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ABSTRACT

Information systems are widespread and used by anyone with computing devices as
well as corporations and governments. It is often the case that security leaks are introduced
during the development of an application. Reasons for these security bugs are multiple
but among them one can easily identify that it is very hard to define and enforce relevant
security policies in modern software. This is because modern applications often rely
on container sharing and multi-tenancy where, for instance, data can be stored in the
same physical space but is logically mapped into different security compartments or data
structures. In turn, these security compartments, to which data is classified into in security
policies, can also be dynamic and depend on runtime data.

In this thesis we introduce and develop the novel notion of dependent information flow
types, and focus on the problem of ensuring data confidentiality in data-centric software.
Dependent information flow types fit within the standard framework of dependent type
theory, but, unlike usual dependent types, crucially allow the security level of a type,
rather than just the structural data type itself, to depend on runtime values.

Our dependent function and dependent sum information flow types provide a direct,
natural and elegant way to express and enforce fine grained security policies on programs.
Namely programs that manipulate structured data types in which the security level of a
structure field may depend on values dynamically stored in other fields

The main contribution of this work is an efficient analysis that allows programmers
to verify, during the development phase, whether programs have information leaks,
that is, it verifies whether programs protect the confidentiality of the information they
manipulate. As such, we also implemented a prototype typechecker that can be found at
http://ctp.di.fct.unl.pt/DIFTprototype/.

Keywords: Information Flow, Type Systems, Dependent Types, Language-based Security
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RESUMO

Os sistemas de informação estão generalizados e são usados por qualquer individuo
com dispositivos de computação, bem como empresas e entidades governamentais. Em
muitos casos, as fugas de segurança são introduzidas durante o desenvolvimento de uma
aplicação. As razões para tal são múltiplas, mas entre elas pode-se facilmente identificar
que é muito difícil definir e aplicar políticas de segurança relevantes no software moderno.
Isto se deve ao facto das aplicações modernas dependerem muitas vezes de partilha de
armazenamento e multi-tenancy, onde, por exemplo, os dados podem ser armazenados
no mesmo espaço físico mas são logicamente mapeados em compartimentos diferentes
de segurança ou estruturas de dados. Por sua vez, esses compartimentos de segurança,
para os quais os dados são classificadas nas políticas de segurança, também podem ser
dinâmicos e depender de dados de tempo de execução.

Nesta tese introduzimos e desenvolvemos o novo conceito de tipos de fluxo de in-
formação dependentes, e focamos no problema de assegurar a confidencialidade dos
dados em software centrado em dados. Os tipos de fluxo de informação dependentes
enquadram-se no standard da teoria de tipos dependentes mas, ao contrário dos tipos
dependentes habituais, crucialmente permitem que o nível de segurança de um tipo, em
vez de apenas o próprio tipo de dados, dependa de valores de tempo de execução.

Os nossos tipos de fluxo de informação dependentes funcionais e soma fornecem
uma maneira directa, natural e elegante de expressar e aplicar políticas de segurança
refinadas sobre os programas. Nomeadamente em programas que manipulam tipos de
dados estruturados em que o nível de segurança de um campo na estrutura pode depender
de valores armazenados de forma dinâmica em outros campos.

A principal contribuição deste trabalho consiste numa análise eficiente que permite
aos programadores verificar, durante a fase de desenvolvimento, se os programas contêm
fugas de informação, isto é, verifica se os programas protegem a confidencialidade da infor-
mação que manipulam. Como tal, também implementámos um prótotipo do typechecker
que pode ser encontrado em http://ctp.di.fct.unl.pt/DIFTprototype/.

Palavras-chave: Fluxo de Informação, Sistema de Tipos, Tipos Dependentes, Segurança
via Linguagens de Programação
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1
INTRODUCTION

Software-intensive information systems are widespread and used by anyone with com-
puting devices as well as corporations and governments. While information systems can
be found in a wide variety of architectures and configurations (going from centralised
systems, e.g. in a business corporation, to distributed systems, e.g. web applications for
online stores or social networks), there is one point in common among these systems: they
deal with huge amounts of data.

It then comes as no surprise that data security is a critical issue in information systems,
deserving much attention and focus on both academia and business corporations in the
past decades. Moreover, it is often the case that security leaks are introduced during the
development of an application. Reasons for these security bugs are multiple but among
them one can easily identify that it is very hard to define and enforce relevant security
policies in modern software.

Defining relevant security policies is challenging since modern applications often rely
on container sharing and multi-tenancy where, for instance, data can be stored in the
same physical space but is logically mapped into different security compartments or data
structures. In turn, these security compartments, to which data is classified into in security
policies, can also be dynamic and depend on runtime data (including configuration
parameters).

For instance, suppose the photos of a user are classified at security compartment usr.
Then the photos of user joe are classified at security compartment usr(“joe”).

Sometimes, these sorts of security policies are referred to as “row-level” policies in the
databases community. For example, in the engineering documentation for Microsoft SQL
Server we read [39]:

“Row-level security enables customers to control access to rows in a database table based on the
characteristics of the user executing a query (e.g., group membership or execution context).”.
“Row-level” policies are also often used in multi-tenant applications since it allows to create
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CHAPTER 1. INTRODUCTION

a policy to enforce a logical separation of each tenant’s data rows from every other tenant’s
rows. Enabling the application to use a single table to store data for many tenants. Such
“row-level” policies are just a particular case of a notion of data dependent security control,
which we explore in this thesis using programming language techniques. Specifically, we
introduce the novel notion of dependent information flow types, and focus on the problem
of ensuring data confidentiality in data dependent security compartments. Namely, this
thesis aims to defend the following statement:

Thesis statement: Dependent information flow types are suitable to reason about and
enforce data confidentiality, providing an elegant and lightweight theoretical grounded
framework to express and enforce fine-grained data dependent security properties that
naturally occur in realistic software systems.

The key idea behind dependent information flow types is reasonably simple. Building
up from both standard dependent type theory, where types may depend on values, and
type-based information flow, where types are “tagged” with security levels, we propose
to extend dependent types in such a way that not only the (structural) type assigned to a
computation may depend on values but also its security level, expressed by associating
to a data type a value dependent security label, instead of a plain security label. In order
to achieve this goal, we introduce a theory of dependent information flow types within
the framework of dependent type theory, introducing sum and function dependent types,
capturing the essence of value dependent security classification.

In the following section we review techniques to specify security policies in software
systems.

1.1 Modelling and Reasoning about Security Policies

Security policies establish rules and procedures that must be met in order to gain access to
protected information. Since not all information holds the same value within a system,
data must be classified into security compartments (which define degrees of protection)
and must be treated differently.

Key concepts in information security are: confidentiality, integrity, and availability.
Confidentiality consists in preventing the disclosure of sensitive data to anyone who does
not have permission to access the data. Integrity, however, is important to maintain data
uncorrupted and coherent, meaning it is crucial that we ensure that no unauthorised
operation is executed over the data. Finally, there is no use in ensuring data confidentiality
and integrity if such data cannot be made available when necessary – this is known as
availability.

Two complementary approaches are used to enforce security policies in information
systems: access control mechanisms and information flow analysis. The former consists
in defining access control policies over resources, while the latter concerns preventing

2



1.1. MODELLING AND REASONING ABOUT SECURITY POLICIES

insecure information flows throughout the execution flow of the system.

Access Control. Access control allows us to specify policies over data such that the policy
describes which permissions are required in order for data to be accessible by a user.
Permissions must then be granted, or revoked, to system’s users by the administrator.
Thus, access control defines who can access data.

Access control models have been, and still are, widely studied. We mention some of
the most relevant: Mandatory Access Control (MAC), Discretionary Access Control (DAC),
and Role-based Access Control (RBAC).

Mandatory Access Control [18] key idea consists in enforcing a system wide policy
that states who has access to what resources. This policy can only be set by the system
administrator. On the other hand, in Discretionary Access Control [32] the system users
are allowed to define the access policies over the objects they own.

In Role-based Access Control [23, 51], permissions are not assigned to users. Instead
we have a set of roles to which we can assign permissions. The members of a role will
then inherit those permissions. This adds more flexibility to access control policies (in
contrast to MAC and DAC), since we can manage access control policies more easily and
intuitively. This is because, intuitively, roles represent a user’s responsibility/job inside an
organisation, so for example we can define an hierarchy of roles that correspond to the
organisation’s hierarchy and assign users to their respective roles. Also we can change a
role’s permission set without having to re-assign permissions to each member.

As we already stated, confidentiality of data is essential for information systems. While
access control policies are enough to ensure sensitive data is only obtainable for those who
have the correct permissions, it cannot give any guaranties concerning how the data will
be used afterwards. These guaranties are given by information flow analyses.

Information Flow. Information Flow [17, 51, 53] ensures data confidentiality by classifying
information with levels of security (the highest the level the more sensitive the data is),
forming a (security) lattice, and then ensuring that the flow of information goes only from
lower to higher levels of security (meaning there is no information flow that leaks private
data).

The enforcement of confining a system such that it will not leak private data is known as
the confinement problem [31] in the literature. One of the greatest challenges in information
flow consists in dealing with channels that exploit mechanisms that are not intended
for information transmission and allow an attacker to infer some confidential data by
observing the behaviour of the program, known as covert channels [31]. A couple of
examples of such channels are implicit flows and termination channels.

Typically, in the literature [17, 65], insecure flows can either be explicit or implicit. More-
over, data confidentiality is ensured by enforcing programs to preserve a noninterference
property which ensures that confidential/private data does not affect unprotected/public
observable data. In practice, this means that data should only flow from a lower level to

3



CHAPTER 1. INTRODUCTION

an higher level of security.
An explicit flow corresponds to a direct mapping of classified information to a lower

classified container (data-flow based), while an implicit flow corresponds to public infor-
mation that depends on classified one (control-flow based).

Classic examples of such flows are the assignment of a low level variable with a high
level value, l:=h, for explicit flow; and a high guarded conditional whose branches are
classified as low level, if h > 0 then l:= 1 else l:= 0, for implicit flows. A termi-
nation channel occurs when the termination behaviour of a program depends on sensitive
data. For e.g., if h then (while true do skip)else skip.

A property of non-interference [26] is usually employed to enforce information flow
security of an application. This property states that changing sensitive data of a program
does not change the perception that an external observer has on the output of a program,
which implies that no public data depends on protected data. So, in other words, noninter-
ference ensures data confidentiality by certifying that a compliant program does not have
insecure flows.

This, however, can be very restrictive if we take into consideration that applications
sometimes need to release sensitive data. For example, any application that requires
authentication will have to disclose to the user if the typed password was correct or
incorrect, thus leaking some information regarding the protected information. This is
known as information declassification [55].

Next, we discuss some of the some relevant programming languages based techniques
to enforce security policies in software systems.

1.2 Language-based Security Techniques

Studied for a long time, the usage of language-based security techniques – such as compil-
ers [49], proof-carrying code [48] , inline reference monitors [20, 56], and type systems [6,
10, 24] – to enforce security policies in computer systems has shown promise in real-world
scenarios.

These techniques can be applied during software’s development time (static analysis)
or during their execution (dynamic analysis). In static language-based techniques, the
main idea consists in analysing the source code before being deployed for execution,
preventing its deployment if a security policy is violated. Dynamic language-based tech-
niques take a different approach, they rely on observation of a program’s behaviour during
its execution to detect violations of the security policy, stopping the program before the
insecure operation is executed.

Dynamic Analysis. Dynamic approaches for security consist in techniques such as inline
reference monitors (IRM) [20, 56] to guarantee an application’s security policies.

An IRM shares the address space of the application it monitors, this requires that the
IRM to be merged into the application’s code, at compile time. This merge is achieved

4



1.2. LANGUAGE-BASED SECURITY TECHNIQUES

through program rewriting (code instrumentation) to insert security checks in the code.
IRM enforces security policies while the application is running: should the application
attempt to violate the security policy, the IRM halts it. Therefore, an IRM mediates between
the client and the application.

We mention some of the relevant work achieved in the area of IRM. In [22], Erlingsson
and Schneider present SASI, an IRM that generalises Software Fault Isolation [66] to any
security policy that can be described with a security automaton [56].

However, in [20, 21] Erlingsson and Schneider introduce an IRM, denoted as PoET/P-
SLang, that targets Java application by adding checks in the Java Virtual Machine (JVM)
code.

Recent works have begun to target web applications, for instance in [50] Phung et al.
mediate access to sensitive DOM objects and properties, and in [33, 59] a mediation for
flash applications is introduced. IRM implementations, however, must take into consider-
ation possible actions to circumvent the added checks in a program (for example, jump
over those checks). In order to prevent such actions, IRM implementations usually impose
restrictions on control flow [37].

A complementary approach, named Control-Flow Integrity (CFI) [2], consists in defin-
ing security policies with a Control-Flow Graph (CFG) and then ensuring that an applica-
tion’s execution proceeds along paths in the CFG. This enforcement, much like IRM’s, is
achieved through program rewriting to insert dynamic checks in the application’s code.

Both these approaches can enforce access control policies so we can only specify
security policies that talk about operations over data. This is not enough to ensure se-
curity over data itself, we need to be able to state and enforce security properties over data.

Static Analysis. On the realm of static language-based security approaches, we point
out some of the relevant works. For instance, code certification is a well studied static
technique to ensure applications are safe with respect to a security policy. It consists on
having the program developer produce a certificate, i.e. a proof, that his code complies
with the security policy. This certificate is then checked by the client before executing the
application, thus preventing malicious code (those that do not pass the certificate checker).
Moreover, the certificate is produced by a certifying compiler [49] and then checked by a
theorem prover.

One form of code certification is proof-carrying code [48] (PPC). The programmer
annotates his code with properties that must hold during execution, this is required for
non-trivial properties since these annotations are program specific and therefore cannot
be inferred from the security policy. Thus the certifying compiler must have a module to
generate proof obligations (the Verification Conditions Generator, VCG) when compiling
the annotated code.

Furthermore, the compiler will carry over the annotations to the object-code level. In
order for the programmer to verify if his program complies with a security policy, he needs
to run the VCG over the annotated object-code, along with the security policy, to generate
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proof obligations. These proof obligations are then proved to hold for the program by a
automatic theorem prover, otherwise it will mean that the program does not comply with
the security policy.

Another kind of code certification is type assembly language (TAL) [25, 41] where type
annotations a proof of type safety and the type checker corresponds to the proof checker.
TAL transforms, at compile time, type information from source language to a platform
independent typed intermediate language (TIL) [63], and then to a typed object-code.
This allows the typed object code to be verified by any type checker. TAL can enforce any
security property (low level attacks such protection about buffer overrun attacks) that can
be expressed with a type system as long types can be preserved during compilation time.

Works such as [13], [30], and [40, 41] focus on using certifying compilers to prove
standard type safety properties.

In [24], Fournet et al. present a type system that statically checks if a program respects
an authorisation policy for access control over sensitive resources. Their work extends
a typed version of Spi calculus, a process calculus with cryptographic operations, with
an authorisation logic and code annotations to state the authorisation policy (unguarded
statements). Their goal is to verify facts about data arising at run-time (input guarded
statements), and to statically check pre-condition over sensitive resources (expectations).
For instance, they can encode a simple RBAC policy by defining roles and permissions via
logic rules and members with facts.

We favour static language-based security since, in some cases, an error during execu-
tion time can be, by itself, a security breach. Moreover, with static based techniques we are
able to detect more insecure programs since these techniques reason about all possible
execution paths.

We proceed in the next section with the motivation of our approach.

1.3 Data Confidentiality in Data-Centric Software

The main focus of this thesis is the introduction of dependent information flow types,
which introduce the ability to specify and verify security policies of programs that depend
on runtime values, improving the flexibility and expressiveness of traditional information
flow type systems for imperative higher order languages. Dependent information flow
types provide a direct, natural and elegant way to express and statically enforce fine
grained security policies on programs. Namely, programs that manipulate structured data
types in which the security level of a structure field may depend on values dynamically
stored in other fields, still considered a challenge to security enforcement in software
systems such as data-centric web-based applications. The key addition to more standard
information flow type systems for such languages are dependent functional and sum
types.

In this section, we motivate dependent function and sum information flow types by
means of several examples.
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We proceed by illustrating our programming language, a simple λ-calculus with
references, using as toy example, a typical data centric web application: a conference
manager.

In this scenario, a user of the system can be either a registered user, an author user, or
a programme committee (PC) member user. The system stores data concerning its users’
information, their submissions, and the reviews of submissions in “database tables” which
we will represent in our core programming language as lists of (references to) records (e.g.,
mutable lists):

τa
def
= [uid : int× name : str× univ : str× email : str]

σa
def
= [uid : int× sid : int× title : str× abs : str∗ × paper : str∗]

δa
def
= [uid : int× sid : int× PC_only : str∗ × review : str∗ × grade : int]

let Users = refref(τa)∗⊥ (refτa [] )::{} in

let Submissions=refref(σa)∗⊥ (refσa [] )::{} in

let Reviews = refref(δa)∗⊥ (refδa [] )::{}

So Users stores information for each registered user; Submissions keeps track of each
submission in the system by storing its id, the author’s id, and the contents of the sub-
mission; and Reviews stores information regarding the evaluation of each submission,
namely the id of the PC member reviewing the submission, the id of the submission, the
comments for the other PC members, and the comments and grade to be delivered to the
author.

The system offers operations to add new data as well as some listing operations, we
exemplify some of them.

