
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Refinement Kinds
A Theory of Type-Safe Meta-Programming

LUÍS CAIRES, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and NOVA-LINCS, Portugal
BERNARDO TONINHO, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and NOVA-

LINCS, Portugal

This work introduces the novel concept of kind refinement, which we technically develop in the context of

an explicitly polymorphic ML-like language with type-level computation. As type refinements embed rich

specifications by means of comprehension principles expressed by predicates over values in the type domain,

kind refinements provide rich kind specifications by means of predicates over types in the kind domain. By

leveraging our powerful refinement kind discipline, types in our language are not just used to statically classify

program expressions and values, but also conveniently manipulated as tree-like data structures, with their

kinds refined by logical constraints on such structures. Remarkably, the resulting typing and kinding disciplines

allow for powerful forms of type reflection, ad-hoc polymorphism, and type-safe type meta-programming

which are common in modern software development, but hardly expressible in extant type theories.

CCS Concepts: • Theory of computation→ Type theory; • Software and its engineering→ Functional
languages; Domain specific languages;

Additional Key Words and Phrases: Refinement Kinds, Typed Meta-Programming, Type Theory

1 INTRODUCTION
Current software development ecosystems increasingly rely on automation, often based on tools

that generate code from various types of specifications, leveraging the various reflection and

meta-programming facilities that modern languages provide: an example of such a tool could be

a generator that given as input a XML database schema, produces the complete code of a web

application. Automated code generation, domain specific languages, and meta-programming are

increasingly becoming productivity drivers for the software industry, while also making bringing

programmingmore accessible to non-experts, and, more generally, increasing the level of abstraction

of languages and tools for program construction.

These concepts are more commonly supported by so-called dynamic languages and related

frameworks, such as Ruby and Ruby on Rails, JavaScript and Node.js, but are also present in

static languages such as Java, Scala, Go and F#, that provide support for reflection and general

meta-programming facilities, allowing code, and more frequently types, to be manipulated as data

by programs. Unfortunately, meta-programming constructs and idioms aggressively challenge the

safety guarantees of static typing, which becomes especially problematic given that meta-programs

are notoriously hard to test for correctness.

This paper introduces for the first time the concept of refinement kinds and illustrates how the

associated discipline cleanly supports static type checking of type-level reflection, parametric and

ad-hoc polymorphism, which can all be combined to implement interesting meta-programming

idioms. Refinement kinds, presented for the first time in this work, are a natural transposition

of the well-known concept of refinement types (of values) [Bengtson et al. 2011; Rondon et al.

2008; Vazou et al. 2013] to the realm of kinds (of types). Several systems of refinement types

Authors’ addresses: Luís Caires, Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova

de Lisboa and NOVA-LINCS, Portugal, lcaires@fct.unl.pt; Bernardo Toninho, Departamento de Informática, Faculdade de

Ciências e Tecnologia, Universidade Nova de Lisboa and NOVA-LINCS, Portugal, btoninho@fct.unl.pt.

2018. 2475-1421/2018/1-ART1 $15.00

https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

https://doi.org/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Luís Caires and Bernardo Toninho

have been proposed in the literature, generally motivated as a pragmatic compromise between

usability and the expressiveness of full-fledged dependent types, which require proof objects to be

explicitly constructed by programmers. Our work aims to show that the simple and arguably natural

notion of introducing refinements in the kind structure allows us to cleanly support sophisticated

statically typed meta-programming concepts, which we illustrate in the context of a higher-order

polymorphic λ-calculus with imperative constructs, chosen as a convenient representative for

languages with higher-order store.

Just as refinement types support expressive type specifications by comprehension principles

expressed by predicates over values in the type domains (typically implemented by SMT decidable

Floyd-Hoare assertions [Rushby et al. 1998]), refinement kinds support rich and flexible kind

specifications by means of comprehension principles expressed by predicates over types in the

kind domains. They also naturally support a natural notion of subkinding by entailment in the

refinement logic. For example, we introduce in our language one least upper bound kind for each

small type kinds, from which more concrete kinds and types may be defined by refinement, adding

an unusual degree of plasticity to subkinding.

Crucially, types in our language may be reflectively manipulated as first-class (abstract-syntax)

labelled trees (cf. XML data), both statically and at runtime. We expect that the deduction of

relevant structural properties of such tree representations of types to be amenable to rather efficient

implementation, unlike typical value domains (e.g., integers, arrays) manipulated by mainstream

programming languages, and easier to automate using off-the-shelf SMT solvers (e.g. [de Moura

and Bjørner 2008]). Remarkably, even if types in our system can be essentially manipulated by

type-level functions and operators as abstract-syntax trees, our system statically ensures the sound

inhabitation of the outcomes of type-level computations by the associated program-level terms,

enforcing type safety. This allows our language to express challenging reflection idioms in a type-

safe way, that we have no clear perspective on how to cleanly and effectively embed in extant

(dependent) type theories.

To make the design of our framework more concrete, we briefly detail our treatment of record

types. Usually, a record type is represented by a tuple of label-and-type pairs, subject to the

constraint that all the labels must be pairwise distinct (e.g. see [Harper and Pierce 1991]). In order

to support more effective manipulation of record types by type-level functions, record types in our

theory are represented by values of a list-like data structure: the record type constructors are the

type of empty records ⟨⟩ and the “cons” cell ⟨L : T ⟩@R, which constructs the record type obtained

by adding a field declaration ⟨L : T ⟩ to the record type R.
The record type destructors are functions headLabel(R), headType(R) and tail(R), which apply

to any non-empty record type R. As will be shown latter, the more usual record field projection

operator r .L and record type field projection operator T .L turn out to be definable in our language

using suitable meta-programs. In our system, record labels (cf. names) are type and term-level

first-class values of kind Nm. Record types also have their own kind, dubbed Rec. As we will see,
our theory provides a range of basic kinds that specialize the kind of all (small) types Type via
subkinding, which can be further specialized via kind refinement.

For example, we may define the record type Person ≜ ⟨name : String⟩@⟨aдe : Int⟩@⟨⟩, which
we conveniently abbreviate by ⟨name : String; age : Int⟩. We then have that headLabel(Person) =
name, headType(Person) = String and tail(Person) = ⟨age : Int⟩. The kinding of the ⟨L : T ⟩@R
type constructor may be clarified in the following type-level function addFieldType

addFieldType :: Πl ::Nm.Πt ::Type.Πr ::{s::Rec | l < lab(s)}. Rec
addFieldType ≜ λl ::Nm.λt ::Type.λr ::{s::Rec | l < lab(s)}.⟨l : t⟩@r

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Refinement Kinds 1:3

The addFieldType type-level function takes a label l , a type t and any record type r that does not
contain label l , and returns the expected extended record type of kind Rec. Notice that the kind of all
record types that do not contain label l is represented by the refinement kind {s::Rec | l < lab(s)}.

A refinement kind in our system is noted {t ::K | φ (t)}, whereK is a (small) kind, and the logical

formula φ (t) expresses a constraint on the form of the type t that inhabits K . As expected in

refinement type systems [Bengtson et al. 2011; Swamy et al. 2011; Vazou et al. 2014], we expect our

underlying logic of refinements to include a decidable theory for the various finite tree-like data

types used to schematically represent type specifications, as is the case of our record-types-as-lists,

function-types-as-pairs (i.e. a pair of a domain and an image type), and so on. The kind refinement

rule is thus expressed

Γ |= φ{T /t } Γ ⊢ T :: K

Γ ⊢ T :: {t ::K | φ}
(kref)

where Γ |= φ denotes entailment in the refinement logic. Basic formulas of our refinement logic

include propositional logic, equality, and some useful predicates and functions on types, including

the primitive type constructors and destructors, such as lab(R) (record label set), L ∈ S (label

membership), S#S ′ (label set apartness), R@S (concatenation), dom(F) (function domain selector).

Interestingly, given the presence of equality in refinements, it is always possible to define for any

type T of kind K a precise singleton kind S(T) of the form {t :: K | t ≡ T :: K }. As another simple

example, consider the kind Auto of automorphisms, defined as {t :: Fun | dom(t) ≡ img(t) :: Type}.
A use of the type-level function addFieldType given above is, for instance, the definition of the

following term-level polymorphic record extension function

addField : ∀l ::Nm.∀t ::Type.∀r ::{s::Rec | l < lab(s)}.t → r → addFieldType l t r
addField ≜ Λl ::Nm.Λt ::Type.Λr ::{s::Rec | l < lab(s)}.λx :t .λy:r .⟨l = x⟩@y

The addField function takes a label l , a type t , a record type r that does not contain label l , and
values of types t and r , respectively, returning a record of type addFieldType l t r .

The type-level and term-level functions addFieldType and addField respectively illustrate some of

the key insights of our type theory, namely the use of types and their refined kinds as specifications

that can be manipulated as tree-like structures by programs in a fully type-safe way. For instance,

the following judgment, expressing the correspondence between the term-level computation

addField l t r x y and the type-level computation addFieldType l t r , is derivable:

l :Nm, t :Type, r :{s::Rec | l < lab(s)},x :t ,y:r ⊢ addField l t r x y : addFieldType l t r

An instance of this judgement yields:

⊢ addField name String ⟨aдe : Int⟩ “jack” ⟨aдe = 20⟩ : addFieldType name String ⟨aдe : Int⟩

Noting that ⟨age : Int⟩ :: {s::Rec | name < lab(s)} is derivable since name < lab(⟨age : Int⟩) is
provable in the refinement logic, we have the following term and type-level evaluations:

(addField name String ⟨aдe : Int⟩ “jack” ⟨aдe = 20⟩) →∗ ⟨name = “jack”; age = 20⟩

(addFieldType name String ⟨aдe : Int⟩) ≡ ⟨name : String; age : Int⟩

Using the available refinement principles, our system can also derive the following more precise

kinding for the type addFieldType l t r :

l :Nm, t :Type, r :{s::Rec | l < lab(s)} ⊢ addFieldType l t r :: {s::Rec | s ≡ ⟨l : t⟩@r : Rec}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Luís Caires and Bernardo Toninho

Contributions. We summarise the main contributions of this work: First, we motivate for the

first time the concept of refinement kinds, showing how it supports the flexible and clean definition

of statically typed meta-programs through several examples (Section 2). Second, we technically

develop our refinement kind system (Section 3), using as core language a ML-like polymorphic

λ-calculus (Section 4) with records, references and collections, supporting type-level computation.

Third, we establish the key meta-theoretical result (Section 5) of type safety through type unicity,

type preservation and progress (Theorems 5.8, 5.9 and 5.11, respectively).

We conclude with an overview of key related work (Section 6), and offer some concluding

remarks and discussion on the pragmatics of the language (7). Appendices A, B and C list omitted

definitions of the type theory, its semantics and proof outlines, respectively.

2 PROGRAMMINGWITH REFINEMENT KINDS
Before delving into the technical intricacies of our theory in Section 3 and beyond, we illustrate

the various features and expressiveness of our theory through a series of examples that showcase

how our language supports (in a perhaps surprisingly clean way) challenging (from a static typing

perspective) meta-programming idioms.

Generating Mutable Records. We begin with a simple higher-order meta-program that com-

putes a “generator” for mutable records from a specification of its representation type, expressed as

an arbitrary record type. Consider the following definition of the (recursive) function genConstr:

genConstr ≜ ΛS ::{r ::Rec | nonEmpty(r)}.ΛV ::{v ::Rec | lab(v)#lab(S)}.λv :V .
λx :headType(S).if nonEmpty(tail(S)) then

genConstr tail(S) ⟨headLabel(S) : ref headType(S)⟩@V ⟨headLabel(S) = ref x⟩@v
else ⟨headLabel(S) = ref x⟩@v

Given a non-empty record type S , function genConstr returns a constructor function for a mutable

record whose fields are specified by S . We use an informal notation to express recursive definitions,

which in our formal core language is represented by an explicit structural recursion construct.

Parameters V and v are accumulating parameters that track intermediate types, values and a

disjointness invariant on those types during computation (for simplicity, we generate the record

fields in reverse order).

Intuitively, and recovering the record type Person from above, genConstr Person ⟨⟩ ⟨⟩ computes

to a value equivalent to λx :String.λy:Int.⟨age = ref y; name = ref x⟩.
Notice that function genConstr accepts any non-empty record type S , and proceeds by recursion

on the structure on type S , as a list of label-type pairs. The parameter S holds the types of the

fields still pending for addition to the final record type, parameter V holds the types of the fields

already added to the final record type, and v holds the already built mutable record value. To

properly call genConstr, we “initialize”V with ⟨⟩ (i.e. the empty record type), and v to ⟨⟩. Moreover,

the refined kind of V specifies the label apartness constraint needed to type check the recursive

call of genConstr, in particular, given lab(V)#lab(S), the refinement logic deduces headLabel(S) <
lab(V), needed to kind check ⟨headLabel(S) : ref headType(S)⟩@V ; and lab(⟨headLabel(S) :

ref headType(S)⟩@V)#lab(tail(S)), required to kind and type check the recursive call. In our

language, genConstr can be typed as follows:

genConstr : ∀S ::{r ::Rec | nonEmpty(r)}.∀V ::{v ::Rec | lab(v)#lab(S)}.(GType S V)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Refinement Kinds 1:5

where GType is the (recursive) type-level function such that

GType :: ΠS ::{r ::Rec | nonEmpty(r)}.ΠV ::{v ::Rec | lab(v)#lab(S)}. Fun
GType ≜

λS ::{r ::Rec | nonEmpty(r)}.
λV ::{v ::Rec | lab(v)#lab(S)}.
headType(S) → if nonEmpty(tail(S)) then

GType tail(S) ⟨headLabel(S) : ref headType(S)⟩@V elseV

We can see that, in general, the type-level application GType ⟨L1 : T1; ...;Ln : Tn⟩ ⟨⟩ computes the

type T1 → ... → Tn → ⟨Ln : ref Tn ; ...;L1 : ref T1⟩. In particular, we have

genConstr Person ⟨⟩ ⟨⟩ : String→ Int→ ⟨age = ref Int; name = ref String⟩

From Record Types to XML Tables. As a second example, we develop a generic function

MkTable that generates and formats an XML table for any record type, inspired by the example in

Section 2.2 of [Chlipala 2010]. We start by introducing an auxiliary type-level Map function, that

returns the record type obtained from a record type R by applying a type transformation G (of

higher-order kind) to the type of each field of R.

Map :: ΠG::(ΠX :: Type. Type).ΠR::Rec. {r :: Rec | lab(r) = lab(R)}
Map ≜

λG::(ΠX :: Type. Type).λR::Rec.
if nonEmpty(R) then ⟨headLabel(R) : G headType(R)⟩@(Map G tail(R)) else ⟨⟩

The logical constraint lab(r) = lab(R) expresses that the result ofMap G R has exactly the same

labels as record type R. This implies that headLabel(R) < lab(Map G tail(R)) in the recursive call,

thus allowing the “cons” to be well-kinded. We now define:

XForm :: Πt :: Type. Type
XForm ≜ λt ::Type.⟨tag : String; toStr : t → String⟩

MkTableType :: λr ::Rec.{r :: Rec | lab(r) = lab(R)}
MkTableType ≜ λr ::Rec.Map XForm r

MkTable : ∀R::Rec.(MkTableType R) → R → String
MkTable ≜ ΛR::Rec.λM :MkTableType R.λr :R.

if nonEmpty(R) then
“<tr><th>” +M .recHeadLabel(M).tag + “</th>”+
M .recHeadLabel(M).toStr r .recHeadLabel(M) + “</td></tr>”
MkTable tail(R) recTail(M) recTail(r)

else “”

It is instructive to discuss why and how this code is well-typed, witnessing the expressiveness of

refinement kinds, despite their conceptual simplicity (which can be judged by the arguably parsimo-

nious nature of the definitions above). Let us first consider the expressionM .recHeadLabel(M).tag.
Notice that, by declaration, R::Rec and r :R. However, the expression under consideration is to be

typed under the assumption that nonEmpty(R), which is added to the current set of refinement

assumptions while typing the then branch. Using TT for the type of M , Since MkTableType R ::

{r ::Rec | lab(r) = lab(R)}, by refinement we have that lab(TT) = lab(R) and thus nonEmpty(TT),

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Luís Caires and Bernardo Toninho

allowing recHeadLabel(M) to be defined. SinceM : MkTableType R we have

(MkTableType R) ≡ (Map XForm R) ≡
⟨headLabel(R) : XForm headType(R)⟩@(Map G tail(R))

We thus derive headLabel(TT) ≡ headLabel(R).Then

headType(MkTableType R) ≡
XForm headType(R) ≡ ⟨tag : String; toStr : headType(R) → String⟩

Hence M .headLabel(M).tag : String. By a similar reasoning, we conclude r .recHeadLabel(M) :
headType(R). In Section 4.1, we will see more precisely how refinements augment the simple

type-level function applications in order to make precise the reasoning sketched above.

Generating Getters and Setters. As a final introductory example, we develop a generic func-

tionMkMut that generates a getter/setter wrapper for any mutable record (i.e. a record where all

its fields are of reference type). We first define the auxiliary type-levelMutableRec function, that
returns the mutable record type obtained from a record type R in terms of Map:

MutableRec :: ΠR :: Rec. {r :: Rec | lab(r) = lab(R)}
MutableRec ≜ Map (λr ::Type.ref r)

We then define the auxiliary type-level SetGet function, that returns the record type that exposes
the getter/setter interface generated from record type R:

SetGetRec :: ΠR :: Rec. {r :: Rec | lab(r) = set++lab(R) ∪ дet++lab(R)}
SetGetRec ≜ λR::Rec.

if nonEmpty(R) then
⟨дet++headLabel(R) : 1→ headType(R)⟩@
⟨set++headLabel(R) : headType(R) → 1⟩@
SetGetRec tail(R)

else ⟨⟩

Here, n++m denotes the name obtained by appending n to m, and n++S denotes the label set
obtained from S by prefixing every label in S with name n. The function SetGet is well kinded since
the refinement kind constraints imply that the resulting getter/setter interface type is well formed

(i.e. all labels distinct). We can finally depict the type and code of the MkMut function:

MkMut :: ∀R :: Rec.MutableRec R → SetGetRec R
MkMut ≜ ΛR::Rec.

λr :MutableRec R.
if nonEmpty(R) then
⟨дet++headLabel(R) = λx :1.!(r .recHeadLabel(R))⟩@
⟨set++headLabel(R) = λx :headType(R).r .recHeadLabel(R) := x⟩@
MkMut tail(R) recTail(r)

else ⟨⟩

For example, assuming r : MutableRec Person we have thatMkMut Person r computes a record

equivalent to:

⟨дetname = λx :1.!(r .name);
setname = λx :String.r .name := x ;
дetname = λx :1.!(r .name);
setaдe = λx :Int.r .aдe := x⟩

where (MkMut Person r) : SetGetRec Person.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Refinement Kinds 1:7

Kinds K ,K ′ ::= K | {t ::K | φ} | Πt :K .K ′ Refined and Dependent Kinds

K ::= Rec | Col | Fun | Ref | Nm Base Kinds

| Type | GenK

Types T , S,R ::= t | λt ::K .T | T S Type-level Functions

| µF : (Πt :K .K ′).λt ::K .T Structural Recursion

| ∀t ::K .T | tmap(T) S Polymorphism

| L | ⟨⟩ | ⟨L : T ⟩@S Record Type constructors

| headLabel(T) | headType(T) | tail(T) Record Type destructors

| T⋆ | colOf (T) Collection Types

| ref T | refOf (T) Reference Types

| T → S | dom(T) | img(T) Function Types

| if T :: K as t ⇒ S elseU Kind Case

| if φ thenT else S Property Test

| ⊥ | ⊤ Empty and Top Types

| Bool | 1 | . . . Basic Data Types

Refinements φ,ψ ::= P (T1, . . . ,Tn) Type Predicates

| φ ⊃ ψ | φ ∧ψ | . . . Propositional Logic

| T ≡ S :: K Equality

Fig. 1. Syntax of Kinds, Types and Refinements

3 A TYPE THEORYWITH KIND REFINEMENTS
Having given an informal overview of the various features and expressiveness of our theory, we

now formally develop our theory of refinement kinds, targeting an ML-like functional language

with a higher-order store and the appropriate reference types, collections (i.e. lists) and records.

The typing and kinding systems rely on type-level functions (from types to types) and a novel form

of subkinding and kind refinements. We first address our particular form of (sub)kinding and the

type-level operations enabled by this fine-grained view of kinds, addressing kind refinements and

their interaction types and type-level functions in Section 3.1.

Given that kinds are classifiers for types, we introduce a separate kind for each of the key type

constructs of the language. Thus, we have a kind for records, Rec, which classifies record types; a

kind Col, for collection types; a kind Fun, for function types; a kind Ref, for reference types; a kind
GenK for polymorphic function types (whose type parameter must be of kind K); and, a kind Nm
for labels in record types (and records). All of these are specialisations (i.e. subkinds) of the kind of

all (small) types, Type. We writeK for any such kind. The language of types (a type-level λ-calculus)
provides the expected constructors for the types described above, but crucially also introduces type

destructors that allow us to inspect the structure of types of a given kind and, in combination with

type-level functions and structural recursion, enable a form of typed meta-programming. Indeed,

our type language is essentially one of (inductive) structures and their various constructors and

destructors (and basic data types Bool and 1). The syntax of types and kinds is given in Figure 1.

