tn ) Type Predicates

| φ ⊃ ψ | φ ∧ψ | . . . Propositional Logic

| T ≡ S :: K Equality

Terms M,N ::= x | λx :T .M | M N Functions

| Λt ::K .M | M[T ] Type Abstraction and Application

| ⟨⟩ | ⟨ℓ = M⟩@N | recTail(M )
| recHeadLabel(M ) | recHeadTerm(M ) Records

| ⋄ Unit Element

| if M thenN1 elseN2

| true | false Booleans

| if φ thenM elseN Property Test

| if T :: K as t ⇒ M elseN Kind Case

| ε | M :: N
| colHead(M ) | colTail(M ) Collections

| ref M | !M | M := N | l References

| µF :T .M Recursion
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A.1 Kinding and Typing
Our type theory is defined by the following judgments:

Γ ⊢ Γ is a well-formed context

Γ ⊢ K K is a well-formed kind under the assumptions in Γ
Γ ⊢ φ Refinement φ is well-formed under the assumptions in Γ
Γ ⊢ T :: K Type T is a (well-formed) type of kind K under the assumptions in Γ
Γ ⊢S M : T TermM has type T under the assumptions in Γ and store typing S

Γ |= φ Refinement φ holds under the assumptions in Γ
Γ ⊢ φ ≡ ψ Refinements φ andψ are equal

Γ ⊢ K ≡ K ′ Kinds K and K ′ are equal
Γ ⊢ K ≤ K ′ Kind K is a sub-kind of K ′

Γ ⊢ T ≡ T ′ :: K Types T and T ′ of kind K are equal

We also parameterize typing by a signature of type-level constants that specify basic well-

formedness constraints on the various type destructors:

headLabel :: Πt :{r ::Rec | nonEmpty(r )}.Nm
headType :: Πt :{r ::Rec | nonEmpty(r )}.Type
tail :: Πt :{r ::Rec | nonEmpty(r )}.Rec
refOf :: Πt :Ref.Type
colOf :: Πt :Col.Type
dom :: Πt :Fun.Type
img :: Πt :Fun.Type
tmap :: Πt :GenK .Πs:K .Type

We write elimK (T ) to range over elimination forms for a given (base) kind K applied to type T .

Context Well-formedness.

Γ ⊢ K Γ ⊢

Γ, t : K ⊢

Γ ⊢ T :: K Γ ⊢

Γ,x : T ⊢

Γ ⊢ φ Γ ⊢

Γ,φ ⊢

Γ; S ⊢ Γ ⊢ T :: K

Γ; S, l : T ⊢ · ⊢

Γ; · ⊢

Kind well-formedness.

Γ ⊢ K ∈ {Rec,Col, Fun,Ref,Nm, Type}

Γ ⊢ K

Γ ⊢ K Γ, t :K ⊢ K ′

Γ ⊢ Πt :K .K ′

Γ ⊢ K

Γ ⊢ GenK

Γ ⊢ K Γ, t :K ⊢ φ

Γ ⊢ {t ::K | φ}

Refinement Well-formedness. We presupose a signature Σ that specifies predicates, their arities

and the kinds of their type arguments. We assume that kinds occurring in a signature have been

checked for well-formedness.
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P : K1, . . . ,Kn ∈ Σ ∀i ∈ {1, . . . ,n}.Γ ⊢ Ti :: Ki

Γ ⊢ P (T1, . . . ,Tn )
+Well-formedness of propositional logic formulas

Γ ⊢ T :: K Γ ⊢ S :: K

Γ ⊢ T ≡ S :: K

Refinement Satisfiability.

Propositional Logic

Γ |= T ≡ S :: K Γ,x : K ⊢ φ Γ |= φ{T /x }

Γ |= φ{S/x }
(EqElim)

Kinding.

t :K ∈ Γ Γ ⊢

Γ ⊢ t :: K

Γ ⊢ T :: K Γ ⊢ K ≤ K ′

Γ ⊢ T :: K ′
Γ ⊢

Γ ⊢ ⊤ :: Type

Γ ⊢ T :: Πt :K .K ′ Γ ⊢ S :: K

Γ ⊢ T S :: K ′{S/t }

Γ ⊢ K Γ, t :K ⊢ T :: K ′

Γ ⊢ λt ::K .T :: Πt :K .K ′

Γ ⊢ K Γ, t :K ⊢ T :: K

Γ ⊢ ∀t ::K .T :: GenK

Γ ⊢ ℓ ∈ N

Γ ⊢ ℓ :: Nm

Γ ⊢

Γ ⊢ Bool :: Type

Γ ⊢

Γ ⊢ ⟨⟩ :: Rec

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t ::Rec | L < lab(t )}

Γ ⊢ ⟨L : T ⟩@S :: Rec

Γ ⊢ T :: K Γ ⊢ S :: K ′

Γ ⊢ T → S :: Fun

Γ ⊢ T :: K

Γ ⊢ T⋆
:: Col

Γ ⊢ T :: K

Γ ⊢ ref T :: Ref

Γ ⊢ T :: {t ::K | elimK (t ) ≡ T
′
:: K ′} Γ ⊢ T ′{T /t } :: K ′{T /t }

Γ ⊢ elimK (T ) :: K ′{T /t }

Γ ⊢ φ Γ,φ ⊢ T :: K Γ,¬φ ⊢ S :: K

Γ ⊢ if φ thenT else S :: K

Γ ⊢ K Γ ⊢ T :: K ′′ Γ, t :K ⊢ S :: K ′ Γ ⊢ U :: K ′

Γ ⊢ if T :: K as t ⇒ S elseU :: K ′

Γ, F :Πt :K .K ′, t :K ⊢ T :: K ′ structural(T , F , t )

Γ ⊢ µF : (Πt :K .K ′).λt ::K .T :: Πt :K .K ′

Γ |= ⊥ Γ ⊢ K

Γ ⊢ ⊥ :: K

Γ |= φ{T /t } Γ ⊢ T :: K

Γ ⊢ T :: {t :K | φ}

Sub-kinding.
Γ ⊢ K ≡ K ′

Γ ⊢ K ≤ K ′
Γ ⊢

Γ ⊢ K ≤ Type

Γ ⊢ K Γ, t :K ⊢ φ

Γ ⊢ {t ::K | φ} ≤ K

Γ ⊢ K ≤ K ′ Γ, t :K ′ |= φ ≡ φ ′

Γ ⊢ {t ::K | φ} ≤ {t ::K ′ | φ ′}
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Typing. For readability we omit the store typing environment from all rules except in the location

typing rule. In all other rules the store typing is just propagated unchanged.

(var)

(x :T ) ∈ Γ Γ; S ⊢ Γ ⊢

Γ ⊢S x : T

(1I)
Γ ⊢

Γ ⊢ ⋄ : 1

(→I)

Γ ⊢S T :: Type Γ,x :T ⊢S M : U

Γ ⊢S λx :T .M : T → U

(→E)

Γ ⊢ T1 :: {t ::Fun | dom(t ) ≡ T2 :: K ∧ img(t ) = U :: K ′}

Γ ⊢S M : T1 Γ ⊢S N : T2

Γ ⊢S M N : U {T1/t }

(∀I)

Γ ⊢ K Γ, t :K ⊢S M : T

Γ ⊢S Λt ::K .M : ∀t ::K .T

(∀E)

Γ ⊢ T ′ :: { f ::GenK | tmap( f )T ≡ U :: K }

Γ ⊢S M : T ′ Γ ⊢ T :: K Γ ⊢ U :: K

Γ ⊢S M[T ] : U

(⟨⟩I1)

Γ ⊢ Γ; S ⊢

Γ ⊢S ⟨⟩ : ⟨⟩

(⟨⟩I2)

Γ ⊢S L :: Nm Γ ⊢ S :: {t ::Rec | L < lab(t )} Γ ⊢S M : T Γ ⊢S N : U

Γ ⊢S ⟨L = M⟩@N : ⟨L : T ⟩@U

(reclabel)

Γ ⊢S M : U Γ ⊢ U :: {t ::Rec | headLabel(t ) ≡ L :: Nm}

Γ ⊢S recHeadLabel(M ) : L{U /t }

(recterm)

Γ ⊢S M : U Γ ⊢ U :: {t ::Rec | headType(t ) ≡ T :: K }

Γ ⊢S recHeadTerm(M ) : T {U /t }

(rectail)

Γ ⊢S M : U Γ ⊢ U :: {t ::Rec | tail(t ) ≡ T :: K }

Γ ⊢S tail(M ) : T {U /t }

(true)

Γ ⊢ Γ; S ⊢

Γ ⊢S true : Bool

(false)

Γ ⊢ Γ; S ⊢

Γ ⊢S false : Bool

(bool-ite)

Γ ⊢S M : Bool Γ ⊢S N1 : T Γ ⊢S N2 : T

Γ ⊢S if M thenN1 elseN2 : T

(emp)

Γ ⊢ T :: Type Γ; S ⊢

Γ ⊢S ε : T
⋆

(cons)

Γ ⊢ U :: {t ::Col | colOf (t ) ≡ T :: K }

Γ ⊢S M : T {U /t } ΓS ⊢ N : U

Γ ⊢S M :: N : U

(head)

Γ ⊢ Tc :: {t ::Col | colOf (t ) ≡ T :: K }

Γ ⊢ M : Tc

Γ ⊢ colHead(M ) : T

(tail)

Γ ⊢ M : Tc Γ ⊢ Tc :: {t ::Col | colOf (t ) ≡ T :: K }

Γ ⊢ colTail(M ) : T {Tc/t }

(loc)

Γ ⊢ Γ; S ⊢ S (l ) = T

Γ ⊢S l : ref T

(ref)

Γ ⊢S M : T

Γ ⊢S ref M : ref T

(deref)

Γ ⊢ U :: {t ::Ref | refOf (t ) ≡ T :: K }

Γ ⊢S M : U

Γ ⊢S !M : T {U /t }

(assign)

Γ ⊢ U :: {t ::Ref | refOf (t ) ≡ T :: K }

Γ ⊢S M : U Γ ⊢S N : T

Γ ⊢S M := N : 1

(prop-ite)

Γ ⊢ φ Γ,φ ⊢S M : T1 Γ,¬φ ⊢S N : T2

Γ ⊢S if φ thenM elseN : if φ thenT1 elseT2

(kindcase)

Γ ⊢ T :: K ′ Γ ⊢ K Γ, t :K ⊢S M : U Γ ⊢S N : U

Γ ⊢S if T :: K as t ⇒ M elseN : U

(conv)

Γ ⊢S M : U Γ |= U ≡ T :: K

Γ ⊢S M : T

(fix)

Γ, F : T ⊢S M : T structural(F ,M )

Γ ⊢S µF :T .M : T
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Kind and Refinement Equality.

