
A Core Language for Data-Centric Processes

Lúısa Lourenço

CITI e Departamento de Informática
Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa, Portugal

Abstract. In the past decades, with the proliferation of the Internet,
data-centric applications have become widely used. These applications
deal with distributed information that can be kept in a repository that
is shared among multiple participants with specific roles; or with shared,
but not necessarily distributed, information that can be manipulated in
a collaborative multiuser environment.

In order to model and/or develop data-centric programs, several propos-
als were made in the past years that focus mainly on Data Manipulation
Languages (DML), while leaving other interesting scenarios behind. For
instance, often organisations express processes via workflows that de-
scribe all the steps necessary to complete them.

In this paper, we propose a core language to express such processes by
presenting a typical DML core augmented with primitives to describe
and create tasks/workflows. In our proposal, these new entities are first-
class values, thus enabling us to talk about richer scenarios where we
can have, for example, pending tasks stored in a database in order to be
dealt with later.

Key words: Data-centric applications, Programming Languages, Data
Manipulation Languages, Workflows

1 Introduction

In the past decades, with the proliferation of the Internet, data-centric applica-
tions have become widely used. These applications deal with distributed informa-
tion that can be kept in a repository that is shared among multiple participants
with specific roles; or with shared, but not necessarily distributed, information
that can be manipulated in a collaborative multiuser environment.

In order to model and/or develop data-centric programs, several proposals
were made in the past years that focus mainly on Data Manipulation Languages
(DML) whose goal consist in interacting with data structured in a relational
schema. This schema establishes relations between abstract entities which in
turn represent collections of data. The most popular DML is undoubtedly IBM’s
Structured Query Language (SQL) [1,3], developed in the early 70s (when it was
named Sequel). SQL allows us to create relations and then manipulate them by
issuing queries over the relation to retrieve information from it. Moreover, SQL

2 Lúısa Lourenço

expressions can also perform changes over relations such as updates, deletion,
and insertion.

On the other hand, often organisations express their processes via business
processes that describe all the activities necessary for its completion. So business
process management [8] (BPM) is fundamental in any organisation in order to
optimise parameters such as the production costs and productivity as well as to
assign workers to tasks. The supporting technology to automate a BPM is known
as workflow, so a workflow is a tool to model processes by defining a set of tasks
that must be fulfilled in a certain order by certain individuals of the organisation.
Furthermore, it is often the case that these workflows are information intensive.
For instance, a project management system must deal with high volume of data
that is kept in databases, so a project submission process, in that system, must
interact with the databases in order to: keep the submission information until
it is later evaluated by a system’s clerk; retrieve the necessary information to
assess the viability of the submission; update the status of the submissions after
its evaluation. Therefore, a model that integrates DML with workflows would
allow us to reason about these data-centric systems.

2 Motivation

In this paper we propose a core language with constructions for data manip-
ulation as well as for the definition, execution, and composition of tasks and
workflows. While there has been much work done with respect to programming
languages based on DML and specification languages for business processes, to
the best of our knowledge, there is none regarding programming languages that
integrate the two concepts together.

We find that a computational model based on tasks (activities in a business
process), coupled together with data manipulation primitives, would further en-
rich typical data-centric scenarios. Like, for example, a project management
system where we can model a submission process that suspends incoming sub-
missions (encoded as tasks) until they are evaluated by a clerk. But more im-
portantly, in the point-of-view of executable business processes, it is also our
conviction that it is crucial to abstract about the data that is manipulated
throughout the execution of the processes. This is due to the fact that it would
allow for an analysis of such processes with regard to the information they yield
and have access to, thus ensuring guarantees like data security.

The language we propose aims to provide a computational model centred
on tasks and data, in order to study and reason about information security
(where a task is in itself data). In general, it is possible with this language to
statically analyse and verify properties about the correctness of the programs
such as security properties (for e.g., data confidentiality and data integrity), type
safety, as well as any other property that can be verifiable by a static analysis.
Therefore, it is not our goal to propose a language for programming or modelling
of real world applications but to provide with a model for analyses of information
in the context of business processes.