Example 1 Operation assignReviewer assigns a PC member to review a given submis-
sion, initialising the remaining fields.

let assignReviewer = λ (u, s).

let new_rec = refδa [ uid = u, sid = s, PC_only = "",

review = "", grade = "" ]

in Reviews := new_rec :: !Reviews

Example 2 Operation viewAuthorPapers iterates the Submissions collection to build a
list of all records with a given author id

let viewAuthorPapers = λ (u).

foreach(x in !Submissions) with y = {} do

let tuple = !x in

if tuple.uid = u then tuple::y else y

7
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Example 3 Operation viewAssignedPapers simulates a join operation between collec-
tions Reviews and Submissions to obtain the list of submissions assigned to the PC
member with the given id.

let viewAssignedPapers = λ (uid_r).

foreach (x in !Reviews) with res_x = {} do

let tuple_rev = !x in

if tuple_rev.uid = uid_r then

(foreach(y in !Submissions) with res_y = {} do

let tuple_sub = !y in

if tuple_sub.sid = tuple_rev.sid then

tuple_sub::res_y
else res_y )::res_x

else res_x

The foreach iterator is a familiar functional collection fold combinator [7] where x is the
current item/cursor and res_x denotes the value accumulated from previous iteration,
with initial value {}).

For instance,

foreach(x in viewAuthorPapers(03)) with count = 0 do count + 1

returns the number of submissions of author with id 03.
Our goal is to statically ensure by typing the confidentiality of the data stored in the

conference manager system.
Let us now discuss the expressiveness of the security policies using standard type-

based information flow approaches.

1.3.1 Expressiveness of Security Policies

As is usual in information flow analysis, a partial order (the so-called security lattice)
relating security levels is defined, and information is only allowed to flow upwards (in the
order). For the purpose of static code analysis, the given security lattice could be declared
as a preamble to the code to be checked.

To specify security policies for our system, we thus classify the data manipulated by
our conference manager with security levels from a suitable security lattice (omitting data
types when not necessary, for simplicity).

We assume security lattices are bounded by a top, >, and bottom, ⊥ element denoting
the most restrictive (no one can observe) and most permissive (public data, anyone can
observe) security levels, respectively.

For the conference manager we can then specify, say, that information is classified in
three additional security levels:
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• U(uid), for the data that can be disclosed to any registered user;
• A(uid,sid), for data observable to authors; and
• PC(uid,sid), for data that only programme committee members can see.

In such simple case, we may let ⊥<U<A<PC<> and specify the according security policy
for each conference manager entity:

σb
def
= [uid : ⊥× sid : ⊥× title : A× abs : A× paper : A]

δb
def
= [uid : ⊥× sid : ⊥× PC_only : PC× review : A× grade : A]

let Users = refref(τb)∗⊥
(refτb [] )::{} in

let Submissions=refref(σb)∗⊥
(refσb [] )::{} in

let Reviews = refref(δb)∗⊥
(refδb [] )::{}

The security lattice together with these types specify the following policy:

Policy 1 (Bad Policy)
A registered user’s information is observable from security level U, meaning any registered
user (including authors and PC members) can see it. The content of a paper can be seen
by authors. And, finally, regarding a submission’s review we have that comments to the
PC are observable only to its members, while reviews and grade of the submission can be
seen by authors.

This policy, however, is not precise enough to protect the confidentiality of the data. An au-
thor, who has at least the security level A, is able to execute the operation viewAuthorPapers

(Example 2) using a different id than his own, which clearly violates confidentiality.

Thus, the security policy that we want is the following:

Policy 2 (Good Policy)
A registered user’s information is only observable by himself. The content of a paper can

be seen by its author as well as its reviewers. And, regarding a submission’s review, we have
comments to the PC can only be observable to other members that are also reviewers of the
submission, while comments and grade of the submission can be seen by its authors only.

To express these kind of data-dependent policies, and make sure that operations that
depend on them are secure according to the given policies (such as the operation illustrated
above), we introduce a general notion of dependent information flow type, which builds
on the notion of indexed security label [35].
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1.4 Dependent Information Flow Types

In this section we introduce the main concepts of our dependent information flow types
and provide an informal overview of the approach using our running example.

In standard information flow type systems [1, 17, 26, 28, 65], a type has the form τs,
where the structural type τ is tagged with a security label s, an element of a security
lattice modelling a hierarchy of security compartments or levels. For example, one defines
(int> → int>)⊥ as the type of a low security (⊥) function that maps a high security
(>) integer to a high security integer. Our analysis associates security levels s to types τ

to classify expressions e, so typing an expression at security level s, denoted ∆ ` e : τs,
means that data used or computed by expression e will only be affected by data classified
at security level up to s.

Lastly, we are concerned about insecure flows that might arise during the execution of
a program but not with how data is accessed (that concerns access control analyses).

As already suggested, it is often the case that the security level of data values depends
on the manipulated data itself; such dependencies are obviously not expressible by such
basic security labelling approaches.

Next we will present value dependent security labels and dependent sum and product
types, crucial to develop our dependent information flow types.

1.4.1 Value-Indexed Security Labels

Value-indexed security labels may partition standard security levels by indexing labels `
with values v, so that each partition `(v) classify data at a specific level, depending on the
value v. For example, we can partition the security level U into n security compartments,
each representing a single registered user of the system, so security level U(01) represents
the security compartment of the registered user with id 01. Of course, one may also
consider indexed labels of arbitrary arity, for instance for security level A (author) we can
index with both the author’s id and submission’s id so A(42,70) would stand for the
security compartment of data relating to author (with id 42) and his submission (id 70).

1.4.2 Dependent Sum and Product Types

A simple example of a dependent (function) information flow type is

Πx:string⊥.stringusr(x)

One could assign such a type to the function get_passwd that given a user name (a string)
returns its password (a string). Although the security level of user “pat” is public (⊥),
pat’s password itself belongs to the security level usr(“pat”), where usr(x) is a value
dependent security label.

For another simple example, consider the dependent (labelled product) information
flow type:

Σ[uid:string⊥×passwd:stringusr(uid)]
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This would type records in which the security level of passwd field depends on the actual
value assigned to the uid field.

Value dependent security labels, such as usr(x), denote concrete security levels in
the given security lattice, along standard lines, but allow security levels to be indexed
by program values, useful to express security constraints to depend on dynamically
determined data values.

In such a setting, we would expect the security levels usr(“joe”) and usr(“pat”) to be
incomparable, thus avoiding insecure information flows between the associated security
compartments, representing the private knowledge of users joe and pat respectively. In
particular the security level of the password returned by the call get_passwd(“joe”) is
usr(“joe”) rather than, say, just usr, which in our setting could be denoted by the label
usr(>), representing the security level of the information available from any user.

Thus dependent types together with value indexed security labels allows secure
computations to be expressed with extra precision.

Another key feature of our type system is the way it allows us to capture general
data-dependent security constraints within data structures containing elements classified
at different security levels, as necessary to represent, e.g., realistic rich security policies on
structured documents or databases.

Typically, it is required to flexibly inspect, select, and compose such structure elements
during computations, while enforcing all the intended information flow policies. For
example, consider a (global) password file users modelled by a collection (e.g. a list) of
records of dependent product type, the type assigned to such a collection would be:

users:Σ[uid:string⊥×passwd:stringusr(uid)]∗⊥

(notice that s∗ is the type of collections (lists) of values of type s).
Then, consider the following function

let getPasswords = λ(u).
foreach (x in users) with acum = {} do

if x.uid = u then x.pwd :: acum else acum

The function getPasswords extracts from the global data structure users the collection
of passwords associated to a user id. Notice that although the collection users contains
passwords classified in different security levels, the security level of the collection returned
by the function is always usr(u), with u the user id string passed as argument. Then, the
following typing holds getPasswords: Πu : string⊥.string∗usr(u).

We base our development on a minimal λ-calculus with records, (general) imperative
references, and collections. Although extremely parsimonious, we show that our pro-
gramming language and its dependent information flow type system is already quite
expressive, allowing practically relevant scenarios to be modelled and analysed against
natural value dependent information flow policies.
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1.4.3 Toy Example: A Conference Manager System

Let us now overview our approach by going back to our conference manager example.

We assume the following security levels:

• U(uid), representing registered users with id uid;
• A(uid,sid), stating author of submission with id sid and whose user id is uid; and
• PC(uid,sid), that stands for PC members assigned to review submission with id
sid and whose user id is uid.

In general, the security lattice is required to enforce `(v, u, w) ≤ `(v,>, w) and `(v,⊥, w) ≤
`(v, u, w). So, for instance, for all uid we have U(⊥) ≤ U(uid) ≤ U(>).

We can see U(>) as the approximation (by above) of any U(uid), e.g, standing for the
standard label U. Additionally, we give some of the interpretations we give to security
labels indexed by > or ⊥:

• A(⊥,⊥), stands for the security compartment accessible to any author;
• PC(⊥,⊥), denotes the security compartment accessible to any PC member;
• A(>,>), represent the compartment containing the information of all authors;
• PC(>,>), stands for the compartment with the information of all PC members;
• A(uid,>) , stands for registered users with id uid that are authors;
• A(>,sid), is the security compartment of authors of submission with id sid.
• A(uid,⊥), means a registered author with no authority over submitted papers;

For our running example and in order to define Policy 2, we declare the following collec-
tions with the according types:

τc
def
= Σ[uid : ⊥× name : U(uid)× univ : U(uid)× email : U(uid)]

σc
def
= Σ[uid:⊥× sid:⊥× title:A(uid, sid)× abs:A(uid, sid)× paper:A(uid, sid)]

δc
def
= Σ[uid:⊥× sid:⊥× PC_only:PC(uid, sid)× review:A(>, sid)× grade:A(>, sid)]

let Users = refref(τc)∗⊥ (refτ⊥c
[] )::{} in

let Submissions=refref(σc)∗⊥ (refσ⊥c
[] )::{} in

let Reviews = refref(δc)∗⊥ (refδ⊥c
[] )::{}

and the partial order defining the sample security lattice by the following axioms (quanti-
fiers ranging over natural numbers):

∀uid,sid. U(uid)≤ A(uid,sid) (Axiom 1)

∀uid1,uid2,sid. A(uid1,sid)≤ PC(uid2,sid) (Axiom 2)

Axiom 2 states that information observable by an author of a given submission is also
observable to a PC member of said submission, while Axiom 1 denote that data visible to
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a registered user is also observable by an author, if the ids match (the id represents the
same user).

We will illustrate below with some examples on how these work to disallow insecure
programs.

For brevity, as in the example below, when writing new record values based on existing
ones, we just mention the fields being assigned a new value, and a sample field indicating
the record value from which the other values are to be copied.

For example, in [uid = t_sub.uid, title = t + "!", . . .] we mean that fields
sid, abs, and paper are just copied from t_sub like uid = t_sub.uid, sid = t_sub.sid,
etc. Consider then the following code

Example 4

let t = first( ( foreach(x in !Submissions) with y={} do

let t_sub = !x in

if t_sub.uid = 42 and t_sub.sid = 70 then

t_sub.title::y else y ) )

in ( foreach(x in !Submissions) with y = {} do

let t_sub = !x in

if t_sub.sid = 70 and t_sub.uid = 42 then

let new_rec = [uid = t_sub.uid, title = t+"!", . . .]
in x:= new_rec )

In this example Submissions is a (mutable) collection of references of type σc. The type σc

is a dependent sum type where the security level of some fields depends on the actual
values bound to other fields (as previously explained).

For example, notice the security level of field title is declared as A(uid,sid) where
uid and sid are other fields of the (thus dependent) record type. Also, t gets security level
A(42,70) since we are retrieving a record with uid value 42 and sid value 70.

To type record new_rec, we need to obtain type

Σ[uid:⊥×sid:⊥×title:A(uid,sid)×. . .]

which in turn needs to check the type of expression t+"!" for field title.

But since we know t has security level A(42,70) and that t_sub.sid=70 and t_sub.uid=42

(so fields uid and sid have value 42 and 70, respectively, in new_rec), we can deem secure
the assignment x:= new_rec.

On the other hand, if we change the last conditional to be if t_sub.sid = 666, then
we would be attempting to associate data of security level A(42,70), value t, within the
security compartment A(666,>) for author with uid 666. So, in other words, data from
author 42’s submission is being associated to submissions of author 666, inducing an
ilegal flow of information.
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Let us now discuss the code fragment below

foreach (x in !Submissions) with y = {} do

let t_sub = !x in

if (t_sub.uid = 42) then

[uid = t_sub.uid, sid = t_sub.sid, title = t_sub.title]::y

else y

This program evaluates to a collection of records of sum type (resulting from projecting
part of submission records of type σc). The expected type, given the definition of σc, is

Σ[uid:⊥×sid:⊥×title: A(uid, sid)]

However, our type system can track value dependencies and constraints imposed by
programs, so a more precise type is assigned in this case, namely

Σ[uid:⊥×sid:⊥×title: A(42,sid)]

Such ability to track dependencies is crucial to rigorously analyse fine grained security
policies. For instance, in order to check if PC member with id 10 could observe the result
of the above operation, we need to establish that A(42,sid)≤ PC(10,sid), which would
not be possible had we approximated the field sid with >.

Let us consider the following code for a function viewUserProfile

let viewUserProfile = λ (u).

foreach(x in !Users) with y = {} do

let usr = !x in

if usr.uid = u then usr::y else y

Function viewUserProfile returns a collection of records of dependent sum type whose
security labels on fields title, abs, and paper depend on the value of the parameter
uid_a. A precise typing for viewUserProfile is

Π(u:⊥).Σ[uid:⊥×name:U(u)×univ:U(u)×email:U(u)]∗⊥

Notice that the return type depends on the value of the function argument, so the type of
viewUserProfile is a dependent function type. Namely, the type of viewUserProfile
states the function retrieves the profile of user with id u, so, for instance, expression
first(viewUserProfile(42)).email has type U(42).

Example 5 The addCommentSubmission operation is used by the PC members to add
comments to other PC members during the evaluation of a given submission.
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let addCommentSubmission = λ(uid_r, sid_r).

foreach (p in viewAssignedPapers(uid_r)) with _ do

if p.sid = sid_r then

foreach(y in !Reviews) with _ do

let t_rev = !y in

if t_rev.sid = p.sid then

let up_rec = [uid=t_rev.uid,PC_only=comment(p.uid,p.sid,p),. . .]
in y := up_rec

Function viewAssignedPapers has type (Π(uid_r:⊥).C, where type C is

Σ[uid:⊥×sid:⊥×title:A(uid,sid)×abs:A(uid,sid)×paper:A(uid,sid)]∗⊥

Since there is no dependency (uid_r not free in C), we may abbreviate the functional type
by int⊥→ C, thus identifier p has type C.

Function comment returns a given paper’s PC comments, and has type

Πu:⊥.Πs:⊥.Πr:C.A(u,s)

Notice that its return type in the call comment(p.uid,p.sid,p) has security label
A(p.uid,p.sid). Additionally, we know t_rev has type δc:

Σ[uid:⊥× sid:⊥× PC_only:PC(uid, sid)× review:A(>, sid)× grade:A(>, sid)]⊥

So, in order to type check the assignment expression, y := up_rec, we need to check
that up_rec has the same type as the prescribed type for the collection’s elements, type δc.
Namely, we have to check if comment(p.uid, p.sid,p) has type PC(t_rev.uid,p.sid).

As we said, the type for comment(p.uid, p.sid,p) has security label A(p.uid,
p.sid) but since it has field dependencies, we need to infer values for them. In this case,
we cannot infer a value for field uid so we approximate to > obtaining A(>,p.sid).

However, because we know by the conditional that t_rev.sid = p.sid, we can index
the security level by field sid instead, which allows us to type the assignment operation
since field sid is bounded by the dependent sum type of the record being used for the
assignment.

Then we can type comment(p.uid, p.sid,p) with type A(>,p.sid) and thus, due to
A(>,p.sid) ≤ PC(⊥, p.sid) (Axiom 2), we can up-classify comment(p.uid, p.sid,p)

with PC(t_rev.uid, p.sid).
Meaning we can, finally, type the record up_rec with the dependent sum type

Σ[uid:⊥×sid:⊥×PC_only:PC(uid,sid)×review:A(>,sid)×grade:A(>,sid)]

We refer back to this example in Chapter 3 - Example 22, where we detail the relevant
steps taken by the system to typecheck the program.

Without dependent types, we would lose precision in the typing of comment(p.uid,
p.sid,p) (obtaining A(>,>) instead) and not be able to raise the security level to the
required level, thus addCommentSubmission would not type check despite being secure.
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Although approaching a substantial level of simplicity, our type system tackles relevant
technical challenges, necessary to handle heterogeneously classified data structures and
security level dependency.

As in classical approaches (e.g., [1, 28]), both a type τ and a security label s are assigned
to expressions by our typing judgment ∆ `rS e : τs, reflecting the fact that the value of e
does not depend on data classified with security levels above s or incomparable with s,
where s is in general a value dependent label.

The analysis of implicit flows is also particularly interesting in our setting, even if we
adopt standard techniques to track the computational context security level (the “program
counter”) r. The additional component S represents a set of the equational constraints,
used to refine label indices, and establish type equality.

The developments in this thesis put forward, in a principled way and for the first
time, the notion of data/state dependent information flow in terms of a fairly canonical
dependent type theory with first-order sum and arrow types, defined by a set of simple
type rules, and for a core λ-calculus with references and collections.

We proceed with a summary of the contributions and structure of this thesis.

1.5 Contributions and Outline

The main overall contribution of this thesis work is a detailed study of the notion of
value-dependency on information flow security within the framework of a general type
theory, particularly suited to express data dependent security policies.

We outline the contributions of this thesis:

• Notion of Value-indexed Security Labels. We introduce the notion of value-indexed
security label [35]. Value-indexed security labels may partition standard security
levels by indexing labels ` with values v, so that each partition `(v) classifies data at
a specific level, depending on the value v. For example, we can partition the security
level U into n security compartments, each representing a single system’s registered
user, so security level U(01) stands for the security compartment of registered user
with id 01. We show value-indexed security labels, together with a dependent type
theory, are useful to define “row-level” security policies, like the one shown in
Policy 2 in Section 1.3, where logically different security compartments, that may be
statically mapped into different physical compartments, are dynamic and dependent
on runtime data.