Reflexivity, Transitivity, Symmetry + Congruence+

Γ ⊢ K ≡ K ′ Γ, t :K ⊢ φ ≡ ψ

Γ ⊢ {t :K | φ} ≡ {t :K ′ | ψ }

Γ |= φ ⊃ ψ Γ |= ψ ⊃ φ Γ ⊢ φ Γ ⊢ ψ

Γ ⊢ φ ≡ ψ

P : (K1, . . . ,Kn ) ∈ Σ ∀i ∈ {1, . . . ,n}.Γ |= Ti ≡ Si :: Ki

Γ |= P (T1, . . . ,Tn ) ≡ P (S1, . . . , Sn )

Type equality.

Reflexivity, Transitivity, Symmetry+

Γ |= T1 ≡ S1 :: Πt :K1.K2 Γ |= T2 ≡ S2 :: K1

Γ |= T1T2 ≡ S1 S2 :: K2{T2/t }

Γ |= K1 ≡ K ′
1

Γ, t :K1 |= T1 ≡ T2 :: K2

Γ |= λt ::K1.T1 ≡ λt ::K
′
1
.T2 :: Πt :K1.K2

Γ, t :K ⊢ T :: K ′ Γ ⊢ S :: K

Γ |= (λt ::K .T ) S ≡ T {S/t } :: K ′{S/t }

Γ |= K1 ≡ K2 Γ, t :K1 |= T ≡ S :: K

Γ |= ∀t ::K1.T ≡ ∀t :K2.S :: GenK1

Γ |= T1 ≡ S1 :: GenK Γ |= T2 ≡ S2 :: K

Γ |= tmap(T1)T2 ≡ tmap(S1)S2 :: Type

Γ, t :K ⊢ T :: K Γ ⊢ S :: K

Γ |= tmap(∀t ::K .T ) S ≡ T {S/t } :: Type

Γ |= ⊥ Γ ⊢ T :: K

Γ |= ⊥ ≡ T :: K

Γ |= L ≡ L′ :: Nm Γ |= T ≡ T ′ :: K Γ |= S ≡ S ′ :: {t ::Rec | L < lab(t )}

Γ |= ⟨L : T ⟩@S ≡ ⟨L′ : T ′⟩@S ′ :: Rec
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Refinement Kinds 1:33

Γ |= T ≡ S :: {r ::Rec | nonEmpty(r )}

Γ |= headLabel(T ) ≡ headLabel(S ) :: Nm

Γ |= T ≡ S :: {r ::Rec | nonEmpty(r )}

Γ |= headType(T ) ≡ headType(S ) :: Type

Γ |= T ≡ S :: {r ::Rec | nonEmpty(r )}

Γ |= tail(T ) ≡ tail(S ) :: Rec

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t ::Rec | L < lab(t )}

Γ |= headLabel(⟨L : T ⟩@S ) ≡ L :: Nm

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t ::Rec | L < lab(t )}

Γ |= headType(⟨L : T ⟩@S ) ≡ T :: Type

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t ::Rec | L < lab(t )}

Γ |= tail(⟨L : T ⟩@S ) ≡ S :: Rec

Γ |= T ≡ S :: K

Γ |= T⋆ ≡ S⋆ :: Col

Γ |= T ≡ S :: Col

Γ |= colOf (T ) ≡ colOf (S ) :: Type

Γ ⊢ T :: K

Γ |= colOf (T⋆) ≡ T :: Type

Γ |= T ≡ S :: {t ::K | elimK (T ) ≡ T ′ :: K ′} Γ ⊢ T ′{T /t } :: K ′{T /t }

Γ |= elimK (T ) ≡ T ′{T /t } :: K ′{T /t }

Γ |= T ≡ S :: K

Γ |= ref T ≡ ref S :: Ref

Γ |= T ≡ S :: Ref

Γ |= refOf (T ) ≡ refOf (S ) :: Type

Γ ⊢ T :: K

Γ |= refOf (ref T ) ≡ T :: Type

Γ |= T ≡ S :: K Γ |= T ′ ≡ S ′ :: K

Γ |= T → T ′ ≡ S → S ′ :: Fun

Γ |= T ≡ S :: Fun

Γ |= dom(T ) ≡ dom(S ) :: Type

Γ |= T ≡ S :: Fun

Γ |= img(T ) ≡ img(S ) :: Type

Γ ⊢ T :: K Γ ⊢ S :: K ′

Γ |= dom(T → S ) ≡ T :: Type

Γ ⊢ T :: K Γ ⊢ S :: K ′

Γ |= img(T → S ) ≡ S :: Type

Γ |= T ≡ T ′ :: K0 Γ |= K ≡ K ′ Γ, t :K |= S ≡ S ′ :: K ′′ Γ |= U ≡ U ′ :: K ′′

Γ |= if T :: K as t ⇒ S elseU ≡ if T ′ :: K ′ as t ⇒ S ′ elseU ′ :: K ′′

Γ ⊢ T :: K Γ, t :K ⊢ S :: K ′ Γ ⊢ U :: K ′

Γ |= if T :: K as t ⇒ S elseU ≡ S {T /t } :: K ′

Γ ⊢ T :: K0 Γ ⊢ K0 . K Γ, t :K ⊢ S :: K ′ Γ ⊢ U :: K ′

Γ |= if T :: K as t ⇒ S elseU ≡ U :: K ′
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1:34 Luís Caires and Bernardo Toninho

Γ |= φ ≡ ψ Γ,φ |= T1 ≡ S1 :: K Γ,¬φ |= T2 ≡ S2 :: K

Γ |= if φ thenT1 elseT2 ≡ if ψ then S1 else S2 :: K

Γ |= φ Γ,φ ⊢ T1 :: K Γ,¬φ ⊢ T2 :: K

Γ |= if φ thenT1 elseT2 ≡ T1 :: K

Γ |= ¬φ Γ,φ ⊢ T1 :: K Γ,¬φ ⊢ T2 :: K

Γ |= if φ thenT1 elseT2 ≡ T2 :: K

Γ ⊢ φ Γ,φ ⊢ T :: K Γ,¬φ ⊢ T :: K

Γ |= if φ thenT elseT ≡ T :: K

Γ |= T ≡ S :: K Γ ⊢ K ≤ K ′

Γ |= T ≡ S :: K ′

structural(T , F , t ) structural(S, F , t )
Γ |= K1 ≡ K ′

1
Γ |= K2 ≡ K ′

2
Γ, F :Πt :K1.K2, t :K1 |= T ≡ S :: K2

Γ |= µF : (Πt :K1.K2).λt ::K1.T ≡ µF : (Πt :K ′
1
.K ′

2
).λt ::K ′

1
. S :: Πt :K1.K2

Γ, t :K1 ⊢ K2 Γ, F :Πt :K1.K2, t :K1 ⊢ T :: K2 Γ ⊢ S :: K1 structural(T , F , t )

Γ |= (µF : (Πt :K1.K2).λt ::K1.T ) S ≡ T {S/t }{(µF : (Πt :K1.K2).λt ::K1.T )/F } :: K2{S/t }

B FULL OPERATIONAL SEMANTICS
The type reduction relation, T → T ′ is defined as a call-by-value reduction semantics on types T ,
obtained by orienting the computational rules of type equality from left to right (thus excluding

rule (eq-elim)) and enforcing the call-by-value discipline. Recalling that type values are denoted by

Tv , Sv and given by the following grammar:

Tv , Sv ::= λt ::K .T | ∀t ::K .T | ℓ | ⟨⟩ | ⟨ℓ : Tv ⟩@Sv | Tv
⋆ | ref Tv | Tv → Sv | ⊥ | Bool | 1 | t

The type reduction rules are:

T → T ′

T S → T ′ S

S → S ′

(λt ::K .T ) S → (λt ::K .T ) S ′ (λt ::K .T ) Sv → T {Sv/t }

(µF : (Πt :K .K ′).λt ::K .T ) Sv → T {Sv/t }{µF : (Πt :K .K ′).λt ::K .T /F }

L → L′

⟨L : T ⟩@S → ⟨L′ : T ⟩@S

T → T ′

⟨ℓ : T ⟩@S → ⟨ℓ : T ′⟩@S

S → S ′

⟨ℓ : Tv ⟩@S → ⟨ℓ : Tv ⟩@S ′

T → T ′

headLabel(T ) → headLabel(T ′)