A Core Language for Data-Centric Processes 3

To fulfil this goal, our proposal consists in three distinct aspects: a core of
typical imperative primitives; a small set of DML constructions based on SQL
expressions; and primitives to define, compose and invoke tasks/workflows. Since
we are interested in scenarios where tasks can be kept in data storage, then our
language will have tasks as a first-class value. We also believe that a task is a
good abstraction for computational processes that can be suspended, resumed
and stored in a repository/data structure.

Our objective in this paper is to discuss and motivate our preliminary views
on a few important research issues and directions, as well as to advance the
basic structure of a programming model for process based data centric software
systems, which may conveniently support sophisticated verification of correctness
and security. Ultimately, our long term goal is to contribute to the development
of improved programming tools for the construction of more robust and more
secure data-centric, process oriented, information systems.

3 Language

The syntax of our core language is given by the grammar in Figure 1 where we
assume an infinite set of names (ranged over n, m, . . .) and of variables (ranged
over x, y, . . .). The fragment e corresponds to the language’s basic core: variables,
values, field access e.m, application e1(e2), functions’ declaration λx.e., constants
and variables’ declaration, conditional, while loop, assignments, a primitive to
obtain the head of a collection, and primitives for data creation and manipula-
tion. Data manipulation primitives are the expected: creation of a relation with
a set of attributes, entity n(m1, . . ., mn); projection of a set of attributes in a
relation under a given condition, select mi from e1 where (mj == e2); inser-
tion of an element on a relation, insert e1 in e2; update of a set of elements
on a relation if a given condition is met, update mi in e1 where (mj == e2)
with e3; and deletion of a set of elements on a relation if a given condition is
met, delete in e1 where (mj == e2).

In fragment t we have primitives related to tasks: task definition Σi def
opi(x) = t in t, that defines a set of tasks; task invocation, op(e); a task con-
structor, let n = {t} in t, to define tasks; and a set of primitives to compose
tasks inside a task definition (t; t, t | t, t∗, and op(in: e,out: x)). The difference
between a task definition and a task constructor lies, essentially, in the seman-
tic: the former will only be executed upon invocation while the latter does not
require an invocation to be executed. With task composition primitives we can
define workflows by specifying which tasks are executed, in what order (either
sequentially or in parallel), and what is the input and output of each task. For
instance, the following code

def submitProject() = {
prepareSubmisison(out: form);
submit(in: form, out: msg);
}

4 Lúısa Lourenço

p : := e program
e : := e1; e2 sequence

| e.m field access
| let x = e1 in e2 let
| var x = e1 in e2 var
| e1 := e2 assignment
| λx.e abstraction
| e1(e2) application
| if e then e1 else e2 conditional
| while e1 do e2 while
| e.head get collection’s head
| entity n (m1, . . ., mn) create entity
| select mi from e1 where (mj == e2) select
| insert e1 in e2 insert
| update mi in e1 where (mj == e2) with e3 update
| delete in e1 where (mj == e2) delete
| x variables
| t tasks
| v values

t : := Σi def opi(x) = t in t task definition
| op(e) task invocation
| let n = {t} in t task constructor
| t; t task sequence
| t | t task parallel
| t∗ task recursion

| op(in: e,out: x) task composition
| {e} expression

v : := {v1, . . . , vn} collections
| [m1 : v1, . . . , mn : vn] records

| 〈op(a)〉 task
| true true
| false false
| () unit

Fig. 1: Syntax

declares a task named submitProject whose definition is a sequential composi-
tion of tasks (so in fact submitProject is a workflow). Moreover, the definition
states that the first task executed, upon invocation of the workflow, is prepare-
Submission which will take no arguments and will deliver a result in the variable
form; then this value is transmitted to the next step of the workflow, which is
task submit that takes as argument the variable form and outputs a result that
will be saved in the variable msg. After all the tasks are completed, the final
result of the workflow will be saved in variable msg.