• Dependent Information Flow Types. We develop the notion of dependent information
flow types [36].We believe dependent information flow types provide a direct, natural
and elegant way to express and statically enforce fine grained security policies on
programs (such as Policy 2 in Section 1.3), including programs that manipulate
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structured data types in which the security level of a structure field may depend on
values dynamically stored in other fields. With our analysis, we are able to reason
about data confidentiality of data-centric applications. We build our analysis on top
of an expressive λ-calculus with records, collections, and references. We also show
the core language is expressive enough to encode Data Manipulation Language
(DML) primitives. This means our dependent information flow type system can also
reason about data confidentiality in typical DML applications.

• Noninterference for Dependent Information Flow Types. We prove that well-
typed programs in our dependent information flow types comply with a termination-
insensitive noninterference theorem, thus ensuring data confidentiality.

• A Typechecker Prototype Implementation. Finally, we address the definition of a
type checking algorithm, and implemented a proof-of-concept prototype typechecker
using our dependent information flow types.

The main contributions of this thesis are published in the following papers:

• [35] L. Lourenço and L. Caires. Information Flow Analysis for Valued-Indexed Data
Security Compartments. In Trustworthy Global Computing - 8th International Sym-
posium, TGC 2013, Buenos Aires, Argentina, August 30-31, 2013, Revised Selected
Papers. Ed. by M. Abadi and A. Lluch-Lafuente. Springer, 2013, pages 180–198.

• [36] L. Lourenço and L. Caires. Dependent Information Flow Types. In Proceedings
of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. POPL ’15. Mumbai, India ACM, 2015, pages 317–328.
The presentation in this thesis corrects some incorrections in typing rules and ex-
pression equivalence as presented in this paper.

We have also developed a prototype implementation, publicly available:

• DIFT Typechecker Prototype website, http://ctp.di.fct.unl.pt/DIFTprototype/,
and its live version in Microsoft’s rise4fun http://rise4fun.com/DIFT/.

The structure of this thesis for the remaining chapters is as follows:

• Chapter 2 introduces the core language used in this work. We achieve this by first
introducing an untyped version of the core language in order to present its syntax
and semantics. Then, we proceed to its typed version and present a type system for
information flow analysis. We conclude with a toy example to further illustrate the
core language as well as the limitations of standard type-based information flow
analysis.

• In Chapter 3 we present our dependent information flow type system. We begin
introducing the notion of value-dependent security labels and then extend the
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type system presented in Chapter 2 with dependent function and sum types. In
this chapter, we discuss the challenges value-dependency on labels imposes in our
analysis and how we tackle them. Then we present our type system and illustrate
our analysis and type system via examples and typing derivations, respectively.
Next, we show our type safety results: well-typed programs preserve their typing
under their evaluation and never get “’stuck”.

• The soundness result for our type system, namely non-interference, is presented in
Chapter 4. We also introduce notions of store equivalence and expression equivalence
up to a security level to achieve the formulation of noninterference. We outline the
proof of noninterference and conclude with examples to illustrate how one can
interpret noninterference result.

• In Chapter 5 we discuss some of the applications of this thesis work. Namely, we
show how we can encode a typical data-centric application, via a toy example,
and reason about the confidentiality of its data. We show our core language is
capable of encoding Data Manipulation Language (DML) primitives and, thus, our
analysis can be applied to DML applications. To achieve the latter claim, we present
typing derivations of the encodings that matches the expected typing rules for DML
primitives.

• Chapter 6 addresses algorithmic typechecking. We discuss the algorithm and discuss
its implementation into a proof-of-concept prototype. Namely, we give the intuition
behind our constraint solving procedure (which relies on the Z3 SMT solver) and
discuss the algorithm’s efficiency. To illustrate the syntax and the output of the type-
checker prototype, we give some examples (including those presented in Chapter 1).
We conclude with the discussion of some of the open problems of the current imple-
mentation of our prototype typechecker, and make a comparison to implementations
of other type-based information flow analysis works.

• Finally, in Chapter 7 we present some concluding remarks, and outline possible
future directions for this work.

• Proofs of results can be found in Appendix C.

With the aim to gradually introduce the concepts to the reader, in this chapter we outlined
the relevant work in the area of language-based security, and more concretely type-based
information flow analysis. Related work is also discussed throughout this document and
in chapter closing sections.
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REASONING WITH A TYPE-BASED INFORMATION

FLOW ANALYSIS

In this chapter we introduce the core language used to develop this thesis work, which
we already illustrated in Chapter 1 via examples. Namely, we define an imperative λ-
calculus with collections, records and variants. We begin by introducing the language’s
syntax, along with auxiliary abbreviations that help the presentation, then we define the
operational semantics via a small-step operational semantics. We then proceed with a
typed version of the core language to illustrate a “typical” type-based information flow
analysis. Finally, we will illustrate our language using our conference manager system,
introduced in Chapter 1. So this chapter is essentially a “survey” as far as information
flow type analysis is concerned, as we build on the state of the art to illustrate the basic
concepts. The key original contributions are found in Chapter 3 and Chapter 4.

2.1 λRCV: An Imperative λ-calculus with Records and
Collections

In this section we present an imperative λ-calculus with records, collections and variants,
which serves as the underlying core language for our analysis in subsequent chapters. We
start by introducing some syntactic conventions and abbreviations to be used to simplify
the presentation and examples.

Basic Notation
Let X be a infinite set of variables such that x, y, z, . . . ∈ X , M be a infinite set of
names such that m, n, . . . ∈ M, and Loc be a infinite set of memory locations such that
l, l′, . . . ∈ Loc.

19



CHAPTER 2. REASONING WITH A TYPE-BASED INFORMATION FLOW ANALYSIS

e : := (expression)
| λx.e (abstraction)
| e1(e2) (application)
| x (variable)
| [m = e] (record)
| e.m (field access)
| {e} (collection)
| e1::e2 (cons)
| foreach(e1, e2, x.y.e3) (iteration)
| #n(e) (variant)
| case e (n · x ⇒ e) (case)
| let x = e1 in e2 (let)
| if c then e1 else e2 (conditional)
| ref e (reference)
| e1 := e2 (assign)
| !e (deref)
| v (value)

(a) Expressions

c : := (conditions)
| ¬c (negation)
| c1 ∨ c2 (disjunction)
| V = V (equality)
| V (term)

(b) Logical Expressions

Figure 2.1: Abstract Syntax (Part 1)

Syntax
The syntax of our core language is given by the grammar in Figure 2.1. Being an

extension of the λ−calculus, we naturally have the abstraction λx.e, where x is bound in
expression e; application e1(e2); and variables x as expressions.

Additionally, we have record expressions [m = e], that associates field identifiers m to
expressions e, and field selection e.m to project the value associated to the field identifier.

Our core language also includes collections {e} and some operations over collections,
such as: cons operator e1::e2, to add an element to the beginning of a collection, and a
collection iterator foreach(e1, e2, x.y.e3), to iterate and compute over the elements of a
collection.

More concretely, the foreach iterator is a familiar functional collection fold combinator
[7], where x is the current item of collection denoted by e1, y denotes the value accumulated
from previous iteration (with initial value e2) and e3 is the expression to be evaluated at
each iteration. Notice that x, y are bound in e3.

Let us see an example to illustrate the semantics of the foreach primitive.

Example 6 Suppose we have a collection of integer and we want the sum of all its elements.
We can code this operation as follows

foreach (x in {1,2,3,4,5})

with sum = 0 do

x + sum

The result of this operation would be value 15.
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We also have variant expressions, #n(e), and a case primitive, case e (n · x ⇒ e), to
case-analyse variant expressions, allowing us to represent labelled sums. So e denotes the
variant value to be analysed, ni the possible labels of the variant value, ei the corresponding
expression in case of a match and xi the variable denoting the value in e for the matched
identifier. Each xi is bound in the corresponding ei. We now illustrate these primitives
with a common use of variants.

Example 7 We illustrate the use of variant values with a simple example.
Since our language does not have exceptions, one way to handle division by zero is to

return a variant value representing that no result was computed, #None. Otherwise we
compute the result of the division, say v, and wrap it in a variant value, Some(v).

let division =

λ (x,y).

if y == 0 then

#None(skip)

else #Some(x/y)

in let result = division(12,2)

in case result( None · x ⇒ NaN,

Some · y ⇒ y)

Then, for this snippet, we would obtain the variant value #Some(6) upon the application
division(12,2). So when evaluating the case primitive, we can match result with
identifier Some and replace variable y with the value 6, thus obtaining the integer 6 for
this example. For division(12,0), we would obtain a NaN value.

As illustrated above, we also have let-expressions, let x = e1 in e2, and condition-
als, if c then e1 else e2. As expected, variable x is bound in e2 to the value denoted
by e1 in a let-expression. We restrict condition c in a conditional expression to be pure
given by the grammar in Figure 2.1b. Logical expressions c use terms, syntactic category
V defined in Figure 2.2a, to check equality of values. Essentially terms are a subset of the
values of our language and, additionally, variables and field projection (useful to compare
field values of a record value in conditionals).

Pure expressions are those side-effect free, in concrete, all expressions that do not
contain assignment, reference expressions and deference. We also require expressions in
fragment c to be logical expressions (disjunction, negation or equality) between terms.

Finally, imperative expressions of our language include creation of a new reference
(variable) with initial content denoted by e, ref e; assignment of a new value to a given
reference, e1 := e2; and dereference operation, !e, to obtain the contents of a reference.

v, defined in Figure 2.2, represents the possible output of evaluating an expression.
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V : := (terms)
| [m = V] (record)
| V (collection)
| true (true)
| false (false)
| n (integer)
| () (unit)
| x (identifier)
| V.m (field access)

(a) Terms

v : := (values)
| λx.e (abstraction)
| [m = v] (record)
| v (collection)
| #n(v) (variant)
| true (true)
| false (false)
| n (integer)
| () (unit)
| l (locations)

(b) Values

Figure 2.2: Abstract Syntax (Part 2)

Values of our language include abstractions, λx.e; records, [m1 = v1, . . . , mn = vn];
collections (list of values), {v1, . . . , vn}; variants, #n(v); booleans; integers; unit value; and
locations l.

We assume other basic data types (such as strings) and corresponding operators,
such as: first(−) to retrieve the first element of a collection, and rest(−) to retrieve
a collection without its first element. As usual, we consider expressions/terms up-to
renaming of bound variables (α-equivalence).

We next define the semantics of our language.

Syntactic Conventions:

foreach(e1,e2,x.y.e3) is to be read as foreach (x in e1) with y = e2 do e3

λ(x, . . . , z).e is to be read as λx.(. . .).λz.e

Abbreviations:

[m = e] stands for [m1 = e1, . . . , mn = en]

{e} stands for {e1, . . . , en}
case e(n · x ⇒ e) stands for case e(n1 · x1 ⇒ e1, . . . , nn · xn ⇒ en)

Semantics

The semantics of our language is defined with respect to a store representing the
memory state of the program. We define in the expected way the free variables of an
expression, fv(e), and capture avoiding substitution on expressions, e{v/x}. Their full
definition can be found in Appendix B.

We now define store and store operations.

Definition 1 (Store)
A Store S is a finite mapping from locations to closed values. The store that assigns vi to li
for i ∈ 1, . . . , n is written {l1 = v1, . . . , ln = vn}, and the empty store is written as ∅.
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(APP-LEFT)

(S; e1) −→ (S′; e′1)
(S; e1(e2)) −→ (S′; e′1(e2))

(APP-RIGHT)

(S; e2) −→ (S′; e′2)
(S; (λx.e)(e2)) −→ (S′, (λx.e)(e′2))

(APP)

(S; (λx.e)(v)) −→ (S; e{v/x})

(IF-TRUE)
CJcK = true

(S; if c then e1 else e2) −→ (S; e1)

(IF-FALSE)
CJcK = false

(S; if c then e1 else e2) −→ (S; e2)

(LET-LEFT)

(S; e1) −→ (S′; e′1)
(S; let x = e1 in e2) −→ (S′; let x = e′1 in e2)

(LET-RIGHT)

(S; let x = v in e2) −→ (S; e2{v/x})

Figure 2.3: Operational Semantics for Expressions (Part 1)

Before presenting our operational semantics, we provide an auxiliary definition for
the evaluation of (store independent) logical expressions and define some operations over
stores. We write S(l) to denote the value associated with location l in S, S[l 7→ v] to denote
a store S where location l is updated to value v, and dom(S) to denote the domain set of S.

Definition 2 (Logical Expressions Semantics) The value of a closed logical expression c
is given by the interpretation map C : c→ {true, false}, as well as the auxiliary interpreta-
tion function for closed terms T : V → v as follows:

CJ¬cK = ¬CJcK T J{V1, . . . , Vn}K = { T JV1K, . . . , T JVnK }
CJc1 ∨ c2K = CJc1K∨ CJc2K T J[m1=V1, . . . , mn=Vn]K = [m1=T JV1K, . . . , mn=T JVnK]
CJV1 = V2K = (T JV1K = T JV2K) T JV.mK = field(T JVK, m) with field([. . . , m = v, . . .], m) = v
T JtrueK = true T JnK = n
T JfalseK = false T J()K = ()

We now define our semantics by a small-step operational semantics, using a call-by-
value evaluation strategy. The operational semantics is based on a reduction relation,
defined between configurations of the form (S; e), where S is a store and e a closed
expression, denoted as follows

(S; e) −→ (S′; e′)

A reduction step states that expression e under store S evolves in one computational step
to expression e′ under store S′.
We now define our reduction relation on configurations.

Definition 3 (Reduction) Reduction, denoted as (S; e) −→ (S′; e′), is inductively defined
by the rules in Figure 2.3, Figure 2.4, Figure 2.5, and Figure 2.6.
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In Figure 2.3 we present the set of rules expected for a call-by-value λ-calculus with
let-declarations and conditionals. Let us see in more detail.

Rule (APP-LEFT) evaluates the left expression on an application until it reduces to a
(abstraction) value

(S; e1) −→ (S′; e′1)
(S; e1(e2)) −→ (S′; e′1(e2))

Then rule (APP-RIGHT) takes reduction steps on the right expression of an application

(S; e2) −→ (S′; e′2)

(S; (λx.e)(e2)) −→ (S′, (λx.e)(e′2))

And, lastly, rule (APP) makes a β-reduction.

(S; (λx.e)(v)) −→ (S; e{v/x})

Regarding the evaluation of let-declarations, rule (LET-LEFT) reduces the first expression of
a let-declaration until it is a value

(S; e1) −→ (S′; e′1)
(S; let x = e1 in e2) −→ (S′; let x = e′1 in e2)

while (LET-RIGHT) applies a β-reduction on the second expression with the obtained value.

(S; let x = v in e2) −→ (S; e2{v/x})

The semantics of a conditional rely on the the logical expressions semantics, Definition 2,
in order to reduce the logical expressions.

So rule (IF-TRUE) evaluates a conditional expression to the second (then branch) expres-
sion if the first (logical) expression reduces to true, CJcK = true

CJcK = true

(S; if c then e1 else e2) −→ (S; e1)

Dually, rule (IF-FALSE) evaluates a conditional expression to the third (else branch) expres-
sion if the first (logical) expression reduces to false, CJcK = false

CJcK = false

(S; if c then e1 else e2) −→ (S; e2)

We now discuss the evaluation of collections and its operations, defined in Figure 2.4.
As expected, rule (COLLECTION) evaluates a collection expression to a collection value by
reducing each element’s expression to a value, from left to right order.

(S; e) −→ (S′; e′)
(S; {v1, . . . , vn, e . . .}) −→ (S′; {v1, . . . , vn, e′ . . .})
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(COLLECTION)

(S; e) −→ (S′; e′)
(S; {v1, . . . , vn, e . . .}) −→ (S′; {v1, . . . , vn, e′ . . .})

(CONS-LEFT)

(S; e1) −→ (S′; e′1)
(S; e1::e2) −→ (S′; e′1::e2)

(CONS-RIGHT)

(S; e2) −→ (S′; e′2)
(S; v::e2) −→ (S′; v::e′2)

(CONS)

(S; v::{v1, . . . , vn}) −→ (S; {v, v1, . . . , vn})

(FOREACH-LEFT)

(S; e1) −→ (S′; e′1)
(S; foreach(e1, e2, x.y.e3) −→ (S′; foreach(e′1, e2, x.y.e3))

(FOREACH-RIGHT)

(S; e2) −→ (S′; e′2)
(S; foreach(v, e2, x.y.e3) −→ (S′; foreach(v, e′2, x.y.e3))

(FOREACH)
vl = h::hs

(S; foreach(vl , v, x.y.e3) −→ (S; foreach(hs, e3{h/x}{v/y}, x.y.e3))

(FOREACH-BASE)

(S; foreach({}, v, x.y.e3) −→ (S; v)

Figure 2.4: Operational Semantics for Expressions (Part 2)

The evaluation of the cons primitive also follows as one would expect. Rule (CONS-LEFT)
reduces the left-side expression of a cons expression until a value is obtained

(S; e1) −→ (S′; e′1)
(S; e1::e2) −→ (S′; e′1::e2)

Once the left-side of a cons expression is a value, then rule (CONS-RIGHT) can be applied to
reduce the right-side expression until a collection value is obtained.

(S; e2) −→ (S′; e′2)
(S; v::e2) −→ (S′; v::e′2)

Finally, rule (CONS) evaluates the cons expression to a collection value that includes the
left-side value as the head of the final collection value.

(S; v::{v1, . . . , vn}) −→ (S; {v, v1, . . . , vn})
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We now discuss rules for evaluation of the foreach primitive. Rule (FOREACH-LEFT) evalu-
ates the first expression until we get a collection value

(S; e1) −→ (S′; e′1)

(S; foreach(e1, e2, x.y.e3) −→ (S′; foreach(e′1, e2, x.y.e3))

Afterwards, rule (FOREACH-RIGHT) can be applied to reduce the second expression until a
value is obtained. This value corresponds to the initial value of the accumulated value of
the iteration on each step, denoted by variable y.