T → T ′

headType(T ) → headType(T ′)

T → T ′

tail(T ) → tail(T ′)

headLabel(⟨ℓ : Tv ⟩@Sv ) → ℓ headType(⟨ℓ : Tv ⟩@Sv ) → Tv tail(⟨ℓ : Tv ⟩@Sv ) → Sv
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Refinement Kinds 1:35

T → T ′

T⋆ → T ′⋆
T → T ′

colOf (T ) → colOf (T ′) colOf (Tv⋆) → Tv

T → T ′

ref T → ref T ′
T → T ′

refOf (T ) → refOf (T ′) refOf (ref Tv ) → Tv

T → T ′

(T → S ) → (T ′ → S )

S → S ′

(Tv → S ) → (Tv → S ′)

T → T ′

dom(T ) → dom(T ′)

T → T ′

img(T ) → img(T ′)

dom(Tv → Sv ) → Tv img(Tv → Sv ) → Sv

Γ |= φ

if φ thenT else S → T

Γ |= ¬φ

if φ thenT else S → S

T → T ′

if T :: K as t ⇒ S elseU → if T ′ :: K as t ⇒ S elseU

Γ ⊢ Tv :: K

if Tv :: K as t ⇒ S elseU → S {Tv/t }

Γ ⊢ Tv :: K ′ Γ ⊢ K ′ . K

if Tv :: K as t ⇒ S elseU → U
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1:36 Luís Caires and Bernardo Toninho

The rules of our operational semantics are as follows:

R-RecConsLab

⟨H ;L⟩ −→ ⟨H ′;L′⟩

⟨H ; ⟨L = M⟩@N ⟩ −→ ⟨H ′; ⟨L′ = M⟩@N ⟩

R-RecConsL

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; ⟨ℓ = M⟩@N ⟩ −→ ⟨H ′; ⟨ℓ = M ′⟩@N ⟩

R-RecConsR

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; ⟨ℓ = v⟩@M⟩ −→ ⟨H ′; ⟨ℓ = v⟩@M ′⟩

R-RecHdLab

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; recHeadLabel(M )⟩ −→ ⟨H ′; recHeadLabel(M ′)⟩

R-RecHdLabV

⟨H ; recHeadLabel(⟨ℓ = v⟩@v ′)⟩ −→ ⟨H ; ℓ⟩

R-RecHdVal

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; recHeadTerm(M )⟩ −→ ⟨H ′; recHeadTerm(M ′)⟩

R-RecHdValV

⟨H ; recHeadTerm(⟨ℓ = v⟩@v ′)⟩ −→ ⟨H ;v⟩

R-RecTail

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; recTail(M )⟩ −→ ⟨H ′; recTail(M ′)⟩

R-RecTailV

⟨H ; recTail(⟨ℓ = v⟩@v ′)⟩ −→ ⟨H ;v ′⟩

R-Ref

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; ref M⟩ −→ ⟨H ′; ref M ′⟩

R-RefV

l < dom(H )

⟨H ; ref v⟩ −→ ⟨H [l 7→ v]; l⟩

R-Deref

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; !M⟩ −→ ⟨H ′; !M ′⟩

R-DerefV

H (l ) = v

⟨H ; !l⟩ −→ ⟨H ;v⟩

R-AssignL

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ;M := N ⟩ −→ ⟨H ′;M ′ := N ⟩

R-AssignR

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; l := M⟩ −→ ⟨H ′; l := M ′⟩

R-AssignV

⟨H ; l := v⟩ −→ ⟨H [l 7→ v];v⟩

R-PropT

Γ |= φ

⟨H ; if φ thenM elseN ⟩ −→ ⟨H ;M⟩

R-PropF

Γ |= ¬φ

⟨H ; if φ thenM elseN ⟩ −→ ⟨H ;N ⟩

R-IfT

⟨H ; if true thenM elseN ⟩ −→ ⟨H ;M⟩
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Refinement Kinds 1:37

R-IfF

⟨H ; if false thenM elseN ⟩ −→ ⟨H ;N ⟩

R-If

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; if M thenN1 elseN2⟩ −→ ⟨H
′
; if M ′ thenN1 elseN2⟩

R-TAppTRed

T → T ′

⟨H ; (Λt ::K .M )[T ]⟩ −→ ⟨H ; (Λt ::K .M )[T ′]⟩

R-Fix

⟨H ; µF :T .M⟩ −→ ⟨H ;M {µF :T .M/F }⟩

R-TApp

⟨H ; (Λt ::K .M )[Tv ]⟩ −→ ⟨H ;M {Tv/t }⟩

R-TAppL

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ;M[T ]⟩ −→ ⟨H ′;M ′[T ]⟩

R-AppV

⟨H ; (λx : T .M )v⟩ −→ ⟨H ;M {v/x }⟩

R-AppL

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ;M N ⟩ −→ ⟨H ′;M ′N ⟩

R-AppR

⟨H ;N ⟩ −→ ⟨H ′;N ′⟩

⟨H ; (λx : T .M ) N ⟩ −→ ⟨H ′; (λx : T .M ) N ′⟩

R-ColConsL

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ;M :: N ⟩ −→ ⟨H ′;M ′ :: N ⟩

R-ColConsR

⟨H ;N ⟩ −→ ⟨H ′;N ′⟩

⟨H ;v :: N ⟩ −→ ⟨H ′;v :: N ′⟩

R-ColHd

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; colHead(M )⟩ −→ ⟨H ′; colHead(M ′)⟩

R-ColHdV

⟨H ; colHead(v :: v ′)⟩ −→ ⟨H ;v⟩

R-ColTl

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; colTail(M )⟩ −→ ⟨H ′; colTail(M ′)⟩

R-ColTlV

⟨H ; colTail(v :: v ′)⟩ −→ ⟨H ;v ′⟩

R-KindType

T → T ′

⟨H ; if T :: K as t ⇒ M elseN ⟩ −→ ⟨H ; if T ′ :: K as t ⇒ M elseN ⟩

R-KindL

Γ ⊢ T :: K

⟨H ; if T :: K as t ⇒ M elseN ⟩ −→ ⟨H ;M {T /t }⟩

R-KindR

Γ ⊢ T :: K0 Γ ⊢ K0 . K

⟨H ; if T :: K as t ⇒ M elseN ⟩ −→ ⟨H ;N ⟩

C PROOFS
In the development below we pressupose the signature Σ has been checked for well-formedness.

Lemma 5.1 (Substitution).
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1:38 Luís Caires and Bernardo Toninho

(a) If Γ ⊢ T :: K and Γ, t :K , Γ′ ⊢ J then Γ, Γ′{T /t } ⊢ J {T /t }.
(b) If Γ ⊢ M : T and Γ,x :T , Γ′ ⊢ N : S then Γ, Γ′ ⊢ N {M/x } : S .

Proof. By induction on the derivation of the second given judgment. We show some illustrative

cases.

(a)

Case:
Γ, t :K , Γ′ ⊢ K ′ Γ, t :K , Γ′, s:K ′ ⊢ φ

Γ, t :K , Γ′ ⊢ {s : K ′ | φ}

Γ, Γ′{T /t } ⊢ K ′{T /t } by i.h.

Γ, Γ′{T /t }, s:K ′{T /t } ⊢ φ{T /t } by i.h.

Γ, Γ′{T /t } ⊢ {s : K ′{T /t } | φ{T /t }} by rule

Case:
P : K1, . . . ,Kn ∈ Σ ∀i ∈ {1, . . . ,n}.Γ, t :K , Γ′ ⊢ Ti :: Ki

Γ, t :K , Γ′ ⊢ P (T1, . . . ,Tn )

∀i ∈ {1, . . . ,n}.Γ, Γ′{T /t } ⊢ Ti {T /t } :: Ki {T /t } by i.h. i times

Γ, Γ′{T /t } ⊢ P (T1{T /t }, . . . ,Tn {T /t }) by rule

Case:
Γ, t :K , Γ′ ⊢ T1 ≡ T2 :: K

′

Γ, t :K , Γ′ |= T1 ≡ T2 :: K
′

Γ, Γ′{T /t } ⊢ T1{T /t } ≡ T2{T /t } :: K
′{T /t } by i.h.

Γ, Γ′{T /t } |= T1{T /t } ≡ T2{T /t } :: K
′{T /t } by rule

Case:
Γ, t :K , Γ′ |= T1 ≡ T2 :: K

′ Γ, t :K , Γ′,x : K ′ ⊢ φ Γ, t :K , Γ′ |= φ{T1/x }

Γ, t :K , Γ′ |= φ{S2/x }

Γ, Γ′{T /t } |= T1{T /t } ≡ T2{T /t } :: K
′{T /t } by i.h.

Γ, Γ′{T /t },x : K ′{T /t } ⊢ φ{T /t } by i.h.

Γ, Γ′{T /t } |= φ{T1/x }{T /t } by i.h.

Γ, Γ′{T /t } |= φ{T /t }{T1{T /t }/x } by definition

Γ, t :K , Γ′ |= φ{T /t }{T2{T /t }/x } by rule

Case:
Γ, t :K , Γ′ ⊢ K ′ Γ, t :K , Γ′, s:K ′ ⊢ T ′ :: K

Γ, t :K , Γ′ ⊢ ∀s:K ′.T ′ :: GenK ′

Γ, Γ′{T /t } ⊢ K ′{T /t } by i.h.

Γ, Γ′{T /t }, s:K ′{T /t } ⊢ T ′{T /t } :: K by i.h.