Values include booleans, unit value (), collections of values {v1, . . . , vn},
records [l1 : v1, . . . , ln : vn], and tasks 〈op(a)〉. A task value is a reference
to either a constructed or invoked task that can either be running or termi-

A Core Language for Data-Centric Processes 5

nated. If it is still running then the reference will list all the possible actions
(operations currently available through a task definition) and allow invocations
on those actions. Let us take as an example the following task definition

def submit(doc) = {
let t = {

let id = doc.id;
let backgroundInfo = getInfo();
{
def backgroundInfo() = { ... }
+
def accept() = { ... }
+
def reject() = { ... }
}∗

};
let s = [submission id = doc.id, submission = t];
insert s in submissionsDB;
"Submission successfully completed!"

}

In this code snippet we use a task constructor to create a task with identifier
t, which is afterwards kept in a record that is inserted in a relation named
submissionsDB. Recall that a task created with a constructor does not need to
be invoked, meaning it will be executed right away. Then, since there is a block
of code with a set of tasks’ definitions, the task will await for invocations of the
three available operations: backgroundInfo, accept, and reject. So identifier t will
have a reference that list all three tasks and allow us to invoke any of them.

4 A Project Management Workflow Example

We now present a toy example of how to use our language to specify a rich
scenario of a project management service that offers two functionalities: project
submission and checking a project’s status. These functionalities can be encoded
into two distinct workflows, submitProject and viewStatus, respectively, where
each one describes the necessary steps for its completion. Moreover, a database
of all submissions is kept in a relation named submissionsDB.

let submissionsDB = entity(submission id, user, buzz, status, submission);

When a system’s user invokes the viewStatus workflow, he will pass the identifier
of the project he wants to check.

def viewStatus(id) = {
(select status
from pendingSubmissions
where submission id = id).head;

}

6 Lúısa Lourenço

Then on the server’s side, a query is executed on the submissions’ database to
select the status of the required project. The head of the result of the query
(since the query returns a collection with one element) is then returned to the
client and the workflow terminates.

To submit a project, a user will invoke the submitProject workflow. This
workflow states that, in order to submit a project, it will require that the task
prepareSubmission be executed first, followed by the task submit (that will take
as input the result of the first task). The entire workflow is executed on the
server’s side, as expected.

def submitProject() = {
prepareSubmisison(out: form);
submit(in: form, out: msg);
}

So as soon as the user invokes the submitProject workflow, the prepareSubmis-
sion task will start executing and a reference (a task value) to the workflow is
returned to the user.

def prepareSubmission() = {
var form = [id = −1, user = "", buzz = ""];
def fillForm(username, buzz) = {

form.id = 123;
form.user = username;
form.buzz = buzz;
};
def submitForm() = { form; }

}

This task will create an empty form and await for the user to fill the form. Inter-
actions with the user are performed via invocation of functionalities represented
by subtasks inside an executing task to which the user has access to. Therefore,
after generating the form, the task will suspend its execution and await an invo-
cation to the subtask fillForm from the user. At that point, the user’s workflow
reference will list the fillForm subtask as an available task for invocation. The
user fills in each form’s field by invoking the fillForm subtask with his username
and buzz information, and only then the task prepareSubmission resumes its
execution and fills the form with the user’s data and a form identifier. After the
form is filled, the task will suspend its execution again to await for a submit
request by the user (encoded as a subtask that the user must invoke in order to
finish the submission of the form). When the user does so, the submit subtask
will terminate by returning the filled form to the prepareSubmission task, which,
in turn, will output the form to the submitProject workflow. The first step of
the workflow is then completed and its output is passed to the second step, task
submit, as input.

def submit(doc) = {
let t = {

A Core Language for Data-Centric Processes 7

let id = doc.id;
let backgroundInfo = getInfo();
{
def backgroundInfo() = { backgroundInfo; }
+
def accept() = {
update status in submissionsDB
where submission id = id with "Accepted";
"Project accepted."