(S; e2) −→ (S′; e′2)

(S; foreach(v, e2, x.y.e3) −→ (S′; foreach(v, e′2, x.y.e3))

Then, rule (FOREACH) is applied when we have a value in the first and second expression
of the iterator operator. Namely, the first value is a non-empty collection value vl and the
second value is the accumulated value v. This rule represents an iteration step and reduces
to another iteration expression.

vl = h::hs

(S; foreach(vl , v, x.y.e3) −→ (S; foreach(hs, e3{h/x}{v/y}, x.y.e3))

Notice that the third expression remains unchanged since it represents the computation to
be done in each step. This new iteration expression will have as first expression the tail of
the collection value vl . As second expression it will have the resulting expression of the
substitution of all free occurrences of x and y, in the third expression, by the head of the
collection value and the accumulated value, respectively.

Finally, rule (FOREACH-BASE) is the base case of the iteration operator, stating that if
we iterate an empty collection value then it reduces to the accumulated value (second
expression).

(S; foreach({}, v, x.y.e3) −→ (S; v)

We revisit example Example 6 to illustrate the semantics of the foreach primitive.

Example 8 Let us then recall the code snippet:

foreach (x in {1,2,3,4,5})

with sum = 0 do

x + sum

To evaluate this code, we have the following reduction steps (using the abstract syntax):
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• (S; foreach({1,2,3,4,5}, 0, x.sum.(x + sum)))

• (S; foreach({2,3,4,5}, 1, x.sum.(x + sum))) by (FOREACH)
as result of (x + sum){1/x}{sum/0}

• (S; foreach({3,4,5}, 3, x.sum.(x + sum))) by (FOREACH)
as result of (x + sum){2/x}{sum/1}

• (S; foreach({4,5}, 6, x.sum.(x + sum))) by (FOREACH)
as result of (x + sum){3/x}{sum/3}

• (S; foreach({5}, 10, x.sum.(x + sum))) by (FOREACH)
as result of (x + sum){4/x}{sum/6}

• (S; foreach({ }, 15, x.sum.(x + sum))) by (FOREACH)
as result of (x + sum){5/x}{sum/10}

• (S; 15) by (FOREACH-BASE)

Let us see how records, variants and its operations are evaluated, their rules can be found
in Figure 2.5. Rule (RECORD) reduces a record expression to a record value by taking
evaluation steps for each field expression, from left- to right order.

(S; ei) −→ (S′; e′i)

(S; [m = v, mi = ei, . . .]) −→ (S′; [m = v, mi = e′i, . . .])

Rule (FIELD-LEFT) evaluates the left-side of a field projection up to a record value

(S; e) −→ (S′; e′)
(S; e.m) −→ (S′; e′.m)

While rule (FIELD-RIGHT) retrieves the projected field’s value.

(S[m = v, mi = vi, m = v].mi) −→ (S; vi)

Regarding variants, rule (VARIANT) evaluates a variant expression to a variant value.

(S; e) −→ (S′; e′)

(S; #n(e)) −→ (S′; #n(e′))

Evaluating a case expression follows as expected. Rule (CASE-LEFT) reduces the case
expression until we obtain a variant value

(S; e) −→ (S′; e′)

(S; case e(. . . , ni · xi ⇒ ei, . . .)) −→ (S′; case e′(. . . , ni · xi ⇒ ei, . . .))
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(RECORD)

(S; ei) −→ (S′; e′i)
(S; [m = v, mi = ei, . . .]) −→ (S′; [m = v, mi = e′i, . . .])

(VARIANT)

(S; e) −→ (S′; e′)
(S; #n(e)) −→ (S′; #n(e′))

(FIELD-LEFT)

(S; e) −→ (S′; e′)
(S; e.m) −→ (S′; e′.m)

(FIELD-RIGHT)

(S; [m = v, mi = vi, m = v].mi) −→ (S; vi)

(CASE-LEFT)

(S; e) −→ (S′; e′)
(S; case e(. . . , ni · xi ⇒ ei, . . .)) −→ (S′; case e′(. . . , ni · xi ⇒ ei, . . .))

(CASE-RIGHT)

(S; case #ni(v)(. . . , ni · xi ⇒ ei, . . .)) −→ (S; ei{v/xi})

Figure 2.5: Operational Semantics for Expressions (Part 3)

And rule (CASE-RIGHT) makes a β-reduction on the corresponding expression ei whose
identifier mi matches that of the variant value being case-analysed.

(S; case #ni(v)(. . . , ni · xi ⇒ ei, . . .)) −→ (S; ei{v/xi})

Let us revisit Example 7 to illustrate the evaluation of a case primitive.

Example 9 Recall the code snippet that declares a function division and how we use a
case operator to analyse the result of an application of division function.

let division =

λ (x,y).

if y == 0 then

#None(skip)

else #Some(x/y)

in let result = division(12,2)

in case result( None · x ⇒ ‘‘Err: Division by Zero’’,

Some · y ⇒ y)

The evaluation of this code, given a store S, is as follows:

• (S; let division = λ (x,y).

if y == 0 then

#None(skip)

else #Some(x/y)

in let result = division(12,2)

in case result( None · x ⇒ ‘‘Err: Division by Zero’’,

Some · y ⇒ y) )
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• (S; let result = (λ (x,y).

if y == 0 then

#None(skip)

else #Some(x/y) )(12,2)

in case result( None · x ⇒ ‘‘Err: Division by Zero’’,

Some · y ⇒ y) ) by (LET-RIGHT)
as result of replacing division with the λ value.

• (S; let result = if 2 == 0 then

#None(skip)

else #Some(12/2)

in case result( None · x ⇒ ‘‘Err: Division by Zero’’,

Some · y ⇒ y) ) by (APP)
as result of replacing x with 12 and y with 2 in the body of the λ value

• (S; let result = #Some(12/2)

in case result( None · x ⇒ ‘‘Err: Division by Zero’’,

Some · y ⇒ y) ) by (IF-FALSE)
as result of CJ2 == 0K = false.

• (S; case #Some(12/2)( None · x ⇒ ‘‘Err: Division by Zero’’,

Some · y ⇒ y) ) by (LET-RIGHT)
as result of replacing result with the variant expression #Some(12/2)

• (S; case #Some(6)( None · x ⇒ ‘‘Err: Division by Zero’’,

Some · y ⇒ y) ) by (CASE-LEFT)
as result of evaluating expression 12/2 to 6 inside the variant expression.

• (S; 6) by (CASE-RIGHT)
as result of y{6/y} for the matched identifier Some.

Finally, we present the semantics of the imperative core of our language (Figure 2.6). So
rule (REF-LEFT) evaluates the expression in a reference expression up to a value

(S; e) −→ (S′; e′)
(S; ref e) −→ (S′; ref e′)

And then rule (REF-RIGHT) augments the store with a fresh location (mapped to the
evaluated value). That location is the result of evaluating a reference expression.

l 6∈ dom(S)

(S; ref v) −→ (S ∪ {l 7→ v}; l)

Rule (DEREF-LEFT) reduces a dereference expression up to a location value

(S; e) −→ (S′; e′)

(S; !e) −→ (S′; !e′)
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(DEREF-LEFT)

(S; e) −→ (S′; e′)
(S; !e) −→ (S′; !e′)

(DEREF)

S(l) = v
(S; !l) −→ (S; v)

(REF-LEFT)

(S; e) −→ (S′; e′)
(S; ref e) −→ (S′; ref e′)

(REF-RIGHT)

l 6∈ dom(S)
(S; ref v) −→ (S ∪ {l 7→ v}; l)

(ASSIGN-LEFT)

(S; e1) −→ (S′; e′1)
(S; e1 := e2) −→ (S′; e′1 := e2)

(ASSIGN-RIGHT)

(S; e2) −→ (S′; e′2)
(S; l := e2) −→ (S′; l := e′2)

(ASSIGN)

l ∈ dom(S)
(S; l := v) −→ (S[l 7→ v]; ())

Figure 2.6: Operational Semantics for Imperative Primitives

While rule (DEREF) retrieves from the store the associated value given the location.

S(l) = v
(S; !l) −→ (S; v)

Lastly, assignment expressions are evaluated from left-to-right until we obtain a location
value on the left-side expression, rule (ASSIGN-LEFT),

(S; e1) −→ (S′; e′1)

(S; e1 := e2) −→ (S′; e′1 := e2)

and a value on the right-side expression, rule (ASSIGN-RIGHT).

(S; e2) −→ (S′; e′2)

(S; l := e2) −→ (S′; l := e′2)

Then, rule (ASSIGN) updates the store, given that the location is valid, and evaluates the
assignment expression to unit value.

l ∈ dom(S)

(S; l := v) −→ (S[l 7→ v]; ())

It is important to note that the reduction semantics presented above is deterministic
up to creation of fresh locations in the store, there is always at most one next applicable
reduction step.

Next we will show a typed version of our core language to motivate type-based
information flow analysis.
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2.2 Type-based Information Flow Analysis on λRCV

We will adopt the previous introduced core programming language as a foundation to
formally discuss information flow security, using a type based approach. To that end, we
now introduce a typed version of our core language, λRCV , and a type system to ensure
type safety of the language as well as noninterference. The former means that “well-typed
programs do not go wrong”, while the latter ensures data confidentiality of well-typed
programs with respect to the prescribed security policy, as better explained below.

The goal of this section is to explain some basic techniques related to type-based
information flow analysis as well as some limitations of these analyses using standard
security labels.

We begin by reviewing some basic notions related to information flow analysis.

Basic Notions of Information Flow

We assume a multilevel security approach that classifies information into security com-
partments, according to some given security lattice, and mediates users access to data
according to the security clearance they possess.

A security label ` represents a security compartment in the system and is used to classify
its data. Security labels form a partially ordered set, with a unique least upper bound and
greatest lower bound for every two elements, thus establishing a security lattice, denoted
as L.

A security lattice represents the allowed flows of information throughout the execution
of a program. For data confidentiality, the allowed flows of information are represented
by “upward paths” in the lattice. That is, if `1 ≤ `2 then information classified by security
label `1 is allowed to flow to containers (variables or output channels) of a higher security
label `2.

For example, suppose we have the following pre-order relation ⊥ ≤ user ≤ photo ≤
admin ≤ > giving us the following security lattice:

>

admin

photo

user

⊥

Then data classified with security label users can be stored in a container classified with
label admin but not the other way around. That is, data with security label admin cannot
be stored in a container classified with label user.
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Insecure information flows can be classified into explicit flows or implicit flows. An
explicit flow corresponds to a direct mapping of classified information to a lower classified
container (data-flow based), while an implicit flow corresponds to public information that
depends on classified one (control-flow based).

Classic examples of such flows are the assignment of a low level variable with a high
level value, l := h, for explicit flow; and a high guarded conditional whose branches are
classified as low level, if h > 0 then l := 1 else l := 0, for implicit flows.

The noninterference property [26] is usually employed to characterise information
flow security. Intuitively, noninterference states that changing sensitive data of a program
does not change the perception that an external observer has any effects of a program,
which implies that no public data depends on protected data.

For illustration purposes, let us sketch the formalisation of the noninterference property
for a system with only two security levels, ⊥ and >, such that ⊥ ≤ > with ⊥ representing
public information and > secret information.

We begin by defining a equivalence relation between stores, denoted as S1 =⊥ S2.
This will state that S1 and S2 are perceived as identical to a “low” (since ⊥ classifies
public information) observer. For illustration purposes, we will assume that all locations
classified at ⊥ share the same identity in S1 and S2 (that is, there is an identity function
that maps locations between S1 and S2 if they are classified at ⊥) and that we only store
values of base types (booleans, strings, integers, etc.).

Definition 4 (Store Equivalence) Let S1 and S2 be stores that map locations to values of
either security level ⊥ or >. Then we say we say S1 is equivalent to S2 if they only differ
in stored values of security level >, or in locations classified at level >.

We have S1 =⊥ S2 if one of the following holds for all locations l such that l ∈
dom(S1) ∩ dom(S2):

1. S1(l) = S2(l) and l and Si(l) are classified at ⊥
2. l is classified at ⊥ and Si(l) is classified at >
3. l is classified at >

So condition (1) accounts for all locations classified at ⊥ and whose contents are also ⊥,
stating their contents have to be equal. Condition (2) concerns all locations classified at
⊥ but whose contents are >, in this case their contents are undistinguishable and can
thus be different in equivalent stores. Likewise for condition (3) where we have locations
classified at >.
We now define the noninterference property.

Definition 5 (Noninterference) Let S1 and S2 be two equivalent stores that map locations
to values of either security level ⊥ or >. Then we say we say e satisfies the noninterfer-
ence property if, given two equivalent stores, it evaluates to the same value and store
equivalence is preserved for the resulting stores. That is,

S1 =⊥ S2 ∧ (S1; e) ∗−−→ (S′1; v1) ∧ (S2; e) ∗−−→ (S′2; v2) =⇒ v1 = v2 ∧ S′1 =⊥ S′2
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In this definition we assume the result of program e is classified at ⊥, and is thus
observable, otherwise the condition v1 = v2 might not hold if program e’s output is
classified at >. So noninterference states that executing a program e under two equivalent
stores, S1 =⊥ S2, will output the same result, v1 = v2, and have the same side-effects on
the resulting stores, S′1 =⊥ S′2. In other words, noninterference ensures data confidentiality
by certifying that a compliant program does not have insecure flows. This notion of
noninterference is called “termination insensitive” noninterference since we do not take
into account whether the program terminates. In “termination sensitive” noninterference,
an observer could extract some information about the outcome of a program if it did
not terminate. For instance, suppose a program with a cycle depending on condition c
classified at >. If such program did not terminate when executed under a store where c is
true, then an attacker would be able to infer something regarding protected data. Therefore,
such program would not satisfy “termination sensitive” noninterference, however it does
satisfy “termination insensitive” noninterference.

Note, however, the domain of S1 and S2 is not necessarily the same: a program execut-
ing under equivalent stores may diverge, at some point in its execution, and create new
locations which will, necessarily, be classified at > (otherwise the resulting stores would
not be equivalent).

Our next goal is to define a type system that ensures noninterference. To that end, we
will make an overview of the basics of typical type-based information flow analysis.

As in typical type-based information flow analyses, types τ are annotated with a security
label `. So, if an expression e is assigned type τ` then the system must ensure that only
users with enough permissions to read information at security level ` have access to the
value computed by e. Otherwise, the result of e is assumed to be opaque and thus cannot
be observed by such a user.

As for the attacker model, we assume an attacker can observe information, including
stored data, that has security level ⊥ (public), and may be a user of the system. So
interaction with the system is possible using the core language we show here.

This view is extended to any given security level, so that attackers with access to data
classified at security level ` can only observe information classified up to `.

Let us now introduce our language of types, following standard for typed λ-calculus for
information flow [52].

Definition 6 (Types) The types TRCV of λRCV are defined by the abstract syntax in Fig-
ure 2.7.

Types, τ, in λRCV are annotated with a security label `, also denoted as security types
τ`. So (security) types, τ`, can be boolean bool`, integer int`, unit cmd` (here denoted as
command), reference ref(τ`′)`, variant {n : τ`}`, record [m : τ`]`, function (τ`1

r→ σ`2)`,
and collection types τ∗

`
. In collection type τ∗` each collection element has type τ`.
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τ`, σ` : := (security types)
| bool` (bool type)
| int` (integer type)
| cmd` (command type)
| ref(τ`′)` (reference type)
| τ∗` (collection type)
| {n : τ`}` (variant type)
| (τ`1

r→ σ`2)` (function type)
| [m : τ`]` (record type)

Figure 2.7: Abstract Syntax of Types

We require the security label of a record type, [m : τ`]`, to always be the greatest lower
bound (glb) of its field’s security labels in order to prevent implicit flows on writes. We
will illustrate later on this section the need for a security label on record types.

Also, notice we annotate the function type, (τ`1
r→ σ`2)`, with security label r, which is

a lower bound on the function effects (writes). If omitted, security label r is assumed to
be ⊥. We will give more examples later on this section to illustrate why it is necessary to
record the computational context on the function type.

While not formalised, for simplicity, we assume other basic types, such as strings with
their associated operations, which are used in examples.

We now use the type language to define an explicitly typed version of the λRCV , de-
noted as λτRCV .

Abbreviations:
{n : τ`}` stands for {n1 : τ1

`1 , . . . , nn : τn
`n}`

[m : τ`]` stands for [m1 : τ1
`1 , . . . , mn : τn

`n ]`

Syntax
The syntax of the typed version of λRCV is given by Figure 2.8. Notice that the only differ-
ence with respect to untyped λRCV are the type annotations in abstractions and references.
Type annotations are needed here to simplify the illustration of the type system defined
next.

Operational Semantics
The semantics of λτRCV is the same as the one presented for λRCV , the only difference is
the abstract syntax. For that reason we omit the rules of the operational semantics and
move on to the introduction of the type system.

Type System
To type λτRCV expressions, we will adopt typing judgments of the form

∆ `r e : τ`
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e : := (expression)
| λ(x : τ`).e (abstraction)
| e1(e2) (application)
| x (variable)
| [m = e] (record)
| e.m (field access)
| {e} (collection)
| e1::e2 (cons)
| foreach(e1, e2, x.y.e3) (iteration)
| #n(e) (variant)
| case e (n · x ⇒ e) (case)
| let x = e1 in e2 (let)
| if c then e1 else e2 (conditional)
| refτ` e (reference)
| e1 := e2 (assign)
| !e (deref)
| v (value)

(a) Expressions

v : := (values)
| λ(x : τ`).e (abstraction)
| [m = v] (record)
| v (collection)
| #n(v) (variant)
| true (true)
| false (false)
| n (integer)
| () (unit)
| l (locations)

(b) Values

Figure 2.8: Abstract Syntax of Typed λRCV

∆ : := (typing environment)
| φ (empty environment)
| ∆, x : τ` (type assignment to a variable)
| ∆, l : ref(τ`)`

′
(type assignment to a location)

Figure 2.9: Abstract Syntax of Typing Environments

(ENV-EMPTY)

φ ` �

(ENV-VAR)

∆ ` � x 6∈ dom(∆) ` τ`

∆, x : τ` ` �

(ENV-LOC)

∆ ` � l 6∈ dom(∆) ` τ`

∆, l : ref(τ`)`′ ` �

Figure 2.10: Valid Typing Environments

It asserts expression e has type τ` under typing environment ∆. The label ` states that the
value of expression e does not depend on data classified with security labels above ` or
incomparable with `. Label r expresses the security level of the computational context
(cf. the “program counter" [43, 53]), and is a lower bound on the security level of control
flow decisions previously taken by the program. In practice, label r takes a key role in
preventing implicit flows.