Record Types. Our notion of record type, as explored in Section 2, is essentially a type-level list

of pairs of labels and types which maintains the invariant that all labels in a record must be distinct.

We thus have the type of empty records ⟨⟩, and the constructor ⟨L : T ⟩@R, which given a record

type R that does not contain the label L, generates a record type that is an extension of R with the

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Luís Caires and Bernardo Toninho

label L associated with type T . Record types are associated with three destructors: headLabel(T),
which projects the label of the head of the record T (when seen as a list); headType(T) which
projects the type at the head of the record T ; and tail(T) which produces the tail of the record T
(i.e. drops its first label and type pair). As we will see (Example 3.1), since our type-level λ-calculus
allows for (structural) recursion, we can define a suitable record projection type construct in terms

of these lower-level primitives.

Function Types and Polymorphism. Functions between terms of type T and S are typed by

the usual T → S . Given a function type T , we can inspect its domain and image via the destructors

dom(T) and img(T), respectively.
Polymorphic function types are represented by∀t ::K .T (with t bound inT , as usual). Note that the

kind annotation for the type variable t allows us to express not only general parametric polymorphic

functions (by specifying the kind as Type) but also some form of subkinding polymorphism, since

we can restrict the kind of t to a specialized basic kind such as Ref or Fun.
For instance, we can specify the type ∀t ::Fun.t → dom(t) → img(t) of functions that, given a

function type t , a function of such a type and a value in its domain produce a value in its image (i.e.

the type of function application). The destructor for such a type, tmap(T) S , takes a polymorphic

function type T (of functions from types of kind K to some type T ′) and a type S of kind K and

constructs the appropriately instantiated type T ′{S/t }.

Collections and References. The type of collections of elements of type T is written as T⋆
,

with the associated type destructor colOf (T), which projects out the type of the collection elements.

Similarly, reference types ref T are bundled with a destructor refOf (T) which determines the type

of of the referenced elements.

Kind Test. Just as many programming languages have a type case construct [Abadi et al. 1991]

that allows for the runtime testing of the type of a given expression, our λ-calculus of types has
a kind case construct, if T :: K as t ⇒ S elseU , which checks the kind of type T against kind K ,

computing to type S if the kinds match and toU otherwise. Combined with a term-level analogue,

such constructs enable ad-hoc polymorphism, insofar as we can express non-parametric function

types.

3.1 Type-level Functions and Refinements
The language of types that we have introduced up to this point consists essentially of a language of

tree-like structures and their various constructors and destructors. As we have mentioned, our type

language is actually a λ-calculus for the manipulation of such structures and so includes functions

from types to types, λt ::K .T , and their respective application, written T S . We also include a type-

level structural recursion operator µF : (Πt :K .K ′).λt ::K .T , which allows us to define recursive

type functions from kind K to K ′. While written as a fixpoint operator, we syntactically enforce

that recursive calls must always take structurally smaller arguments to ensure well-foundedness.

Type-level functions are dependently kinded, with kind Πt :K .K ′ (i.e. the kind of T in a type

λ-abstraction can refer to the type of its argument), where the dependencies manifest themselves in

kind refinements. Just as the concept of type refinements allow for rich type specifications through

the integration of predicates over values of a given type in the type structure, our notion of kind

refinements integrate predicates over types in the kind structure, enabling for the kinding system

to specify and enforce logical constraints on the structure of types. A kind refinement, written

{t ::K | φ}, where K is a basic kind, and φ is a logical formula (with t bound in φ), characterises
typesT of kindK such that the propertyφ holds ofT (i.e.φ{T /t } is true). The language of properties

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Refinement Kinds 1:9

φ consists of (type) predicates, propositional logic connectives and type equality, providing a form

of equational reasoning on types.

Such a seemingly simple extension already provides a significant boost in expressiveness. For

instance, by using equality in the refinement formula we can encode singleton-like patterns

such as {t ::Fun | img(t) ≡ Bool :: Type}, the kind of function types whose image is a Bool.
Moreover, by combining kind refinements and type-level functions, we can express non-trivial

type transformations in a fully typed (or kinded) way. For instance consider the following:

dropField ≜ λl :Nm.µF : (Πt :{r ::Rec | l ∈ lab(r)}. {r ::Rec | l < lab(r)}).λt ::{r ::Rec | l ∈ lab(r)}.
if headLabel(t) ≡ l :: Nm then tail(t) else ⟨headLabel(t) : headType(t)⟩@(F (tail(t)))

The function dropField above takes label l and a record type with a field labelled by l and removes

the corresponding field and type pair from the record type (recall that lab(r) denotes the refinement-

level set of labels of r). Such a function combines structural recursion (where tail(t) is correctly
deemed as structurally smaller than t) with our type-level refinement test, if φ thenT else S . We

note that the well-kindedness of such a function relies crucially on the ability to derive that, when

the record label headLabel(t) is not l , since we know that l must be in t , then tail(t) is still a record
type containing l (we make this kind of reasoning precise in Section 4.1).

3.2 Kinding and Type Equality
Having formally introduced the key components of our kind and type language, we now detail the

kinding and type equality of our theory, making precise the intuitions of the previous sections.

The kinding judgment is written Γ ⊢ T :: K , denoting that type T has kind K under the

assumptions in the structural context Γ. Contexts contain assumptions of the form t :K , x :T and

φ – t stands for a type of kind K , x stands for a term of type T and refinement φ is assumed to

hold, respectively. Kinding relies on a context well-formedness judgment, written Γ ⊢, a kind well-

formedness judgment Γ ⊢ K , subkinding judgment Γ ⊢ K ≤ K ′ and the refinement well-formedness

and entailment judgments, Γ ⊢ φ and Γ |= φ. Context well-formedness simply checks that all types,

kinds and refinements in Γ are well-formed. Kind well-formedness is defined in the standard way,

relying on refinement well-formedness (see Appendix A.1), which requires that formulae and types

in refinements must be well-formed. Subkinding codifies the informal reasoning from the beginning

of this section, specifying that all basic kinds are a specialization of Type; and captures equality of

kinds. Kind equality, written Γ ⊢ K ≡ K ′, identifies definitionally equal kinds, which due to the

presence of kind refinements requires reasoning about equivalent refinements (and the types that

may appear therein).

Kinding (and typing) presupposes the existence of a signature Σ that specifies the arities and

kindings of all type predicates, as well as any extensions to the reasoning principles of definitional

equality. Moreover, we assume the signature also contains the constants (and kinding) of Figure 2,

which is a form of “pre-kinding” for all the type destructors, indicating that they expect arguments

of the appropriate kinds and produce types of kind Type. We note that the three record type

destructors are only well-kinded when applied to a non-empty record type. As we will see, this

basic kinding can be further specialized by the kinding rules through kind refinements.

We now introduce the key kinding rules for the various types in our theory and their associated

definitional equality rules. The type equality judgment is written Γ |= T ≡ S :: K , denoting that T
and S are equal types of kind K .

Refinements, Type Properties and Destructors. A kind refinement is introduced by the rule

Γ |= φ{T /t } Γ ⊢ T :: K

Γ ⊢ T :: {t ::K | φ}
(kref)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Luís Caires and Bernardo Toninho

headLabel :: Πt :{r ::Rec | nonEmpty(r)}.Nm colOf :: Πt :Col.Type
headType :: Πt :{r ::Rec | nonEmpty(r)}.Type dom :: Πt :Fun.Type
tail :: Πt :{r ::Rec | nonEmpty(r)}.Rec img :: Πt :Fun.Type
refOf :: Πt :Ref.Type tmap :: Πt :GenK .Πs:K .Type

Fig. 2. Simple Kinding for Type Destructors

Given a type T of kind K and a valid property φ of T , then we are justified in stating that T is of

kind {t ::K | φ}. Crucially, since equality can be reflected in refinements, the rule above may be

used to derive refinements that specify the shape of the refined types, for instance, the expected

β-like equational reasoning for records allows us to derive ⟨ℓ : Bool → Bool⟩@⟨⟩ :: {t ::Rec |
headType(t) ≡ Bool→ Bool :: Type}. In general, we provide a form of equality elimination rule in

refinements, stating that (for a well-formed property φ) the validity of a property φ of some type T
is closed under type equality:

Γ |= T ≡ S :: K Γ,x : K ⊢ φ Γ |= φ{T /x }

Γ |= φ{S/x }
(r-eqelim)

As we have previously illustrated, properties can also be tested for validity in types through a

conditional construct if φ thenT else S . Provided that the property φ is well-formed, if T is of kind

K assuming φ and S of kind K assuming ¬φ, then the conditional test is well-kinded, as specified

by the rule (k-ite). The equality principals for the property test rely of validity of the specified

property, as expected (with a degenerate case where both branches are equal types).

Γ ⊢ φ Γ,φ ⊢ T :: K Γ,¬φ ⊢ S :: K

Γ ⊢ if φ thenT else S :: K
(k-ite)

Γ |= φ Γ,φ ⊢ T1 :: K Γ,¬φ ⊢ T2 :: K

Γ |= if φ thenT1 elseT2 ≡ T1 :: K
(eq-iteT)

Γ |= ¬φ Γ,φ ⊢ T1 :: K Γ,¬φ ⊢ T2 :: K

Γ |= if φ thenT1 elseT2 ≡ T2 :: K
(eq-iteE)

Γ ⊢ φ Γ,φ ⊢ T :: K Γ,¬φ ⊢ T :: K

Γ |= if φ thenT elseT ≡ T :: K
(eq-iteEq)

Given the basic kinding for type destructors that is present in the base signature Σ, we further
generalise the kinding of type destructors (and their associated equality principles) via kind refine-

ment. For conciseness, we write elimK to stand for any destructor for kind K (e.g. if K is GenK
then elimK is tmap, if K is Rec then elimK can be headLabel, headType or tail, and so on):

Γ ⊢ T :: {t ::K | elimK (t) ≡ T ′ :: K ′} Γ ⊢ T ′{T /t } :: K ′{T /t }

Γ ⊢ elimK (T) :: K ′{T /t }
(k-elim)

Γ |= T ≡ S :: {t ::K | elimK (T) ≡ T ′ :: K ′} Γ ⊢ T ′{T /t } :: K ′{T /t }

Γ |= elimK (T) ≡ T ′{T /t } :: K ′{T /t }
(eq-elim)

The kinding and corresponding equality rules above allow for equalities in refinements that mention

destructors to be reflected in the kinding (and equalities) of the given destructor (the instantiation

of t with T is required to ensure well-formedness of kinds and types outside the refinement).

These principles become particularly interesting when reasoning from refinements that appear

in type variables. For instance, the type ∀t ::{ f :Fun | dom(f) ≡ Bool :: Type ∧ img(f) ≡ Bool ::
Type}.t → Bool can be used to type the term Λt ::{ f :Fun | dom(f) ≡ Bool :: Type ∧ img(f) ≡
Bool :: Type}.λf :t .(f true), where Λ is the binder for polymorphic functions, as usual. Crucially,

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Refinement Kinds 1:11

typing (and kinding) exploits not only the fact that we know that the type variable t stands for
a function type, but also the fact that the domain and codomain are the type Bool, which then

warrants the application of f to a boolean in order to produce a boolean, despite the basic kinding

information only specifying that f is a function.

Type Functions and FunctionTypes. The rules that govern the kinding of type-level functions
are the standard kinding rules from a suitable type theory (to streamline the presentation, we omit

the congruence rules for equality):

Γ ⊢ K Γ, t :K ⊢ T :: K ′

Γ ⊢ λt ::K .T :: Πt :K .K ′
(k-fun)

Γ ⊢ T :: Πt :K .K ′ Γ ⊢ S :: K

Γ ⊢ T S :: K ′{S/t }
(k-app)

t :K ∈ Γ Γ ⊢

Γ ⊢ t :: K
(k-var)

Γ, t :K ⊢ T :: K ′ Γ ⊢ S :: K

Γ |= (λt ::K .T) S ≡ T {S/t } :: K ′{S/t }
(eq-funapp)

Structural recursive functions, defined via a fixpoint construct, are defined by the following

rules:

Γ, F :Πt :K .K ′, t :K ⊢ T :: K ′ structural(T , F , t)

Γ ⊢ µF : (Πt :K .K ′).λt ::K .T :: Πt :K .K ′
(k-fix)

Γ, t :K1 ⊢ K2 Γ, F :Πt :K1.K2, t :K1 ⊢ T :: K2 Γ ⊢ S :: K1 structural(T , F , t)

Γ |= (µF : (Πt :K1.K2).λt ::K1.T) S ≡ T {S/t }{(µF : (Πt :K1.K2).λt ::K1.T)/F } :: K2{S/t }
(eq-fixunf)

The predicate structural(T , F , t) enforces that calls of F in T must take arguments that are struc-

turally smaller than t (i.e. the arguments must be syntactically equal to t applied to a destructor).

More precisely, the predicate structural(T , F , t) holds iff all occurrences of F in T are applied to

terms smaller than t , where the notion of size is given by elimK (t) < t , with K is any basic kind,

with the exception of GenK , for any K .
The equality rule allows for the appropriate unfolding of the recursion to take place. Polymorphic

function types are assigned kind GenK , as expected, and the β-like equality principle for the

elimination form tmap(∀t ::K .T) S performs the appropriate instantiation of t with S in T .

Γ ⊢ K Γ, t :K ⊢ T :: K

Γ ⊢ ∀t ::K .T :: GenK
(k-∀)

Γ, t :K ⊢ T :: K Γ ⊢ S :: K

Γ |= tmap(∀t ::K .T) S ≡ T {S/t } :: Type
(eq-tmap)

Our manipulation of function types as essentially a pair of types (a domain type and an image type)

gives rise to the following natural equalities:

Γ ⊢ T :: K Γ ⊢ S :: K ′

Γ |= dom(T → S) ≡ T :: Type
(eq-dom)

Γ ⊢ T :: K Γ ⊢ S :: K ′

Γ |= img(T → S) ≡ S :: Type
(eq-img)

Records and Labels. The kinding rules the govern record type constructors and field labels are:

(k-recnil)

Γ ⊢

Γ ⊢ ⟨⟩ :: Rec

(k-reccons)

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t : Rec | L < lab(t)}

Γ ⊢ ⟨L : T ⟩@S :: Rec

(k-label)

Γ ⊢ ℓ ∈ N

Γ ⊢ ℓ :: Nm

The rule for non-empty records crucially requires that the tail S of the record type must not
contain the field label L. The equality principles for the three destructors are fairly straightforward,

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Luís Caires and Bernardo Toninho

projecting out the appropriate record type component, provided the record is well-kinded.

(eq-headlabel)

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t : Rec | L < lab(t)}

Γ |= headLabel(⟨L : T ⟩@S) ≡ L :: Nm

(eq-headtype)

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t : Rec | L < lab(t)}

Γ |= headType(⟨L : T ⟩@S) ≡ T :: Type

(eq-tail)

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t : Rec | L < lab(t)}

Γ |= tail(⟨L : T ⟩@S) ≡ S :: Rec

Collections and Reference Types. At the level of kinding, there is little difference between a

collection type and a reference type. They both denote a structure that “wraps” a single type (the

type of the collection elements for the former and the type of the referenced values in the latter).

Thus, the respective destructor simply unwraps the underlying type.

(k-col)

Γ ⊢ T :: K

Γ ⊢ T⋆
:: Col

(k-ref)

Γ ⊢ T :: K

Γ ⊢ ref T :: Ref

(eq-col)

Γ ⊢ T :: K

Γ |= colOf (T⋆) ≡ T :: Type

(eq-ref)

Γ ⊢ T :: K

Γ |= refOf (ref T) ≡ T :: Type

Conversion and Subkinding. As we have informally described earlier, our theory of kinds is

predicated on the idea that we can distinguish between the different types of our language at the

kind level, such that given a general kind Type, the kind of record types Rec is a specialisation
of Type, and similarly for the other type-level base constructs of the theory. We formalise this

idea through a subkinding relation, which also internalises kind equality, and the corresponding

subsumption rule:

Γ ⊢ T :: K Γ ⊢ K ≤ K ′

Γ ⊢ T :: K ′
(K-sub)

Γ ⊢ K ≡ K ′

Γ ⊢ K ≤ K ′
(sub-eq)

Γ ⊢

Γ ⊢ K ≤ Type
(sub-type)

Γ ⊢ K Γ, t :K ⊢ φ

Γ ⊢ {t ::K | φ} ≤ K
(sub-refkind)

Γ ⊢ K ≤ K ′ Γ, t :K ′ |= φ ≡ φ ′

Γ ⊢ {t ::K | φ} ≤ {t : K ′ | φ ′}
(sub-ref)

Rule (sub-refkind) specifies that a refined kind is always a subkind of its unrefined variant. Rule

(sub-ref) allows for subkinding between refined kinds, by requiring that the basic kind respects

subkinding and that the refinements are equivalent (i.e. equi-provable).

Kind Case and Bottom. The kind case type-level mechanism is kinded in a natural way (rule

(k-kcase)), accounting for the case where the kind of type T matches the specified kind K ′ with

type S and with typeU otherwise.

Γ ⊢ K Γ ⊢ T :: K ′′ Γ, t :K ⊢ S :: K ′ Γ ⊢ U :: K ′

Γ ⊢ if T :: K as t ⇒ S elseU :: K ′
(k-kcase)

Γ |= ⊥ Γ ⊢ K

Γ ⊢ ⊥ :: K
(k-bot)

Our treatment of ⊥ allows for ⊥ to be of any (well-formed) kind, provided one can conclude ⊥

is valid. The associated equality principles implement the kind case by testing the specified kind

against the derivable kind of type T . When ⊥ is provable from Γ then we can derive any equality

via rule (eq-bot).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Refinement Kinds 1:13

Γ |= φ{T /t } Γ ⊢ T :: K

Γ ⊢ T :: {t ::K | φ}
(kref)

Γ |= T ≡ S :: K Γ,x : K ⊢ φ Γ |= φ{T /x }

Γ |= φ{S/x }
(r-eqelim)

Γ ⊢ φ Γ,φ ⊢ T :: K Γ,¬φ ⊢ S :: K

Γ ⊢ if φ thenT else S :: K
(k-ite)

Γ |= φ Γ,φ ⊢ T1 :: K Γ,¬φ ⊢ T2 :: K

Γ |= if φ thenT1 elseT2 ≡ T1 :: K
(eq-iteT)

Γ |= ¬φ Γ,φ ⊢ T1 :: K Γ,¬φ ⊢ T2 :: K

Γ |= if φ thenT1 elseT2 ≡ T2 :: K
(eq-iteE)

Γ ⊢ φ Γ,φ ⊢ T :: K Γ,¬φ ⊢ T :: K

Γ |= if φ thenT elseT ≡ T :: K
(eq-iteEq)

Γ ⊢ T :: {t : K | elimK (t) ≡ T ′ :: K ′} Γ ⊢ T ′{T /t } :: K ′{T /t }

Γ ⊢ elimK (T) :: K ′{T /t }
(k-elim)

Γ |= T ≡ S :: {t ::K | elimK (T) ≡ T ′ :: K ′} Γ ⊢ T ′{T /t } :: K ′{T /t }

Γ |= elimK (T) ≡ T ′{T /t } :: K ′{T /t }
(eq-elim)

Γ ⊢ K Γ, t :K ⊢ T :: K ′

Γ ⊢ λt :K .T :: Πt :K .K ′
(k-fun)

Γ ⊢ T :: Πt :K .K ′ Γ ⊢ S :: K

Γ ⊢ T S :: K ′{S/t }
(k-app)

t :K ∈ Γ Γ ⊢

Γ ⊢ t :: K
(k-var)

Γ, t :K ⊢ T :: K ′ Γ ⊢ S :: K

Γ |= (λt ::K .T) S ≡ T {S/t } :: K ′{S/t }
(eq-funapp)

Γ, F :Πt :K .K ′, t :K ⊢ T :: K ′ structural(T , F , t)

Γ ⊢ µF : (Πt :K .K ′).λt ::K .T :: Πt :K .K ′
(k-fix)

Γ, t :K1 ⊢ K2 Γ, F :Πt :K1.K2, t :K1 ⊢ T :: K2 Γ ⊢ S :: K1 structural(T , F , t)

Γ |= (µF : (Πt :K1.K2).λt ::K1.T) S ≡ T {S/t }{(µF : (Πt :K1.K2).λt ::K1.T)/F } :: K2{S/t }
(eq-fixunf)

Fig. 3. Kinding and Type Equality rules – 1 (Excerpt)

Γ ⊢ T :: K Γ, t :K ⊢ S :: K ′ Γ ⊢ U :: K ′

Γ |= if T :: K as t ⇒ S elseU ≡ S {T /t } :: K ′
(eq-kcaseT)

Γ |= ⊥ Γ ⊢ T :: K

Γ |= ⊥ ≡ T :: K
(eq-bot)

Γ ⊢ T :: K0 Γ ⊢ K0 . K Γ, t :K ⊢ S :: K ′ Γ ⊢ U :: K ′

Γ |= if T :: K as t ⇒ S elseU ≡ U :: K ′
(eq-kcaseF)

A summary of the kinding and type equality rules is given in Figures 3 and 4.