}
+
def reject() = {
update status in submissionsDB
where submission id = id with "Rejected";
"Project rejected."

}
}∗

};
let s = [submission id = doc.id,

user = doc.name,
buzz = doc.buzz,
status="pending",
submission = t];

insert s in submissionsDB;
"Submission successfully completed!"

}

When task submit starts, a task is created and (its reference) saved in a constant
named t. The task is executed right away, initialising two local constants with in-
formation regarding the submission id (taken from the form), and the user’s back-
ground information (represented as a call to a function named backgroundInfo),
offering afterwards three functionalities (since we are not using sequential com-
position but instead a sum of tasks) to whoever has access to the constructed
task: a subtask to obtain the user’s background information, a subtask to ac-
cept the submission, and a subtask to reject the submission. A key point in this
task, in comparison with the previous prepareSubmission task, consists in the
visibility of these subtask’s definitions. In this case, since we are using a task
constructor, the subtasks are only visible to whoever has access to constant t,
and so they are not associated with the submitProject workflow reference that
the user holds. So, at this point, the constructor task suspends its execution and
the execution control is given back to the task submit, who will create and insert
a submission entry for the submission’s database that will include all the infor-
mation regarding the submission: submission identifier, user who submitted the
project, the submission’s buzz, submission’s status and, finally, the constructed
task t that offers the functionality necessary to assess the viability of the submis-
sion and consequent acceptance/rejection. Lastly, the submit task will return to

8 Lúısa Lourenço

the workflow a message stating that the submission was successfully completed,
which in turn will output the message to the client (since it was the last step of
the workflow, then its output will be the workflow’s output). So this concludes
the submitProject workflow, invoked by a system’s user.

In order to have a submission evaluated, a clerk (from the project man-
agement system) will have to treat the submission: evaluate and then make a
decision. We now show the workflow that treats a submission by a clerk.

def treatPendingSubmissions() = {
getSubmission(out: submission);
evaluateSubmission(in: submission, out: info);
}

In this workflow, the first step consists in retrieving a pending submission from
the database and, afterwards, evaluate the submission. Thus, when the clerk
invokes the workflow, he will receive a reference to the workflow and, on the
server side, the steps necessary for its completion will be executed.

def getSubmission() = {
var i = 0;
var p = (select ∗ from pendingSubmissions

where submission id = i).head;
while(p.status != "pending") do {

i := i + 1;
p := (select ∗ from pendingSubmissions where submission id = i).head;
}
p
}

The first step is the execution of task getSubmission to obtain a pending sub-
mission. This is achieved by querying the database until a pending submission
is found, which will be the result of the task. The submission is then passed to
the next, and last, task of the workflow.

def evaluateSubmission(s) = {
if (evaluate(s.buzz)) then

s.submission.accept();
else s.submission.reject();
}

The last step of the workflow evaluates the submission obtained in the first
step and outputs the result to the clerk that invoked the workflow. In this task,
named evaluateSubmission, a function evaluate is used to assess the submission’s
viability. If viable, then the task that is stored in the retrieved submission entry
will be used to change the submission’s status to accepted. Otherwise, the task
will be used to change the status to rejected. Recall that this is possible because
we stored a suspended task in a database entry. So when the system retrieves
the task from the database, it can resume its execution by either invoking the
backgroundInfo subtask or the accept subtask or the reject subtask.

A Core Language for Data-Centric Processes 9

5 Related Work

Undoubtedly, SQL is the most well-known and widely used DML. In SQL,
database tables are relations associated with a unique name, obeying a rela-
tional schema defined by a set of attributes and their domains. In SQL, com-
mand create table r(A1D1, . . ., AnDn) creates a relation r with attributes A1,
. . ., An whose domain is D1, . . ., Dn, respectively. An SQL expression enables
us to manipulate relations. For example, an expression to retrieve information
from relations has the form select A1, . . ., An from t1, . . ., tm where C that
projects the attributes A1, . . ., An from the cartesian product of relations t1,
. . ., tm if the predicate C is true. Moreover, an SQL expression can also perform
changes over relations such as updates, deletion, and insertion.