So the goal of the type system is to ensure information only flows upwards the security
lattice, e.g., only from a level l to a level h such that l ≤ h.

We now give some definitions before presenting our type system.

Definition 7 (Typing Environment) For x ∈ X , l ∈ Loc, and τ` ∈ TRCV the set ∆ of all
typing environments is defined by the abstract syntax in Figure 2.9.

Typing declarations assign types to identifiers x : τ`, and types to locations, l : ref(τ`)`
′
.
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(W-CMD)

` cmd`

(W-COLLECTION)

` τ`

` τ∗`

(W-REF)

` τ`′

` ref(τ`′)`

(W-BOOL)

` bool`

(W-INT)

` int`

(W-VARIANT)

∀i ` τ
`i
i

` {m : τ`}`

(W-RECORD)

∀i ` τ
`i
i ` ≤ u`i

` [m : τ`]`

(W-ARROW)

` τ`1 ` σ`2

` ≤ r ` ≤ `2

` (τ`1
r→ σ`2)`

Figure 2.11: Well-formed types

A typing environment ∆ is a list of typing declarations. We write dom(∆) to denote the
declared variables and locations in ∆, and define the notion of valid typing environment
which, in turn, relies on the notion of well-formed types. We now define valid typing
environments as follows:

Definition 8 (Valid Typing Environment) A typing environment ∆ is valid if the judge-
ment ∆ ` � is derivable by the rules in Figure 2.10.

Next we define how to form valid types:

Definition 9 (Well-formed Types) Well-formed types are denoted by judgment ` τ`, stat-
ing that type τ` is well-formed, and is given by the set of rules shown in Figure 2.11.

Note the invariant on record’s type security label is enforced by the definition of well-
formed types. While we could establish these invariants only with typing rules, disal-
lowing programs that did not comply with such invariants, we decided to impose these
restrictions also on well-formedness of types. This way we explicitly state the conditions
under which functions or records can be manipulated in our system.
So validity ensures all types are correctly build on basic types, or use valid typed expres-
sions under the typing environment.

We now define our type system by means of a typing relation.

Definition 10 (Type System) Typing is expressed by the judgment ∆ `r e : τ`, stating that
expression e is well-typed by τ` in environment ∆, given computational context security
label r.

The type system defines, through a set of typing rules, when an expression is well-typed.
If there is a valid typing derivation built using the given rules, then we say the expression
is well-typed.
Our analysis also relies on a subtyping relation, denoted <:, which allows up-classification
of security labels. Up-classification consists in raising the security label of an expression,
and is always safe, since information can always flow upwards in the security lattice. This
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(S-REFLEX)

τ` <: τ`

(S-TRANS)

τ` <: τ′′`
′′

τ′′`
′′
<: τ′`

′

τ` <: τ′`′

(S-BASE)

` ≤ `′

τ is a base type
τ` <: τ`′

(S-REF)

` ≤ `′

ref(τs)` <: ref(τs)`′

(S-COLLECTION)

τ` <: τ′`
′

τ∗` <: τ′∗`′

(S-VARIANT)

∀i τi
`i <: τ′i

`′i ` ≤ `′

{n : τ`}` <: {n : τ′`
′}`′

(S-ARROW)

τ′`
′
1 <: τ`1 σ`2 <: σ′`

′
2 r′ ≤ r

` ≤ `′ `′ ≤ `′2 `′ ≤ r′

(τ`1
r→ σ`2)` <: (τ′`

′
1

r′→ σ′`
′
2)`
′

(S-RECORD)

∀i τ`i
i <: τ′i

`′i ` ≤ `′ ≤ u`′i
[m : τ`]` <: [m : τ′`′ ]`

′

Figure 2.12: Subtyping rules

is useful, for instance, to classify values or expressions under a computational context
that is classified as >: if secret then low_value else low_value + 1, if secret is
classified as > and low_value as ⊥, then we want to raise the security level of both
branches to > to prevent leak of information.

Note that our subtyping relation only affects security labels. The subtyping relation
defined on the type structure itself is to account for the non-base types (like record and
functional type) in order to relate its component’s security labels only. This is enough
in type-based information flow analysis since our goal is to ensure secure information
flows, thus we only need to inspect security labels. However, it could easily be extended
to include such standard subtyping rules like width subtyping, for instance.

Definition 11 (Subtyping Relation) Our subtyping relation is expressed as τ` <: τ`′ and
is defined by the rules given in Figure 2.12.

Notice that in rule (S-ARROW) the security label is contravariant on the argument’s type
and on the recorded computational context security label r, and covariant on the return
type. The remaining conditions ensure the new security level of the functional type, `′,
preserves the invariants impose by well-formedness of the functional type. Likewise, rule
(S-RECORD) also preserves the record’s label invariant established in rule (W-RECORD).

We will now discuss typing rules for the constructs of our core language. Since base
types play no key role in our analysis, we will omit them in our examples for presentation
purposes. Also, with few exceptions that we will point out, values in our language are
typed with security types at security label ⊥. The intuition is that basic values are initially
“public” (⊥) unless declared otherwise or if, given the context where they are used, they
are classified to a higher security level.
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We begin with our subsumption rule, (T-SUB), which is used to raise the security level of
expressions or lower the computational context label, whenever necessary.

(T-SUB)

∆ `r e : τ` τ` <: τ`′ r′ ≤ r

∆ `r′ e : τ`′

Regarding let-declarations, rule (T-LET) is as expected: we type the let-declaration with
the type of the second expression, τ′`

′
, under the typing environment augmented with the

type of the first expression, τ`, associated to identifier x.

∆ `r e1 : τ`

∆, x : τ` `r e2 : τ′`
′

∆ `r let x = e1 in e2 : τ′`′
(T-LET)

As for the conditional, rule (T-IF), we need to track potential implicit flows introduced
by control flow branching.

∆ `r c : Bool`

∆ `rt` e1 : τ`

∆ `rt` e2 : τ`

∆ `r if c then e1 else e2 : τ`
(T-IF)

So, in order to prevent implicit flows from occurring on write operations, we raise the
security level of the computational context to the least upper bound (lub) of its current
computational context, r, with the logical expression’s security label, `. As we will see later,
this will force e1 or e2 to only write on the store values of security level above or equal
to r t `. Moreover, we enforce the security level of both branches as well as the logical
expression to be the same (by means of up-classification via subtyping, if necessary) so as
to prevent implicit flows on the result of the conditional.

Let us look at an example for illustration.

Example 10 Assume identifier high is classified at security label >.

if high then

true

else false

Then, if we do not enforce the labels on the logical expression to be the same as those on
the branches, we would be able to infer the value of identifier high by observing the result
of the conditional, which clearly violates data confidentiality.

So in this case we need to raise the security label of both branches from ⊥ top > to
prevent information computed in the branches to be known at security level ⊥. This can
be achieved using our subtyping relation.
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The typing rule for λ expressions, rule (T-LAMBDA), is as one would expect in a typed
λ-calculus

∆, x : τ`1 `r e : σ`2

∆ `r′ λ(x : τ`1).e : (τ`1
r→ σ`2)⊥

(T-LAMBDA)

However, we also record on the function type the computational context r under which
the function was typed. As stated earlier, this registers the effects the function has on the
store since the computational context serves as a lower bound on the write operations
over the store. Also note that since abstraction is a value and only has side effects when
applied, we can type it in an arbitrary computational context r′. This property holds for
any value since values have no side-effects and the computational context label is only
useful in expressions with side-effects.

We will get back to this in the discussion of the typing rule for assignment primitive to
further illustrate the need of recording the computational context in a function type.

Then, in rule (T-APP), we type an application by checking if the argument type matches
the function parameter type, typing the result accordingly.

∆ `r e1 : (τ`1
r′→ σ`2)` ∆ `r e2 : τ`1

r ≤ r′ ` ≤ `2 ` ≤ r′

∆ `r e1(e2) : σ`2
(T-APP)

We must ensure the security label of the function type ` is upper bounded by both the
security level of the function’s result, `2, and by the security level of the effects the function
has on store, r′. We can see these conditions as the compliance of past control flow decisions
(that were taken to define the function), registered by `, with the possible effects of the
function, r′, and its result, `2.

Suppose for instance the following code snippet:

Example 11 Suppose we have a function f with type (⊥ ⊥→ ⊥)> and identifier cond with
type bool>

let f = (if cond then λ(x:⊥). x + 1 else λ(x:⊥). x + 2)

in f(2)

Then when calling f for integer 2, if we do not restrict the security label of the application,
we would obtain as the result type’s label⊥. This means that while the identity of function
f was protected by label > (that is, function f could not be observed at lower than >
security labels) its call is not. In fact, one can now observe the result, since it has security
label ⊥, and from it infer something about the protected identifier cond (classified at >)
which clearly violates noninterference.
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So we need to disallow these programs by enforcing the security label of the function’s
identity to always be lower or equal than its result’s label.

Another detail to note is that we enforce the computational context upon application, r,
to be bounded by the computational context under which the λ value was created, r′. This
is better understood once we have discussed the typing rules of the imperative primitives,
so we delay the comments on this detail for later in this section.

We now introduce the typing rules for collections and their operations. We type a
collection, (T-COLLECTION), with collection type τ∗` after checking that all its elements
share the same type τ`.

(T-COLLECTION)

∀i ∆ `r ei : τ`

∆ `r {e1, . . . , en} : τ∗`

One important thing to note here is that collections are homogeneous not only in the base
types, but also on the security levels of its elements.

Regarding the cons operator, rule (T-CONS), it is typed as one would expect: with a
collection type after checking compatibility with the type of the collection’s elements.

(T-CONS)

∆ `r e1 : τ` ∆ `r e2 : τ∗`

∆ `r e1::e2 : τ∗`

In order to type a foreach primitive, rule (T-FOREACH), we require the security level of
all sub expressions to be the same. Also, to type the iterator’s body e3, we augment the
typing environment, ∆, with the type of the collection being iterated, τ∗`, associated to x
and the type of the initial value of the accumulator,τ′`, mapped to y.

∆ `r e1 : τ∗`

∆ `r e2 : τ′`

∆, x : τ`, y : τ′` `rt` e3 : τ′`

∆ `rS foreach (e1, e2, x.y.e3) : τ′`
(T-FOREACH)

The security labels must be the same to disallow insecure programs such as, e.g., in which
one could count the elements of a collection classified with a high security level, and
assign the result to a low level. For instance:

Example 12 Suppose we have collection top_secrets with elements classified at security
level > and consider the code snippet.

foreach (x in top_secrets) with count = 0 do count + 1
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This code can only be typed as int>. If we allowed the body of the foreach loop to be
typed at a level lower that >, we could type the result of the above program at security
level ⊥ since the computation only involves values at that level. That, however, would
represent an implicit flow since one could then observe some information about collection
top_secrets at level ⊥, namely its number of elements, breaking noninterference.

While in other approaches ([52, 53]) a record type only has security labels in its field’s
types, in our system we require a record type to have a security label. On one hand, this
has to do with our decision of treating all types uniformly - all types have a security
label - and, thus, such is reflected in our typing rules. Moreover, as explained below, we
believe that adding a security label on record types simplifies the technical treatment on
typing rules, avoiding the need for additional technical devices to express the necessary
conditions to prevent implicit flows.

With that in mind, our rule (T-RECORD), which introduces record types,

∀i ∆ `r ei : τ`i
i

∆ `r [. . . , mi = ei, . . .] : [. . .×mi:τ
`i
i × . . .]⊥

(T-RECORD)

makes no requirement on the record’s security label, although it may be raised by sub-
typing. However, for a record type to be well-formed, in rule (W-RECORD), we require
the security label of record types to be, at most, the greatest lower bound (glb) of all the
security labels occurring in their fields, making implicit flows, e.g., in assignments of
record values, easier to track by the system.

An example of such an implicit flow is the assignment of a reference containing a
record value. If such operation is executed under a computational context of a higher
security level than some of the record’s fields security levels, then an implicit flow occurs.
We will get back to this example in the discussion of rule (T-ASSIGN) to further illustrate
the need of a security label on a record and its invariant.

Notice that condition described above on the record type security label allows (but
does not force) records storing both private and public data to be classified as public.
Such a scenario is in fact, secure, as will only leak, at most, information that a record is
present, but not the field contents (except those classified as public). Let us illustrate with
an example:

Example 13 Assume boxed to be a collection of records typed as

boxed: ([public:⊥×secret:>])∗⊥

Some fields contents of the collection’s records are classified as high (>), but the records
themselves and the collection itself is classified as low (⊥). In this case, we can type

foreach (x in boxed) with count = 0 do count + 1

41



CHAPTER 2. REASONING WITH A TYPE-BASED INFORMATION FLOW ANALYSIS

with type int⊥. This means that the collection and its records (borders) are visible entities
at level ⊥, while the actual record field contents are concealed from the same level. With
this specification, it would be allowed to a low observer to observe the collection size, but
not the contents of the secret fields, preserving non-interference.

We type field projection, rule (T-FIELD), with the type associated to the field being
projected, mi, in the record type of expression e .

(T-FIELD )

∆ `r e : [. . .×mi:τ
`i
i × . . .]`

′

∆ `r e.mi : τ`i
i

Typing rules of logical expressions and the remaining values of the language – (T-UNIT),
(T-TRUE), (T-FALSE), (T-NUM) and (T-LOC) – are as expected so we will omit them in this
discussion.

In order to type a variant, we need to check the compatibility of the expression in the
variant, e, with the declared type for identifier ni.

(T-VARIANT)

∆ `r e : τ`i
i

∆ `r #ni(e) : {. . . , ni:τ
`i
i , . . .}⊥

Typing a variant expression is similar to how we type records but without restricting the
security label given to the variant type, which can be safely classified at ⊥.

We type a case primitive, rule (T-CASE), by enforcing each case branch has the same
type under a typing environment that maps the associated case branch’s variable, xi, with
the corresponding type, τ`i

i , in the variant type of the variant value being case-analysed.

(T-CASE)

∆ `r e : {. . . , mi : τ`i
i , . . .}`

∀i ∆, xi:τ
`i
i `rt` ei : τ`

∆ `r case e(. . . , mi · xi ⇒ ei, . . .) : τ`

Notice we impose conditions similar to conditionals: each case branch must have the
same security label as the variant value being analysed and the computational context is
augmented with the variant value’s security label.

Lastly, we conclude our discussion with the typing rules for the imperative core of the
language: (T-REF), (T-DEREF), and (T-ASSIGN).

Starting with the reference allocation primitive, rule (T-REF), we check if the expression
being used to initialise the reference is compatible with the declared type. Then, we type a
reference allocation with a reference type, ref(τ`), of the type of the expression used to
initialise the reference, τ`, and classify at security level r.
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∆ `r e : τ` r ≤ `

∆ `r refτ` e : ref(τ`)r
(T-REF)

Therefore, we can only allocate at least at the computational context which prevents leaks
with respect to the existence of the new location. We also impose a lower bound on the
security level of the expression initialising the reference allocation, `, to the computational
context security level, r. Otherwise, illegal implicit flows could also occur when reading
the stored value. For example:

Example 14 Assume that high is a reference of type ref(bool>)⊥.
If we allowed the conditional on the snippet below,

let x = ( if !high then ref⊥ true else ref⊥ false)

in !x

Then identifier x would be a reference to a boolean value classified at ⊥, that either is
true or false, depending on the value of the condition high (which is classified at >).
This is an insecure program because now we can inspect reference x to check its contents
and we are able to infer the value of cond, which is a clear violation of noninterference.

So this program does not comply with noninterference and is deemed insecure.

We type a deference operation, rule (T-DEREF), with the type of the reference’s content,
as one would expect.

∆ `r e : ref(τ`)`
′

`′ ≤ `

∆ `r!e : τ`
(T-DEREF)

However, we require the reference’s security level, `′, to be lower than the deference’s
security level, `, in order to prevent implicit flows. This is because references may have
been initially typed at security level ⊥ (if allocated under computational context ⊥) but
may raise to a different security level, due to the program’s control flow. For instance,

Example 15 Assume that high is a reference of type ref(bool>)⊥.
Let us see the following snippet

let x = ref⊥ true in

let y = ref⊥ false in

let z = (if !high then x else y) in !z

Here we allocate two references, x and y, under computational context ⊥. Moreover, the
conditional typechecks and is deemed secure, since we can raise the security level of both
references x and y to > via subtyping. Then we associate the result of the conditional
with identifier z, which will be typed as ref(bool⊥)>. However, upon the dereference
operation, the computational context is still ⊥, so we would leak the value of high
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(classified as >), via an implicit flow, at a lower security level (⊥). That is, by inspecting
the contents of z, that is either reference x or y, we could infer the value of high.

So we must deem this program as insecure because of the dereference operation, and
indeed the condition `′ ≤ ` in the typing rule for dereference !z is not satisfied.

We now discuss how assignment can introduce undesirable flows. When typing an
assignment, (T-ASSIGN), we check the compatibility between the content’s type in the
reference denoted by e1, and the type of the expression being used for the new content e2.

∆ `r e1 : ref(τ`)`
′

∆ `r e2 : τ`

r t `′ ≤ `

∆ `r e1 := e2 : cmd⊥
(T-ASSIGN)

Notice that this allows us to store values with lower security labels with respect to the
reference’s declared content’s type via up-classification, but not the other way around.