Example 3.1 (Representing Record Field Selection in types and values). With the development

presented up to this point we can already implement the more usual record selection operator T .L,
where T is a record type and L is a field label of T . We represent such a construct as a type-level

function that given some L :: Nm produces a recursive type-function that essentially iterates over

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Luís Caires and Bernardo Toninho

Γ ⊢ K Γ, t :K ⊢ T :: K

Γ ⊢ ∀t :K .T :: GenK
(k-∀)

Γ, t :K ⊢ T :: K Γ ⊢ S :: K

Γ |= tmap(∀t ::K .T) S ≡ T {S/t } :: Type
(eq-tmap)

Γ ⊢ T :: K Γ ⊢ S :: K ′

Γ |= dom(T → S) ≡ T :: Type
(eq-dom)

Γ ⊢ T :: K Γ ⊢ S :: K ′

Γ |= img(T → S) ≡ S :: Type
(eq-img)

(k-recnil)

Γ ⊢

Γ ⊢ ⟨⟩ :: Rec

(k-reccons)

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t : Rec | L < lab(t)}

Γ ⊢ ⟨L : T ⟩@S :: Rec

(k-label)

Γ ⊢ ℓ ∈ N

Γ ⊢ ℓ :: Nm

(eq-headlabel)

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t : Rec | L < lab(t)}

Γ |= headLabel(⟨L : T ⟩@S) ≡ L :: Nm

(eq-headtype)

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t : Rec | L < lab(t)}

Γ |= headType(⟨L : T ⟩@S) ≡ T :: Type

(eq-tail)

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t : Rec | L < lab(t)}

Γ |= tail(⟨L : T ⟩@S) ≡ S :: Rec

(k-col)

Γ ⊢ T :: K

Γ ⊢ T⋆
:: Col

(k-ref)

Γ ⊢ T :: K

Γ ⊢ ref T :: Ref

(eq-col)

Γ ⊢ T :: K

Γ |= colOf (T⋆) ≡ T :: Type

(eq-ref)

Γ ⊢ T :: K

Γ |= refOf (ref T) ≡ T :: Type

Γ ⊢ T :: K Γ ⊢ K ≤ K ′

Γ ⊢ T :: K ′
(K-sub)

Γ ⊢ K ≡ K ′

Γ ⊢ K ≤ K ′
(sub-eq)

Γ ⊢

Γ ⊢ K ≤ Type
(sub-type)

Γ ⊢ K Γ, t :K ⊢ φ

Γ ⊢ {t ::K | φ} ≤ K
(sub-refkind)

Γ ⊢ K ≤ K ′ Γ, t :K ′ |= φ ≡ φ ′

Γ ⊢ {t ::K | φ} ≤ {t : K ′ | φ ′}
(sub-ref)

Fig. 4. Kinding and Type Equality rules – 2 (Excerpt)

a type record of kind {r ::Rec | ℓ ∈ lab(r)}:

λL::Nm.µF : (Πt :{r ::Rec | L ∈ lab(r)}. Type).λt ::{r ::Rec | L ∈ lab(r)}.
if headLabel(t) ≡ L :: Nm then headType(t) else F (tail(t))

The function iteratively tests the label at the head of the record against L, producing the type at

the head of the record when the labels match and recursing otherwise. It is instructive to consider

the kinding for the property test construct (let Γ0 be L:Nm, F :Πt :{r ::Rec | L ∈ lab(r)}.Type, t :{r :Rec |
L ∈ lab(r)}):

Γ0 ⊢ headLabel(t) ≡ L :: Nm D E

Γ0 ⊢ if headLabel(t) ≡ L :: Nm then headType(t) else F (tail(t)) :: Type
(k-ite)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Refinement Kinds 1:15

Terms M,N ::= x | λx :T .M | M N Functions

| Λt ::K .M | M[T] Type Abstraction and Application

| ⟨⟩ | ⟨ℓ = M⟩@N | recTail(M)
| recHeadLabel(M) | recHeadTerm(M) Records

| ⋄ Unit Element

| if M thenN1 elseN2

| true | false Booleans

| if φ thenM elseN Property Test

| if T :: K as t ⇒ M elseN Kind Case

| ε | M :: N
| colHead(M) | colTail(M) Collections

| ref M | !M | M := N | l References

| µF :T .M Recursion

Fig. 5. Syntax of Terms

whereD is a straightforward derivation of Γ0, headLabel(t) ≡ L :: Nm ⊢ headType(t) :: Type and E
is a derivation of Γ0,¬headLabel(t) ≡ L :: Nm ⊢ F (tail(t)) :: Type. To show that headLabel(t) ≡ L
is well-formed we must be able to derive t :: {r ::Rec | nonEmpty(r)} from t :: {r ::Rec | L ∈ lab(r)},
which is achieved via the reasoning principles built into our theory of refinements (see Section 4.1).

Similarly, the derivation E requires the ability to conclude that tail(t) :: {r ::Rec | L ∈ lab(r)}, using
the information that t :: {r ::Rec | L ∈ lab(r)} and ¬headLabel(t) ≡ L :: Nm, which is also achieved

via logical refinement reasoning.

4 A PROGRAMMING LANGUAGEWITH KIND REFINEMENTS
Having covered the key details of the kinding system and how type equality captures the appropriate

type-level computations induced by our type manipulation constructs, we finally introduce the

syntax and typing for our programming language per se.
The syntax of terms is given in Figure 5. Most constructs are standard. We highlight our treatment

of records, mirroring that of record types, as (heterogeneous) lists of pairings of field labels and

terms equipped with the appropriate destructors. Collections are built from the empty collection

ε and the concatenation of an elementM with a collection N ,M :: N , with the usual destructors

(dubbed colHead(M) and colTail(M)) that project the head or the tail of such an homogeneous list.

We allow for recursive terms via a fixpoint construct µF :T .M , which we enforce to be structural

(i.e. identical to the type-level recursion) to simplify the theory, noting that since there are no

dependencies from terms in types, non-termination in the term language does not affect the overall

soundness of the development. We also mirror the type-level property test and kind case constructs

in the term language as if φ thenM elseN and if T :: K as t ⇒ M elseN , respectively. As we have

initially stated, our language has general higher-order references, represented with the constructs

ref M , !M andM := N , which create a reference toM , dereference a referenceM and assign N to

the referenceM , respectively. As usual in languages with a store, we use l to stand for the runtime

values of memory locations.

The typing rules for the language are given in Figure 6. The typing judgment is written as

Γ ⊢S M : T , where S is a location typing environment. We write Γ; S ⊢ to state that S is a valid

mapping from locations to well-kinded types, according to the typing context Γ.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Luís Caires and Bernardo Toninho

(var)

(x :T) ∈ Γ Γ; S ⊢ Γ ⊢

Γ ⊢S x : T

(1I)
Γ ⊢

Γ ⊢ ⋄ : 1

(→I)

Γ ⊢S T :: Type Γ,x :T ⊢S M : U

Γ ⊢S λx :T .M : T → U

(→E)

Γ ⊢ T1 :: {t ::Fun | dom(t) ≡ T2 :: K ∧ img(t) = U :: K ′}

Γ ⊢S M : T1 Γ ⊢S N : T2

Γ ⊢S M N : U {T1/t }

(∀I)

Γ ⊢ K Γ, t :K ⊢S M : T

Γ ⊢S Λt ::K .M : ∀t ::K .T

(∀E)

Γ ⊢ T ′ :: { f ::GenK | tmap(f)T ≡ U :: K }

Γ ⊢S M : T ′ Γ ⊢ T :: K Γ ⊢ U :: K

Γ ⊢S M[T] : U

(⟨⟩I1)

Γ ⊢ Γ; S ⊢

Γ ⊢S ⟨⟩ : ⟨⟩

(⟨⟩I2)

Γ ⊢S L :: Nm Γ ⊢ S :: {t ::Rec | L < lab(t)} Γ ⊢S M : T Γ ⊢S N : U

Γ ⊢S ⟨L = M⟩@N : ⟨L : T ⟩@U

(reclabel)

Γ ⊢S M : U Γ ⊢ U :: {t ::Rec | headLabel(t) ≡ L :: Nm}

Γ ⊢S recHeadLabel(M) : L{U /t }

(recterm)

Γ ⊢S M : U Γ ⊢ U :: {t ::Rec | headType(t) ≡ T :: K }

Γ ⊢S recHeadTerm(M) : T {U /t }

(rectail)

Γ ⊢S M : U Γ ⊢ U :: {t ::Rec | tail(t) ≡ T :: K }

Γ ⊢S tail(M) : T {U /t }

(true)

Γ ⊢ Γ; S ⊢

Γ ⊢S true : Bool

(false)

Γ ⊢ Γ; S ⊢

Γ ⊢S false : Bool

(bool-ite)

Γ ⊢S M : Bool Γ ⊢S N1 : T Γ ⊢S N2 : T

Γ ⊢S if M thenN1 elseN2 : T

(emp)

Γ ⊢ T :: Type Γ; S ⊢

Γ ⊢S ε : T
⋆

(cons)

Γ ⊢ U :: {t ::Col | colOf (t) ≡ T :: K }

Γ ⊢S M : T {U /t } ΓS ⊢ N : U

Γ ⊢S M :: N : U

(head)

Γ ⊢ Tc :: {t ::Col | colOf (t) ≡ T :: K }

Γ ⊢ M : Tc

Γ ⊢ colHead(M) : T

(tail)

Γ ⊢ M : Tc Γ ⊢ Tc :: {t ::Col | colOf (t) ≡ T :: K }

Γ ⊢ colTail(M) : T {Tc/t }

(loc)

Γ ⊢ Γ; S ⊢ S (l) = T

Γ ⊢S l : ref T

(ref)

Γ ⊢S M : T

Γ ⊢S ref M : ref T

(deref)

Γ ⊢ U :: {t ::Ref | refOf (t) ≡ T :: K }

Γ ⊢S M : U

Γ ⊢S !M : T {U /t }

(assign)

Γ ⊢ U :: {t ::Ref | refOf (t) ≡ T :: K }

Γ ⊢S M : U Γ ⊢S N : T

Γ ⊢S M := N : 1

(prop-ite)

Γ ⊢ φ Γ,φ ⊢S M : T1 Γ,¬φ ⊢S N : T2

Γ ⊢S if φ thenM elseN : if φ thenT1 elseT2

(kindcase)

Γ ⊢ T :: K ′ Γ ⊢ K Γ, t :K ⊢S M : U Γ ⊢S N : U

Γ ⊢S if T :: K as t ⇒ M elseN : U

(conv)

Γ ⊢S M : U Γ |= U ≡ T :: K

Γ ⊢S M : T

(fix)

Γ, F : T ⊢S M : T structural(F ,M)

Γ ⊢S µF :T .M : T

Fig. 6. Typing Rules

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Refinement Kinds 1:17

The main difference with respect to the standard rules for a language of this nature appears in

the rules for the various elimination forms. Consider the function application rule:

Γ ⊢ T1 :: {t ::Fun | dom(t) ≡ T2 :: K ∧ img(t) ≡ U :: K ′}

Γ ⊢S M : T1 Γ ⊢S N : T2

Γ ⊢S M N : U {T1/t }
(→E)

Instead of stating thatM is of type T2 → U , we use the refinement kind information to specify that

M is of some type T1 whose kind is Fun with domain type T2 and image type U . The formulation

via kind refinement subsumes the standard formulation, since (assumingT2 andU are well-formed)

we can trivially derive that T2 → U :: { f :Fun | dom(t) ≡ T2 :: K ∧ img(t) ≡ U :: K ′} from the

equality principles of the function type destructors. The key advantage in our presentation is that

it allows us to derive typings of the form

⊢ Λs:Type.Λt :{ f ::Fun | dom(f) ≡ s :: Type ∧ img(f) ≡ Bool :: Type}.
λx :t .λy:s .(x y) : ∀s:Type.∀t ::{ f ::Fun | dom(f) ≡ s :: Type ∧ img(f) ≡ Bool :: Type}.Bool

Despite not knowing the exact form of the function type that is to be instantiated for t , by specifying
its domain and image types we can type applications of terms of type t correctly. This is in contrast

with what happens in existing type theories (even those with sophisticated dependent types such

as Agda [Norell 2007] or that of Coq [CoqDevelopmentTeam 2004]), where the leveraging of

dependent types, explicit equality proofs and equality elimination would be needed to provide an

“equivalently” typed term. Thus, all our elimination rules follow this general pattern, where we

exploit the kind of the type of the term being deconstructed to inform the typing. We also highlight

the typing of the property test term construct,

(prop-ite)

Γ ⊢ φ Γ,φ ⊢S M : T1 Γ,¬φ ⊢S N : T2

Γ ⊢S if φ thenM elseN : if φ thenT1 elseT2

which types the term if φ thenM elseN with the type if φ thenT1 elseT2 and thus allows for a

conditional branching where the types of the branches differ. Rule (kindcase) mirrors the equivalent

rule for the type-level kind case, typing the term if T :: K as t ⇒ M elseN with the type U of

both M and N but testing the kind of type T against K . Such a construct enables us to define

non-parametric polymorphic functions, and introduce forms of ad-hoc polymorphism. For instance,

we can derive the following:

Λs::Type.λx :s .if s :: Ref as t ⇒ (if refOf (t) ≡ Int :: Type then !x else 0) else 0 : ∀s::Type.s → Int

The function above takes a type s , a term x of that type and, if s is of kind Ref such that s is a
reference type for integers (note the use of reflection using destructor refOf (−) on type s), returns
!x , otherwise simply returns 0. The typing exploits the equality rule for the property test where

both branches are the same type.

Finally, as expected, the type conversion rule (conv) allows us to coerce between equal types of

a basic kind, allowing for type-level computation to manifest itself in the typing of terms.

Example 4.1 (Record Selection). Using the record selection type of Example 3.1 we can construct a

term-level analogue of record selection. Given a label L and a termM of typeT of kind {r ::Rec | L ∈
r }, we define the record selection constructM .L as (for conciseness, let R = {r ::Rec | L ∈ lab(r)}):

M .L ≜ (µF :∀t :: R .t → (t .L).Λt :: R .λx :t .
if headLabel(t) ≡ L :: Nm then recHeadTerm(x) else F [tail(t)](tail(x)))T M

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Luís Caires and Bernardo Toninho

such thatM .L : T .L. The typing requires crucial use of type conversion to allow for the unfolding

of the recursive type function to take place (let Γ0 be F :∀t :: R .t → (t .L),x :T):

(conv)

D Γ0 |= if headLabel(T) ≡ L :: Nm then headType(T) else tail(T).L ≡ T .L :: Type

Γ0 ⊢ if headLabel(T) ≡ L :: Nm then recHeadTerm(x) else F [tail(T)](tail(x)) : T .L

with D a derivation of

Γ0 ⊢ if (headLabel(T) ≡ L :: Nm) then recHeadTerm(x) else F [tail(T)](tail(x)) : T0

where T0 is if (headLabel(T) ≡ L :: Nm) then headType(T) else tail(T).L, requiring a similar ex-

tended equational reasoning to that of Example 3.1. Specifically, in the then branch we must show

that Γ0, headLabel(T) ≡ L :: Nm ⊢ recHeadTerm(x) : headType(T), which is derivable from x :T
and T :: {r ::Rec | headType(r) ≡ headType(r) :: Type} – the latter following from refinement and

reflexivity of equality – via typing rule (recterm).

The else branch requires showing that Γ0,¬headLabel(T) ≡ L :: Nm ⊢ F [tail(T)](tail(x)) :

tail(T).L, which is derivable from F : ∀t :: R .t → (t .L) and x :T as follows: tail(T) :: R is follows

from ¬headLabel(T) ≡ L and T :: R (see Section 4.1), thus F [tail(T)] : tail(T) → tail(T).L. Since
tail(x) : tail(T) from x : T and T :: {r ::Rec | tail(t) ≡ tail(t) :: Rec} via rule (rectail), we conclude
using the application rule.

Thus, combining the type and term-level record projection constructs we have that the following

is admissible:

Γ ⊢ L :: Nm Γ ⊢ M : T Γ ⊢ T :: {r ::Rec | L ∈ lab(r)}

Γ ⊢ M .L : T .L

4.1 Reasoning in Refinements
In the various examples and code snippets throughout this paper we have used reasoning princi-

ples on refinements (and the equalities present therein) that go beyond the standard definitional

equality principles of β-conversion of types (i.e. type-level computation combined with congruence

principles).

From a foundational point of view, enriching the type-theoretic definitional equality (i.e. the

internal equality of the theory that does not require the explicit construction of proof objects)

beyond the simple principles of β-conversion and related computation principles can easily make

type-checking undecidable. The tension between the power and decidability of definitional equality

is essentially the major design choice of any type theory. Broadly speaking, type theories either

have a very powerful and undecidable definitional equality (i.e. extensional type theories) or a

limited but decidable definitional equality (i.e. intensional type theories) [Hofmann 1997]. For

instance, the theories underlying Coq and Agda fall under the latter category, whereas the theory

underlying a system such as those in the NuPRL family [Constable et al. 1986] are of the former

variety.

Languages with refinement types such as Liquid Haskell [Vazou et al. 2014], F-Star [Swamy

et al. 2011] (or with constrained forms of dependent types such as Dependent ML [Xi 2007]) live

somewhere in the middle of the spectrum, effectively equipping types with a richer notion of

equality (via the automated reasoning associated with the logic of refinements) but disallowing the

full power of extensional theories in order to preserve decidability of type-checking. Our approach

follows in this tradition, and so we allow for limited forms of additional logical reasoning on

refinements, extending equality with axiom schemas that pertain to the manipulation of type-level

records and finite sets of record labels, as well as (decidable) predicates on types which are left

unspecified since they can be defined according to the specific domain-specific needs. Thus, the full

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Refinement Kinds 1:19

R ≡ ⟨⟩ ∨ R ≡ ⟨headLabel(R) : headType(R)⟩@tail(R) (Rec-EmpOrCons)

R ≡ ⟨⟩ ∨ headLabel(R) < lab(tail(R)) (Rec-DisjointLabels)

L < lab(⟨⟩) (Lab-NotInEmpty)

L ∈ lab(R) ⇔ (L ≡ headLabel(R) ∨ L ∈ lab(tail(R))) (Lab-InHeadTail)

L ≡ L′ ⇔ N++L ≡ N++L′ (LabConcatEq)

lab(R) = lab(L) ∧ L ∈ lab(R) ⇒ L ∈ lab(L) (LabelSet-InEq)

L ∈ lab(S) ⇔ N++L ∈ N++lab(S) (LabConcat-SetConcat)

lab(R) = lab(L) ⇔ N++lab(R) = N++lab(L) (LabelSet-Concat)

Fig. 7. Axiom Schemas for Record Types and Labels

logic of refinements consists of (classical) propositional logic, conversion of types and the reasoning

that follows from type predicates and the axiom schemas of Figure 7.

We adopt the following notational conventions: capital letters R, S,L,N stand for universally

quantified objects of the appropriate kind (omitted for conciseness); as mentioned in Section 2,

lab(R) stands for a refinement level operation that given a record R produces a finite set containing

all the field labels of R; field labels can be concatenated using operation N++L, appending L to N ,

which is overloaded on finite sets of labels (e.g. N++lab(R), denoting the set obtained by prefixing

N to all labels in lab(R)). The (label) set operations of membership test L ∈ S , apartness S#S ′,
equality S = S and union S ∪ S ′ have the obvious meanings and their axiomatization is omitted for

conciseness. Finally, the predicate nonEmpty(R) is defined as notation for ¬(R ≡ ⟨⟩).
Thus, axiom (Rec-EmpOrCons) characterizes the fact that a record type must be the empty

record or the concatenation of its head elements to its tail; axiom (Rec-DisjointLabels) codifies

the disjointness principle of record field labels, where in all but the empty record, the label at

the head of a record cannot be in the label set of its tail; Axioms (Lab-NotInEmpty) and (Lab-

InHeadTail) specify that no label is in the label set of the empty record and moreover, a label is in

the label set of R iff it is the label at the head of the record or in the label set of the tail of R; axiom
(LabConcatEq) specifies label or name concatenation; axiom (LabelSet-InEq) allows for combined

reasoning of inclusion and label set equality; finally, the axioms (LabConcat-SetConcat) and

(LabelSet-Concat) deal with field or name concatenation, respectively specifying that a label L
being a member of the label set of S is equivalent to the prefixing of N to L being a member of

the (set-level) concatenation on N to the set of labels of S , and that labels sets are closed under

prefixing.