In the past years, SQL has inspired several proposals of programming lan-
guages that integrate data operations into applications. For instance, LINQ [2],
is a .NET framework that extends C# with native query operations such as
projection, filter data, and aggregate data. These operations can be applied not
only to relations (relational databases) but also arrays, enumerable classes and
XML. Most of the ideas presented in LINQ are the result of previous work [6].

Another relevant work is Links [7]. It incorporates query-like expressions that
are later converted into SQL. This work focus on web applications’ programming
and proposes to integrate all the three tiers that are typically found in this set-
ting: the web browser, the web server, and the back-end systems (like databases).
This is achieved by having the their system generate code for each tier: Javascript
for the browser, bytecode for the server, and SQL for the database.

More recently, there is Dminor [5], a functional language (a subset of Mi-
crosoft’s M modelling language [4]) with a small set of data manipulation primi-
tives such as an accumulate expression over collections and addition of an element
to a collection. This small set is expressive enough to derive other operators over
collections as well as LINQ-style query expressions. The goal of the work is to
study a language whose expressions compile to SQL queries and where types
correspond to relational schemas, namely they use refinement types to express
SQL table constraints within their type system.

Perhaps the most well-known languages to define business process are Busi-
ness Process Execution Language (BPEL) and Business Process Modeling Lan-
guage (BPML), although the former is more widely used than the latter. BPML
[9] is a XML-based specification language for expressing executable business pro-
cesses. Due to its high level abstraction, and even though it is turing-complete,
BPML ended up not being adopted by industrial BPM systems like Microsoft’s
BizTalk and IBM’s MQServer, who decided to develop their own language:
WSFL and XLANG, respectively. This eventually rendered BPML obsolete and
led to the definition of a simpler specification language, BPEL, with joint efforts
of Microsoft and IBM (by combining BPML together with WSFL and XLANG).

BPEL [10], also based on XML, is actually used for web services’ orchestra-
tion. So in BPEL a business process is modelled as the set of actions a participant
has in a business interaction (a web service). It is also possible to abstract from
business processes themselves by defining business protocols that describe how

10 Lúısa Lourenço

business processes interact between them, that is, what visible exchange mes-
sages they exchange without giving details about their internal behaviour.

There are several industry tools for business process management systems
(BPMS) that integrate BPEL with a graphical notation language, the Business
Process Model and Notation (BPMN). The goal of these BPMS’s tools is to
provide an easy, intuitive, and visual tool that enables the description, manage-
ment and development of business process in a organisation. By using BPMN,
a non-expert user can describe easily a business process as a flow chart between
the necessary activities for the completion of the business process without hav-
ing to worry about the technologies behind, how they interconnect, or any other
technical detail. That gap is filled by the translation of the diagram into fully
executable BPEL processes. Some BPMS tools are MQServer, Biztalk, Intalio
BPM, ProcessMaker, and Activiti BPM Platform.

6 Concluding Remarks and Ongoing Work

It is our believe that an analysis of the information manipulated in workflows
is a fundamental issue that has yet to be addressed by the research community.
In order to do so it is fundamental to have abstraction mechanisms for the data
itself as well as for the workflows, so a model based on tasks coupled together
with data manipulation primitives would be ideal for such analysis.

In this paper, we have proposed a core language to express data-centric pro-
cesses by presenting a typical DML core augmented with primitives to describe
and create tasks/workflows. In our proposal, tasks are first-class citizens which
allows us to model richer scenarios such as the project management system
(presented in this paper) where we store suspended tasks, when a client makes
a submission, in order to be later on resumed by a clerk, when the submission
is evaluated.

An interesting direction for this work, which we are at the moment pursu-
ing, consists in investigating how to add information security to the language.
Namely, we are interested in information flow analysis to prevent insecure flows
of data throughout the execution of a program. For instance, going back to our
project management example, we would like to ensure data security concerns
such as: (1) only the system’s administrator and clerks can fully see entries in
the submissions’ database; (2) a user can only see project’s status, and only of
those he submitted; and (3) only the clerk that got assigned to a submission
can alter that submission’s status as well as execute the stored task for that
submission (that has the necessary subtasks to alter the status).