Γ, t :K , Γ′ ⊢ ∀s:K ′{T /t }.T ′{T /t } :: GenK ′ {T /t } by rule

Case:
Γ, t :K , Γ′ ⊢ L :: Nm Γ, t :K , Γ′ ⊢ T ′ :: K Γ, t :K , Γ′ ⊢ S ′ :: {t : Rec | L#t }

Γ, t :K , Γ′ ⊢ ⟨L : T ′⟩@S ′ :: Rec

Γ, Γ′{T /t } ⊢ L{T /t } :: Nm by i.h.

Γ, Γ′{T /t } ⊢ T ′{T /t } :: K by i.h.

Γ, Γ′{T /t } ⊢ S ′{T /t } :: {t : Rec | L{T /t }#t } by i.h.

Γ, Γ′{T /t } ⊢ ⟨L{T /t } : T ′{T /t }⟩@S ′{T /t } :: Rec by rule

Case:
Γ, t :K , Γ′ ⊢ T ′ :: {t : K ′ | elimK ′ (t ) ≡ T

′′
:: K ′′}

Γ, t :K , Γ′ ⊢ elimK ′ (T
′) :: K ′′

Γ, Γ′{T /t } ⊢ T ′{T /t } :: {t : K ′{T /t } | elimK ′ {T /t } (t ) ≡ T
′′{T /t } :: K ′′{T /t }} by i.h.

Γ, Γ′{T /t } ⊢ elimK ′ {T /t } (T
′{T /t }) :: K ′′{T /t } by rule
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Refinement Kinds 1:39

Case:
Γ, t :K , Γ′ ⊢ φ Γ, t :K , Γ′,φ ⊢ T ′ :: K ′ Γ, t :K , Γ′,¬φ ⊢ S :: K ′

Γ, t :K , Γ′ ⊢ if φ thenT ′ else S :: K ′

Γ, Γ′{T /t } ⊢ φ{T /t } by i.h.

Γ, Γ′{T /t },φ{T /t } ⊢ T ′{T /t } :: K ′{T /t } by i.h.

Γ, Γ′{T /t },¬φ{T /t } ⊢ S {T /t } :: K ′{T /t } by i.h.

Γ, Γ′{T /t } ⊢ if φ{T /t } thenT ′{T /t } else S {T /t } :: K ′{T /t } by rule

Case:
Γ, t :K , Γ′ ⊢ S :: {t : Rec | ℓ#t } Γ, t :K , Γ′ ⊢ M : T ′ Γ, t :K , Γ′ ⊢ N : S

Γ, t :K , Γ′ ⊢ ⟨ℓ = M⟩@N : ⟨ℓ : T ′⟩@S

Γ, Γ′{T /t } ⊢ S :: {t : Rec | ℓ#t } by i.h.

Γ, Γ′{T /t } ⊢ M {T /t } : T ′{T /t } by i.h.

Γ, Γ′{T /t } ⊢ N {T /t } : S {T /t } by i.h.

Γ, Γ′{T /t } ⊢ ⟨ℓ = M {T /t }⟩@N {T /t } : ⟨ℓ : T ′{T /t }⟩@S {T /t } by rule

Case:
Γ, t :K , Γ′ ⊢ M : S Γ, t :K , Γ′ ⊢ S :: {s : Rec | headLabel(s ) ≡ L :: Nm}

Γ, t :K , Γ′ ⊢ recHeadLabel(M ) : L{S/s}

Γ, Γ′{T /t } ⊢ M {T /t } : S {T /t } by i.h.

Γ, Γ′{T /t } ⊢ S {T /t } :: {s : Rec | headLabel(s ) ≡ L{T /t } :: Nm} by i.h.

Γ, Γ′{T /t } ⊢ recHeadLabel(M {T /t }) : L{T /t }{S {T /t }/s} by rule

Case:
Γ, t :K , Γ′ ⊢ M : S Γ, t :K , Γ′ ⊢ S :: {s : Rec | headType(s ) ≡ T ′ :: K ′}

Γ, t :K , Γ′ ⊢ recHeadTerm(M ) : T ′{S/s}

Γ, Γ′{T /t } ⊢ M {T /t } : S {T /t } by i.h.

Γ, Γ′{T /t } ⊢ S {T /t } :: {s : Rec | headType(s ) ≡ T ′{T /t } :: K ′{T /t }} by i.h.

Γ, Γ′{T /t } ⊢ recHeadTerm(M {T /t }) : T ′{T /t }{S {T /t }/s} by rule

Case:

Γ, t ′:K , Γ′, t :K1 ⊢ K2 Γ, t ′:K , Γ′ ⊢ S :: K1

Γ, t ′:K , Γ′, F :Πt :K1.K2, s:K1 ⊢ T
′
:: K2 structural(T ′, F , t )

Γ, t ′:K , Γ′ |= (µF : (Πt :K1.K2).λt ::K1.T
′) S ≡ T ′{S/t }{(µF : (Πt :K1.K2).λt ::K1.T

′)/F } :: K2{S/t }

Γ, Γ′{T /t ′}, t :K1{T /t
′} ⊢ K2{T /t

′} by i.h.

Γ, Γ′{T /t ′} ⊢ S {T /t ′} :: K1{T /t
′} by i.h.

Γ, Γ′{T /t ′}, F :Πt :K1{T /t
′}.K2{T /t

′}, s:K1{T /t
′} ⊢ T ′{T /t ′} :: K2{T /t

′} by i.h.

structural(T ′{T /t ′}, F , t ) by ???

Γ, Γ′{T /t ′} |= (µF : (Πt :K1{T /t
′}.K2{T /t

′}).λt ::K1{T /t
′}.T ′{T /t ′}) S {T /t ′} ≡

T ′{T /t ′}{S {T /t ′}/t }{(µF : (Πt :K1{T /t
′}.K2{T /t

′}).λt ::K1{T /t
′}.T ′{T /t ′})/F }

:: K2{T /t
′}{S {T /t ′}/t } by rule

The remaining cases follow by similar reasoning, relying on type- and kind-preserving substitution

in the language of refinements. □

Lemma 5.2 (Context Conversion).

(a) Let Γ,x :T ⊢ and Γ ⊢ T ′ :: K . If Γ,x :T ⊢ J and Γ |= T ≡ T ′ :: K then Γ,x :T ′ ⊢ J .
(b) Let Γ, t :K ⊢ and Γ ⊢ K ′. If Γ, t :K ⊢ J and Γ ⊢ K ≡ K ′ then Γ, t :K ′ ⊢ J .

Proof. Follows by weakening and substitution.

(a)

Γ,x : T ′ ⊢ x : T ′ by variable rule

Γ ⊢ T ′ ≡ T :: K by symmetry

Γ,x :T ′ ⊢ x : T by conversion
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Γ,x ′ : T ⊢ J {x ′/x } alpha conversion, for fresh x ′

Γ,x : T ′,x ′:T ⊢ J {x ′/x } by weakening

Γ,x ′:T ⊢ J {x ′/x }{x/x ′} by substitution

Γ,x :T ′ ⊢ J by definition

Statement (b) follows by the same reasoning. □

Lemma 5.5 (Functionality of Kinding and Refinements).

Assume Γ |= T ≡ S :: K , Γ ⊢ T :: K and Γ ⊢ S :: K :
(a) If Γ, t :K , Γ′ ⊢ T ′ :: K ′ then Γ, Γ′{T /t } |= T ′{T /t } ≡ T ′{S/t } :: K ′{T /t }
(b) If Γ, t :K , Γ′ ⊢ K ′ then Γ, Γ′{T /t } ⊢ K {T /t } ≡ K {S/t }.
(c) If Γ, t :K , Γ′ |= φ then Γ, Γ′{T /t } |= φ{T /t } ≡ φ{S/t }

Proof. By induction on the given kinding/kind well-formedness and entailment judgments.

Functionality follows by substitution and the congruence rules of definitional equality.

Case:
Γ, t : K , Γ′ ⊢ K ′ Γ, t : K , Γ′, t ′:K ′ ⊢ φ

Γ, t : K , Γ′ ⊢ {t ′ : K ′ | φ}

Γ, Γ′{T /t } ⊢ K ′{T /t } ≡ K ′{S/t } by i.h.

Γ, Γ′{T /t }, t ′:K ′{T /t } ⊢ φ{T /t } ≡ φ{S/t } by i.h.

Γ, Γ′{T /t } ⊢ {t ′ : K ′{T /t } | φ{T /t }} ≡ {t ′ : K ′{S/t } | φ{S/t }} by kind ref. equality

Case:
Γ, t : K , Γ′ |= T ′ ≡ S ′ :: K ′ Γ, t : K , Γ′,x : K ′ ⊢ φ Γ, t : K , Γ′ |= φ{T ′/x }

Γ, t : K , Γ′ |= φ{S ′/x }

Γ |= T ≡ S :: K , Γ ⊢ T :: K and Γ ⊢ S :: K by assumption

Γ, Γ′{T /t } |= ϕ{S ′/x }{T /t } by substitution

Γ, Γ′{S/t } |= ϕ{S ′/x }{S/t } by substitution

Γ, Γ′{T /t } |= ϕ{S ′/x }{S/t } by ctxt. conversion

Γ, Γ′{T /t } |= ϕ{S ′/x }{T /t } ⊃ ϕ{S ′/x }{S/t } by weakening and ⊃I

Γ, Γ′{T /t } |= ϕ{S ′/x }{S/t } ⊃ ϕ{S ′/x }{T /t } by weakening and ⊃I

Γ, Γ′{T /t } |= φ{S ′/x }{T /t } ≡ φ{S ′/x }{S/t } by definition of refinement equivalence

Case:
Γ, t : K , Γ′ ⊢ K Γ, t : K , Γ, s:K ′ ⊢ T ′ :: K

Γ, t : K , Γ ⊢ ∀s:K ′.T ′ :: GenK
Γ, Γ′{T /t } ⊢ K ′{T /t } ≡ K ′{S/t } by i.h.