All the various examples throughout the paper are derivable via the reasoning principles codified

above. For instance, as mentioned in Example 4.1, given L ∈ lab(T) and ¬(headLabel(T) ≡ L) we
can derive that L ∈ lab(tail(T)) through axiom (Lab-InHeadTail) and some basic propositional

reasoning. Similarly, in Example 3.1 we derive nonEmpty(t) from L ∈ lab(t) via axiom (Lab-

NotInEmpty) and propositional reasoning. In the XML table example of Section 2, we derive

nonEmpty(TT) from nonEmpty(R) and lab(TT) = lab(R) via (LabelSet-InEq).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Luís Caires and Bernardo Toninho

5 OPERATIONAL SEMANTICS AND METATHEORY
We now formulate the operational semantics of our language and develop the standard type safety

results in terms of uniqueness of types, type preservation and progress.

Since the programming language includes a higher-order store, we formulate its semantics in a

(small-step) store-based reduction semantics. Recalling that the syntax of the language includes the

runtime representation of store locations l , we represent the store (H ,H ′) as a finite map from labels

l to values v . Given that kinding and refinement information is needed at runtime for the property

and kind test constructs, we tacitly thread a typing environment in the reduction semantics.

Moreover, since types in our language are themselves structured objects with computational

significance, we make use of a type reduction relation, written T → T ′, defined as a call-by-

value reduction semantics on types given by orienting the type equality rules of Figures 3 and 4,

excluding rule (eq-elim), left-to-right, plus congruence rules (for the sake of brevity, and due to its

straightforward nature, we omit a complete definition of type reduction). It is convenient to define

a notion of type value, denoted by Tv , Sv and given by the following grammar:

Tv , Sv ::= λt ::K .T | ∀t ::K .T | ℓ | ⟨⟩ | ⟨ℓ : Tv ⟩@Sv | Tv
⋆ | ref Tv | Tv → Sv | ⊥ | Bool | 1 | t

We note that it follows naturally that type reduction is strongly normalizing. The values of the

term language are defined by the grammar:

v,v ′ ::= true | false | ⟨⟩ | ⟨ℓ = v⟩@v ′ | λx :T .M | Λt ::K .M | v :: v ′ | ε | l

Values consist of the booleans true and false (extensions to other basic data types are straightforward
as usual); the empty record ⟨⟩; the non-empty record that assigns fields to values, ⟨ℓ = v⟩@v ′; the
empty collection, ε , and the non-empty collection of values,v :: v ′; as well as type and λ-abstraction.
For convenience of notation we write ⟨ℓ1 : T1, . . . , ℓn : Tn⟩ for ⟨ℓ1 : T1⟩@ . . .@⟨ℓn : Tn⟩@⟨⟩, and
similarly ⟨ℓ1 = M1, . . . , ℓn = Mn⟩ for ⟨ℓ1 = M1⟩@ · · ·@⟨ℓn = Mn⟩@⟨⟩.

The operational semantics are defined in terms of the judgment ⟨H ;M⟩ −→ ⟨H ′;M ′⟩, indicating
that term M with store H reduces to M ′, resulting in the store H ′. For conciseness, we omit

congruence rules such as:

(R-RecConsL)

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; ⟨ℓ = M⟩@N ⟩ −→ ⟨H ′; ⟨ℓ = M ′⟩@N ⟩

where the record field labelled by ℓ is evaluated (and the resulting modifications in store H to H ′

are propagated accordingly). The reduction rules enforce a call-by-value, left-to-right evaluation

order and are listed in Figure 8 (note that we require types occurring in an active position to be first

reduced to a type value, following the call-by-value discipline). We refer the reader to Appendix B

for the complete set of rules.

The three rules for the record destructors project the appropriate record element as needed. The

treatment of references also standard, with rule (R-RefV) creating a new location l in the store

which then stores value v; rule (R-DerefV) querying the store for the contents of location l ; and
rule for (R-AssignV) replacing the contents of location l with v and returning v . Rules (R-PropT)
and (R-PropF) are the only ones that appeal to the entailment relation for refinements, making use

of the running environment Γ which is threaded through the reduction rules straightforwardly.

Similarly, rules (R-KindL) and (R-KindR) mimic the equality rules of the kind case construct, testing

the kind of type T against K .

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Refinement Kinds 1:21

(R-RecHdLabV)

⟨H ; recHeadLabel(⟨ℓ = v⟩@v ′)⟩ −→ ⟨H ; ℓ⟩

(R-RecHdValV)

⟨H ; recHeadTerm(⟨ℓ = v⟩@v ′)⟩ −→ ⟨H ;v⟩

(R-RecTailV)

⟨H ; recTail(⟨ℓ = v⟩@v ′)⟩ −→ ⟨H ;v ′⟩

(R-RefV)

l < dom(H)

⟨H ; ref v⟩ −→ ⟨H [l 7→ v]; l⟩

(R-DerefV)

H (l) = v

⟨H ; !l⟩ −→ ⟨H ;v⟩

(R-AssignV)

⟨H ; l := v⟩ −→ ⟨H [l 7→ v];⋄⟩

(R-PropT)

Γ |= φ

⟨H ; if φ thenM elseN ⟩ −→ ⟨H ;M⟩

(R-PropF)

Γ |= ¬φ

⟨H ; if φ thenM elseN ⟩ −→ ⟨H ;N ⟩

(R-IfT)

⟨H ; if true thenM elseN ⟩ −→ ⟨H ;M⟩

(R-IfF)

⟨H ; if false thenM elseN ⟩ −→ ⟨H ;N ⟩

(R-Fix)

⟨H ; µF :T .M⟩ −→ ⟨H ;M {µF :T .M/F }⟩

(R-TAppTRed)

T → T ′

⟨H ; (Λt ::K .M)[T]⟩ −→ ⟨H ; (Λt ::K .M)[T ′]⟩

(R-TApp)

⟨H ; (Λt ::K .M)[Tv]⟩ −→ ⟨H ;M {Tv/t }⟩

(R-AppV)

⟨H ; (λx : T .M)v⟩ −→ ⟨H ;M {v/x }⟩

(R-ColHdV)

⟨H ; colHead(v :: v ′)⟩ −→ ⟨H ;v⟩

(R-ColTlV)

⟨H ; colTail(v :: v ′)⟩ −→ ⟨H ;v ′⟩

(R-KindTRed)

T −→ T ′

⟨H ; if T :: K as t ⇒ M elseN ⟩ −→ ⟨H ; if T ′ :: K as t ⇒ M elseN ⟩

(R-KindL)

Γ ⊢ Tv :: K

⟨H ; if Tv :: K as t ⇒ M elseN ⟩ −→ ⟨H ;M {T /t }⟩

(R-KindR)

Γ ⊢ T :: K0 Γ ⊢ K0 . K

⟨H ; if Tv :: K as t ⇒ M elseN ⟩ −→ ⟨H ;N ⟩

Fig. 8. Operational Semantics (Excerpt)

5.1 Metatheory
We now develop the main metatheoretical results for our theory of type preservation, progress and

uniqueness of kinding and typing. We begin by noting that types and their kinding system are not

significantly more complex than a minimal type theory such as LF [Harper et al. 1993; Harper and

Pfenning 2005], given that types form a λ-calculus that is then “dependently typed” by kinds and

kind refinements (plus the additional equational reasoning on refinements). Without refinements,

the type level constructs are essentially those of Fω [Girard 1986] augmented with our primitives to

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Luís Caires and Bernardo Toninho

manipulate types as data and conditional types. Further, when we consider terms and their typing

there is no significant additional complexity since types occur in terms but not vice-versa.

In the remainder of this section we write Γ ⊢ J to stand for a typing, kinding, entailment or

equality judgment as appropriate. Since the refinement language is not fully specified, we must

assume some basic properties of (non-equality) refinements, which we summarise in Proposition 5.1

below, where we use refinements φ andψ to stand for refinements that are not derived using the

equality rules of Section 3.2 – for those we develop the necessary properties by appealing to these

basic principles of the incompletely specified refinement language.

Postulate 5.1 (Assumed Properties of Refinements).

Substitution: If Γ ⊢ T :: K and Γ, t :K , Γ′ |= φ then Γ, Γ′{T /k } |= φ{T /t };
Weakening: If Γ |= φ then Γ′ |= φ where Γ ⊆ Γ′;
Cut: If Γ |= φ and Γ,φ |= ψ then Γ |= ψ
Identity: Γ,φ, Γ′ |= φ, for any φ;
Functionality: If Γ |= T ≡ S :: K and Γ, t : K , Γ′ ⊢ φ then Γ |= φ{T /t } ≡ φ{S/t }.
Decidability: Γ |= φ is decidable.

The general structure of the development is as follows: we first establish basic structural properties

of substitution (Lemma 5.1) and weakening, which we can then use to show that we can apply

type and kind conversion inside contexts (Lemma 5.2), which then can be used to show a so-called

validity property for equality (Theorem 5.3), stating that equality derivations only manipulate

well-formed objects (from which kind preservation – Corollary 5.4 – follows immediately).

Lemma 5.1 (Substitution).

(a) If Γ ⊢ T :: K and Γ, t :K , Γ′ ⊢ J then Γ, Γ′{T /t } ⊢ J {T /t }.
(b) If Γ ⊢ M : T and Γ,x :T , Γ′ ⊢ N : S then Γ, Γ′ ⊢ N {M/x } : S .

Lemma 5.2 (Context Conversion).

(a) Let Γ,x :T ⊢ and Γ ⊢ T ′ :: K . If Γ,x :T ⊢ J and Γ |= T ≡ T ′ :: K then Γ,x :T ′ ⊢ J .
(b) Let Γ, t :K ⊢ and Γ ⊢ K ′. If Γ, t :K ⊢ J and Γ ⊢ K ≡ K ′ then Γ, t :K ′ ⊢ J .

Theorem 5.3 (Validity for Eqality).

(a) If Γ ⊢ K ≡ K ′ then Γ ⊢ K and Γ ⊢ K ′.
(b) If Γ |= T ≡ T ′ :: K then Γ ⊢ K , Γ ⊢ T :: K and Γ ⊢ T ′ :: K .
(c) If Γ ⊢ φ ≡ ψ then Γ ⊢ φ and Γ ⊢ ψ

Corollary 5.4 (Kind Preservation). If Γ ⊢ T :: K and T → T ′ then Γ ⊢ T ′ :: K .

This setup then allows us to show functionality properties of kinding and equality (Lemmas 5.5

and 5.6). Lemma 5.5 essentially states that substitution is consistent with the theory’s internal

equality judgment (i.e. substituting an object X in some Y is equal to substituting any object X ′,
equal toX , in Y). Similarly, Lemma 5.6 shows that equality is compatible with substitution of equals.

Lemma 5.5 (Functionality of Kinding and Refinements).

Assume Γ |= T ≡ S :: K , Γ ⊢ T :: K and Γ ⊢ S :: K :
(a) If Γ, t :K , Γ′ ⊢ T ′ :: K ′ then Γ, Γ′{T /t } |= T ′{T /t } ≡ T ′{S/t } :: K ′{T /t }
(b) If Γ, t :K , Γ′ ⊢ K ′ then Γ, Γ′{T /t } ⊢ K {T /t } ≡ K {S/t }.
(c) If Γ, t :K , Γ′ |= φ then Γ, Γ′{T /t } |= φ{T /t } ≡ φ{S/t }

Lemma 5.6 (Functionality of Eqality). Assume Γ |= T0 ≡ S0 :: K :

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Refinement Kinds 1:23

(a) If Γ, t :K |= T ≡ S :: K ′ then Γ |= T {T0/t } ≡ S {S0/t } :: K
′{T0/t }.

(b) If Γ, t :K ⊢ K1 ≡ K2 then Γ ⊢ K1{T0/t } ≡ K2{S0/t }.
(c) If Γ, t :K ⊢ φ ≡ ψ then Γ ⊢ φ{T0/t } ≡ ψ {S0/t }.

With functionality and the previous properties we can then establish the so-called validity

theorem (Theorem 5.7) for our theory, which is a general well-formedness property of the judgments

of the language. Validity is crucial in establishing the various inversion principles (note that the

inversion principles become non-trivial due to the closure of typing and kinding under equality)

necessary to show uniqueness of types and kinds (Theorem 5.8) and type preservation (Theorem 5.9).

The inversion principles can be found in Appendix C.

Theorem 5.7 (Validity).

(a) If Γ ⊢ K then Γ ⊢
(b) If Γ ⊢ T :: K then Γ ⊢ K
(c) If Γ ⊢ M : T then Γ ⊢ T :: Type.

Theorem 5.8 (Unicity of Types and Kinds).

(1) If Γ ⊢ M : T and Γ ⊢ M : S then Γ ⊢ T ≡ S :: K and Γ ⊢ K ≤ Type.
(2) If Γ ⊢ T :: K and Γ ⊢ T :: K ′ then Γ ⊢ K ≤ K ′ or Γ ⊢ K ′ ≤ K .

In order to state type preservation we first define the usual notion of well-typed store, written

Γ ⊢S H , denoting that for every l in dom(H) we have that Γ ⊢S l : ref T with · ⊢ H (l) : T . We write

S ⊆ S ′ to denote that S ′ is an extension of S (i.e. it preserves the location typings of S).

Theorem 5.9 (Type Preservation). Let Γ ⊢S M : T and Γ ⊢s H . If ⟨H ;M⟩ −→ ⟨H ′;M ′⟩ then there
exists S ′ such that S ⊆ S ′, Γ ⊢S ′ H ′ and Γ ⊢S ′ M

′
: T .

Finally, progress can be established in a fairly direct manner (relying on a straightforward

notion of progress for the type reduction relation). The main interesting aspect is that progress

relies crucially on the decidability of entailment due to the term-level and type-level predicate test

construct.

Lemma 5.10 (Type Progress). If Γ ⊢ T :: K then either T is a type value or T → T ′, for some T ′.

Theorem 5.11 (Progress). Let · ⊢S M : T and · ⊢S H . Then eitherM is a value or there exists S ′

andM ′ such that ⟨H ;M⟩ −→ ⟨H ′;M ′⟩.

6 RELATEDWORK
To the best of our knowledge, ours is the first work to explore the concept of refinement kinds and

illustrate their expressiveness as a convenient programming language feature that cleanly integrates

statically typed meta-programming features such as type reflection, ad-hoc polymorphism, and

type-level computation.

The concept of refinement kind is a natural extension of the well-known notion of refinement

type [Bengtson et al. 2011; Rondon et al. 2008; Vazou et al. 2013], which effectively extends type

specifications with (SMT decidable) logical assertions. Refinement types have been applied to

various verification domains such as security [Bengtson et al. 2011] or the verification of data-

structures [Kawaguchi et al. 2009; Xi and Pfenning 1998], and are being incorporated in full-fledged

programming languages, e.g., ML [Freeman and Pfenning 1991] Haskell [Vazou et al. 2014], F*

[Swamy et al. 2011], JavaScript [Vekris et al. 2016].

With the aim of supporting common meta-programming idioms in the domain of web pro-

gramming, [Chlipala 2010] developed a type system that supports type-level record computations

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Luís Caires and Bernardo Toninho

with similar aims as ours, fully avoiding type dependency. In our case, we generalise type-level

computations to other types as data, and rely on more amenable explicit type dependency, in

the style of System-F polymorphism. Therefore, we still avoid the need to pollute programs with

explicit proof terms, but through our development of a principled theory of kind refinements.

Our extension of the concept of refinements to kinds, together with the introduction of primitives

to reflectively manipulate types as data (cf. ASTs) and express constraints on those data also

highlights how kind refinements match fairly well with the programming practice of our time (e.g.,

interface reflection in Java-like languages), contrasting the focus of our work with the goals of

other approaches to meta-programming such as [Altenkirch and McBride 2002; Calcagno et al.

2003]. The work of [Weirich et al. 2013] studies an extension to the core language (System FC)

of the Glasgow Haskell Compiler (GHC) with a notion of kind equality proofs, in order to allow

type-level computation in Haskell to refer to kind-level functions. Their development, being based

on System FC, is designed to manipulate explicit type (and kind) coercions as part of the core

language itself, which have a non-trivial structure (as required by the various type features of GHC),

and thus differs significantly from our work which is designed to keep type and kind conversion as

implicit as possible. However, their work can be seen as a stepping stone towards the integration of

refinement kinds and related constructs in a general purpose functional language such as Haskell.

The relationship between refinement types and dependent types through proof irrelevance,

allowing the programmer to avoid explicitly writing proof witnesses for refinements, was clarified

by [Freeman and Pfenning 1991]. The idea of expressing constraints (e.g., disjointness) on record

labels with predicates goes back to [Harper and Pierce 1991], although in our system we admit in

the refinement logic convenient predicates and operators applicable to not just record types, but

also to other kinds of types such as function types, collections types and even polymorphic function

types. The basic concept of a statically checked type-case construct was introduced in [Abadi et al.

1991]; however, our refinement kind checking of dynamic type conditionals on types and kinds

if φ then e1 else e2 and if T :: K as t ⇒ e1 else e2 greatly extends the precision of type and kind

checking, and naturally supports very flexible forms of statically checked ad-hoc polymorphism, as

we have shown.

Some works [Fähndrich et al. 2006; Huang and Smaragdakis 2008; Smaragdakis et al. 2015]

have addressed the challenge of typing specific meta-programming idioms in concrete languages

such as Java and C#. Our work shows instead how the fundamental concept of refinement kinds

suggests itself as a general type-theoretic principle towards statically checked typeful [Cardelli

1991] meta-programming, including programs that manipulate types as data, or build types and

programs from data (e.g., as the type providers of F# [Petricek et al. 2016]) which seems to be

out of reach for existing static type systems. Our language conveniently expresses programs that

automatically generate types and operations from data specifications, while statically ensuring that

generated types satisfy the intended invariants, as expressed by refinements.

7 CONCLUDING REMARKS
We have introduced the concept refinement kinds and developed the associated type theory, in

the context of higher-order polymorphic λ-calculus with imperative constructs, several kinds of

datatypes, and type-level computation. The resulting programming language cleanly supports static

typing of sophisticated features such as type-level reflection, ad-hoc and parametric polymorphism

which can be elegantly combined in order to provide non-trivial meta-programming idioms, which

we have illustrated with several examples.

While the full development of an algorithmic formulation of our type system is under development

(together with an implementation) implementation we note that, given that the type derivations rely

on the entailment for refinements (which include type equalities in general), it is crucial that such a

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Refinement Kinds 1:25

judgment remain decidable. While the interaction of type equality and logical kind refinements can

be non-trivial, the type equality principles defined in Section 3.2 essentially amount to normalising

(which can require deciding logical refinement) the types and comparing normal forms. Kinding,

typing and refinements also require reasoning about equality up-to type predicates and the axiom

schemas of Section 4.1. However, just as modern refinement type systems make extensive use of

SMT solvers to offload the reasoning about refinement properties (which can refer to data values

and thus make the reasoning significantly more complex than our manipulation of types as simple

tree-like structures), a reasonable algorithmic development of our theory relies on a combination

of type normalisation and SMT solvers to derive the necessary refinements.

There are many interesting avenues of exploration that have been opened by this work. From

a theoretical point-of-view, it would be instructive to study the tension imposed on shallow

embeddings of our system in general dependent type theories such as Coq. After including existential

types, variant types and higher-type imperative state (e.g., the ability to introduce references storing

types at the term-level), which have been left out of this presentation for the sake of focus, it would

be relevant to further investigate limited forms of dependent types or refinement types. It would

be also interesting to investigate how refinement kinds and stateful types (e.g., typestate or other

forms of behavioral types) may be used to express and type-check invariants on meta-programs

with challenging scenarios of strong updates, e.g., involving changes in representation of abstract

data types.

REFERENCES
Martín Abadi, Luca Cardelli, Benjamin C. Pierce, and Gordon D. Plotkin. 1991. Dynamic Typing in a Statically Typed

Language. ACM Trans. Program. Lang. Syst. 13, 2 (1991), 237–268. https://doi.org/10.1145/103135.103138

Thorsten Altenkirch and Conor McBride. 2002. Generic Programming within Dependently Typed Programming. In Generic
Programming, IFIP TC2/WG2.1 Working Conference on Generic Programming, July 11-12, 2002, Dagstuhl, Germany (IFIP
Conference Proceedings), Jeremy Gibbons and Johan Jeuring (Eds.), Vol. 243. Kluwer, 1–20.

J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis. 2011. Refinement Types for Secure Implementations.

ACM Trans. Program. Lang. Syst. (2011).
Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. 2003. Closed types for a safe imperative MetaML. J. Funct. Program.

13, 3 (2003), 545–571. https://doi.org/10.1017/S0956796802004598

Luca Cardelli. 1991. Typeful Programming. IFIP State-of-the-Art Reports: Formal Description of Programming Concepts (1991),
431–507.

Adam Chlipala. 2010. Ur: statically-typed metaprogramming with type-level record computation. In Proceedings of the 2010
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2010, Toronto, Ontario, Canada,
June 5-10, 2010, Benjamin G. Zorn and Alexander Aiken (Eds.). ACM, 122–133. https://doi.org/10.1145/1806596.1806612

Robert L. Constable, Stuart F. Allen, Mark Bromley, Rance Cleaveland, J. F. Cremer, R. W. Harper, Douglas J. Howe, Todd B.