We also require that the least upper bound (lub) of the computational context security
label, r, and the reference’s security level, `′, to be a lower bound of the content’s security
level `. So the computational context r plays a key role in preventing explicit flows by
ensuring only values classified at security levels above, or equal, to the computational
context are altered in the store. This discussion leads us back to our earlier discussion
of record types requiring a security label which is the greatest lower bound (glb) of the
security levels of the record’s fields.

Example 16 Assume cond is a reference of type ref(bool>)⊥, and consider

let r = ref[a:⊥×b:>]⊥ [a = 0, b = 1] in

if !cond then

r := [a = 2, b= 2]

In this snippet, we are updating a reference whose content is a record value containing a
field of security level ⊥, given that the logical condition cond holds.

This logical condition, however, is classified at security level >, so this code snippet
must be deemed insecure in our system. Otherwise, an implicit flow would occur and field
a of the record store in reference r would depend on cond, which has a higher security
level, thus violating noninterference.

In order to do so, and since our treatment of types in the typing rules does not
distinguishes if the content of a reference is a record type, we must inspect the record’s
security label and be able to determine if the assignment operation is secure.

So in this case, the security label of the record is ⊥ – corresponding to security level `
in rule (T-ASSIGN) – and, in the assignment operation, the computational context security
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label is > – security level r in rule (T-ASSIGN) – because we raised the security level of the
branch’s computational context to match the level of conditional’s logical expression cond.

Therefore, the condition of the assignment typing rule r t `′ ≤ ` does not hold in this
example, and this program is deemed insecure by our typing rule.

Thus, as illustrated above, the security label of a record is an upper bound on the compu-
tational context under which the record value can be altered.

To finish our discussion, we go back to our function type and application typing rule.

Recall that our function types, (τ`1
r→ σ`2)`, keep track of the computational context

under which the function was typed.

As we stated earlier, this is necessary to prevent implicit flows via write operations
since the computational context serves as a lower bound on the writes to a program’s state.
Take as example the following snippets:

Example 17 Assume cond is a reference of type ref(bool>)⊥.
We begin with an explicit flow by updating a reference, whose content is classified at
security level ⊥, under a computational context of higher security level, >.

let low = ref⊥ 0 in

in if !cond then

low := 1

As we have seen, this is detected by our typing rules and deemed insecure. More concretely,
rule (T-ASSIGN) disallows this assignment since the side-condition r t `′ ≤ ` does not hold.

However, one can attempt to circumvent this check by wrapping the assignment in a
functional value:

let low = ref⊥ 0 in

let f = λ (cell: ref(int⊥)⊥, value: int⊥). cell := value

in if !cond then

f(low,1)

In this case, the side condition of rule (T-ASSIGN) holds since function f would be typed
with (⊥ ⊥→ ⊥)⊥. So this is an implicit flow introduced by the λ value upon its application.

To prevent this, we need to keep track of the security level of the computational context
under which the function was typed, using it as an upper bound of the computational
context under which the function can be called. This corresponds to the side-condition
r ≤ r′ in rule (T-APP).

Thus, for this example, we deem this program insecure using our typing rules because
the computational context at the moment of the application is > but the computational
context in the function type is ⊥, and > ≤ ⊥ does not hold.
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Let us look at the remaining conditions imposed on the application of a function:

Example 18 Assume b is a reference of type ref(bool⊥)⊥, τ = (cmd⊥
⊥→ cmd⊥), and high

is a reference of type ref(bool>)⊥. Then in the following snippet

let f = (λ (x: cmd⊥).b := true) in

let g = (λ (x: cmd⊥).b := false) in

let a = refτ> (if !high then f else g)

in !a()

we allocate a new reference whose content is either function f or g, depending on the a
high condition. This means that the resulting function will have type τ> since its security
label got raised by the conditional. Therefore, reference a will be of type ref(τ>)⊥.

Next, the program dereferences a, which is allowed by rule (T-DEREF) since the refer-
ence’s label is lower than the content’s label (⊥ ≤ >), and applies the stored function.
But if the function’s application succeeds then we will have an implicit flow since we
will reveal information regarding high which is classified as >. However, rule (T-APP)
disallows such function application since the condition ` ≤ r′ is not met: the function’s
label > is not lower or equal than the function’s computational context, which is ⊥.

Now suppose the side condition ` ≤ r′ was met but we had the following program,
where σ = (int⊥

>→ int⊥)

let a = (if !high then

let f’ = (λ (x: int⊥).x) in refσ> f’

else

let g’ = (λ (x: int⊥).x + 2) in refσ> g’)

in !a(7)

then dereferencing a is still allowed, since (> ≤ >). Now regarding the function’s applica-
tion, similarly to what we have just seen, this application can also not succeed, otherwise
we would like the result of the function application which is of security label ⊥ in a
computational context >. This program is disallowed by the remaining condition of the
rule (T-APP), ` ≤ `2, which is not met in this program: the function’s label > is not lower
or equal than the label of the function’s result, which is ⊥.

We have illustrated how all the conditions imposed upon function application prevents
information leaks.

We can now define what is a valid typing as follows:

Definition 12 (Valid Typing) The judgement ∆ `r e : τ` is valid if it is derivable by the
typing rules.
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We conclude this chapter by showing our type system is safe, that is, well-typed
programs always preserve their typing and never get stuck.

2.2.1 Type Safety

We now show that our core language is type safe, that is, that a program in our language
evaluates to a value of the expected type and never gets stuck.

We start by introducing some preliminary definitions. Namely, we introduce notions
of store consistency and well-typed configurations.
We say that a store S is well-typed with relation to a typing environment ∆ if the values
referred by its locations have the expected type. We define the typing of stores as follows:

Definition 13 (Store Consistency)
Let ∆ be a typing environment and S a store, we say store S is consistent with respect

to typing environment ∆, denoted as ∆ ` S, if dom(S) ⊆ dom(∆) and ∀l ∈ dom(S) then
∆(l) = ref(τ`)`

′
and ∆ `r S(l) : τ`.

From the store consistency definition, we define what it means for a configuration to be
well-typed.

Definition 14 (Well-typed Configuration)
A configuration (S; e) is well-typed in typing environment ∆ if ∆ ` S and ∆ `r e:τ`.

So a configuration (S; e) is well-typed if there is a typing environment ∆ that types both
the store and the expression, for an arbitrary computational context.

To prove type preservation, we introduce the substitution lemma on which it relies.
This lemma states that the type of an expression is preserved under substitution, allowing
us to prove the cases in type preservation where a substitution occurs.

Lemma 1 (Substitution Lemma)
If ∆, x : τ′`

′ `r e : τ` and ∆ `r′ v : τ′`
′

then ∆ `r e{v/x} : τ`.
Proof: Induction on the derivation of ∆, x : τ′`

′ `r e : τ`.

Theorem 1 says that well-typed configurations remain well-typed after a reduction step,
and possibly the final configuration is extended with new locations in the store.

Theorem 1 (Type Preservation)
Let ∆ ` S and ∆ `r e : τ`.
If (S; e) −→ (S′; e′) then there is ∆′ such that ∆′ `r e′ : τ`, ∆′ ` S′ and ∆ ⊆ ∆′.
Proof: Induction on the derivation of ∆ `r e : τ`.

The progress theorem, Theorem 2, states that well-typed programs never get stuck.

Theorem 2 (Progress)
Let ∆ `r e : τ` and ∆ ` S. If e is not a value then (S; e) −→ (S′; e′).
Proof: Induction on the derivation of ∆ `r e : τ`.
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These theorems ensure that our semantics preserves typability and well-typed programs
never get stuck, thus making our type system safe. However, the soundness result, with
respect to our information flow analysis, is noninterference (Definition 5).

Let us revisit the preliminary notion of noninterference with the presented type system.

Theorem 3 (Noninterference) Let S1 and S2 be two equivalent stores that map locations
to values of either security level ⊥ or >. And let e be a well-typed program. Then we say
we say e satisfies the noninterference property if, given two equivalent stores, it evaluates
to the same value and store equivalence is preserved for the resulting stores.
If ∆ `r e : τ⊥ ∧ S1 =⊥ S2 ∧ (S1; e) ∗−−→ (S′1; v1) ∧ (S2; e) ∗−−→ (S′2; v2),
then v1 = v2 ∧ S′1 =⊥ S′2.

Thus noninterference together with Theorem 1 and Theorem 2, establishes that our
system ensures well-typed programs do not leak confidential information under the
security policy prescribed by the assumed security lattice. In other words, data does not
flow from a security compartment to another if they are unrelated or if it is a down-flow
in the security lattice.

Next, as conclusion to this chapter, we illustrate several limitations of the type system
just discussed by revisiting the toy example introduced in Chapter 1. This discussion will
motivate our notion of dependent information flow types, which are the main contribution
of this thesis.

2.3 Toy Example: A Conference Manager System

In this section, we revisit the conference manager system used to introduce our approach
in Chapter 1. Our focus will be on the limitations of using the type system presented on
the previous section with standard security labels.

We start by defining some useful abbreviations to be used later in examples.

Abbreviations:
[m1 = r.m1, mi = e, . . .] stands for [m1 = r.m1, mi−1 = r.mi−1, mi = e, . . . , mn = r.mn]

The above abbreviation is useful when writing new record values based on existing ones:
we just mention the fields being assigned a new value, and a sample field indicating the
record value from which the other values are to be copied.

Recall that a user of this system can be either a registered user, an author user, or a PC
member user. Moreover, the system stores data concerning its users’ information, their
submissions, and the reviews of submissions in “database tables” which we represent in
our core programming language as collections of (references to) records (e.g., mutable
collections):

let Users = refref(τ)∗⊥ (refτ [] )::{} in
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let Submissions=refref(σ)∗⊥ (refσ [] )::{} in

let Reviews = refref(δ)∗⊥ (refδ [] )::{}

Before explaining the types declared for each collection, we introduce the security labels
used in this system to classify data. Thus, we assume the following security levels for our
conference manager system:

• ⊥, for data observable by anyone;
• U, for data observable by registered users;
• A, for data observable by authors;
• PC, for data observable by PC members;
• >, for data observable by the admin user.

These security levels follow the pre-order ⊥ ≤ U ≤ A ⊥ ≤ PC ≤ >, establishing the
security lattice for our analysis in this scenario.
We can now discuss the types given for the above collections. So we have the following
types for the contents of Users, Submissions, and Reviews, respectively:

τ
def
= [uid : ⊥× name : U× univ : U× email : U]

σ
def
= [uid : ⊥× sid : ⊥× title : A× abs : A× paper : A]

δ
def
= [uid : ⊥× sid : ⊥× PC_only : PC× review : A× grade : A]

These types, together with the security lattice, establish the following security policy:

• A registered user’s information is observable from security level U, meaning any
registered user (including authors and PC members) can see it;

• The content of a paper can be seen by authors (as well as PC members);

• Comments to the PC, on a submission’s review, are observable only to PC members,
while reviews and grades of the submission can be seen by authors.

We now proceed with some examples on how our type system works to disallow insecure
programs, while also highlighting its downfalls. Consider then the following code

Example 19 The code below retrieves the submission of author with id 42, associating to
identifier sub42, and then attempts to store some of its protected data in a public container
leak.

let leak = ref⊥ "" in

let sub42 = foreach (x in !Submissions) with y = {} do

let t_sub = !x in

if (t_sub.uid = 42) then

[uid = t_sub.uid, sid = t_sub.sid, title = t_sub.title]::y

else y

in leak := sub42.title
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The result of evaluating the collection iterator is a collection of records of record type. More
concretely, the expected type for sub42 would be [uid:⊥ × sid:⊥ × title: A]⊥.

So, on the assign operation, our type system detects an insecure information flow since
sub42.title has a higher security label than leak.

Now suppose we have a function contains that given two strings, returns whether the
first argument string contains the second argument string. So contains has type A ⊥→ ⊥ ⊥→A,
notice the result type is classified with security label A. Let us consider the snippet below

if contains(sub42.title, "DIFT") then

ref⊥ true

Our analysis detects an implicit information flow due to the reference creation under a
higher computational context than its contents.

As expected, our type system is able to detect explicit flow as well as implicits flows of
information with respect to the specified security policy.

However, security policies relying on standard security labels are inadequate to express
“row-level” security concerns. Take, for instance, the following example

Example 20 Function viewUserProfile obtains a given user’s profile

let viewUserProfile = λ (u).

foreach(x in !Users) with y = {} do

let usr = !x in

if usr.uid = u then usr::y else y

Thus, our analysis types viewUserProfile with type

⊥ ⊥→[uid:⊥×name: U×univ: U×email: U]∗⊥

So we can retrieve the email of user with id 42 by calling the function and then projecting
the corresponding field, first(viewUserProfile(42)).email, which would be typed
as U. However, any registered user can observe this piece of information since it is classified
at security level U. Thus, the following snippet is deemed secured

foreach(x in !Users) with y = {} do

let usr = !x in

if usr.uid = 70 then

x := [uid = 70, email = first(viewUserProfile(42)).email, . . .]

which leaks a user’s email to another registered user.

So, as we have seen, standard security labels are unable to express fine-grained security
concerns such as “row-level” policies.
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2.4 Discussion and Related Work

In this chapter, we have presented our core language, λRCV , used to support our analysis
by introducing its syntax and semantics. We then proceeded with a typed version of our
core language, λτRCV , as a means to introduce basic concepts of type-based information
flow analysis.

For that purpose, we presented a type system for λτRCV based on standard security
labels, discussing its typing rules and how they disallow insecure information flows. We
then showed type safety of the type system presented, that is, that well-typed programs
can always progress with the correct typing.

We finally concluded with a brief discussion, via a toy example, of the limitations of
the type system using standard security labels with respect to the expressiveness of the
security policies.

Before moving on, we review key type based information flow techniques. Type-based
information flow analysis has gained great focus in the research community in the past
years. Although our work is based on static type checking, several works have adopted
dynamic approaches which we briefly discuss first. For instance, several proposals for
dynamic information flow analysis on web languages have been put forward.

In [4], Austin and Flanagan propose a dynamic information flow mechanism for a
Javascript-like language based on a notion of faceted values. Faceted values offer different
views of a value given the execution context’s principal. Other recent work by Hedin and
Sabelfeld [27] proposes a dynamic information flow analysis for a subset of the ECMA
standard for Javascript.

In [19], Enck et al. introduce a taint analysis for mobile applications, where implicit
flows are not taken into account to minimise performance overhead, and in [16] Davis and
Chen develop a dynamic analysis to prevent insecure cross-application information flows.

Other works based on dynamic analysis for operating systems include [11, 57, 70].
While their focus is not language-based security, they use concepts first introduced by
language-based approaches, for e.g. the decentralised label model (DLM)[44] is widely
used in these systems. The key idea in DLM is to have labels classify data such that it
denotes the principal that owns the data and a list of principals to whom the owner gives
reading permissions. If a principal is not listed as a reader in a data’s label then it cannot
read the data.

The work in this thesis is based on static analysis, as we seek to obtain compile time
security guarantees, and avoid possible information leaks due to exceptional behaviour
(dynamic security errors) even if any static analysis is deemed to be over conservative, and
refuse some secure programs, as expected. Static approaches for type-based information
flow analysis has attracted substantial research effort for a long time (see e.g., [53]). In early
works the focus was on imperative languages [54, 65], λ-calculus [1, 28, 52], object-oriented
languages [43], and concurrent languages [29, 69]. Jif [43, 46] extends Java with static
analysis of information flow with a decentralised label model [45] (DLM) so it has the
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notion of principals, principal hierarchy, integrity and confidentiality constraints and
robust declassification.

Flow Caml [58], is an extension of Objective Caml with a type system to trace infor-
mation flow [52]. Types in Flow Caml have an associated security label, forming a lattice
of security levels, such that a typechecked program complies with the non-interference
property.

A interesting idea put forward recently, based on the DLM, is the specification of
security policies that rely on runtime first-class representations of principals, by Tse and
Zdancewic [64]. This work presents a typed λ-calculus where principals are values and
thus can be mentioned during a program, for e.g. for conditional testing, increasing the
expressiveness of the security policy model. The authors also prove a noninterference
result for an information flow type system using this notion of runtime principals.

Although it is conceivable that some dynamically enforced form of value dependent
security label could be encoded in some version of the DLM (e.g., using label passing [3])
in this work we deliberately focus on a direct and lightweight static approach.

In the following chapter, we introduce our dependent information flow types and
show how they can express data dependent security concerns.
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3
DEPENDENT INFORMATION FLOW TYPES

In this chapter we formally present our dependent information flow types and type system.
As already discussed in previous chapters, our type system for information flow builds
on fairly traditional concepts from information flow type systems [1, 28], but crucially
explores a notion of type dependency on security labels, in a way that cleanly fits within a
standard framework of dependent type theory with canonical dependent functional and
sum types.

We illustrate our analysis with some of the previously given examples and discuss
some of our key typing rules. We follow with the presentation of our type safety results
that ensures our semantics preserve typability and that a well-typed program never gets
stuck. We finish this chapter with a discussion of the relevant related work.

3.1 λDIFT: A Dependent Information Flow Typed λ-calculus

In this section we introduce an enhanced typed version of our core language, λDIFT, using
dependent information flow types. We then proceed with the type system dependent
information flow types, discussing the challenges posed by our approach and how we
tackled them.

As illustrated in last section, usual type systems for information flow are unable to
express fine grained security policies, namely “row-level” policies. Dependent information
flow types addresses such limitations by using, in particular, a notion of value dependent
security label.

3.1.1 Value-dependent Security Labels

Value-dependent security labels are introduced with the objective of partitioning security
levels by indexing labels ` with values v, so that each partition `(v) classifies data at a
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specific level, depending on the data v.

For example, recalling the example in Section 1.4.3 of Chapter 1, we can partition the
security level U into several different security compartments, each representing a single
registered user of the system, so security level U(01) represents the security compartment
of the registered user with id 01.