Γ, Γ′{T /t }, t ′:K ′{T /t } ⊢ T ′{T /t } ≡ T ′{S/t } :: K by i.h.

Γ, Γ′{T /t } ⊢ ∀s : K ′{T /t }.T ′{T /t } ≡ ∀s : K ′{S/t }.T ′{S/t } :: GenK ′ {T /t } by ∀ Eq.

Case:
Γ, t : K , Γ′ ⊢ L :: Nm Γ, t : K , Γ′ ⊢ T ′ :: K Γ, t : K , Γ′ ⊢ S ′ :: {t : Rec | L#t }

Γ, t : K , Γ′ ⊢ ⟨L : T ′⟩@S ′ :: Rec
Γ, Γ′{T /t } ⊢ L{T /t } ≡ L{S/t } :: Nm by i.h.

Γ, Γ′{T /t } ⊢ T ′{T /t } ≡ T ′{S/t } :: K by i.h.

Γ, Γ′{T /t } ⊢ S ′{T /t } ≡ S ′{S/t } :: {t : Rec | L{T /t }#t } by i.h.

Γ, Γ′{T /t } ⊢ ⟨L{T /t } : T ′{T /t }⟩@S ′{T /t } ≡ ⟨L{S/t } : T ′{S/t }⟩@S ′{S/t } :: Rec by Rec Eq.

Case:
Γ, t : K , Γ′ ⊢ T ′ :: {s : K ′ | elimK ′ (s ) ≡ T ′′ :: K ′′}

Γ, t : K , Γ′ ⊢ elimK ′ (T ′) :: K ′′

Γ, Γ′{T /t } |= T ′{T /t } ≡ T ′{S/t } :: {s : K ′{T /t } | elimK ′ (s ) ≡ T ′′{T /t } :: K ′′{T /t }} by i.h.

Γ, Γ′{T /t } |= elimK ′ (T ′{T /t }) ≡ T ′′{T /t } :: K ′′{T /t } by elimK eq. rule
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Γ, Γ′{T /t } |= elimK ′ (T ′{S/t }) ≡ T ′′{T /t } :: K ′′{T /t } by symmetry and elimK eq. rule

Γ, Γ′{T /t } |= elimK ′ (T ′{T /t }) ≡ elimK ′ (T ′{S/t }) :: K ′′{T /t } by sym. and transitivity

Case:
Γ, t :K , Γ′ ⊢ φ Γ, t :K , Γ′,φ ⊢ T ′ :: K ′ Γ, t :K , Γ′,¬φ ⊢ S ′ :: K ′

Γ, t :K , Γ′ ⊢ if φ thenT ′ else S ′ :: K ′

Γ, Γ′{T /t },φ{T /t } ⊢ T ′{T /t } ≡ T ′{S/t } :: K ′{T /t } by i.h.

Γ, Γ′{T /t },¬φ{T /t } ⊢ S ′{T /t } ≡ S ′{S/t } :: K ′{T /t } by i.h.

Γ, t : K , Γ′,φ |= φ tautology

Γ, Γ′{T /t },φ{T /t } |= φ{T /t } by substitution

Γ, Γ′{T /t },φ{S/t } |= φ{T /t } by ctxt. conversion

Γ, Γ′{T /t } |= φ{S/t } ⊃ φ{T /t } by ⊃I

Γ, Γ′{S/t },φ{S/t } |= φ{S/t } by substitution

Γ, Γ′{T /t },φ{T /t } |= φ{S/t } by ctxt. conversion

Γ, Γ′{T /t } |= φ{T /t } ⊃ φ{S/t } by ⊃I

Γ, Γ′{T /t } ⊢ φ{T /t } ≡ φ{S/t } by definition

Γ, Γ′{T /t } |= if φ{T /t } thenT ′{T /t } else S ′{T /t } ≡
if φ{S/t } thenT ′{S/t } else S ′{S/t } :: K ′{T /t } by rule

Case:
Γ, t :K , Γ′ |= φ{T ′/s} Γ, t :K , Γ′ ⊢ T ′ :: K ′

Γ, t :K , Γ′ ⊢ T ′ :: {s:K ′ | φ}

Γ, Γ′{T /t } |= φ{T ′/s}{T /t } ≡ φ{T ′/s}{S/t } by i.h.

Γ, Γ′{T /t } |= T ′{T /t } ≡ T ′{S/t } :: K ′{T /t } by i.h.

Γ, Γ′{T /t } |= T ′{T /t } ≡ T ′{S/t } :: {s:K ′{T /t } | φ{T /t }} by Eq Conversion

□

Theorem 5.3 (Validity for Eqality).

(a) If Γ ⊢ K ≡ K ′ then Γ ⊢ K and Γ ⊢ K ′.
(b) If Γ |= T ≡ T ′ :: K then Γ ⊢ K , Γ ⊢ T :: K and Γ ⊢ T ′ :: K .
(c) If Γ ⊢ φ ≡ ψ then Γ ⊢ φ and Γ ⊢ ψ

Proof. By induction on the given derivation.

Case:
Γ ⊢ K ≡ K ′ Γ, t :K ⊢ φ ≡ ψ

Γ ⊢ {t :K | φ} ≡ {t :K ′ | ψ }

Γ ⊢ K and Γ ⊢ K ′ by i.h.

Γ, t : K ⊢ φ and Γ, t : K ⊢ ψ by i.h.

Γ ⊢ {t :K | φ} by refinement kind w.f.

Γ ⊢ {t :K ′ | ψ } by refinement kind w.f.

Case:
Γ |= T1 ≡ S1 :: GenK Γ |= T2 ≡ S2 :: K

Γ |= tmap(T1)T2 ≡ tmap(S1)S2 :: Type
Γ ⊢ T1 :: GenK and Γ ⊢ S1 :: GenK by i.h.

Γ ⊢ T2 :: K and Γ ⊢ S2 :: K by i.h.

Γ ⊢ tmap(T1)T2 :: Type by kinding

Γ ⊢ tmap(S1) S2 :: Type by kinding

Case:
Γ, t :K ⊢ T :: K Γ ⊢ S :: K

Γ |= tmap(∀t :K .T ) S ≡ T {S/t } :: Type
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Γ, t :K ⊢ T :: K by inversion

Γ ⊢ S :: K by inversion

Γ ⊢ ∀t :K .T :: GenK by kinding

Γ ⊢ tmap(∀t :K .T ) S :: Type by kinding

Γ ⊢ T {S/t } :: K {S/t } by substitution

Γ ⊢ T {S/t } :: Type by subkinding

Case:
Γ |= T ≡ S :: {t :K | elimK (t ) ≡ T ′ :: K ′} [Γ ⊢ T ′{T /t } :: K ′{T /t }]

Γ |= elimK (T ) ≡ T ′{T /t } :: K ′{T /t }
Γ ⊢ T :: {t : K | elimK (t ) ≡ T ′ :: K ′} and Γ ⊢ S :: {t : K | elimK (t ) ≡ T ′ :: K ′} by i.h.

Γ ⊢ elimK (T ) :: K ′{T /t } by kinding

Γ ⊢ T ′{T /t } :: K ′{T /t } by assumption

Case:
Γ ⊢ T :: K

Γ |= colOf (T⋆) ≡ T :: Type

Γ ⊢ T :: K by inversion

Γ ⊢ T :: Type by subkinding

Γ ⊢ T⋆
:: Col by kinding

Γ ⊢ colOf (T⋆) :: Type by kinding

Remaining cases follow by a similar reasoning.

□

Corollary 5.4 (Kind Preservation). If Γ ⊢ T :: K and T → T ′ then Γ ⊢ T ′ :: K .

Proof. Immediate from equality validity since T → S implies T ≡ S . □

Lemma 5.6 (Functionality of Eqality). Assume Γ |= T0 ≡ S0 :: K :
(a) If Γ, t :K |= T ≡ S :: K ′ then Γ |= T {T0/t } ≡ S {S0/t } :: K

′{T0/t }.
(b) If Γ, t :K ⊢ K1 ≡ K2 then Γ ⊢ K1{T0/t } ≡ K2{S0/t }.
(c) If Γ, t :K ⊢ φ ≡ ψ then Γ ⊢ φ{T0/t } ≡ ψ {S0/t }.
Proof. (a)

Γ, t :K |= T ≡ S :: K ′ assumption

Γ ⊢ T0 ≡ S0 :: K assumption

Γ ⊢ T0 :: K and Γ ⊢ S0 :: K by eq. validity

Γ, t :K ⊢ T :: K ′ and Γ, t :K ⊢ S :: K ′ by eq. validity

Γ ⊢ T {T0/t } ≡ S {T0/t } :: K
′{T0/t } by substitution

Γ ⊢ S {T0/t } ≡ S {S0/t } :: K
′{T0/t } by functionality

Γ ⊢ T {T0/t } ≡ S {S0/t } :: K
′{T0/t } by transitivity

(b)
Γ ⊢ T0 ≡ S0 :: K assumption

Γ, t : K ⊢ K1 ≡ K2 assumption

Γ ⊢ T0 :: K and Γ ⊢ S0 :: K by eq. validity

Γ, t : K ⊢ K1 and Γ, t : K ⊢ K2 by eq. validity

Γ ⊢ K1{T0/t } ≡ K2{T0/t } by substitution

Γ ⊢ K2{T0/t } ≡ K2{S0/t } by functionality

Γ ⊢ K1{T0/t } ≡ K2{S0/t } by transitivity

(c)
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Γ ⊢ T0 ≡ S0 :: K assumption

Γ, t : K ⊢ φ ≡ ψ assumption

Γ ⊢ T0 :: K and Γ ⊢ S0 :: K by eq. validity

Γ, t : K ⊢ φ and Γ, t : K ⊢ ψ by eq. validity

Γ ⊢ φ{T0/t } ≡ ψ {T0/t } by substitution

Γ ⊢ ψ {T0/t } ≡ ψ {S0/t } by functionality

Γ ⊢ φ{T0/t } ≡ ψ {S0/t } by transitivity

□

Theorem 5.7 (Validity).