Knoblock, N. P. Mendler, Prakash Panangaden, James T. Sasaki, and Scott F. Smith. 1986. Implementing mathematics with
the Nuprl proof development system. Prentice Hall. http://dl.acm.org/citation.cfm?id=10510

CoqDevelopmentTeam. 2004. The Coq proof assistant reference manual. LogiCal Project. http://coq.inria.fr Version 8.0.

Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the
Construction and Analysis of Systems, 14th International Conference, TACAS 2008, (Lecture Notes in Computer Science), C. R.
Ramakrishnan and Jakob Rehof (Eds.), Vol. 4963. Springer, 337–340. https://doi.org/10.1007/978-3-540-78800-3_24

Manuel Fähndrich, Michael Carbin, and James R. Larus. 2006. Reflective program generation with patterns. In Generative
Programming and Component Engineering, 5th International Conference, GPCE 2006, Portland, Oregon, USA, October
22-26, 2006, Proceedings, Stan Jarzabek, Douglas C. Schmidt, and Todd L. Veldhuizen (Eds.). ACM, 275–284. https:

//doi.org/10.1145/1173706.1173748

Timothy S. Freeman and Frank Pfenning. 1991. Refinement Types for ML. In Proceedings of the ACM SIGPLAN’91 Conference
on Programming Language Design and Implementation (PLDI), Toronto, Ontario, Canada, June 26-28, 1991, David S. Wise

(Ed.). ACM, 268–277. https://doi.org/10.1145/113445.113468

Jean-Yves Girard. 1986. The system F of variable types, fifteen years later. Theoretical Computer Science 45 (1986), 159 – 192.

https://doi.org/10.1016/0304-3975(86)90044-7

Robert Harper, Furio Honsell, and Gordon D. Plotkin. 1993. A Framework for Defining Logics. J. ACM 40, 1 (1993), 143–184.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

https://doi.org/10.1145/103135.103138
https://doi.org/10.1017/S0956796802004598
https://doi.org/10.1145/1806596.1806612
http://dl.acm.org/citation.cfm?id=10510
http://coq.inria.fr
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/1173706.1173748
https://doi.org/10.1145/1173706.1173748
https://doi.org/10.1145/113445.113468
https://doi.org/10.1016/0304-3975(86)90044-7

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Luís Caires and Bernardo Toninho

Robert Harper and Frank Pfenning. 2005. On equivalence and canonical forms in the LF type theory. ACM Trans. Comput.
Log. 6, 1 (2005), 61–101.

Robert Harper and Benjamin C. Pierce. 1991. A Record Calculus Based on Symmetric Concatenation. In Conference Record
of the Eighteenth Annual ACM Symposium on Principles of Programming Languages, Orlando, Florida, USA, January 21-23,
1991, David S. Wise (Ed.). ACM Press, 131–142. https://doi.org/10.1145/99583.99603

Martin Hofmann. 1997. Extensional constructs in intensional type theory. Springer.
Shan Shan Huang and Yannis Smaragdakis. 2008. Expressive and safe static reflection with MorphJ. In Proceedings of the

ACM SIGPLAN 2008 Conference on Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008.
79–89.

Ming Kawaguchi, Patrick Maxim Rondon, and Ranjit Jhala. 2009. Type-based data structure verification. In Proceedings of
the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2009, Dublin, Ireland,
June 15-21, 2009, Michael Hind and Amer Diwan (Eds.). ACM, 304–315. https://doi.org/10.1145/1542476.1542510

Ulf Norell. 2007. Towards a practical programming language based on dependent type theory. Ph.D. Dissertation. Department

of Computer Science and Engineering, Chalmers University of Technology.

Tomas Petricek, Gustavo Guerra, and Don Syme. 2016. Types from data: making structured data first-class citizens in

F#. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2016, Santa Barbara, CA, USA, June 13-17, 2016, Chandra Krintz and Emery Berger (Eds.). ACM, 477–490. https:

//doi.org/10.1145/2908080.2908115

Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. 2008. Liquid types. In Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008. 159–169.

John M. Rushby, Sam Owre, and Natarajan Shankar. 1998. Subtypes for Specifications: Predicate Subtyping in PVS. IEEE
Trans. Software Eng. 24, 9 (1998), 709–720. https://doi.org/10.1109/32.713327

Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Bravenboer. 2015. More Sound Static Handling

of Java Reflection. In Programming Languages and Systems - 13th Asian Symposium, APLAS 2015, Pohang, South Korea,
November 30 - December 2, 2015, Proceedings. 485–503.

Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and Jean Yang. 2011. Secure distributed

programming with value-dependent types. In Proceeding of the 16th ACM SIGPLAN international conference on Functional
Programming, ICFP 2011, Tokyo, Japan, September 19-21, 2011, Manuel M. T. Chakravarty, Zhenjiang Hu, and Olivier

Danvy (Eds.). ACM, 266–278. https://doi.org/10.1145/2034773.2034811

Niki Vazou, Patrick Maxim Rondon, and Ranjit Jhala. 2013. Abstract Refinement Types. In Programming Languages and
Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings. 209–228. https://doi.org/10.

1007/978-3-642-37036-6_13

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon L. Peyton Jones. 2014. Refinement types for Haskell. In

Proceedings of the 19th ACM SIGPLAN international conference on Functional programming, Gothenburg, Sweden, September
1-3, 2014, Johan Jeuring and Manuel M. T. Chakravarty (Eds.). ACM, 269–282. https://doi.org/10.1145/2628136.2628161

Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. 2016. Refinement types for TypeScript. In Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA,
June 13-17, 2016, Chandra Krintz and Emery Berger (Eds.). ACM, 310–325. https://doi.org/10.1145/2908080.2908110

Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. 2013. System FC with explicit kind equality. In ACM SIGPLAN
International Conference on Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013. 275–286.
https://doi.org/10.1145/2500365.2500599

Hongwei Xi. 2007. Dependent ML An approach to practical programming with dependent types. J. Funct. Program. 17, 2
(2007), 215–286. https://doi.org/10.1017/S0956796806006216

Hongwei Xi and Frank Pfenning. 1998. Eliminating Array Bound Checking Through Dependent Types. In Proceedings of
the ACM SIGPLAN ’98 Conference on Programming Language Design and Implementation (PLDI), Montreal, Canada, June
17-19, 1998, Jack W. Davidson, Keith D. Cooper, and A. Michael Berman (Eds.). ACM, 249–257. https://doi.org/10.1145/

277650.277732

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

https://doi.org/10.1145/99583.99603
https://doi.org/10.1145/1542476.1542510
https://doi.org/10.1145/2908080.2908115
https://doi.org/10.1145/2908080.2908115
https://doi.org/10.1109/32.713327
https://doi.org/10.1145/2034773.2034811
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2908080.2908110
https://doi.org/10.1145/2500365.2500599
https://doi.org/10.1017/S0956796806006216
https://doi.org/10.1145/277650.277732
https://doi.org/10.1145/277650.277732

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Refinement Kinds 1:27

Appendix
Refinement Kinds

A Theory of Type-Safe Meta-Programming

Additional definitions and proofs of the main materials.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Luís Caires and Bernardo Toninho

A FULL SYNTAX, JUDGMENTS AND RULES
We define the syntax of kinds K ,K ′, refinements φ,φ ′, types T , S,R, and terms M,N below. We

assume countably infinite sets of type variables X, names N and term variablesV . We range over

type variables with t , t ′, s, s ′, name variables with n,m and term variables with x ,y, z.

Kinds K ,K ′ ::= K | {t ::K | φ} | Πt :K .K ′ Refined and Dependent Kinds

K ::= Rec | Col | Fun | Ref | Nm Base Kinds

| Type | GenK

Types T , S,R ::= t | λt ::K .T | T S Type-level Functions

| µF : (Πt :K .K ′).λt ::K .T Structural Recursion

| ∀t ::K .T | tmap(T) S Polymorphism

| L | ⟨⟩ | ⟨L : T ⟩@S Record Type constructors

| headLabel(T) | headType(T) | tail(T) Record Type destructors

| T⋆ | colOf (T) Collection Types

| ref T | refOf (T) Reference Types

| T → S | dom(T) | img(T) Function Types

| if T :: K as t ⇒ S elseU Kind Case

| if φ thenT else S Property Test

| ⊥ | ⊤ Empty and Top Types

| Bool | 1 | . . . Basic Data Types

Refinements φ,ψ ::= P (T1, . . . ,Tn) Type Predicates

| φ ⊃ ψ | φ ∧ψ | . . . Propositional Logic

| T ≡ S :: K Equality

Terms M,N ::= x | λx :T .M | M N Functions

| Λt ::K .M | M[T] Type Abstraction and Application

| ⟨⟩ | ⟨ℓ = M⟩@N | recTail(M)
| recHeadLabel(M) | recHeadTerm(M) Records

| ⋄ Unit Element

| if M thenN1 elseN2

| true | false Booleans

| if φ thenM elseN Property Test

| if T :: K as t ⇒ M elseN Kind Case

| ε | M :: N
| colHead(M) | colTail(M) Collections

| ref M | !M | M := N | l References

| µF :T .M Recursion

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Refinement Kinds 1:29

A.1 Kinding and Typing
Our type theory is defined by the following judgments:

Γ ⊢ Γ is a well-formed context

Γ ⊢ K K is a well-formed kind under the assumptions in Γ
Γ ⊢ φ Refinement φ is well-formed under the assumptions in Γ
Γ ⊢ T :: K Type T is a (well-formed) type of kind K under the assumptions in Γ
Γ ⊢S M : T TermM has type T under the assumptions in Γ and store typing S

Γ |= φ Refinement φ holds under the assumptions in Γ
Γ ⊢ φ ≡ ψ Refinements φ andψ are equal

Γ ⊢ K ≡ K ′ Kinds K and K ′ are equal
Γ ⊢ K ≤ K ′ Kind K is a sub-kind of K ′

Γ ⊢ T ≡ T ′ :: K Types T and T ′ of kind K are equal

We also parameterize typing by a signature of type-level constants that specify basic well-

formedness constraints on the various type destructors:

headLabel :: Πt :{r ::Rec | nonEmpty(r)}.Nm
headType :: Πt :{r ::Rec | nonEmpty(r)}.Type
tail :: Πt :{r ::Rec | nonEmpty(r)}.Rec
refOf :: Πt :Ref.Type
colOf :: Πt :Col.Type
dom :: Πt :Fun.Type
img :: Πt :Fun.Type
tmap :: Πt :GenK .Πs:K .Type

We write elimK (T) to range over elimination forms for a given (base) kind K applied to type T .

Context Well-formedness.

Γ ⊢ K Γ ⊢

Γ, t : K ⊢

Γ ⊢ T :: K Γ ⊢

Γ,x : T ⊢

Γ ⊢ φ Γ ⊢

Γ,φ ⊢

Γ; S ⊢ Γ ⊢ T :: K

Γ; S, l : T ⊢ · ⊢

Γ; · ⊢

Kind well-formedness.

Γ ⊢ K ∈ {Rec,Col, Fun,Ref,Nm, Type}

Γ ⊢ K

Γ ⊢ K Γ, t :K ⊢ K ′

Γ ⊢ Πt :K .K ′

Γ ⊢ K

Γ ⊢ GenK

Γ ⊢ K Γ, t :K ⊢ φ

Γ ⊢ {t ::K | φ}

Refinement Well-formedness. We presupose a signature Σ that specifies predicates, their arities

and the kinds of their type arguments. We assume that kinds occurring in a signature have been

checked for well-formedness.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Luís Caires and Bernardo Toninho

P : K1, . . . ,Kn ∈ Σ ∀i ∈ {1, . . . ,n}.Γ ⊢ Ti :: Ki

Γ ⊢ P (T1, . . . ,Tn)
+Well-formedness of propositional logic formulas

Γ ⊢ T :: K Γ ⊢ S :: K

Γ ⊢ T ≡ S :: K

Refinement Satisfiability.

Propositional Logic

Γ |= T ≡ S :: K Γ,x : K ⊢ φ Γ |= φ{T /x }

Γ |= φ{S/x }
(EqElim)

Kinding.

t :K ∈ Γ Γ ⊢

Γ ⊢ t :: K

Γ ⊢ T :: K Γ ⊢ K ≤ K ′

Γ ⊢ T :: K ′
Γ ⊢

Γ ⊢ ⊤ :: Type

Γ ⊢ T :: Πt :K .K ′ Γ ⊢ S :: K

Γ ⊢ T S :: K ′{S/t }

Γ ⊢ K Γ, t :K ⊢ T :: K ′

Γ ⊢ λt ::K .T :: Πt :K .K ′

Γ ⊢ K Γ, t :K ⊢ T :: K

Γ ⊢ ∀t ::K .T :: GenK

Γ ⊢ ℓ ∈ N

Γ ⊢ ℓ :: Nm

Γ ⊢

Γ ⊢ Bool :: Type

Γ ⊢

Γ ⊢ ⟨⟩ :: Rec

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t ::Rec | L < lab(t)}

Γ ⊢ ⟨L : T ⟩@S :: Rec

Γ ⊢ T :: K Γ ⊢ S :: K ′

Γ ⊢ T → S :: Fun

Γ ⊢ T :: K

Γ ⊢ T⋆
:: Col

Γ ⊢ T :: K

Γ ⊢ ref T :: Ref

Γ ⊢ T :: {t ::K | elimK (t) ≡ T
′
:: K ′} Γ ⊢ T ′{T /t } :: K ′{T /t }

Γ ⊢ elimK (T) :: K ′{T /t }

Γ ⊢ φ Γ,φ ⊢ T :: K Γ,¬φ ⊢ S :: K

Γ ⊢ if φ thenT else S :: K

Γ ⊢ K Γ ⊢ T :: K ′′ Γ, t :K ⊢ S :: K ′ Γ ⊢ U :: K ′

Γ ⊢ if T :: K as t ⇒ S elseU :: K ′

Γ, F :Πt :K .K ′, t :K ⊢ T :: K ′ structural(T , F , t)

Γ ⊢ µF : (Πt :K .K ′).λt ::K .T :: Πt :K .K ′

Γ |= ⊥ Γ ⊢ K

Γ ⊢ ⊥ :: K

Γ |= φ{T /t } Γ ⊢ T :: K

Γ ⊢ T :: {t :K | φ}

Sub-kinding.
Γ ⊢ K ≡ K ′

Γ ⊢ K ≤ K ′
Γ ⊢

Γ ⊢ K ≤ Type

Γ ⊢ K Γ, t :K ⊢ φ

Γ ⊢ {t ::K | φ} ≤ K

Γ ⊢ K ≤ K ′ Γ, t :K ′ |= φ ≡ φ ′

Γ ⊢ {t ::K | φ} ≤ {t ::K ′ | φ ′}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Refinement Kinds 1:31

Typing. For readability we omit the store typing environment from all rules except in the location

typing rule. In all other rules the store typing is just propagated unchanged.

(var)

(x :T) ∈ Γ Γ; S ⊢ Γ ⊢

Γ ⊢S x : T

(1I)
Γ ⊢

Γ ⊢ ⋄ : 1

(→I)

Γ ⊢S T :: Type Γ,x :T ⊢S M : U

Γ ⊢S λx :T .M : T → U

(→E)

Γ ⊢ T1 :: {t ::Fun | dom(t) ≡ T2 :: K ∧ img(t) = U :: K ′}

Γ ⊢S M : T1 Γ ⊢S N : T2

Γ ⊢S M N : U {T1/t }

(∀I)

Γ ⊢ K Γ, t :K ⊢S M : T

Γ ⊢S Λt ::K .M : ∀t ::K .T

(∀E)

Γ ⊢ T ′ :: { f ::GenK | tmap(f)T ≡ U :: K }

Γ ⊢S M : T ′ Γ ⊢ T :: K Γ ⊢ U :: K

Γ ⊢S M[T] : U

(⟨⟩I1)

Γ ⊢ Γ; S ⊢

Γ ⊢S ⟨⟩ : ⟨⟩

(⟨⟩I2)

Γ ⊢S L :: Nm Γ ⊢ S :: {t ::Rec | L < lab(t)} Γ ⊢S M : T Γ ⊢S N : U

Γ ⊢S ⟨L = M⟩@N : ⟨L : T ⟩@U

(reclabel)

Γ ⊢S M : U Γ ⊢ U :: {t ::Rec | headLabel(t) ≡ L :: Nm}

Γ ⊢S recHeadLabel(M) : L{U /t }

(recterm)

Γ ⊢S M : U Γ ⊢ U :: {t ::Rec | headType(t) ≡ T :: K }

Γ ⊢S recHeadTerm(M) : T {U /t }

(rectail)

Γ ⊢S M : U Γ ⊢ U :: {t ::Rec | tail(t) ≡ T :: K }

Γ ⊢S tail(M) : T {U /t }

(true)

Γ ⊢ Γ; S ⊢

Γ ⊢S true : Bool

(false)

Γ ⊢ Γ; S ⊢

Γ ⊢S false : Bool

(bool-ite)

Γ ⊢S M : Bool Γ ⊢S N1 : T Γ ⊢S N2 : T

Γ ⊢S if M thenN1 elseN2 : T

(emp)

Γ ⊢ T :: Type Γ; S ⊢

Γ ⊢S ε : T
⋆

(cons)

Γ ⊢ U :: {t ::Col | colOf (t) ≡ T :: K }

Γ ⊢S M : T {U /t } ΓS ⊢ N : U

Γ ⊢S M :: N : U

(head)

Γ ⊢ Tc :: {t ::Col | colOf (t) ≡ T :: K }

Γ ⊢ M : Tc

Γ ⊢ colHead(M) : T

(tail)

Γ ⊢ M : Tc Γ ⊢ Tc :: {t ::Col | colOf (t) ≡ T :: K }

Γ ⊢ colTail(M) : T {Tc/t }

(loc)

Γ ⊢ Γ; S ⊢ S (l) = T

Γ ⊢S l : ref T

(ref)

Γ ⊢S M : T

Γ ⊢S ref M : ref T

(deref)

Γ ⊢ U :: {t ::Ref | refOf (t) ≡ T :: K }

Γ ⊢S M : U

Γ ⊢S !M : T {U /t }

(assign)

Γ ⊢ U :: {t ::Ref | refOf (t) ≡ T :: K }

Γ ⊢S M : U Γ ⊢S N : T

Γ ⊢S M := N : 1

(prop-ite)

Γ ⊢ φ Γ,φ ⊢S M : T1 Γ,¬φ ⊢S N : T2

Γ ⊢S if φ thenM elseN : if φ thenT1 elseT2

(kindcase)

Γ ⊢ T :: K ′ Γ ⊢ K Γ, t :K ⊢S M : U Γ ⊢S N : U

Γ ⊢S if T :: K as t ⇒ M elseN : U

(conv)

Γ ⊢S M : U Γ |= U ≡ T :: K

Γ ⊢S M : T

(fix)

Γ, F : T ⊢S M : T structural(F ,M)

Γ ⊢S µF :T .M : T

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 Luís Caires and Bernardo Toninho

Kind and Refinement Equality.

Reflexivity, Transitivity, Symmetry + Congruence+

Γ ⊢ K ≡ K ′ Γ, t :K ⊢ φ ≡ ψ

Γ ⊢ {t :K | φ} ≡ {t :K ′ | ψ }

Γ |= φ ⊃ ψ Γ |= ψ ⊃ φ Γ ⊢ φ Γ ⊢ ψ

Γ ⊢ φ ≡ ψ

P : (K1, . . . ,Kn) ∈ Σ ∀i ∈ {1, . . . ,n}.Γ |= Ti ≡ Si :: Ki

Γ |= P (T1, . . . ,Tn) ≡ P (S1, . . . , Sn)

Type equality.