Of course, one may also consider indexed labels of arbitrary arity, for instance for
security level A (author) we can index with both the author’s id and submission’s id so
A(42,70) would stand for the security compartment of data relating to author (with id
42) and his submission (id 70).

Syntax of Security Labels.

Security labels, which we consider in general to be value dependent, have the form
`(v), where v is a list of security label indexes. Label indexes are given by:

v, u : := (label indexes)
| > (top) | ⊥ (bot)
| true (true) | false (false)
| n (integer value) | v (collection)
| [m = v] (record) | v.m (field selection)
| m (field identifier) | x (variable)

We define the set of free variables of a security label, fv(`(v)), and the set of free field
names on security labels, fn(`(v)).

Definition 15 (Free Variables on Security Labels) The set of free variables of a security
label `(v), denoted as fv(`(v)), is defined as fv(`(v)) = fv(v), where we define fv(v) by the
following inductive definition:

fv(x) = {x} fv(>) = ∅
fv({v1, . . . , vn}) =

⋃n
1 fv(vi) fv(⊥) = ∅

fv([m1 = v1, . . . , mn = vn]) =
⋃n

1 fv(vi) fv(true) = ∅
fv(v.m) = fv(v) fv(false) = ∅
fv(m) = ∅ fv(n) = ∅

Notice that (record) field identifiers can be used within a label index, typically in the
scope of a dependent sum type, as explained below. We therefore define:

Definition 16 (Free Field Names on Security Labels) The set of free names of a security
label `(v), denoted as fn(`(v)), is defined as fn(`(v)) = fn(v), where we define fn(v) by
the following inductive definition:
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fn(m) = {m} fn(>) = ∅
fn({v1, . . . , vn}) =

⋃n
1 fn(vi) fn(⊥) = ∅

fn([m1 = v1, . . . , mn = vn]) =
⋃n

1 fn(vi) fn(true) = ∅
fn(v.m) = fn(v) fn(false) = ∅
fn(x) = ∅ fn(n) = ∅

We can now define concrete label indexes. Concrete label indexes are just defined from
basic language values, e.g, do not contain occurrences of free variables of field identifiers.

Definition 17 (Concrete Label Index)
We say a label index v is concrete if fv(v) ∪ fn(v) = ∅.

So, for instance, S(42,70), S(>,70), and S(>,>) are concrete security labels but
S(uid,70) and S(uid,sid) are not.

As we will see below, labels indexed by a simple field identifier, e.g., `(m), only make
sense in the scope of a field m in a dependent sum type. Similarly, labels indexed by field
selection, e.g., `(x.m), only make sense in the scope of a variable x denoting a record with
a field m.

We will give some examples, in later sections, where these indexes are used.

We conclude the section with the definition of substitution on security labels, denoted
`(v′){v/x}.

Definition 18 (Substitution on Labels) We define the substitution of all free occurrences
of variable x with a security label index v in a security label `(v′), denoted as `(v′){v/x} as
`(v′){v/x} = `(v′{v/x}). We then define v′{v/x} with the following inductive definition:

x{v/x} = v (u.m){v/x} = u{v/x}.m
y{v/x} = y where x 6= y m{v/x} = m
>{v/x} = > ⊥{v/x} = ⊥
true{v/x} = true false{v/x} = false
{v1, . . . , vn}{v/x} = {v1{v/x}, . . . , vn{v/x}} n{v/x} = n
[m1 = v1, . . . , mn = vn]{v/x} = [m1 = v1{v/x}, . . . , mn = vn{v/x}]

Next, we discuss the basic assumptions posed on security lattices for our analysis,
which should relate indexed labels.

3.1.2 Security Lattice

We assume a general notion of security lattice.

We require the lattice L elements to be concrete security labels, with > the top element
(the most restrictive security level), and ⊥ the bottom element (the most permissive
security level), and t, u, denote the join and meet operations respectively.
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s, r, t, q : := `(v) (security labels)
τs, σs : := (security types)

| bools (bool type)
| ints (integer type)
| cmds (command type)
| ref(τs)t (reference type)
| τ∗s (collection type)
| {n : τs}t (variant type)
| (Πx:τs.r; σq)t (dependent function type)
| Σ[m : τs]r (dependent sum type)

Figure 3.1: Syntax of Types

τ⊥, σ⊥ : := (label types)
| bool⊥ (bool type)
| int⊥ (integer type)
| τ∗⊥ (collection type)
| Σ[m : τ⊥]⊥ (dependent sum type)

Figure 3.2: Syntax of Label Types

The lattice partial order is noted ≤ and < its strict part; we write s#s′ to assert that
neither s ≤ s′ nor s′ ≤ s.

Indexed security labels `(⊥) and `(>) are interpreted as approximations to the “stan-
dard” non-value dependent label `. We thus require that for any label index u the following
holds in the security lattice L

`(u{⊥/x}) ≤ `(u{v/x}) ≤ `(u{>/x})

This means that index ⊥ is always seen as lower or equal, ≤, than any other value and
> is always seen as greater or equal, ≥, than any other value, “structurally deep” in the
label. For instance, U(42) is lower than U(>) and greater than U(⊥).
Of course, we also require that the ordering between labels is well defined and satisfies
the lattice property (i.e., well defined meets and joins, etc).

We also assume the intended security lattice, required for each particular security
analysis, may be specified by a set of schematic assertions of the form ∀x.`1(u) ≤ `2(v),
where the (optional) x may occur in u, v. We also consider lattice assertions with free
variables, which are then considered implicitly as universally quantified. For example, we
write l1(x) ≤ l2(x, [m = x]) to say that for all appropriate values, l1(v) <= l2(v, [m = v])
holds in the lattice. We of course assume that all these assertions are decidable.

We can now proceed with the introduction of our syntax of types for λDIFT.

3.1.3 Types

Let us now introduce our language of types for λDIFT.
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Definition 19 (Dependent Information Flow Types) The types TDIFT of λDIFT are de-
fined by the abstract syntax in Figure 3.1.

Notice that the difference between this syntax of types, TDIFT, and the syntax presented
in the previous chapter, TRCV , consists in the security labels (that now can be indexed) and
the introduction of dependent function and sum types.

So our (security) types, τs, can be boolean bools, integers ints, unit cmds (read as com-
mand), reference ref(τs′)s, variant {n : τs}s, dependent sum type Σ[m : τs]s, dependent
function type(Π(x : τs).r; σq)t, and collection type τ∗

s
.

As stated previously in Chapter 1, our dependent sum types and dependent function
types take a key role in our type system by allowing us to express (runtime) value
dependency on security labels, as already illustrated.

A dependent sum type has the general form

Σ[m1 : τs1
1 × . . .×mn : τsn

n ]t

where any security label si with i > 1 may be dependent on previous fields (via the field
identifier). For example, the type

Σ[uid : int⊥ × photos : bytes∗user(uid)]⊥

is a dependent sum type where field photos has the value dependent security level,
user(uid), which is indexed by the (runtime) value in field uid.

Like described in Chapter 2 for record types, we require the security level of a depen-
dent sum type not to exceed the greatest lower bound (glb) of its field’s security labels in
order to prevent implicit flows on writes.

A dependent function type has the form

(Πx:τs.r; σq)t

where the security level of the return type σq may depend on the value of the function
argument (denoted by the bound variable x).

Like for standard function types, we annotate the dependent function type with
security level r , which is a lower bound on the function effects (writes). If omitted, security
level r is assumed to be ⊥. When x does not occur free in σq we write (τs r→ σq)t for the
type above, or simply (τs→σq)t if r is ⊥.

For instance, the type

(Πx:int⊥; bytes∗user(x))⊥

could be given to the function that retrieves a given user’s photos, and whose effects may
be observable up to security level ⊥.

Label indexes are also typed, by “label types”, as we now describe.
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Definition 20 (Label Types)
Label types, LT , are a subset of the dependent information flow types TDIFT, i.e. LT ⊂
TDIFT, and are defined by the abstract syntax in Figure 3.2.

Label types, consist in the subset of dependent information flow types that type label
indexes in security labels. Recall that a label index can only be a basic value, a collection or
a record value, so the types of label indexes can only be the base types, collection type and
record type. Moreover, label types are classified at level ⊥ only. This is convenient in the
formulation of noninterference in our dependent information flow types setting, and does
not restrict much the expressiveness of our analysis (we already type several interesting
real-world scenarios). We will discuss in Section 4.4 of Chapter 4 possible extensions to
our basic system.

We now define the set of free variables of a dependent information flow type, fv(τs).

Definition 21 (Free Variables on Types) The set of free variables of a dependent informa-
tion flow type τs denoted as fv(τs), is defined as follows:

fv(bools) = fv(s)
fv(ints) = fv(s)
fv(cmds) = fv(s)
fv(ref(τs)t) = fv(τs) ∪ fv(τt)

fv(τ∗s) = fv(τs)

fv({n1 : τs1
1 , . . . , nn : τsn

1 }t) =
⋃n

1 fv(τsi
i ) ∪ fv(τt)

fv((Πx : τs.r; σq)t) = fv(τs) ∪ fv(r) ∪ (fv(σq) \ {x}) ∪ fv(t)
fv(Σ[m1 : τs1

1 , . . . , mn : τsn
1 ]t) =

⋃n
1 fv(τsi

i ) ∪ fv(t)

Next we define substitution on dependent information flow types, (τs){v/x}, used to
eliminate dependencies introduced by dependent function types.

Definition 22 (Substitution on Types) We define the substitution of all free occurrences
of variable x with a security label index v, such that fn(v) = ∅, in a security type τs,
denoted as (τs){v/x}, with the following inductive definition:

bools{v/x} = bools{v/x}

ints{v/x} = ints{v/x}

cmds{v/x} = cmds{v/x}

ref(τs)t{v/x} = ref((τs){v/x})t{v/x}

(τ∗s){v/x} = (τs){v/x}∗

{n1 : τs1
1 , . . . , nn : τsn

n }t{v/x} = {n1 : τs1
1 {v/x}, . . . , nn : τsn

n {v/x}}t{v/x}

((Πx:τs.r; σq)t){v/x} = (Πx:(τs){v/x}.r; σq)t{v/x}

((Πx:τs.r; σq)t){v/z} = (Πx:(τs){v/z}.r; (σq){v/z})t{v/z} where x 6= z and x 6∈ fv(v)
(Σ[m1 : τs1

1 , . . . , mn : τsn
n ]r){v/x} = Σ[m1 : (τs1

1 ){v/x}, . . . , mn : (τsn
n ){v/x}]r{v/x}
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e : := (expression)
| λ(x : τs).e (abstraction)
| e1(e2) (application)
| x (variable)
| [m = e] (record)
| e.m (field access)
| {e} (collection)
| e1::e2 (cons)
| foreach(e1, e2, x.y.e3) (iteration)
| #n(e) (variant)
| case e (n · x ⇒ e) (case)
| let x = e1 in e2 (let)
| if c then e1 else e2 (conditional)
| refτs e (reference)
| e1 := e2 (assign)
| !e (deref)
| v (value)

(a) Expressions

v : := (values)
| λ(x : τs).e (abstraction)
| [m = v] (record)
| v (collection)
| #n(v) (variant)
| true (true)
| false (false)
| () (unit)
| l (locations)

(b) Values

Figure 3.3: Abstract Syntax of Typed λRCV

We also present the definition of field name substitution on dependent information flow
types, (τs)[v/m], used in introduction and elimination rules of dependent sum types.

Definition 23 (Field Name Substitution on Types) We define the substitution of all free
occurrences of field name m with a security label index v, such that fv(v) = ∅, in a security
type τs, denoted as (τs)[v/m], with the following inductive definition:

bools[v/m] = bools[
v/m]

ints[v/m] = ints[
v/m]

cmds[v/m] = cmds[
v/m]

ref(τs)t[v/m] = ref((τs)[v/m])t[v/m]

(τ∗s)[v/m] = (τs)[v/m]∗

({n1 : τs1
1 , . . . , nn : τsn

n }t)[v/m] = {n1 : (τs1
1 )[v/m], . . . , nn : (τsn

n )[v/m]}t[v/m]

((Πx:τs.r; σq)t)[v/m] = (Πx:(τs)[v/m].r; (σq)[v/m])t[v/m]

(Σ[m1 : τs1
1 , . . . , mn : τsn

n ]r)[v/m] = Σ[m1 : (τs1
1 )[v/m], . . . , mn : (τsn

n )[v/m]]r[v/m] m 6∈ ⋃n
1{mi}

(Σ[m1 : τ1
s1 , . . . , mi : τi

si , . . . , mn : τn
sn ]r)[v/m] =

Σ[m1 : (τ1
s1)[v/m], . . . , mi : (τi

si)[v/m], . . . , mn : τn
sn ]r m = mi

The syntax of λDIFT is given in Figure 3.3.
Notice that the only difference with respect to λτRCV (Figure 2.8 in Chapter 2) is the

abstract syntax of types, that now includes value-dependent security labels and dependent
sum and function types.

Also notice that, in source types and programs, non-concrete security labels (with
occurrences of free variables or field identifiers) may only occur in the context of dependent
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sum types and dependent functional types.
The operational semantics of λDIFT is exactly the same as the one presented for λRCV in
Chapter 2. For that reason we omit the rules of the operational semantics and move on to
the introduction of the type system.

Before presenting our type system, let us first discuss dependencies in value-indexed
security labels in some extra detail.

3.1.4 Dependencies in Indexed Security Labels

As mentioned earlier, the security lattice only relates concrete labels. Moreover, at some
points, our type system is required to approximate runtime values to eliminate dependen-
cies occurring in security labels.

For instance, should we project field name of some record typed with Σ[uid : int⊥ ×
name : stringuser(uid)]⊥, then we would need to eliminate the field dependency in the
resulting type’s security label, user(uid), into either user(s) if the actual name s can be
deduced from the computational context as is often the case, or, at least, by user(>).

Dually, it may also be necessary to capture value dependencies in security labels, e.g.,
if we declare a reference of type Σ[uid : int⊥× name : stringuser(uid)]⊥ and then initialise
with a record with type Σ[uid : int⊥ × name : stringuser(0)]⊥, then we would need to
introduce the field dependency in user(0). We give more examples later in this chapter.

We achieve such introduction and elimination of dependencies in security labels by
tracking knowledge regarding dependencies in a constraint set S carried along in typing
judgements, and by using a equational theory to deduce runtime values or dependencies,
depending whether we are eliminating or capturing dependencies in security labels.
The equational constraints ce considered are defined as follows:

ce : := (constraint expressions)
| true (true) | false (false)
| ce (collection) | λx : τs.e (abstraction)
| [m = ce] (record) | ce.m (field selection)
| x (variable) | n (integer value)
| ce� ce (binary operator) | �ce (unary operator)

Definition 24 (Constraint Set)
A constraint set S is a finite set of constraints of the form ce .

= ce′ where ce, ce′ are
constraint expressions.

We assume a decidable sound equational theory, talking about basic data such as booleans,
integers, records, etc, and write S |= ce .

= ce′ for the entailment of ce .
= ce′ given the

constraints in S . We also require .
= to be compatible with reduction in the sense that for

any ce, ce′ pure if (S; ce) −→ (S; ce′) then |= ce .
= ce′. For instance, if (S; 1 + 1) −→ (S; 2)

then |= 1 + 1 .
= 2.
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∆ : := (typing environment)
| φ (empty environment)
| ∆, x : τs (type assignment to a variable)
| ∆, l : ref(τs)t (type assignment to a location)

Figure 3.4: Abstract Syntax of Typing Environments

We denote by S{x .
= e} the set S ∪ {x .

= e} if e is constraint expression, and S
otherwise. For example S{x .

= true and y.m = 42} would be S ∪ {x .
= true and y.m =

42}, but S{x .
= x := 1} would remain just S .

We give some examples of expected equational axioms:

(c ∧ c′) .
= true⇒ c .

= true

[. . . , mi = vi, . . .].mi
.
= vi

(x .
= v) ∧ e .

= e′ ⇒ e{v/x} .
= e′{v/x}

v .
= v

So, for example, {x.uid .
= uid_r, uid_r .

= 42} |= x.uid .
= 42.

As for any equational theory, we assume that S |= E and S ∪ {E} |= E′ implies S |= E′

(deduction closure).
For the purpose of this work we consider constraint solving issues inside a black-box,

subject to the mentioned general requirements. We do not specify any particular equational
theory since its precise formulation is orthogonal to our analysis, as long as it is decidable
and sound (the more complete the theory the better). As we will explain below, typing
judgments will be tagged with constraint sets, reflecting some “current knowledge” about
runtime values.

We now proceed with the discussion of our type system.

3.1.5 Type System

To type λDIFT expressions, we adopt a typing judgment of the form

∆ `rS e : τs

It asserts that expression e has type τs under typing environment ∆, given constraints S .
The label s states that the value of expression e does not depend on data classified with

security levels above s or incomparable with s. As expected from type-based approaches
to information flow analysis, our type system ensures that information is only allowed to
flow upwards the security lattice, e.g., only from a level l to a level h such that l ≤ h.

As shown in Chapter 2, label r is used to prevent implicit flows and is a lower bound
on the security level of control flow decisions previously taken by the program. So r is
concrete and expresses the security level of the computational context (cf. the “program
counter" [43, 53]).