(a) If Γ ⊢ K then Γ ⊢
(b) If Γ ⊢ T :: K then Γ ⊢ K
(c) If Γ ⊢ M : T then Γ ⊢ T :: Type.

Proof. Straightforward induction on the given derivation. □

Lemma C.1 (Injectivity). If Γ ⊢ Πt : K1.K2 ≡ Πt : K ′
1
.K ′

2
then Γ ⊢ K1 ≡ K ′

1
and Γ, t : K1 ⊢ K2 ≡

K ′
2
.

Proof. Straightforward induction on the given kind equality derivation. □

Lemma C.2 (Injectivity via Subkinding). If Γ ⊢ Πt :K1.K2 ≤ K then Γ ⊢ K ≡ Πt : K ′
1
.K ′

2
with

Γ ⊢ K1 ≡ K ′
1
and Γ, t : K1 ⊢ K2 ≡ K ′

2
.

Lemma C.3 (Inversion).

(a) If Γ ⊢ λt ::K .T :: K ′ then there is K1 and K2 such that Γ ⊢ K ′ ≡ Πt :K1.K2, Γ ⊢ K ≡ K1 and
Γ, t :K1 ⊢ T :: K2.

(b) If Γ ⊢ T S :: K then Γ ⊢ T :: Πt :K0.K1, Γ ⊢ S :: K0 and Γ ⊢ K ≡ K1{S/t }.
(c) If Γ ⊢ λx :T .M : T ′ then there isT1 andT2 such that Γ |= T ′ ≡ T1 → T2 :: Fun, Γ |= T ≡ T1 :: Type

and Γ,x :T1 ⊢ M : T2.
(d) If Γ ⊢ ⟨L : T ⟩@S :: K then Γ ⊢ L :: Nm, Γ ⊢ T :: Type, Γ ⊢ S :: {t ::Rec | L < t } and Γ ⊢ K ≡ Rec.
(e) If Γ ⊢ ⟨L = M⟩@N : T then there is L′,T1,T2 such that Γ |= L ≡ L′ :: Nm, Γ ⊢ ⟨L′ : T1⟩@T2 ::

Rec, Γ |= T ≡ ⟨L′ : T1⟩@T2 :: Rec, Γ ⊢ M : T1 and Γ ⊢ N : T2.
(f) If Γ ⊢ T :: {t ::K | φ} then Γ |= φ{T /t }, Γ ⊢ T :: K and Γ, t :K ⊢ φ.
(g) If Γ ⊢ elimK (T ) :: K then Γ ⊢ T :: {t ::K | elimK (t ) ≡ T ′ :: K ′} and Γ ⊢ T ′{T /t } :: K ′{T /t } and

Γ ⊢ K ≡ K ′{T /t }.
(h) If Γ ⊢ if φ thenM elseN : T then Γ |= T ≡ if φ thenT1 elseT2 :: K with Γ,φ ⊢ M : T1 and

Γ,¬φ ⊢ N : T2.
(i) If Γ ⊢ if φ thenT else S :: K then Γ ⊢ φ, Γ,φ ⊢ T :: K and Γ,¬φ ⊢ S :: K .
(j) If Γ ⊢ T → S :: K then Γ ⊢ K ≡ Fun, Γ ⊢ T :: K and Γ ⊢ S :: K ′, for some K ,K ′.
(k) If Γ ⊢ M :: N :: T then Γ |= T ≡ S :: {t ::Col | colOf (t ) ≡ T ′ :: K }, Γ ⊢ N : S and

Γ ⊢ M : T ′{S/t }, for some T ′,K , S,T ′.
(l) If Γ ⊢ T ′⋆ :: K then Γ ⊢ K ≡ Col and Γ ⊢ T ′ :: K , for some K .

(m) If Γ ⊢ if T ′ :: K as t ⇒ M elseN : T then Γ ⊢ T ′ :: K , Γ ⊢ K , Γ, t : K ⊢ M : S and Γ ⊢ N : S ,
with Γ ⊢ T ≡ S :: K ′ for some K ,K ′, S .

(n) If Γ ⊢ if T ′ :: K as t ⇒ S else S ′ :: K ′ then Γ ⊢ T ′ :: K , Γ ⊢ K , Γ, t :K ⊢ S :: K ′′, Γ vdashS ′ :: K ′′

and Γ ⊢ K ′ ≡ K ′′, for some K ,K ′′.
(o) If Γ ⊢ µF :T .M : T then Γ, F : T ⊢ M : T and structural(F ,M ).
(p) If Γ ⊢ µF : (Πt :K1.K2).λt ::K1.T

′
:: K then Γ, F :Πt :K1.K2, t :K1 ⊢ T

′
:: K2, structural(T ′, F , t )

and Γ ⊢ K ≡ Πt :K1.K2.
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(q) If Γ ⊢ recHeadLabel(M ) : T then Γ |= T ≡ L{S/t } :: Nm, Γ ⊢ M : S and Γ ⊢ S :: {t :Rec |
headLabel(t ) ≡ L :: Nm}

(r) If Γ ⊢ recHeadTerm(M ) : T then Γ |= T ≡ T ′{S/t } :: K {S/t }, Γ ⊢ M : S and Γ ⊢ S :: {t :Rec |
headType(t ) ≡ T ′ :: K }

(s) If Γ ⊢ tail(M ) : T then Γ |= T ≡ T ′{S/t } :: K {S/t }, Γ ⊢ M : S and Γ ⊢ S :: {t :Rec | tail(t ) ≡
T ′ :: K }.

(t) If Γ ⊢ colHead(M ) : T then Γ ⊢ M : T⋆

(u) If Γ ⊢ colTail(M ) : T then Γ |= T ≡ T ′{Tc/t } :: K , Γ ⊢ M : Tc and Γ ⊢ Tc :: {t ::Col | colOf (t ) ≡
T ′ :: K }

(v) If Γ ⊢ ref M : T then Γ |= T ≡ ref T ′ and Γ ⊢ M : T ′

(w) If Γ ⊢ !M : T then Γ |= T ≡ T ′{S/t } :: K , Γ ⊢ M : S , Γ ⊢ N : T ′ and Γ ⊢ S :: {t ::Ref | refOf (t ) ≡
T ′ :: K }

(x) If Γ ⊢ M := N : T then Γ |= T ≡ T ′{S/t } :: K , Γ ⊢ M : S , Γ ⊢ N : T , Γ ⊢ S :: {t ::Ref |
refOf (t ) ≡ T ′ :: K }

(y) If Γ ⊢ M N : T then Γ ⊢ M : T1, Γ ⊢ N : T2, Γ ⊢ T1 :: kre f t ::Fundom(t ) ≡ T2 :: K ∧ img(t ) = U :: K ′

and Γ ⊢ T ≡ U {T1/t } :: K
′{T1/t }

(z) If Γ ⊢ M[T ] : S then Γ ⊢ M : T ′, Γ ⊢ T :: K , Γ ⊢ U :: K , Γ ⊢ T ′ :: { f ::GenK | tmap( f )T ≡ U ::

K } and Γ ⊢ S ≡ U :: K .

Proof. By induction on the structure of the given typing or kinding derivation, using validity.

(a)

Case:
Γ ⊢ λt : K .T :: K ′′ Γ ⊢ K ′′ ≤ K ′

Γ ⊢ λt : K .T :: K ′

Γ ⊢ K ′′ ≡ Πt :K ′
1
.K ′

2
, Γ ⊢ K ≡ K ′

1
and Γ, t : K ′

1
⊢ T :: K ′

2
by i.h.

Γ ⊢ K ′′ ≤ Πt : K1.K2, for some K1, K2 with Γ ⊢ K ′
1
≤ K1 and Γ, t : K ′

1
⊢ K ′

2
≤ K2

by inversion

Γ ⊢ K ′
1
≡ K1 and Γ, t : K ′

1
⊢ K ′

2
≡ K2 by inversion

Γ, t : K1 ⊢ T :: K ′
2

by ctxt. conversion

Γ, t : K1 ⊢ T :: K2 by conversion

Γ ⊢ K ≡ K1 by transitivity

Other cases follow by similar reasoning (or are immediate).

□

Below we do not list the (very) extensive list of all inversions. They follow the same pattern of

the kinding inversion principle.

Lemma C.4 (Eqality Inversion).

(1) If Γ |= T ≡ λt : K1.T2 :: K ′ then Γ |= T ≡ λt : K0.T
′
2
:: Πt : K0.K

′′ with Γ ⊢ K0 ≡ K1 and
Γ, t : K0 |= T2 ≡ T

′
2
:: K ′′, for some K ′′.