Reflexivity, Transitivity, Symmetry+

Γ |= T1 ≡ S1 :: Πt :K1.K2 Γ |= T2 ≡ S2 :: K1

Γ |= T1T2 ≡ S1 S2 :: K2{T2/t }

Γ |= K1 ≡ K ′
1

Γ, t :K1 |= T1 ≡ T2 :: K2

Γ |= λt ::K1.T1 ≡ λt ::K
′
1
.T2 :: Πt :K1.K2

Γ, t :K ⊢ T :: K ′ Γ ⊢ S :: K

Γ |= (λt ::K .T) S ≡ T {S/t } :: K ′{S/t }

Γ |= K1 ≡ K2 Γ, t :K1 |= T ≡ S :: K

Γ |= ∀t ::K1.T ≡ ∀t :K2.S :: GenK1

Γ |= T1 ≡ S1 :: GenK Γ |= T2 ≡ S2 :: K

Γ |= tmap(T1)T2 ≡ tmap(S1)S2 :: Type

Γ, t :K ⊢ T :: K Γ ⊢ S :: K

Γ |= tmap(∀t ::K .T) S ≡ T {S/t } :: Type

Γ |= ⊥ Γ ⊢ T :: K

Γ |= ⊥ ≡ T :: K

Γ |= L ≡ L′ :: Nm Γ |= T ≡ T ′ :: K Γ |= S ≡ S ′ :: {t ::Rec | L < lab(t)}

Γ |= ⟨L : T ⟩@S ≡ ⟨L′ : T ′⟩@S ′ :: Rec

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Refinement Kinds 1:33

Γ |= T ≡ S :: {r ::Rec | nonEmpty(r)}

Γ |= headLabel(T) ≡ headLabel(S) :: Nm

Γ |= T ≡ S :: {r ::Rec | nonEmpty(r)}

Γ |= headType(T) ≡ headType(S) :: Type

Γ |= T ≡ S :: {r ::Rec | nonEmpty(r)}

Γ |= tail(T) ≡ tail(S) :: Rec

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t ::Rec | L < lab(t)}

Γ |= headLabel(⟨L : T ⟩@S) ≡ L :: Nm

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t ::Rec | L < lab(t)}

Γ |= headType(⟨L : T ⟩@S) ≡ T :: Type

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t ::Rec | L < lab(t)}

Γ |= tail(⟨L : T ⟩@S) ≡ S :: Rec

Γ |= T ≡ S :: K

Γ |= T⋆ ≡ S⋆ :: Col

Γ |= T ≡ S :: Col

Γ |= colOf (T) ≡ colOf (S) :: Type

Γ ⊢ T :: K

Γ |= colOf (T⋆) ≡ T :: Type

Γ |= T ≡ S :: {t ::K | elimK (T) ≡ T ′ :: K ′} Γ ⊢ T ′{T /t } :: K ′{T /t }

Γ |= elimK (T) ≡ T ′{T /t } :: K ′{T /t }

Γ |= T ≡ S :: K

Γ |= ref T ≡ ref S :: Ref

Γ |= T ≡ S :: Ref

Γ |= refOf (T) ≡ refOf (S) :: Type

Γ ⊢ T :: K

Γ |= refOf (ref T) ≡ T :: Type

Γ |= T ≡ S :: K Γ |= T ′ ≡ S ′ :: K

Γ |= T → T ′ ≡ S → S ′ :: Fun

Γ |= T ≡ S :: Fun

Γ |= dom(T) ≡ dom(S) :: Type

Γ |= T ≡ S :: Fun

Γ |= img(T) ≡ img(S) :: Type

Γ ⊢ T :: K Γ ⊢ S :: K ′

Γ |= dom(T → S) ≡ T :: Type

Γ ⊢ T :: K Γ ⊢ S :: K ′

Γ |= img(T → S) ≡ S :: Type

Γ |= T ≡ T ′ :: K0 Γ |= K ≡ K ′ Γ, t :K |= S ≡ S ′ :: K ′′ Γ |= U ≡ U ′ :: K ′′

Γ |= if T :: K as t ⇒ S elseU ≡ if T ′ :: K ′ as t ⇒ S ′ elseU ′ :: K ′′

Γ ⊢ T :: K Γ, t :K ⊢ S :: K ′ Γ ⊢ U :: K ′

Γ |= if T :: K as t ⇒ S elseU ≡ S {T /t } :: K ′

Γ ⊢ T :: K0 Γ ⊢ K0 . K Γ, t :K ⊢ S :: K ′ Γ ⊢ U :: K ′

Γ |= if T :: K as t ⇒ S elseU ≡ U :: K ′

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1:34 Luís Caires and Bernardo Toninho

Γ |= φ ≡ ψ Γ,φ |= T1 ≡ S1 :: K Γ,¬φ |= T2 ≡ S2 :: K

Γ |= if φ thenT1 elseT2 ≡ if ψ then S1 else S2 :: K

Γ |= φ Γ,φ ⊢ T1 :: K Γ,¬φ ⊢ T2 :: K

Γ |= if φ thenT1 elseT2 ≡ T1 :: K

Γ |= ¬φ Γ,φ ⊢ T1 :: K Γ,¬φ ⊢ T2 :: K

Γ |= if φ thenT1 elseT2 ≡ T2 :: K

Γ ⊢ φ Γ,φ ⊢ T :: K Γ,¬φ ⊢ T :: K

Γ |= if φ thenT elseT ≡ T :: K

Γ |= T ≡ S :: K Γ ⊢ K ≤ K ′

Γ |= T ≡ S :: K ′

structural(T , F , t) structural(S, F , t)
Γ |= K1 ≡ K ′

1
Γ |= K2 ≡ K ′

2
Γ, F :Πt :K1.K2, t :K1 |= T ≡ S :: K2

Γ |= µF : (Πt :K1.K2).λt ::K1.T ≡ µF : (Πt :K ′
1
.K ′

2
).λt ::K ′

1
. S :: Πt :K1.K2

Γ, t :K1 ⊢ K2 Γ, F :Πt :K1.K2, t :K1 ⊢ T :: K2 Γ ⊢ S :: K1 structural(T , F , t)

Γ |= (µF : (Πt :K1.K2).λt ::K1.T) S ≡ T {S/t }{(µF : (Πt :K1.K2).λt ::K1.T)/F } :: K2{S/t }

B FULL OPERATIONAL SEMANTICS
The type reduction relation, T → T ′ is defined as a call-by-value reduction semantics on types T ,
obtained by orienting the computational rules of type equality from left to right (thus excluding

rule (eq-elim)) and enforcing the call-by-value discipline. Recalling that type values are denoted by

Tv , Sv and given by the following grammar:

Tv , Sv ::= λt ::K .T | ∀t ::K .T | ℓ | ⟨⟩ | ⟨ℓ : Tv ⟩@Sv | Tv
⋆ | ref Tv | Tv → Sv | ⊥ | Bool | 1 | t

The type reduction rules are:

T → T ′

T S → T ′ S

S → S ′

(λt ::K .T) S → (λt ::K .T) S ′ (λt ::K .T) Sv → T {Sv/t }

(µF : (Πt :K .K ′).λt ::K .T) Sv → T {Sv/t }{µF : (Πt :K .K ′).λt ::K .T /F }

L → L′

⟨L : T ⟩@S → ⟨L′ : T ⟩@S

T → T ′

⟨ℓ : T ⟩@S → ⟨ℓ : T ′⟩@S

S → S ′

⟨ℓ : Tv ⟩@S → ⟨ℓ : Tv ⟩@S ′

T → T ′

headLabel(T) → headLabel(T ′)

T → T ′

headType(T) → headType(T ′)

T → T ′

tail(T) → tail(T ′)

headLabel(⟨ℓ : Tv ⟩@Sv) → ℓ headType(⟨ℓ : Tv ⟩@Sv) → Tv tail(⟨ℓ : Tv ⟩@Sv) → Sv

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Refinement Kinds 1:35

T → T ′

T⋆ → T ′⋆
T → T ′

colOf (T) → colOf (T ′) colOf (Tv⋆) → Tv

T → T ′

ref T → ref T ′
T → T ′

refOf (T) → refOf (T ′) refOf (ref Tv) → Tv

T → T ′

(T → S) → (T ′ → S)

S → S ′

(Tv → S) → (Tv → S ′)

T → T ′

dom(T) → dom(T ′)

T → T ′

img(T) → img(T ′)

dom(Tv → Sv) → Tv img(Tv → Sv) → Sv

Γ |= φ

if φ thenT else S → T

Γ |= ¬φ

if φ thenT else S → S

T → T ′

if T :: K as t ⇒ S elseU → if T ′ :: K as t ⇒ S elseU

Γ ⊢ Tv :: K

if Tv :: K as t ⇒ S elseU → S {Tv/t }

Γ ⊢ Tv :: K ′ Γ ⊢ K ′ . K

if Tv :: K as t ⇒ S elseU → U

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1:36 Luís Caires and Bernardo Toninho

The rules of our operational semantics are as follows:

R-RecConsLab

⟨H ;L⟩ −→ ⟨H ′;L′⟩

⟨H ; ⟨L = M⟩@N ⟩ −→ ⟨H ′; ⟨L′ = M⟩@N ⟩

R-RecConsL

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; ⟨ℓ = M⟩@N ⟩ −→ ⟨H ′; ⟨ℓ = M ′⟩@N ⟩

R-RecConsR

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; ⟨ℓ = v⟩@M⟩ −→ ⟨H ′; ⟨ℓ = v⟩@M ′⟩

R-RecHdLab

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; recHeadLabel(M)⟩ −→ ⟨H ′; recHeadLabel(M ′)⟩

R-RecHdLabV

⟨H ; recHeadLabel(⟨ℓ = v⟩@v ′)⟩ −→ ⟨H ; ℓ⟩

R-RecHdVal

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; recHeadTerm(M)⟩ −→ ⟨H ′; recHeadTerm(M ′)⟩

R-RecHdValV

⟨H ; recHeadTerm(⟨ℓ = v⟩@v ′)⟩ −→ ⟨H ;v⟩

R-RecTail

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; recTail(M)⟩ −→ ⟨H ′; recTail(M ′)⟩

R-RecTailV

⟨H ; recTail(⟨ℓ = v⟩@v ′)⟩ −→ ⟨H ;v ′⟩

R-Ref

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; ref M⟩ −→ ⟨H ′; ref M ′⟩

R-RefV

l < dom(H)

⟨H ; ref v⟩ −→ ⟨H [l 7→ v]; l⟩

R-Deref

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; !M⟩ −→ ⟨H ′; !M ′⟩

R-DerefV

H (l) = v

⟨H ; !l⟩ −→ ⟨H ;v⟩

R-AssignL

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ;M := N ⟩ −→ ⟨H ′;M ′ := N ⟩

R-AssignR

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; l := M⟩ −→ ⟨H ′; l := M ′⟩

R-AssignV

⟨H ; l := v⟩ −→ ⟨H [l 7→ v];v⟩

R-PropT

Γ |= φ

⟨H ; if φ thenM elseN ⟩ −→ ⟨H ;M⟩

R-PropF

Γ |= ¬φ

⟨H ; if φ thenM elseN ⟩ −→ ⟨H ;N ⟩

R-IfT

⟨H ; if true thenM elseN ⟩ −→ ⟨H ;M⟩

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Refinement Kinds 1:37

R-IfF

⟨H ; if false thenM elseN ⟩ −→ ⟨H ;N ⟩

R-If

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; if M thenN1 elseN2⟩ −→ ⟨H
′
; if M ′ thenN1 elseN2⟩

R-TAppTRed

T → T ′

⟨H ; (Λt ::K .M)[T]⟩ −→ ⟨H ; (Λt ::K .M)[T ′]⟩

R-Fix

⟨H ; µF :T .M⟩ −→ ⟨H ;M {µF :T .M/F }⟩

R-TApp

⟨H ; (Λt ::K .M)[Tv]⟩ −→ ⟨H ;M {Tv/t }⟩

R-TAppL

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ;M[T]⟩ −→ ⟨H ′;M ′[T]⟩

R-AppV

⟨H ; (λx : T .M)v⟩ −→ ⟨H ;M {v/x }⟩

R-AppL

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ;M N ⟩ −→ ⟨H ′;M ′N ⟩

R-AppR

⟨H ;N ⟩ −→ ⟨H ′;N ′⟩

⟨H ; (λx : T .M) N ⟩ −→ ⟨H ′; (λx : T .M) N ′⟩

R-ColConsL

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ;M :: N ⟩ −→ ⟨H ′;M ′ :: N ⟩

R-ColConsR

⟨H ;N ⟩ −→ ⟨H ′;N ′⟩

⟨H ;v :: N ⟩ −→ ⟨H ′;v :: N ′⟩

R-ColHd

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; colHead(M)⟩ −→ ⟨H ′; colHead(M ′)⟩

R-ColHdV

⟨H ; colHead(v :: v ′)⟩ −→ ⟨H ;v⟩

R-ColTl

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; colTail(M)⟩ −→ ⟨H ′; colTail(M ′)⟩

R-ColTlV

⟨H ; colTail(v :: v ′)⟩ −→ ⟨H ;v ′⟩

R-KindType

T → T ′

⟨H ; if T :: K as t ⇒ M elseN ⟩ −→ ⟨H ; if T ′ :: K as t ⇒ M elseN ⟩

R-KindL

Γ ⊢ T :: K

⟨H ; if T :: K as t ⇒ M elseN ⟩ −→ ⟨H ;M {T /t }⟩

R-KindR

Γ ⊢ T :: K0 Γ ⊢ K0 . K

⟨H ; if T :: K as t ⇒ M elseN ⟩ −→ ⟨H ;N ⟩

C PROOFS
In the development below we pressupose the signature Σ has been checked for well-formedness.

Lemma 5.1 (Substitution).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1:38 Luís Caires and Bernardo Toninho

(a) If Γ ⊢ T :: K and Γ, t :K , Γ′ ⊢ J then Γ, Γ′{T /t } ⊢ J {T /t }.
(b) If Γ ⊢ M : T and Γ,x :T , Γ′ ⊢ N : S then Γ, Γ′ ⊢ N {M/x } : S .

Proof. By induction on the derivation of the second given judgment. We show some illustrative

cases.

(a)

Case:
Γ, t :K , Γ′ ⊢ K ′ Γ, t :K , Γ′, s:K ′ ⊢ φ

Γ, t :K , Γ′ ⊢ {s : K ′ | φ}

Γ, Γ′{T /t } ⊢ K ′{T /t } by i.h.

Γ, Γ′{T /t }, s:K ′{T /t } ⊢ φ{T /t } by i.h.

Γ, Γ′{T /t } ⊢ {s : K ′{T /t } | φ{T /t }} by rule

Case:
P : K1, . . . ,Kn ∈ Σ ∀i ∈ {1, . . . ,n}.Γ, t :K , Γ′ ⊢ Ti :: Ki

Γ, t :K , Γ′ ⊢ P (T1, . . . ,Tn)

∀i ∈ {1, . . . ,n}.Γ, Γ′{T /t } ⊢ Ti {T /t } :: Ki {T /t } by i.h. i times

Γ, Γ′{T /t } ⊢ P (T1{T /t }, . . . ,Tn {T /t }) by rule

Case:
Γ, t :K , Γ′ ⊢ T1 ≡ T2 :: K

′

Γ, t :K , Γ′ |= T1 ≡ T2 :: K
′

Γ, Γ′{T /t } ⊢ T1{T /t } ≡ T2{T /t } :: K
′{T /t } by i.h.

Γ, Γ′{T /t } |= T1{T /t } ≡ T2{T /t } :: K
′{T /t } by rule

Case:
Γ, t :K , Γ′ |= T1 ≡ T2 :: K

′ Γ, t :K , Γ′,x : K ′ ⊢ φ Γ, t :K , Γ′ |= φ{T1/x }

Γ, t :K , Γ′ |= φ{S2/x }

Γ, Γ′{T /t } |= T1{T /t } ≡ T2{T /t } :: K
′{T /t } by i.h.

Γ, Γ′{T /t },x : K ′{T /t } ⊢ φ{T /t } by i.h.

Γ, Γ′{T /t } |= φ{T1/x }{T /t } by i.h.

Γ, Γ′{T /t } |= φ{T /t }{T1{T /t }/x } by definition

Γ, t :K , Γ′ |= φ{T /t }{T2{T /t }/x } by rule

Case:
Γ, t :K , Γ′ ⊢ K ′ Γ, t :K , Γ′, s:K ′ ⊢ T ′ :: K

Γ, t :K , Γ′ ⊢ ∀s:K ′.T ′ :: GenK ′

Γ, Γ′{T /t } ⊢ K ′{T /t } by i.h.

Γ, Γ′{T /t }, s:K ′{T /t } ⊢ T ′{T /t } :: K by i.h.

Γ, t :K , Γ′ ⊢ ∀s:K ′{T /t }.T ′{T /t } :: GenK ′ {T /t } by rule

Case:
Γ, t :K , Γ′ ⊢ L :: Nm Γ, t :K , Γ′ ⊢ T ′ :: K Γ, t :K , Γ′ ⊢ S ′ :: {t : Rec | L#t }

Γ, t :K , Γ′ ⊢ ⟨L : T ′⟩@S ′ :: Rec

Γ, Γ′{T /t } ⊢ L{T /t } :: Nm by i.h.

Γ, Γ′{T /t } ⊢ T ′{T /t } :: K by i.h.

Γ, Γ′{T /t } ⊢ S ′{T /t } :: {t : Rec | L{T /t }#t } by i.h.

Γ, Γ′{T /t } ⊢ ⟨L{T /t } : T ′{T /t }⟩@S ′{T /t } :: Rec by rule

Case:
Γ, t :K , Γ′ ⊢ T ′ :: {t : K ′ | elimK ′ (t) ≡ T

′′
:: K ′′}

Γ, t :K , Γ′ ⊢ elimK ′ (T
′) :: K ′′

Γ, Γ′{T /t } ⊢ T ′{T /t } :: {t : K ′{T /t } | elimK ′ {T /t } (t) ≡ T
′′{T /t } :: K ′′{T /t }} by i.h.

Γ, Γ′{T /t } ⊢ elimK ′ {T /t } (T
′{T /t }) :: K ′′{T /t } by rule

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

Refinement Kinds 1:39

Case:
Γ, t :K , Γ′ ⊢ φ Γ, t :K , Γ′,φ ⊢ T ′ :: K ′ Γ, t :K , Γ′,¬φ ⊢ S :: K ′

Γ, t :K , Γ′ ⊢ if φ thenT ′ else S :: K ′

Γ, Γ′{T /t } ⊢ φ{T /t } by i.h.

Γ, Γ′{T /t },φ{T /t } ⊢ T ′{T /t } :: K ′{T /t } by i.h.

Γ, Γ′{T /t },¬φ{T /t } ⊢ S {T /t } :: K ′{T /t } by i.h.

Γ, Γ′{T /t } ⊢ if φ{T /t } thenT ′{T /t } else S {T /t } :: K ′{T /t } by rule

Case:
Γ, t :K , Γ′ ⊢ S :: {t : Rec | ℓ#t } Γ, t :K , Γ′ ⊢ M : T ′ Γ, t :K , Γ′ ⊢ N : S

Γ, t :K , Γ′ ⊢ ⟨ℓ = M⟩@N : ⟨ℓ : T ′⟩@S

Γ, Γ′{T /t } ⊢ S :: {t : Rec | ℓ#t } by i.h.

Γ, Γ′{T /t } ⊢ M {T /t } : T ′{T /t } by i.h.

Γ, Γ′{T /t } ⊢ N {T /t } : S {T /t } by i.h.

Γ, Γ′{T /t } ⊢ ⟨ℓ = M {T /t }⟩@N {T /t } : ⟨ℓ : T ′{T /t }⟩@S {T /t } by rule

Case:
Γ, t :K , Γ′ ⊢ M : S Γ, t :K , Γ′ ⊢ S :: {s : Rec | headLabel(s) ≡ L :: Nm}

Γ, t :K , Γ′ ⊢ recHeadLabel(M) : L{S/s}

Γ, Γ′{T /t } ⊢ M {T /t } : S {T /t } by i.h.

Γ, Γ′{T /t } ⊢ S {T /t } :: {s : Rec | headLabel(s) ≡ L{T /t } :: Nm} by i.h.

Γ, Γ′{T /t } ⊢ recHeadLabel(M {T /t }) : L{T /t }{S {T /t }/s} by rule

Case:
Γ, t :K , Γ′ ⊢ M : S Γ, t :K , Γ′ ⊢ S :: {s : Rec | headType(s) ≡ T ′ :: K ′}

Γ, t :K , Γ′ ⊢ recHeadTerm(M) : T ′{S/s}

Γ, Γ′{T /t } ⊢ M {T /t } : S {T /t } by i.h.

Γ, Γ′{T /t } ⊢ S {T /t } :: {s : Rec | headType(s) ≡ T ′{T /t } :: K ′{T /t }} by i.h.

Γ, Γ′{T /t } ⊢ recHeadTerm(M {T /t }) : T ′{T /t }{S {T /t }/s} by rule

Case:

Γ, t ′:K , Γ′, t :K1 ⊢ K2 Γ, t ′:K , Γ′ ⊢ S :: K1

Γ, t ′:K , Γ′, F :Πt :K1.K2, s:K1 ⊢ T
′
:: K2 structural(T ′, F , t)

Γ, t ′:K , Γ′ |= (µF : (Πt :K1.K2).λt ::K1.T
′) S ≡ T ′{S/t }{(µF : (Πt :K1.K2).λt ::K1.T

′)/F } :: K2{S/t }

Γ, Γ′{T /t ′}, t :K1{T /t
′} ⊢ K2{T /t

′} by i.h.

Γ, Γ′{T /t ′} ⊢ S {T /t ′} :: K1{T /t
′} by i.h.

Γ, Γ′{T /t ′}, F :Πt :K1{T /t
′}.K2{T /t

′}, s:K1{T /t
′} ⊢ T ′{T /t ′} :: K2{T /t

′} by i.h.

structural(T ′{T /t ′}, F , t) by ???

Γ, Γ′{T /t ′} |= (µF : (Πt :K1{T /t
′}.K2{T /t

′}).λt ::K1{T /t
′}.T ′{T /t ′}) S {T /t ′} ≡

T ′{T /t ′}{S {T /t ′}/t }{(µF : (Πt :K1{T /t
′}.K2{T /t

′}).λt ::K1{T /t
′}.T ′{T /t ′})/F }

:: K2{T /t
′}{S {T /t ′}/t } by rule

The remaining cases follow by similar reasoning, relying on type- and kind-preserving substitution

in the language of refinements. □

Lemma 5.2 (Context Conversion).