In order to do so, we will apply a type-based approach for information flow
analysis. In particular, we will add security labels to values to state which prin-
cipals or roles can read, write or execute (when concerning a task), forming a
lattice of security labels ordered by a partial ordered set ≤ such that ` ≤ `′ if,
and only if, ` is a more permissive security label than `′. Then we have to ensure
by type safety, together with a non-interference property, that our programs do
not leak or taint data by preventing flows from higher levels to lower levels. In
practice, the non-interference property, means that two instances of the same

A Core Language for Data-Centric Processes 11

program, that differ only in their private data (data classified as having higher
levels than the output of the program), should have the same output.

Furthermore, in order to express some security policies, we will need to
use dependent types. For example, to express security property (3) we would
have to add a field, let’s say assigned clerk, in the submission entry to keep
track of who is the assigned clerk. Then, we would label the submission field as
{Clerk(assigned clerk)} to state that the principal store in field assigned clerk
that belongs to role Clerk can execute the task stored in field submission. Lastly,
we would require some special primitives to determine principals, namely a
this principal primitive that would return the user that is executing the code
in the current context.
Acknowledgements. We thank the anonymous referees for their insightful
comments and suggestions regarding this paper. This work was supported by
CITI, INTERFACES Project, and FCT/MCTES under grant SFRH/BD/68801/
2010.

References

1. Donald D. Chamberlin, Morton M. Astrahan, Kapali P. Eswaran, Patricia P. Grif-
fiths, Raymond A. Lorie, James W. Mehl, Phyllis Reisner, and Bradford W. Wade.
SEQUEL 2: A Unified Approach to Data Definition, Manipulation, and Control.
IBM Journal of Research and Development, 1976.

2. Erik Meijer, Brian Beckman, and Gavin M. Bierman. LINQ: reconciling object,
relations and XML in the .NET framework. In Surajit Chaudhuri and Vagelis
Hristidis and Neoklis Polyzotis, editor, Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data. 2006.

3. Abraham Silberschatz, Henry Korth, and S. Sudarshan. Database Systems Con-
cepts. McGraw-Hill, Inc., publisher, 2006.

4. Microsoft Corporation. The Microsoft code name M Modeling Language Specifi-
cation Version 0.5, Oct. 2009. Preliminary implementation available as part of the
SQL Server Modeling CTP (November 2009).

5. Gavin M. Bierman, Andrew D. Gordon, Catalin Hritcu, and David Langworthy.
Semantic Subtyping with an SMT Solver, In Proceedings of 15th ACM SIGPLAN
International Conference on Functional Programming, Association for Computing
Machinery, Inc., September 2010.

6. Gavin M. Bierman, E. Meijer, and W. Schulte. The Essence of Data Access in Cω.
In Proceedings of ECOOP’05, volume 3586 of Lecture Notes in Computer Science,
pages 287–311. Springer-Verlag, 2005.

7. E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web Programming Without
Tiers. In Proceedinga of FMCO’06, volume 4709 of Lecture Notes in Computer
Science, pages 266–296. Springer-Verlag, 2006.

8. Ryan K. L. Ko. A computer scientist’s introductory guide to business process
management (BPM). In volume 15 of ACM Crossroads. 2009.

9. A. Arkinl Business Process Modeling Language (BPML). Business Process Man-
agement Initiative. 2002.

10. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D.
Roller, D. Smith, and S. Thatte. Business Process Execution Language for Web
Services, Version 1.1. Specification. BEA Systems, IBM Corp., Microsoft Corp.,
SAP AG, Siebel Systems. 2003.

	A Core Language for Data-Centric Processes
	Luísa Lourenço
	Introduction
	Motivation
	Language
	A Project Management Workflow Example
	Related Work
	Concluding Remarks and Ongoing Work