(2) If Γ |= T ≡ T0 S0 :: K then Γ |= T ≡ T1 S1 :: K with Γ |= T1 ≡ T0 :: Πt : K1.K0,ΓS1 ≡ S0 :: K1

and K = K0{S1/t }.
(3) If Γ |= T ≡ ⟨L : T ⟩@S :: K then Γ |= T ≡ ⟨L′ : T ′⟩@S ′ :: K with Γ |= L ≡ L′ :: Nm,

Γ |= T ′ ≡ T :: K , Γ |= S ′ ≡ S :: {t : Rec | L < t } and K = Rec.
(4) If Γ ⊢ K ≡ {t : K | φ} then Γ ⊢ K ≡ {t : K ′ | ψ } with Γ ⊢ K ≡ K ′ Γ ⊢ φ ≡ ψ
(5) If Γ |= T ≡ elimK (S ) :: K then Γ |= T ≡ elimK ′ (S ′) :: K with Γ |= S ≡ S ′ :: {t :K | elimK (t ) ≡

T ′ :: K ′}, Γ ⊢ K ≡ K ′, Γ ⊢ T ′ :: K ′{S/t } and K = K ′{S/t }.

Proof. By induction on the given equality derivations, relying on validity, reflexivity, substitu-

tion, context conversion and inversion. We show two illustrative cases.
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Case: Transitivity rule

Γ |= T ≡ S ′ :: K and Γ |= S ′ ≡ elimK (S ) :: K assumption

Γ |= S ′ ≡ elimK ′ (S ′′) :: K with Γ |= S ≡ S ′′ :: {t :K | elimK (t ) ≡ T ′ :: K ′},
Γ ⊢ K ′ ≡ K , Γ ⊢ T ′ :: K ′{S/t } and K = K ′{S/t } by i.h.

Γ |= T ≡ elimK ′ (S ′′) :: K by transitivity

Case:

Γ, t :K0 ⊢ T1 :: K
′ Γ ⊢ T2 :: K0

Γ |= (λt :K0.T1)T2 ≡ T1{T2/t } :: K
′{T2/t }

Γ, t :K0 ⊢ T1 :: K
′
, Γ ⊢ T2 :: K0 and elimK (S ) = T1{T2/t } and K = K ′{T2/t } assumption

Subcase 1: T1 = t , T2 = elimK (S )
K0 = K ′ = K assumption

Γ ⊢ elimK (S ) :: K assumption

Γ ⊢ S :: {t :K | elimK (t ) ≡ T ′ :: K ′} and Γ ⊢ T ′{S/t } :: K ′{S/t } with K = K ′{S/t } by inversion

Γ |= S ≡ S :: {t :K | elimK (t ) ≡ T ′ :: K ′} by reflexivity

Γ ⊢ elimK (S ) ≡ elimK (S ) :: K by reflexivity

Subcase 2: T1 = elimK ′ (S ′) such that elimK ′ {T2/t } (S
′{T2/t }) = elimK (S )

Γ, t : K0 ⊢ elimK ′ (S ′) :: K ′ assumption

Γ ⊢ elimK ′ {T2/t } (S
′{T2/t }) :: K

′{T2/t } by substitution

Γ ⊢ S ′{T2/t } :: {t :K | elimK (t ) ≡ T ′ :: K ′} and Γ ⊢ T ′{S/t } :: K ′{S/t } with K = K ′{S/t }
by inversion

Γ ⊢ S ′{T2/t } ≡ S ′{T2/t } :: {t :K | elimK (t ) ≡ T ′ :: K ′} by reflexivity

Γ ⊢ elimK ′ {T2/t } (S
′{T2/t }) ≡ elimK ′ {T2/t } (S

′{T2/t }) :: K
′{T2/t } by reflexivity

□

Lemma C.5 (Subkinding Inversion).

(1) If Γ ⊢ K ≤ K ′ then Γ ⊢ K ≡ K ′ or Γ ⊢ K ′ ≡ Type.
(2) If Γ ⊢ K ≤ {t :K ′ | φ} then Γ ⊢ K ≡ {t :K | ψ } with Γ ⊢ K ≤ K ′ and Γ |= ψ ⊃ φ.
(3) If Γ ⊢ {t :K ′ | φ} ≤ K then Γ ⊢ K ≤ K and Γ, t :K ′ ⊢ φ.

Proof. By induction on the given derivation, using equality inversion. □

Lemma C.6. If Γ |= T ≡ S :: K , Γ ⊢ T :: K ′ and Γ ⊢ S :: K ′ and Γ ⊢ K ′ ≤ K then Γ ⊢ T ≡ S :: K ′.

Proof. By induction on the given equality derivation. □

Theorem 5.8 (Unicity of Types and Kinds).

(1) If Γ ⊢ M : T and Γ ⊢ M : S then Γ ⊢ T ≡ S :: K and Γ ⊢ K ≤ Type.
(2) If Γ ⊢ T :: K and Γ ⊢ T :: K ′ then Γ ⊢ K ≤ K ′ or Γ ⊢ K ′ ≤ K .

Proof. By induction on the structure of the given type/term.

Case: M is ⟨ℓ = M ′⟩@N ′

Γ ⊢ ⟨ℓ = M ′⟩@N ′ : T and Γ ⊢ ⟨ℓ = M ′⟩@N ′ : S assumption

Γ ⊢ M ′ : T1, Γ ⊢ N
′
: T2, Γ ⊢ ℓ ≡ L′ :: Nm, Γ ⊢ ⟨L′ = T1⟩@T2 :: Rec

and Γ |= T ≡ ⟨L′ = T1⟩@T2 :: Rec inversion

Γ ⊢ M ′ : S1, Γ ⊢ N
′
: S2, Γ ⊢ ℓ ≡ L′′ :: Nm, Γ ⊢ ⟨L′′ = S1⟩@S2 :: Rec

and Γ |= S ≡ ⟨L′′ = S1⟩@S2 :: Rec inversion

Γ |= T1 ≡ S1 :: K1 and Γ ⊢ K1 ≤ Type by i.h.

Γ |= T1 ≡ S1 :: Type by conversion
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Γ |= T2 ≡ S2 :: K2 and Γ ⊢ K2 ≤ Type by i.h.

Γ ⊢ T1 :: Rec and Γ ⊢ T2 :: Rec by inversion and conversion

Γ |= T2 ≡ S2 :: Rec by Lemma C.6

Case: T is ⟨L = S1⟩@S2

Γ ⊢ ⟨L = S1⟩@S2 :: K and Γ ⊢ ⟨L = S1⟩@S2 :: K
′

assumption

Γ ⊢ L :: Nm, Γ ⊢ S1 :: Type, Γ ⊢ S2 :: {t :Rec | K < t } and Γ ⊢ K ≡ Rec by inversion

Γ ⊢ L :: Nm, Γ ⊢ S1 :: Type, Γ ⊢ S2 :: {t :Rec | K < t } and Γ ⊢ K ′ ≡ Rec by inversion

Γ ⊢ Rec ≤ Rec by reflexivity

Case: M is if φ thenM ′ elseN ′

Γ ⊢ if φ thenM ′ elseN ′ : T and Γ ⊢ if φ thenM ′ elseN ′ : S assumption

Γ,φ ⊢ M ′ : T1, Γ,¬φ ⊢ N
′
: T2 and Γ |= T ≡ if φ thenT1 elseT2 by inversion

Γ,φ ⊢ M ′ : S1, Γ,¬φ ⊢ N
′
: S2 and Γ |= S ≡ if φ then S1 else S2 by inversion

Γ,φ |= T1 ≡ S1 :: K1 with Γ ⊢ K1 ≤ Type by i.h.

Γ,¬φ |= T2 ≡ S2 :: K2 with Γ ⊢ K2 ≤ Type by i.h.

Γ |= if φ thenT1 elseT2 ≡ if φ then S1 else S2 :: Type by rule

Case: M is if T ′ :: K as t ⇒ M ′ elseN ′

Γ ⊢ if T ′ :: K as t ⇒ M ′ elseN ′ : T and Γ ⊢ if T ′ :: K as t ⇒ M ′ elseN ′ : S assumption

Γ ⊢ T ′ :: K ′, Γ ⊢ K , Γ, t : K ⊢ M ′ : T and Γ ⊢ N ′ : T by inversion

Γ ⊢ T ′ :: K ′, Γ ⊢ K , Γ, t : K ⊢ M ′ : S and Γ ⊢ N ′ : S by inversion

Γ |= T ≡ S :: K with Γ ⊢ K ≤ Type by i.h.

Case: T is if T ′ :: K as t ⇒ S1 else S2
Γ ⊢ if T ′ :: K as t ⇒ S1 else S2 :: K and Γ ⊢ if T ′ :: K as t ⇒ S1 else S2 :: K ′ assumption

Γ ⊢ T ′ :: K ′, Γ ⊢ K , Γ, t : K ⊢ S1 :: K and Γ ⊢ S2 :: K by inversion

Γ ⊢ T ′ :: K ′, Γ ⊢ K , Γ, t : K ⊢ S1 :: K
′
and Γ ⊢ S2 :: K

′
by inversion

Γ ⊢ K ≤ K ′ or Γ ⊢ K ′ ≤ K by i.h.

Case: M is µF :T .M ′

Γ ⊢ µF :T .M ′ : T and Γ ⊢ µF :T .M ′ : S assumption

Γ |= T ≡ T ′ :: K and Γ, F : T ⊢ M ′ : T ′ by inversion

Γ |= S ≡ S ′ :: K ′ and Γ, F : T ⊢ M ′ : S ′ by inversion

Γ, F : T |= T ′ ≡ S ′ :: K with Γ ⊢ K ≤ Type by i.h.