(a) Let Γ,x :T ⊢ and Γ ⊢ T ′ :: K . If Γ,x :T ⊢ J and Γ |= T ≡ T ′ :: K then Γ,x :T ′ ⊢ J .
(b) Let Γ, t :K ⊢ and Γ ⊢ K ′. If Γ, t :K ⊢ J and Γ ⊢ K ≡ K ′ then Γ, t :K ′ ⊢ J .

Proof. Follows by weakening and substitution.

(a)

Γ,x : T ′ ⊢ x : T ′ by variable rule

Γ ⊢ T ′ ≡ T :: K by symmetry

Γ,x :T ′ ⊢ x : T by conversion

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1:40 Luís Caires and Bernardo Toninho

Γ,x ′ : T ⊢ J {x ′/x } alpha conversion, for fresh x ′

Γ,x : T ′,x ′:T ⊢ J {x ′/x } by weakening

Γ,x ′:T ⊢ J {x ′/x }{x/x ′} by substitution

Γ,x :T ′ ⊢ J by definition

Statement (b) follows by the same reasoning. □

Lemma 5.5 (Functionality of Kinding and Refinements).

Assume Γ |= T ≡ S :: K , Γ ⊢ T :: K and Γ ⊢ S :: K :
(a) If Γ, t :K , Γ′ ⊢ T ′ :: K ′ then Γ, Γ′{T /t } |= T ′{T /t } ≡ T ′{S/t } :: K ′{T /t }
(b) If Γ, t :K , Γ′ ⊢ K ′ then Γ, Γ′{T /t } ⊢ K {T /t } ≡ K {S/t }.
(c) If Γ, t :K , Γ′ |= φ then Γ, Γ′{T /t } |= φ{T /t } ≡ φ{S/t }

Proof. By induction on the given kinding/kind well-formedness and entailment judgments.

Functionality follows by substitution and the congruence rules of definitional equality.

Case:
Γ, t : K , Γ′ ⊢ K ′ Γ, t : K , Γ′, t ′:K ′ ⊢ φ

Γ, t : K , Γ′ ⊢ {t ′ : K ′ | φ}

Γ, Γ′{T /t } ⊢ K ′{T /t } ≡ K ′{S/t } by i.h.

Γ, Γ′{T /t }, t ′:K ′{T /t } ⊢ φ{T /t } ≡ φ{S/t } by i.h.

Γ, Γ′{T /t } ⊢ {t ′ : K ′{T /t } | φ{T /t }} ≡ {t ′ : K ′{S/t } | φ{S/t }} by kind ref. equality

Case:
Γ, t : K , Γ′ |= T ′ ≡ S ′ :: K ′ Γ, t : K , Γ′,x : K ′ ⊢ φ Γ, t : K , Γ′ |= φ{T ′/x }

Γ, t : K , Γ′ |= φ{S ′/x }

Γ |= T ≡ S :: K , Γ ⊢ T :: K and Γ ⊢ S :: K by assumption

Γ, Γ′{T /t } |= ϕ{S ′/x }{T /t } by substitution

Γ, Γ′{S/t } |= ϕ{S ′/x }{S/t } by substitution

Γ, Γ′{T /t } |= ϕ{S ′/x }{S/t } by ctxt. conversion

Γ, Γ′{T /t } |= ϕ{S ′/x }{T /t } ⊃ ϕ{S ′/x }{S/t } by weakening and ⊃I

Γ, Γ′{T /t } |= ϕ{S ′/x }{S/t } ⊃ ϕ{S ′/x }{T /t } by weakening and ⊃I

Γ, Γ′{T /t } |= φ{S ′/x }{T /t } ≡ φ{S ′/x }{S/t } by definition of refinement equivalence

Case:
Γ, t : K , Γ′ ⊢ K Γ, t : K , Γ, s:K ′ ⊢ T ′ :: K

Γ, t : K , Γ ⊢ ∀s:K ′.T ′ :: GenK
Γ, Γ′{T /t } ⊢ K ′{T /t } ≡ K ′{S/t } by i.h.

Γ, Γ′{T /t }, t ′:K ′{T /t } ⊢ T ′{T /t } ≡ T ′{S/t } :: K by i.h.

Γ, Γ′{T /t } ⊢ ∀s : K ′{T /t }.T ′{T /t } ≡ ∀s : K ′{S/t }.T ′{S/t } :: GenK ′ {T /t } by ∀ Eq.

Case:
Γ, t : K , Γ′ ⊢ L :: Nm Γ, t : K , Γ′ ⊢ T ′ :: K Γ, t : K , Γ′ ⊢ S ′ :: {t : Rec | L#t }

Γ, t : K , Γ′ ⊢ ⟨L : T ′⟩@S ′ :: Rec
Γ, Γ′{T /t } ⊢ L{T /t } ≡ L{S/t } :: Nm by i.h.

Γ, Γ′{T /t } ⊢ T ′{T /t } ≡ T ′{S/t } :: K by i.h.

Γ, Γ′{T /t } ⊢ S ′{T /t } ≡ S ′{S/t } :: {t : Rec | L{T /t }#t } by i.h.

Γ, Γ′{T /t } ⊢ ⟨L{T /t } : T ′{T /t }⟩@S ′{T /t } ≡ ⟨L{S/t } : T ′{S/t }⟩@S ′{S/t } :: Rec by Rec Eq.

Case:
Γ, t : K , Γ′ ⊢ T ′ :: {s : K ′ | elimK ′ (s) ≡ T ′′ :: K ′′}

Γ, t : K , Γ′ ⊢ elimK ′ (T ′) :: K ′′

Γ, Γ′{T /t } |= T ′{T /t } ≡ T ′{S/t } :: {s : K ′{T /t } | elimK ′ (s) ≡ T ′′{T /t } :: K ′′{T /t }} by i.h.

Γ, Γ′{T /t } |= elimK ′ (T ′{T /t }) ≡ T ′′{T /t } :: K ′′{T /t } by elimK eq. rule

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

Refinement Kinds 1:41

Γ, Γ′{T /t } |= elimK ′ (T ′{S/t }) ≡ T ′′{T /t } :: K ′′{T /t } by symmetry and elimK eq. rule

Γ, Γ′{T /t } |= elimK ′ (T ′{T /t }) ≡ elimK ′ (T ′{S/t }) :: K ′′{T /t } by sym. and transitivity

Case:
Γ, t :K , Γ′ ⊢ φ Γ, t :K , Γ′,φ ⊢ T ′ :: K ′ Γ, t :K , Γ′,¬φ ⊢ S ′ :: K ′

Γ, t :K , Γ′ ⊢ if φ thenT ′ else S ′ :: K ′

Γ, Γ′{T /t },φ{T /t } ⊢ T ′{T /t } ≡ T ′{S/t } :: K ′{T /t } by i.h.

Γ, Γ′{T /t },¬φ{T /t } ⊢ S ′{T /t } ≡ S ′{S/t } :: K ′{T /t } by i.h.

Γ, t : K , Γ′,φ |= φ tautology

Γ, Γ′{T /t },φ{T /t } |= φ{T /t } by substitution

Γ, Γ′{T /t },φ{S/t } |= φ{T /t } by ctxt. conversion

Γ, Γ′{T /t } |= φ{S/t } ⊃ φ{T /t } by ⊃I

Γ, Γ′{S/t },φ{S/t } |= φ{S/t } by substitution

Γ, Γ′{T /t },φ{T /t } |= φ{S/t } by ctxt. conversion

Γ, Γ′{T /t } |= φ{T /t } ⊃ φ{S/t } by ⊃I

Γ, Γ′{T /t } ⊢ φ{T /t } ≡ φ{S/t } by definition

Γ, Γ′{T /t } |= if φ{T /t } thenT ′{T /t } else S ′{T /t } ≡
if φ{S/t } thenT ′{S/t } else S ′{S/t } :: K ′{T /t } by rule

Case:
Γ, t :K , Γ′ |= φ{T ′/s} Γ, t :K , Γ′ ⊢ T ′ :: K ′

Γ, t :K , Γ′ ⊢ T ′ :: {s:K ′ | φ}

Γ, Γ′{T /t } |= φ{T ′/s}{T /t } ≡ φ{T ′/s}{S/t } by i.h.

Γ, Γ′{T /t } |= T ′{T /t } ≡ T ′{S/t } :: K ′{T /t } by i.h.

Γ, Γ′{T /t } |= T ′{T /t } ≡ T ′{S/t } :: {s:K ′{T /t } | φ{T /t }} by Eq Conversion

□

Theorem 5.3 (Validity for Eqality).

(a) If Γ ⊢ K ≡ K ′ then Γ ⊢ K and Γ ⊢ K ′.
(b) If Γ |= T ≡ T ′ :: K then Γ ⊢ K , Γ ⊢ T :: K and Γ ⊢ T ′ :: K .
(c) If Γ ⊢ φ ≡ ψ then Γ ⊢ φ and Γ ⊢ ψ

Proof. By induction on the given derivation.

Case:
Γ ⊢ K ≡ K ′ Γ, t :K ⊢ φ ≡ ψ

Γ ⊢ {t :K | φ} ≡ {t :K ′ | ψ }

Γ ⊢ K and Γ ⊢ K ′ by i.h.

Γ, t : K ⊢ φ and Γ, t : K ⊢ ψ by i.h.

Γ ⊢ {t :K | φ} by refinement kind w.f.

Γ ⊢ {t :K ′ | ψ } by refinement kind w.f.

Case:
Γ |= T1 ≡ S1 :: GenK Γ |= T2 ≡ S2 :: K

Γ |= tmap(T1)T2 ≡ tmap(S1)S2 :: Type
Γ ⊢ T1 :: GenK and Γ ⊢ S1 :: GenK by i.h.

Γ ⊢ T2 :: K and Γ ⊢ S2 :: K by i.h.

Γ ⊢ tmap(T1)T2 :: Type by kinding

Γ ⊢ tmap(S1) S2 :: Type by kinding

Case:
Γ, t :K ⊢ T :: K Γ ⊢ S :: K

Γ |= tmap(∀t :K .T) S ≡ T {S/t } :: Type

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

1:42 Luís Caires and Bernardo Toninho

Γ, t :K ⊢ T :: K by inversion

Γ ⊢ S :: K by inversion

Γ ⊢ ∀t :K .T :: GenK by kinding

Γ ⊢ tmap(∀t :K .T) S :: Type by kinding

Γ ⊢ T {S/t } :: K {S/t } by substitution

Γ ⊢ T {S/t } :: Type by subkinding

Case:
Γ |= T ≡ S :: {t :K | elimK (t) ≡ T ′ :: K ′} [Γ ⊢ T ′{T /t } :: K ′{T /t }]

Γ |= elimK (T) ≡ T ′{T /t } :: K ′{T /t }
Γ ⊢ T :: {t : K | elimK (t) ≡ T ′ :: K ′} and Γ ⊢ S :: {t : K | elimK (t) ≡ T ′ :: K ′} by i.h.

Γ ⊢ elimK (T) :: K ′{T /t } by kinding

Γ ⊢ T ′{T /t } :: K ′{T /t } by assumption

Case:
Γ ⊢ T :: K

Γ |= colOf (T⋆) ≡ T :: Type

Γ ⊢ T :: K by inversion

Γ ⊢ T :: Type by subkinding

Γ ⊢ T⋆
:: Col by kinding

Γ ⊢ colOf (T⋆) :: Type by kinding

Remaining cases follow by a similar reasoning.

□

Corollary 5.4 (Kind Preservation). If Γ ⊢ T :: K and T → T ′ then Γ ⊢ T ′ :: K .

Proof. Immediate from equality validity since T → S implies T ≡ S . □

Lemma 5.6 (Functionality of Eqality). Assume Γ |= T0 ≡ S0 :: K :
(a) If Γ, t :K |= T ≡ S :: K ′ then Γ |= T {T0/t } ≡ S {S0/t } :: K

′{T0/t }.
(b) If Γ, t :K ⊢ K1 ≡ K2 then Γ ⊢ K1{T0/t } ≡ K2{S0/t }.
(c) If Γ, t :K ⊢ φ ≡ ψ then Γ ⊢ φ{T0/t } ≡ ψ {S0/t }.
Proof. (a)

Γ, t :K |= T ≡ S :: K ′ assumption

Γ ⊢ T0 ≡ S0 :: K assumption

Γ ⊢ T0 :: K and Γ ⊢ S0 :: K by eq. validity

Γ, t :K ⊢ T :: K ′ and Γ, t :K ⊢ S :: K ′ by eq. validity

Γ ⊢ T {T0/t } ≡ S {T0/t } :: K
′{T0/t } by substitution

Γ ⊢ S {T0/t } ≡ S {S0/t } :: K
′{T0/t } by functionality

Γ ⊢ T {T0/t } ≡ S {S0/t } :: K
′{T0/t } by transitivity

(b)
Γ ⊢ T0 ≡ S0 :: K assumption

Γ, t : K ⊢ K1 ≡ K2 assumption

Γ ⊢ T0 :: K and Γ ⊢ S0 :: K by eq. validity

Γ, t : K ⊢ K1 and Γ, t : K ⊢ K2 by eq. validity

Γ ⊢ K1{T0/t } ≡ K2{T0/t } by substitution

Γ ⊢ K2{T0/t } ≡ K2{S0/t } by functionality

Γ ⊢ K1{T0/t } ≡ K2{S0/t } by transitivity

(c)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

Refinement Kinds 1:43

Γ ⊢ T0 ≡ S0 :: K assumption

Γ, t : K ⊢ φ ≡ ψ assumption

Γ ⊢ T0 :: K and Γ ⊢ S0 :: K by eq. validity

Γ, t : K ⊢ φ and Γ, t : K ⊢ ψ by eq. validity

Γ ⊢ φ{T0/t } ≡ ψ {T0/t } by substitution

Γ ⊢ ψ {T0/t } ≡ ψ {S0/t } by functionality

Γ ⊢ φ{T0/t } ≡ ψ {S0/t } by transitivity

□

Theorem 5.7 (Validity).

(a) If Γ ⊢ K then Γ ⊢
(b) If Γ ⊢ T :: K then Γ ⊢ K
(c) If Γ ⊢ M : T then Γ ⊢ T :: Type.

Proof. Straightforward induction on the given derivation. □

Lemma C.1 (Injectivity). If Γ ⊢ Πt : K1.K2 ≡ Πt : K ′
1
.K ′

2
then Γ ⊢ K1 ≡ K ′

1
and Γ, t : K1 ⊢ K2 ≡

K ′
2
.

Proof. Straightforward induction on the given kind equality derivation. □

Lemma C.2 (Injectivity via Subkinding). If Γ ⊢ Πt :K1.K2 ≤ K then Γ ⊢ K ≡ Πt : K ′
1
.K ′

2
with

Γ ⊢ K1 ≡ K ′
1
and Γ, t : K1 ⊢ K2 ≡ K ′

2
.

Lemma C.3 (Inversion).

(a) If Γ ⊢ λt ::K .T :: K ′ then there is K1 and K2 such that Γ ⊢ K ′ ≡ Πt :K1.K2, Γ ⊢ K ≡ K1 and
Γ, t :K1 ⊢ T :: K2.

(b) If Γ ⊢ T S :: K then Γ ⊢ T :: Πt :K0.K1, Γ ⊢ S :: K0 and Γ ⊢ K ≡ K1{S/t }.
(c) If Γ ⊢ λx :T .M : T ′ then there isT1 andT2 such that Γ |= T ′ ≡ T1 → T2 :: Fun, Γ |= T ≡ T1 :: Type

and Γ,x :T1 ⊢ M : T2.
(d) If Γ ⊢ ⟨L : T ⟩@S :: K then Γ ⊢ L :: Nm, Γ ⊢ T :: Type, Γ ⊢ S :: {t ::Rec | L < t } and Γ ⊢ K ≡ Rec.
(e) If Γ ⊢ ⟨L = M⟩@N : T then there is L′,T1,T2 such that Γ |= L ≡ L′ :: Nm, Γ ⊢ ⟨L′ : T1⟩@T2 ::

Rec, Γ |= T ≡ ⟨L′ : T1⟩@T2 :: Rec, Γ ⊢ M : T1 and Γ ⊢ N : T2.
(f) If Γ ⊢ T :: {t ::K | φ} then Γ |= φ{T /t }, Γ ⊢ T :: K and Γ, t :K ⊢ φ.
(g) If Γ ⊢ elimK (T) :: K then Γ ⊢ T :: {t ::K | elimK (t) ≡ T ′ :: K ′} and Γ ⊢ T ′{T /t } :: K ′{T /t } and

Γ ⊢ K ≡ K ′{T /t }.
(h) If Γ ⊢ if φ thenM elseN : T then Γ |= T ≡ if φ thenT1 elseT2 :: K with Γ,φ ⊢ M : T1 and

Γ,¬φ ⊢ N : T2.
(i) If Γ ⊢ if φ thenT else S :: K then Γ ⊢ φ, Γ,φ ⊢ T :: K and Γ,¬φ ⊢ S :: K .
(j) If Γ ⊢ T → S :: K then Γ ⊢ K ≡ Fun, Γ ⊢ T :: K and Γ ⊢ S :: K ′, for some K ,K ′.
(k) If Γ ⊢ M :: N :: T then Γ |= T ≡ S :: {t ::Col | colOf (t) ≡ T ′ :: K }, Γ ⊢ N : S and

Γ ⊢ M : T ′{S/t }, for some T ′,K , S,T ′.
(l) If Γ ⊢ T ′⋆ :: K then Γ ⊢ K ≡ Col and Γ ⊢ T ′ :: K , for some K .

(m) If Γ ⊢ if T ′ :: K as t ⇒ M elseN : T then Γ ⊢ T ′ :: K , Γ ⊢ K , Γ, t : K ⊢ M : S and Γ ⊢ N : S ,
with Γ ⊢ T ≡ S :: K ′ for some K ,K ′, S .

(n) If Γ ⊢ if T ′ :: K as t ⇒ S else S ′ :: K ′ then Γ ⊢ T ′ :: K , Γ ⊢ K , Γ, t :K ⊢ S :: K ′′, Γ vdashS ′ :: K ′′

and Γ ⊢ K ′ ≡ K ′′, for some K ,K ′′.
(o) If Γ ⊢ µF :T .M : T then Γ, F : T ⊢ M : T and structural(F ,M).
(p) If Γ ⊢ µF : (Πt :K1.K2).λt ::K1.T

′
:: K then Γ, F :Πt :K1.K2, t :K1 ⊢ T

′
:: K2, structural(T ′, F , t)

and Γ ⊢ K ≡ Πt :K1.K2.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

1:44 Luís Caires and Bernardo Toninho

(q) If Γ ⊢ recHeadLabel(M) : T then Γ |= T ≡ L{S/t } :: Nm, Γ ⊢ M : S and Γ ⊢ S :: {t :Rec |
headLabel(t) ≡ L :: Nm}

(r) If Γ ⊢ recHeadTerm(M) : T then Γ |= T ≡ T ′{S/t } :: K {S/t }, Γ ⊢ M : S and Γ ⊢ S :: {t :Rec |
headType(t) ≡ T ′ :: K }

(s) If Γ ⊢ tail(M) : T then Γ |= T ≡ T ′{S/t } :: K {S/t }, Γ ⊢ M : S and Γ ⊢ S :: {t :Rec | tail(t) ≡
T ′ :: K }.

(t) If Γ ⊢ colHead(M) : T then Γ ⊢ M : T⋆

(u) If Γ ⊢ colTail(M) : T then Γ |= T ≡ T ′{Tc/t } :: K , Γ ⊢ M : Tc and Γ ⊢ Tc :: {t ::Col | colOf (t) ≡
T ′ :: K }

(v) If Γ ⊢ ref M : T then Γ |= T ≡ ref T ′ and Γ ⊢ M : T ′

(w) If Γ ⊢ !M : T then Γ |= T ≡ T ′{S/t } :: K , Γ ⊢ M : S , Γ ⊢ N : T ′ and Γ ⊢ S :: {t ::Ref | refOf (t) ≡
T ′ :: K }

(x) If Γ ⊢ M := N : T then Γ |= T ≡ T ′{S/t } :: K , Γ ⊢ M : S , Γ ⊢ N : T , Γ ⊢ S :: {t ::Ref |
refOf (t) ≡ T ′ :: K }

(y) If Γ ⊢ M N : T then Γ ⊢ M : T1, Γ ⊢ N : T2, Γ ⊢ T1 :: kre f t ::Fundom(t) ≡ T2 :: K ∧ img(t) = U :: K ′

and Γ ⊢ T ≡ U {T1/t } :: K
′{T1/t }

(z) If Γ ⊢ M[T] : S then Γ ⊢ M : T ′, Γ ⊢ T :: K , Γ ⊢ U :: K , Γ ⊢ T ′ :: { f ::GenK | tmap(f)T ≡ U ::

K } and Γ ⊢ S ≡ U :: K .

Proof. By induction on the structure of the given typing or kinding derivation, using validity.