Γ, F : T |= T ≡ T ′ :: K and Γ, F : T |= S ≡ S ′ :: K ′ by weakening

Γ, F : T |= T ≡ S :: Type by transitivity and conversion

Γ |= T ≡ S :: Type by strengthening

Case: T is µF : (Πt :K .K ′).λt ::K .T ′

Γ ⊢ µF : (Πt :K1.K2).λt ::K1.T
′
:: K and Γ ⊢ µF : (Πt :K1.K2).λt ::K1.T

′
:: K ′ assumption

Γ, F : Πt : K1.K2, t : K1 ⊢ T
′
:: K2, structural(T ′, F , t ) and Γ ⊢ K ≡ Πt : K1.K2 by inversion

Γ, F : Πt : K1.K2, t : K1 ⊢ T
′
:: K2, structural(T ′, F , t ) and Γ ⊢ K ′ ≡ Πt : K1.K2 by inversion

Γ ⊢ K ≤ K ′ by transitivity

Case: M is recHeadTerm(M ′)

Γ ⊢ recHeadTerm(M ′) : T and Γ ⊢ recHeadTerm(M ′) : S assumption

Γ ⊢ M : T ′, Γ ⊢ T ′ :: {t :Rec | headType(t ) ≡ T ′′ :: K } and Γ |= T ≡ T ′′{T ′/t } :: K {T ′/t }
by inversion

Γ ⊢ M : S ′, Γ ⊢ S ′ :: {t :Rec | headType(t ) ≡ S ′′ :: K } and Γ |= S ≡ S ′′{S ′/t } :: K {S ′/t }
by inversion
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Γ |= T ′ ≡ S ′ :: K with K ≤ Type by i.h.

Γ ⊢ T ′ :: Rec and Γ |= headType(T ′) ≡ T ′′{T ′/t } :: K {T ′/t } by inversion

Γ ⊢ S ′ :: Rec and Γ |= headType(S ′) ≡ S ′′{S ′/t } :: K {S ′/t } by inversion

Γ ⊢ T ′ :: {t :Rec | nonEmpty(t )} by conversion

Γ ⊢ S ′ :: {t :Rec | nonEmpty(t )} by conversion

Γ |= T ′ ≡ S ′ :: {t :Rec | nonEmpty(t )} by Lemma C.6

Γ |= headType(T ′) ≡ headType(S ′) :: Type by equality rule

Γ |= T ≡ T ′′{T ′/t } :: Type by conversion

Γ |= S ≡ S ′′{S ′/t } :: Type by conversion

Γ |= T ′′{T ′/t } ≡ S ′′{S ′/t } :: Type by transitivity

Case: T is headType(T ′)
Γ ⊢ headType(T ′) :: K1 and Γ ⊢ headType(T ′) :: K2 assumption

Γ ⊢ T ′ :: {t :K | headType(t ) ≡ T ′′ :: K ′}, Γ ⊢ T ′′{T ′/t } :: K ′{T ′/t } and Γ ⊢ K1 ≡ K ′{T ′/t }
by inversion

Γ ⊢ T ′ :: {t :K ′ | headType(t ) ≡ T ′′′ :: K ′′}, Γ ⊢ T ′′′{T ′/t } :: K ′′{T ′/t } and Γ ⊢ K2 ≡ K ′′{T ′/t }
by inversion

Γ ⊢ {t :K | headType(t ) ≡ T ′′ :: K ′} ≤ {t :K ′ | headType(t ) ≡ T ′′′ :: K ′′}
or Γ ⊢ {t :K | headType(t ) ≡ T ′′ :: K ′} ≥ {t :K ′ | headType(t ) ≡ T ′′′ :: K ′′} by i.h.

Subcase 1: Γ ⊢ {t :K | headType(t ) ≡ T ′′ :: K ′} ≤ {t :K ′ | headType(t ) ≡ T ′′′ :: K ′′}
Γ ⊢ K ≤ K ′ and Γ, t :K ′ |= headType(t ) ≡ T ′′ :: K ′ ≡ headType(t ) ≡ T ′′′ :: K ′′ by inversion

Γ, t :K ⊢ K ′ ≡ K ′′ by entailment

Γ ⊢ K ′{T ′/t } ≡ K ′′{T ′/t } by substitution

Γ ⊢ K1 ≤ K2

Subcase 2 is symmetric.

Case: T is tmap(T1)T2
Γ ⊢ tmap(T1)T2 :: K and Γ ⊢ tmap(T1)T2 :: K ′ assumption

Γ ⊢ T1 :: GenK , Γ ⊢ T2 :: K and Γ ⊢ K ≡ Type by inversion

Γ ⊢ T1 :: GenK ′ , Γ ⊢ T2 :: K ′ and Γ ⊢ K ′ ≡ Type by inversion

Γ ⊢ K ≤ K ′ since Γ ⊢ Type ≤ Type

□

Theorem 5.9 (Type Preservation). Let Γ ⊢S M : T and Γ ⊢s H . If ⟨H ;M⟩ −→ ⟨H ′;M ′⟩ then there
exists S ′ such that S ⊆ S ′, Γ ⊢S ′ H ′ and Γ ⊢S ′ M

′
: T .

Proof. By induction on the operational semantics and inversion on typing. We show the most

significant cases.

Case:
T0 → T ′

0

⟨H ; (Λt ::K .M )[T0]⟩ −→ ⟨H ; (Λt ::K .M )[T ′
0
]⟩

Γ ⊢ T ≡ U :: K where Γ ⊢ Λt ::K .M : T1, Γ ⊢ T0 :: K , Γ ⊢ U :: K ,

Γ ⊢ T1 :: { f ::GenK | tmap( f )T0 ≡ U :: K } by inversion

Γ ⊢ T1 ≡ ∀t ::K .S :: GenK and Γ, t ::K ⊢ S :: K by inversion

Γ ⊢ S {T0/t } :: K by substitution

Γ ⊢ T0 ≡ T
′
0
:: K by definition

Γ ⊢ S {T0/t } ≡ S {T ′
0
/t } :: K by functionality

Γ ⊢ tmap(∀t ::K .S )T0 ≡ tmap(∀t ::K .S )T ′
0
:: K by equality

Γ ⊢ U ≡ S {T0/t } :: K by transitivity

Γ ⊢ U ≡ S {T ′
0
/t } :: K by transitivity
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Γ ⊢ (Λt ::K .M )[T ′
0
] : S {T ′

0
/t } by typing

Γ ⊢ (Λt ::K .M )[T ′
0
] : U by conversion

Case:
⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; ⟨ℓ = M⟩@N ⟩ −→ ⟨H ′; ⟨ℓ = M ′⟩@N ⟩

Γ ⊢S T ≡ ⟨L : T ′⟩@T ′′, Γ ⊢S ℓ ≡ L :: Nm, Γ ⊢S M : T ′ and Γ ⊢S N : T ′′ by inversion

∃S ′ such that S ⊆ S ′, Γ ⊢S ′ H
′
and Γ ⊢S ′ M

′
: T ′ by i.h.

Γ ⊢S ′ ⟨ℓ = M ′⟩@N : ⟨L : T ′⟩@T ′′ by RecCons rule

Case:

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; recHeadTerm(M )⟩ −→ ⟨H ′; recHeadTerm(M ′)⟩

Γ ⊢S T ≡ T
′{S ′/t } :: K {S ′/t }, Γ ⊢S M : S ′ and

Γ ⊢ S ′ :: {t :Rec | headType(t ) ≡ T ′ :: K } by inversion

∃S0 such that S ⊆ S0, Γ ⊢S0 H
′
and Γ ⊢S0 M

′
: S ′ by i.h.

Γ ⊢S0 recHeadTerm(M ′) : T ′{S ′/t } by typing rule

Case: ⟨H ; recHeadTerm(⟨ℓ = v⟩@v ′)⟩ −→ ⟨H ;v⟩

Γ ⊢S recHeadTerm(⟨ℓ = v⟩@v ′) : T ′ and Γ ⊢s v : T ′ by inversion

Case:
Γ ⊨ φ

⟨H ; if φ thenM elseN ⟩ −→ ⟨H ;M⟩

Γ |= T ≡ if φ thenT1 elseT2 :: K with Γ,φ ⊢S M : T1 and Γ,¬φ ⊢S N : T2 by inversion

Γ |= if φ thenT1 elseT2 ≡ T1 :: K by eq. rule

Γ |= T ≡ T1 :: K by transitivity

Γ ⊢S M : T1 by cut

Case:
⟨H ; µF :T .M⟩ −→ ⟨H ;M {µF :T .M/F }⟩

Γ, F : T ⊢ M : T and structural(F ,M ) by inversion Γ ⊢ M {µF :T .M/F } : T by substitution

Case:
Γ ⊢ T :: K

⟨H ; if T ′ :: K as t ⇒ M elseN ⟩ −→ ⟨H ;M {T ′/t }⟩

Γ ⊢ T ′ :: K ′, Γ ⊢ K , Γ, t :K ⊢ M : T ′′ and Γ ⊢ N : T ′′ by inversion

Γ ⊢ T :: K assumption

Γ ⊢ M {T ′/t } : T ′′ by substitution

□

Lemma 5.10 (Type Progress). If Γ ⊢ T :: K then either T is a type value or T → T ′, for some T ′.

Proof. Straightforward induction on kinding. □

Theorem 5.11 (Progress). Let · ⊢S M : T and · ⊢S H . Then eitherM is a value or there exists S ′

andM ′ such that ⟨H ;M⟩ −→ ⟨H ′;M ′⟩.

Proof. By induction on typing. Progress relies type progress and on the decidability of entailment

due to the term-level and type-level predicate test construct. □
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