(a)

Case:
Γ ⊢ λt : K .T :: K ′′ Γ ⊢ K ′′ ≤ K ′

Γ ⊢ λt : K .T :: K ′

Γ ⊢ K ′′ ≡ Πt :K ′
1
.K ′

2
, Γ ⊢ K ≡ K ′

1
and Γ, t : K ′

1
⊢ T :: K ′

2
by i.h.

Γ ⊢ K ′′ ≤ Πt : K1.K2, for some K1, K2 with Γ ⊢ K ′
1
≤ K1 and Γ, t : K ′

1
⊢ K ′

2
≤ K2

by inversion

Γ ⊢ K ′
1
≡ K1 and Γ, t : K ′

1
⊢ K ′

2
≡ K2 by inversion

Γ, t : K1 ⊢ T :: K ′
2

by ctxt. conversion

Γ, t : K1 ⊢ T :: K2 by conversion

Γ ⊢ K ≡ K1 by transitivity

Other cases follow by similar reasoning (or are immediate).

□

Below we do not list the (very) extensive list of all inversions. They follow the same pattern of

the kinding inversion principle.

Lemma C.4 (Eqality Inversion).

(1) If Γ |= T ≡ λt : K1.T2 :: K ′ then Γ |= T ≡ λt : K0.T
′
2
:: Πt : K0.K

′′ with Γ ⊢ K0 ≡ K1 and
Γ, t : K0 |= T2 ≡ T

′
2
:: K ′′, for some K ′′.

(2) If Γ |= T ≡ T0 S0 :: K then Γ |= T ≡ T1 S1 :: K with Γ |= T1 ≡ T0 :: Πt : K1.K0,ΓS1 ≡ S0 :: K1

and K = K0{S1/t }.
(3) If Γ |= T ≡ ⟨L : T ⟩@S :: K then Γ |= T ≡ ⟨L′ : T ′⟩@S ′ :: K with Γ |= L ≡ L′ :: Nm,

Γ |= T ′ ≡ T :: K , Γ |= S ′ ≡ S :: {t : Rec | L < t } and K = Rec.
(4) If Γ ⊢ K ≡ {t : K | φ} then Γ ⊢ K ≡ {t : K ′ | ψ } with Γ ⊢ K ≡ K ′ Γ ⊢ φ ≡ ψ
(5) If Γ |= T ≡ elimK (S) :: K then Γ |= T ≡ elimK ′ (S ′) :: K with Γ |= S ≡ S ′ :: {t :K | elimK (t) ≡

T ′ :: K ′}, Γ ⊢ K ≡ K ′, Γ ⊢ T ′ :: K ′{S/t } and K = K ′{S/t }.

Proof. By induction on the given equality derivations, relying on validity, reflexivity, substitu-

tion, context conversion and inversion. We show two illustrative cases.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

Refinement Kinds 1:45

Case: Transitivity rule

Γ |= T ≡ S ′ :: K and Γ |= S ′ ≡ elimK (S) :: K assumption

Γ |= S ′ ≡ elimK ′ (S ′′) :: K with Γ |= S ≡ S ′′ :: {t :K | elimK (t) ≡ T ′ :: K ′},
Γ ⊢ K ′ ≡ K , Γ ⊢ T ′ :: K ′{S/t } and K = K ′{S/t } by i.h.

Γ |= T ≡ elimK ′ (S ′′) :: K by transitivity

Case:

Γ, t :K0 ⊢ T1 :: K
′ Γ ⊢ T2 :: K0

Γ |= (λt :K0.T1)T2 ≡ T1{T2/t } :: K
′{T2/t }

Γ, t :K0 ⊢ T1 :: K
′
, Γ ⊢ T2 :: K0 and elimK (S) = T1{T2/t } and K = K ′{T2/t } assumption

Subcase 1: T1 = t , T2 = elimK (S)
K0 = K ′ = K assumption

Γ ⊢ elimK (S) :: K assumption

Γ ⊢ S :: {t :K | elimK (t) ≡ T ′ :: K ′} and Γ ⊢ T ′{S/t } :: K ′{S/t } with K = K ′{S/t } by inversion

Γ |= S ≡ S :: {t :K | elimK (t) ≡ T ′ :: K ′} by reflexivity

Γ ⊢ elimK (S) ≡ elimK (S) :: K by reflexivity

Subcase 2: T1 = elimK ′ (S ′) such that elimK ′ {T2/t } (S
′{T2/t }) = elimK (S)

Γ, t : K0 ⊢ elimK ′ (S ′) :: K ′ assumption

Γ ⊢ elimK ′ {T2/t } (S
′{T2/t }) :: K

′{T2/t } by substitution

Γ ⊢ S ′{T2/t } :: {t :K | elimK (t) ≡ T ′ :: K ′} and Γ ⊢ T ′{S/t } :: K ′{S/t } with K = K ′{S/t }
by inversion

Γ ⊢ S ′{T2/t } ≡ S ′{T2/t } :: {t :K | elimK (t) ≡ T ′ :: K ′} by reflexivity

Γ ⊢ elimK ′ {T2/t } (S
′{T2/t }) ≡ elimK ′ {T2/t } (S

′{T2/t }) :: K
′{T2/t } by reflexivity

□

Lemma C.5 (Subkinding Inversion).

(1) If Γ ⊢ K ≤ K ′ then Γ ⊢ K ≡ K ′ or Γ ⊢ K ′ ≡ Type.
(2) If Γ ⊢ K ≤ {t :K ′ | φ} then Γ ⊢ K ≡ {t :K | ψ } with Γ ⊢ K ≤ K ′ and Γ |= ψ ⊃ φ.
(3) If Γ ⊢ {t :K ′ | φ} ≤ K then Γ ⊢ K ≤ K and Γ, t :K ′ ⊢ φ.

Proof. By induction on the given derivation, using equality inversion. □

Lemma C.6. If Γ |= T ≡ S :: K , Γ ⊢ T :: K ′ and Γ ⊢ S :: K ′ and Γ ⊢ K ′ ≤ K then Γ ⊢ T ≡ S :: K ′.

Proof. By induction on the given equality derivation. □

Theorem 5.8 (Unicity of Types and Kinds).

(1) If Γ ⊢ M : T and Γ ⊢ M : S then Γ ⊢ T ≡ S :: K and Γ ⊢ K ≤ Type.
(2) If Γ ⊢ T :: K and Γ ⊢ T :: K ′ then Γ ⊢ K ≤ K ′ or Γ ⊢ K ′ ≤ K .

Proof. By induction on the structure of the given type/term.

Case: M is ⟨ℓ = M ′⟩@N ′

Γ ⊢ ⟨ℓ = M ′⟩@N ′ : T and Γ ⊢ ⟨ℓ = M ′⟩@N ′ : S assumption

Γ ⊢ M ′ : T1, Γ ⊢ N
′
: T2, Γ ⊢ ℓ ≡ L′ :: Nm, Γ ⊢ ⟨L′ = T1⟩@T2 :: Rec

and Γ |= T ≡ ⟨L′ = T1⟩@T2 :: Rec inversion

Γ ⊢ M ′ : S1, Γ ⊢ N
′
: S2, Γ ⊢ ℓ ≡ L′′ :: Nm, Γ ⊢ ⟨L′′ = S1⟩@S2 :: Rec

and Γ |= S ≡ ⟨L′′ = S1⟩@S2 :: Rec inversion

Γ |= T1 ≡ S1 :: K1 and Γ ⊢ K1 ≤ Type by i.h.

Γ |= T1 ≡ S1 :: Type by conversion

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

1:46 Luís Caires and Bernardo Toninho

Γ |= T2 ≡ S2 :: K2 and Γ ⊢ K2 ≤ Type by i.h.

Γ ⊢ T1 :: Rec and Γ ⊢ T2 :: Rec by inversion and conversion

Γ |= T2 ≡ S2 :: Rec by Lemma C.6

Case: T is ⟨L = S1⟩@S2

Γ ⊢ ⟨L = S1⟩@S2 :: K and Γ ⊢ ⟨L = S1⟩@S2 :: K
′

assumption

Γ ⊢ L :: Nm, Γ ⊢ S1 :: Type, Γ ⊢ S2 :: {t :Rec | K < t } and Γ ⊢ K ≡ Rec by inversion

Γ ⊢ L :: Nm, Γ ⊢ S1 :: Type, Γ ⊢ S2 :: {t :Rec | K < t } and Γ ⊢ K ′ ≡ Rec by inversion

Γ ⊢ Rec ≤ Rec by reflexivity

Case: M is if φ thenM ′ elseN ′

Γ ⊢ if φ thenM ′ elseN ′ : T and Γ ⊢ if φ thenM ′ elseN ′ : S assumption

Γ,φ ⊢ M ′ : T1, Γ,¬φ ⊢ N
′
: T2 and Γ |= T ≡ if φ thenT1 elseT2 by inversion

Γ,φ ⊢ M ′ : S1, Γ,¬φ ⊢ N
′
: S2 and Γ |= S ≡ if φ then S1 else S2 by inversion

Γ,φ |= T1 ≡ S1 :: K1 with Γ ⊢ K1 ≤ Type by i.h.

Γ,¬φ |= T2 ≡ S2 :: K2 with Γ ⊢ K2 ≤ Type by i.h.

Γ |= if φ thenT1 elseT2 ≡ if φ then S1 else S2 :: Type by rule

Case: M is if T ′ :: K as t ⇒ M ′ elseN ′

Γ ⊢ if T ′ :: K as t ⇒ M ′ elseN ′ : T and Γ ⊢ if T ′ :: K as t ⇒ M ′ elseN ′ : S assumption

Γ ⊢ T ′ :: K ′, Γ ⊢ K , Γ, t : K ⊢ M ′ : T and Γ ⊢ N ′ : T by inversion

Γ ⊢ T ′ :: K ′, Γ ⊢ K , Γ, t : K ⊢ M ′ : S and Γ ⊢ N ′ : S by inversion

Γ |= T ≡ S :: K with Γ ⊢ K ≤ Type by i.h.

Case: T is if T ′ :: K as t ⇒ S1 else S2
Γ ⊢ if T ′ :: K as t ⇒ S1 else S2 :: K and Γ ⊢ if T ′ :: K as t ⇒ S1 else S2 :: K ′ assumption

Γ ⊢ T ′ :: K ′, Γ ⊢ K , Γ, t : K ⊢ S1 :: K and Γ ⊢ S2 :: K by inversion

Γ ⊢ T ′ :: K ′, Γ ⊢ K , Γ, t : K ⊢ S1 :: K
′
and Γ ⊢ S2 :: K

′
by inversion

Γ ⊢ K ≤ K ′ or Γ ⊢ K ′ ≤ K by i.h.

Case: M is µF :T .M ′

Γ ⊢ µF :T .M ′ : T and Γ ⊢ µF :T .M ′ : S assumption

Γ |= T ≡ T ′ :: K and Γ, F : T ⊢ M ′ : T ′ by inversion

Γ |= S ≡ S ′ :: K ′ and Γ, F : T ⊢ M ′ : S ′ by inversion

Γ, F : T |= T ′ ≡ S ′ :: K with Γ ⊢ K ≤ Type by i.h.

Γ, F : T |= T ≡ T ′ :: K and Γ, F : T |= S ≡ S ′ :: K ′ by weakening

Γ, F : T |= T ≡ S :: Type by transitivity and conversion

Γ |= T ≡ S :: Type by strengthening

Case: T is µF : (Πt :K .K ′).λt ::K .T ′

Γ ⊢ µF : (Πt :K1.K2).λt ::K1.T
′
:: K and Γ ⊢ µF : (Πt :K1.K2).λt ::K1.T

′
:: K ′ assumption

Γ, F : Πt : K1.K2, t : K1 ⊢ T
′
:: K2, structural(T ′, F , t) and Γ ⊢ K ≡ Πt : K1.K2 by inversion

Γ, F : Πt : K1.K2, t : K1 ⊢ T
′
:: K2, structural(T ′, F , t) and Γ ⊢ K ′ ≡ Πt : K1.K2 by inversion

Γ ⊢ K ≤ K ′ by transitivity

Case: M is recHeadTerm(M ′)

Γ ⊢ recHeadTerm(M ′) : T and Γ ⊢ recHeadTerm(M ′) : S assumption

Γ ⊢ M : T ′, Γ ⊢ T ′ :: {t :Rec | headType(t) ≡ T ′′ :: K } and Γ |= T ≡ T ′′{T ′/t } :: K {T ′/t }
by inversion

Γ ⊢ M : S ′, Γ ⊢ S ′ :: {t :Rec | headType(t) ≡ S ′′ :: K } and Γ |= S ≡ S ′′{S ′/t } :: K {S ′/t }
by inversion

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

Refinement Kinds 1:47

Γ |= T ′ ≡ S ′ :: K with K ≤ Type by i.h.

Γ ⊢ T ′ :: Rec and Γ |= headType(T ′) ≡ T ′′{T ′/t } :: K {T ′/t } by inversion

Γ ⊢ S ′ :: Rec and Γ |= headType(S ′) ≡ S ′′{S ′/t } :: K {S ′/t } by inversion

Γ ⊢ T ′ :: {t :Rec | nonEmpty(t)} by conversion

Γ ⊢ S ′ :: {t :Rec | nonEmpty(t)} by conversion

Γ |= T ′ ≡ S ′ :: {t :Rec | nonEmpty(t)} by Lemma C.6

Γ |= headType(T ′) ≡ headType(S ′) :: Type by equality rule

Γ |= T ≡ T ′′{T ′/t } :: Type by conversion

Γ |= S ≡ S ′′{S ′/t } :: Type by conversion

Γ |= T ′′{T ′/t } ≡ S ′′{S ′/t } :: Type by transitivity

Case: T is headType(T ′)
Γ ⊢ headType(T ′) :: K1 and Γ ⊢ headType(T ′) :: K2 assumption

Γ ⊢ T ′ :: {t :K | headType(t) ≡ T ′′ :: K ′}, Γ ⊢ T ′′{T ′/t } :: K ′{T ′/t } and Γ ⊢ K1 ≡ K ′{T ′/t }
by inversion

Γ ⊢ T ′ :: {t :K ′ | headType(t) ≡ T ′′′ :: K ′′}, Γ ⊢ T ′′′{T ′/t } :: K ′′{T ′/t } and Γ ⊢ K2 ≡ K ′′{T ′/t }
by inversion

Γ ⊢ {t :K | headType(t) ≡ T ′′ :: K ′} ≤ {t :K ′ | headType(t) ≡ T ′′′ :: K ′′}
or Γ ⊢ {t :K | headType(t) ≡ T ′′ :: K ′} ≥ {t :K ′ | headType(t) ≡ T ′′′ :: K ′′} by i.h.

Subcase 1: Γ ⊢ {t :K | headType(t) ≡ T ′′ :: K ′} ≤ {t :K ′ | headType(t) ≡ T ′′′ :: K ′′}
Γ ⊢ K ≤ K ′ and Γ, t :K ′ |= headType(t) ≡ T ′′ :: K ′ ≡ headType(t) ≡ T ′′′ :: K ′′ by inversion

Γ, t :K ⊢ K ′ ≡ K ′′ by entailment

Γ ⊢ K ′{T ′/t } ≡ K ′′{T ′/t } by substitution

Γ ⊢ K1 ≤ K2

Subcase 2 is symmetric.

Case: T is tmap(T1)T2
Γ ⊢ tmap(T1)T2 :: K and Γ ⊢ tmap(T1)T2 :: K ′ assumption

Γ ⊢ T1 :: GenK , Γ ⊢ T2 :: K and Γ ⊢ K ≡ Type by inversion

Γ ⊢ T1 :: GenK ′ , Γ ⊢ T2 :: K ′ and Γ ⊢ K ′ ≡ Type by inversion

Γ ⊢ K ≤ K ′ since Γ ⊢ Type ≤ Type

□

Theorem 5.9 (Type Preservation). Let Γ ⊢S M : T and Γ ⊢s H . If ⟨H ;M⟩ −→ ⟨H ′;M ′⟩ then there
exists S ′ such that S ⊆ S ′, Γ ⊢S ′ H ′ and Γ ⊢S ′ M

′
: T .

Proof. By induction on the operational semantics and inversion on typing. We show the most

significant cases.

Case:
T0 → T ′

0

⟨H ; (Λt ::K .M)[T0]⟩ −→ ⟨H ; (Λt ::K .M)[T ′
0
]⟩

Γ ⊢ T ≡ U :: K where Γ ⊢ Λt ::K .M : T1, Γ ⊢ T0 :: K , Γ ⊢ U :: K ,

Γ ⊢ T1 :: { f ::GenK | tmap(f)T0 ≡ U :: K } by inversion

Γ ⊢ T1 ≡ ∀t ::K .S :: GenK and Γ, t ::K ⊢ S :: K by inversion

Γ ⊢ S {T0/t } :: K by substitution

Γ ⊢ T0 ≡ T
′
0
:: K by definition

Γ ⊢ S {T0/t } ≡ S {T ′
0
/t } :: K by functionality

Γ ⊢ tmap(∀t ::K .S)T0 ≡ tmap(∀t ::K .S)T ′
0
:: K by equality

Γ ⊢ U ≡ S {T0/t } :: K by transitivity

Γ ⊢ U ≡ S {T ′
0
/t } :: K by transitivity

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

1:48 Luís Caires and Bernardo Toninho

Γ ⊢ (Λt ::K .M)[T ′
0
] : S {T ′

0
/t } by typing

Γ ⊢ (Λt ::K .M)[T ′
0
] : U by conversion

Case:
⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; ⟨ℓ = M⟩@N ⟩ −→ ⟨H ′; ⟨ℓ = M ′⟩@N ⟩

Γ ⊢S T ≡ ⟨L : T ′⟩@T ′′, Γ ⊢S ℓ ≡ L :: Nm, Γ ⊢S M : T ′ and Γ ⊢S N : T ′′ by inversion

∃S ′ such that S ⊆ S ′, Γ ⊢S ′ H
′
and Γ ⊢S ′ M

′
: T ′ by i.h.

Γ ⊢S ′ ⟨ℓ = M ′⟩@N : ⟨L : T ′⟩@T ′′ by RecCons rule

Case:

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; recHeadTerm(M)⟩ −→ ⟨H ′; recHeadTerm(M ′)⟩

Γ ⊢S T ≡ T
′{S ′/t } :: K {S ′/t }, Γ ⊢S M : S ′ and

Γ ⊢ S ′ :: {t :Rec | headType(t) ≡ T ′ :: K } by inversion

∃S0 such that S ⊆ S0, Γ ⊢S0 H
′
and Γ ⊢S0 M

′
: S ′ by i.h.

Γ ⊢S0 recHeadTerm(M ′) : T ′{S ′/t } by typing rule

Case: ⟨H ; recHeadTerm(⟨ℓ = v⟩@v ′)⟩ −→ ⟨H ;v⟩

Γ ⊢S recHeadTerm(⟨ℓ = v⟩@v ′) : T ′ and Γ ⊢s v : T ′ by inversion

Case:
Γ ⊨ φ

⟨H ; if φ thenM elseN ⟩ −→ ⟨H ;M⟩

Γ |= T ≡ if φ thenT1 elseT2 :: K with Γ,φ ⊢S M : T1 and Γ,¬φ ⊢S N : T2 by inversion

Γ |= if φ thenT1 elseT2 ≡ T1 :: K by eq. rule

Γ |= T ≡ T1 :: K by transitivity

Γ ⊢S M : T1 by cut

Case:
⟨H ; µF :T .M⟩ −→ ⟨H ;M {µF :T .M/F }⟩

Γ, F : T ⊢ M : T and structural(F ,M) by inversion Γ ⊢ M {µF :T .M/F } : T by substitution

Case:
Γ ⊢ T :: K

⟨H ; if T ′ :: K as t ⇒ M elseN ⟩ −→ ⟨H ;M {T ′/t }⟩

Γ ⊢ T ′ :: K ′, Γ ⊢ K , Γ, t :K ⊢ M : T ′′ and Γ ⊢ N : T ′′ by inversion

Γ ⊢ T :: K assumption

Γ ⊢ M {T ′/t } : T ′′ by substitution

□

Lemma 5.10 (Type Progress). If Γ ⊢ T :: K then either T is a type value or T → T ′, for some T ′.

Proof. Straightforward induction on kinding. □

Theorem 5.11 (Progress). Let · ⊢S M : T and · ⊢S H . Then eitherM is a value or there exists S ′

andM ′ such that ⟨H ;M⟩ −→ ⟨H ′;M ′⟩.

Proof. By induction on typing. Progress relies type progress and on the decidability of entailment

due to the term-level and type-level predicate test construct. □

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Programming with Refinement Kinds
	3 A Type Theory with Kind Refinements
	3.1 Type-level Functions and Refinements
	3.2 Kinding and Type Equality

	4 A Programming Language with Kind Refinements
	4.1 Reasoning in Refinements

	5 Operational Semantics and Metatheory
	5.1 Metatheory

	6 Related Work
	7 Concluding Remarks
	References
	A Full Syntax, Judgments and Rules
	A.1 Kinding and Typing

	B Full Operational Semantics
	C Proofs