Before detailing our type system, we give some basic definitions.
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(W-INDEX-BOT)

∆ `N ⊥ : τs

(W-INDEX-TOP)

∆ `N > : τs

(W-INDEX-TRUE)

∆ `N true : bools

(W-INDEX-FALSE)

∆ `N false : bools

(W-INDEX-VAR)
τs ∈ LT

∆, x : τs `N x : τs

(W-INDEX-FIELD)
τs ∈ LT

∆ `N ,m:τs m : τs

(W-INDEX-NUM)

∆ `N n : ints

(W-INDEX-COLLECTION)

∀i ∆ `N vi : τs

∆ `N {v1, . . . , vn} : τ∗s

(W-INDEX-FIELDSEL)

∆ `N v : Σ[. . . , m : τs, . . .]t

∆ `N v.m : τs

(W-INDEX-RECORD)

∀i ∆ `N vi : τ
si
i

∆ `N [m1 = v1, . . . , mn = vn] : Σ[m1 : τs1
1 , . . . , mn : τsn

n ]t

∆ `N v : τs

∆ `N `(v)
(W-LABEL)

Figure 3.5: Well-formed Label Indexes and Security Label

Definition 25 (Typing Environment) For x ∈ X , l ∈ Loc, and τs ∈ TDIFT the set ∆ of all
typing environments is defined by the abstract syntax in Figure 3.4.

Typing declarations assign types to identifiers x : τs, and types to locations, l : ref(τs)t.
A typing environment ∆ is a list of typing declarations.

For simplicity, and without loss of generality, we consider in our presentation that
security labels are indexed by a single label index, assuming the obvious extension of type
and subtyping rules to deal with labels with multiple indexes, when necessary, e.g., in
examples.

We now make clear what it means for a security label and a label index to be well-
formed. These are necessary to establish well-formed dependent information flow types
since types now can have dependencies in their security labels.

Definition 26 (Well-formed Label Index and Security Label)
Well-formed label indexes are denoted by judgment ∆ `N v : τs, stating that security label
index v is well-formed under typing context ∆, and a field names typing set N containing
the typing declarations of field names, and is given by the set of rules shown in Figure 3.5.

Well-formed security labels are denoted by judgment ∆ `N `(v), stating that security
label `(v) is well-formed under typing context ∆, and under a field names typing set N
containing the typing declarations of field names, and is given by rule (W-LABEL).

Key rules are (W-INDEX-VAR) and (W-INDEX-FIELD). The former states a variable index
must be declared in the typing environment and be of label type in order to be a valid
label index. The latter requires that the field index be declared in the field names typing
set N and of label type.
Essentially, a security label is well-formed if it only has well-formed label indexes.

To define well-formed types, we first introduce some auxiliary operations. We start
with the downward approximation of values denoted by “open”dependencies occurring
in a label s, `(v)↓F , relative to a set F of scoping record field names.
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(W-COLLECTION)

∆ `N τs

∆ `N τ∗s

(W-REF)

∆ ` � ∆ `N τs ∆ `N t

∆ `N ref(τs)t

(W-BOOL)

∆ ` � ∆ `N s

∆ `N Bools

(W-INT)

∆ ` � ∆ `N s

∆ `N Ints

(W-CMD)

∆ ` � ∆ `N s

∆ `N cmds

(W-VARIANT)

∆ ` � ∀i ∆ `N τ
si
i ∆ `N t

∆ `N {m : τs}t

(W-RECORD)

∀i ∆ `N]{m1 :τ
s1
1 ,...,mi−1 :τ

si−1
i−1 } τ

si
i

∆ `N s s ≤ usi
↓
{m1,...,mi−1}

∆ `N Σ[. . .×mi :τ
si
i × . . .]s

(W-ARROW)

∆ ` � ∆ `N τs ∆, x:τs `N σq ∆ `N t
t ≤ r t ≤ q{⊥/x}

∆ `N (Πx:τs.r; σq)t

Figure 3.6: Well-formed types

Let s be a security label. We define the downward approximation of values of the
dependencies occurring in s, denoted as `(v)↓F , by the following definition:

`(v)↓F

 `(v) if fn(v) ∩ F = ∅

`(⊥) if fn(v) ∩ F 6= ∅

Let N andM be typed field names sets. We define the operation that concatenates
(with overriding) two typed field name sets, denoted as N ]M, as follows:
N ]M = {m : τs | m : τs ∈ N ∧ m 6∈ dom(M)} ∪M

We can now introduce well-formed types for dependent information flow types.

Definition 27 (Well-formed Types) Well-formed types are denoted by judgment ∆ `N τs,
stating that type τs is well-formed under typing context ∆, given names set N , and is
given by the set of rules shown in Figure 3.6.

The difference from the definition of well-formed types for λRCV (Definition 9 in Chapter 2)
essentially consists in checking whether security labels are well-formed.

Namely, rule (W-RECORD) checks if each field’s type is well-formed (in the augmented
set of fields names) which may lead to rule (W-INDEX-FIELD) in case the associated secu-
rity label has a field identifier dependency. Also, since field’s security labels may have
dependencies, we approximate their value in order to ensure the record’s invariant,
s ≤ usi

↓
{m1,...,mi−1}

.
In rule (W-ARROW), since now the function’s result type may have variable dependen-

cies in the security label, we check the function’s invariant, t ≤ q{⊥/x}, with the most
conservative possible instantiation for the variable dependency.

We proceed with the redefinition of what is a well-formed typing environment in the
setting of dependent information flow types.

Definition 28 (Valid Typing Environment) A typing environment ∆ is valid if the judge-
ment ∆ ` � is derivable by the rules in Figure 3.7.
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(ENV-EMPTY)

∅ ` �

(ENV-ENTRY)

∆ ` � x 6∈ dom(∆) ∆ `N τs

∆, x : τs ` �

(ENV-LOC)

∆ ` � l 6∈ dom(∆) ∆ `N τs

∆, l : τs ` �

Figure 3.7: Well-formed Typing Environment

(S-TRANS)

τs <: τ′′s
′′

τ′′s
′′
<: τ′s

′

τs <: τ′s′

(S-REFLEX)

τs <: τs

(S-VARIANT)

∀i τi
si <: τ′i

s′i t ≤ t′

{m : τs}t <: {m : τ′s
′}t′

(S-ARROW)

τ′s
′
<: τs σq <: σ′q

′
r′ ≤ r

t′ ≤ q′{⊥/x} t′ ≤ r′ t ≤ t′

(Πx:τs.r; σq)t <: (Πx:τ′s
′
.r′; σ′q

′
)t
′

(S-RECORD)

∀i τ
si
i <: τ′i

s′i t ≤ t′ ≤ us′i
↓
{m1,...,mi−1}

Σ[m : τs]t <: Σ[m : τ′s
′
]t
′

(S-BASE)
s ≤ s′ τ is a base type

τs <: τs
′

(S-REF)
t ≤ t′

ref(τs)t <: ref(τs)t′

(S-COLLECTION)

τs <: τ′s
′

τ∗s <: τ′∗s′

Figure 3.8: Subtyping rules

We now define our type system by means of a typing relation.

Definition 29 (Type System)
Typing is expressed by the judgment ∆ `rS e : τs, stating that expression e is well-typed by
τs in environment ∆, given constraints in S , and concrete context security level r.

The type system asserts, through a set of typing rules, that an expression is well-typed. Be-
fore revisiting the key rules discussed for λRCV in Chapter 2 for our dependent information
flow types setting, let us redefine the subtyping relation.

Definition 30 (Subtyping Relation) Our subtyping relation is expressed as τs <: τs′ and
is defined by the rules given in Figure 3.8.

Notice that, whenever we rely on the lattice order, we consider s ≤ s′ to be an instance
of a lattice assertion. Other than the downward approximation of values in rule (S-RECORD)
and the instantiation of security label in (S-ARROW), the rules are essentially the same we
saw in Chapter 2.

The set of typing rules for λDIFT is defined in Figure 3.9 and Figure 3.10.

We will now discuss the most relevant typing rules for the type system of λDIFT.

Dependent function types are introduced via rule (T-LAMBDA)

∆, x : τs `r′S e : σq

∆ `rS λ(x : τs).e : (Πx:τs.r′; σq)⊥
(T-LAMBDA)
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(T-ID)

∆, x : τs, ∆′ `rS x : τs

(T-LOC)

∆, l : ref(τs)r `rS l : ref(τs)r

(T-SUB)

∆ `rS e : τs τs <: τ′s
′

∆ `∅ τ′s
′

r′ ≤ r

∆ `r′S e : τ′s′

(T-LAMBDA)

∆, x : τs `r′S e : σq

∆ `rS λ(x : τs).e : (Πx:τs.r′; σq)⊥

(T-APP)

∆ `rS e1 : (Πx:τs.r′σq)t

∆ `rS e2 : τs

r ≤ r′ t ≤ q{⊥/x} t ≤ r′

(S{x .
= e2} |= x .

= v ∧ σ′s
′
= σ{v/x}q{v/x})

∨(σ′s′ = (σq) ↑x)

∆ `rS e1(e2) : σ′s′

(T-FIELD )

∆ `rS e : Σ[. . .×mi:τ
si
i × . . .]s

′

∆ `rS e.mi : τsi
i

(T-RECORD)

∀i ∆ `rS ei : τsi
i

∆ `rS [. . . , mi=ei, . . .] : Σ[. . .×mi:τ
si
i × . . .]⊥

(T-REFINERECORD)

∆ `rS e : Σ[. . .×mj:τ
sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]s

S{x .
= e} |= x.mj

.
= v (x fresh)

s ≤ si
↓
{m1,...,mi−1}

∆ `rS e : Σ[. . .×mj : τ
sj
j × . . .×mi : τsi

i × . . .]s

(T-UNREFINERECORD)

∆ `rS e : Σ[. . .×mj:τ
sj
j × . . .×mi:τ

si
i × . . .]s

S{x .
= e} |= x.mj

.
= v (x fresh)

∆ `rS e : Σ[. . .×mj : τ
sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]s

(T-LET)

∆ `rS e1 : τs ∆, x : τs `rS{x .
=e1}

e2 : τ′s
′

∆ `rS let x = e1 in e2 : τ′s′

(T-IF)

∆ `rS c : Bools r t s ≤ r′

∆ `r′S∪{c .
=true} e1 : τs ∆ `r′S∪{c .

=false} e2 : τs

∆ `rS if c then e1 else e2 : τs

(T-COLLECTION)
∀i ∆ `rS ei : τs

∆ `rS {e1, . . . , en} : τ∗s

(T-CONS)
∆ `rS e1 : τs ∆ `rS e2 : τ∗s

∆ `rS e1::e2 : τ∗s

(T-FOREACH)

∆ `rS e1 : τ∗s ∆ `rS e2 : τ′s

∆, x : τs, y : τ′s `r′S e3 : τ′s

r t s ≤ r′

∆ `rS foreach (e1, e2, x.y.e3) : τ′s

Figure 3.9: Typing Rules
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(T-CASE)

∆ `rS e : {. . . , ni : τsi
i , . . .}s

∀i ∆, xi:τ
si
i `r

′
S ei : τs r t s ≤ r′

∆ `rS case e(. . . , ni · xi ⇒ ei, . . .) : τs

(T-INJ)

∆ `rS e : τsi
i

∆ `rS #ni(e) : {. . . , ni:τ
si
i , . . .}⊥

(T-OR)
∆ `rS c1 : Bools ∆ `rS c2 : Bools

∆ `rS c1 ∨ c2 : Bools

(T-NOT)
∆ `rS c : Bools

∆ `rS ¬c : Bools

(T-EQUAL)

∆ `rS V1 : τs ∆ `rS V2 : τs

τs are base types
∆ `rS V1 = V2 : Bools

(T-NUM)
n is a numeric value

∆ `rS n : Int⊥

(T-TRUE)

∆ `rS true : Bool⊥

(T-FALSE)

∆ `rS false : Bool⊥

(T-UNIT)

∆ `rS () : cmd⊥

(T-REF)

∆ `rS e : τs r ≤ s

∆ `rS refτs e : ref(τs)r

(T-DEREF)

∆ `rS e : ref(τs)s
′

s′ ≤ s

∆ `rS !e : τs

(T-ASSIGN)

∆ `rS e1 : ref(τs)s
′

∆ `rS e2 : τs

r t s′ ≤ s

∆ `rS e1 := e2 : cmd⊥

Figure 3.10: Typing Rules

where, as stated previously, x may occur in σq.

Rule (T-APP)

∆ `rS e1 : (Πx:τs.r′σq)t

∆ `rS e2 : τs

r ≤ r′ t ≤ q{⊥/x} t ≤ r′

(S{x .
= e2} |= x .

= v ∧ σ′s
′
= σ{v/x}q{v/x})

∨(σ′s′ = (σq) ↑x)

∆ `rS e1(e2) : σ′s′
(T-APP)

is similar to the one we saw for λRCV but now the function parameter x may occur in
the result type σq. Thus, our system either approximates the argument value v of e2

via constraint entailment given the additional knowledge x .
= e2, or eliminates the free

occurrences of x in σq with operation (σq) ↑x.

Auxiliary operations (τs)↑x and (τs)↓x, are used to eliminate free occurrences of
variable x in τs by upward and downward approximation, respectively.

Definition 31
We define the operations that eliminates free occurrences of variable x in τs by upward
and downward approximation, respectively (τs)↑x and (τs)↓x as follows:

(τs)↑x
def
=

(ints)↑x = ints{>/x}
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(bools)↑x = bools{>/x}

(cmds)↑x = cmds{>/x}

(ref(τs)t) ↑x= ref(τs)t{>/x} if x 6∈ fv(τs)
(τ∗s)↑x = (τs)↑x

∗

({n : τs}t)↑x = {n : (τs)↑x}t{>/x}

(Σ[m : τs]r)↑x = Σ[m : (τs)↑x]r{
>/x}

((Πx:τs.r; σq)t)↑x = (Πx:(τs)↓x.r; σq)t{>/x}

((Πy:τs.r; σq)t)↑x = (Πy:(τs)↓x.r; (σq)↑x)t{
>/x} where x 6= y

(τs)↓x def
=

(ints)↓x = ints{⊥/x}

(bools)↓x = bools{⊥/x}

(cmds)↓x = cmds{⊥/x}

(ref(τs)t)↓x = ref(τs)t{⊥/x} if x 6∈ fv(τs)
(τ∗s)↓x = (τs)↓x∗

({n : τs}t)↓x = {n : (τs)↓x}t{⊥/x}

(Σ[m : τs]r)↓x = Σ[m : (τs)↓x]r{⊥/x}

((Πx:τs.r; σq)t)↓x = (Πx:(τs) ↑x .r; σq)t{⊥/x}

((Πy:τs.r; σq)t)↓x = (Πy:(τs) ↑x .r; (σq)↓x)t{⊥/x} where x 6= y

Note (τs)↑x
∗ and (τs)↓x∗ should be interpreted as the collection type of the result of (τs)↑x

and (τs)↓x, respectively.

The following Lemma states the basic properties of τs↑x and τs↓x,

Lemma 2
Let τs be such that ∆, x : σt `N τs.

Then for all variables x we have

 a) ∆ `N τs↑x and τs <: τs↑x and

b) ∆ `N τs↓x and τs↓x <: τs

The upward approximation essentially replaces all free occurrences of x with > in
covariance positions and with ⊥ in contravariance positions. Dually, in the downward
approximation it replaces all free occurrences of x with ⊥ in covariance positions and
with > in contravariance positions. So the Lemma states that an upward approximation
of type τs will result in a supertype, while we obtain a subtype of τs in a downward
approximation of τs.

Rules (T-LET) and (T-IF) are as expected, they also play a key role in collecting constraints
in our system – which may be used to approximate runtime values.

So rule (T-LET)

∆ `rS e1 : τs

∆, x : τs `rS{x .
=e1}

e2 : τ′s
′

∆ `rS let x = e1 in e2 : τ′s′
(T-LET)
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collects the binding of variable x to expression e1 in a constraint {x .
= e1} that is added to

the constraint set S only if expression e1 is a constraint expression. Otherwise the operation
S{x .

= e1} returns the constraint set S unmodified.

In rule (T-IF)

∆ `rS c : Bools

r t s ≤ r′

∆ `r′S∪{c .
=true} e1 : τs

∆ `r′S∪{c .
=false} e2 : τs

∆ `rS if c then e1 else e2 : τs
(T-IF)

in order to prevent implicit flows from occurring, we raise the security level of the com-
putational context to be at least the least upper bound of its current level with the logical
condition’s security level. Since the security level of the condition might not be concrete,
this condition allows for an upward approximation of the intended security level via
lattice assertions. For example, if c has dependent security level U(x) and computational
context level is U(>), then we can set the computational context level, for typechecking
the then and else branches, to be U(>) since U(>)tU(x)=U(>).

Moreover, we enforce the security level of both branches’ return value and of the
logical condition to be the same, and track knowledge to the constraint set S about the
condition’s value in each branch.

Rule (T-RECORD) introduces dependent sum types,

∀i ∆ `rS ei : τsi
i

∆ `rS [. . . , mi=ei, . . .] : Σ[. . .×mi:τ
si
i × . . .]⊥

(T-RECORD)

As we have done for λRCV , we set the initial security label to bottom (⊥) in rule (T-RECORD).
As we have seen, a well-formed dependent sum type will always satisfy the invariant that
it’s security label is a lower bound of all it’s fields’ security labels.

Rules (T-REFINERECORD) and (T-UNREFINERECORD), adequate to our dependent la-
beled sum types, correspond to traditional introduction and elimination rule for (value-
dependent) existential types.

Rule (T-REFINERECORD)

∆ `rS e : Σ[. . .×mj:τ
sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]s

S{x .
= e} |= x.mj

.
= v (x fresh)

s ≤ si
↓
{m1,...,mi−1}

∆ `rS e : Σ[. . .×mj : τ
sj
j × . . .×mi : τsi

i × . . .]s
(T-REFINERECORD)

introduces a dependent sum type by indexing a label with field mj, given that a con-
crete witness value v can be identified mj via constraint entailment. Side-condition
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s ≤ si
↓
{m1,...,mi−1}

ensures that the dependent sum type’s invariant is preserved.

The converse is achieved with rule (T-UNREFINERECORD),

∆ `rS e : Σ[. . .×mj:τ
sj
j × . . .×mi:τ

si
i × . . .]s

S{x .
= e} |= x.mj

.
= v (x fresh)

∆ `rS e : Σ[. . .×mj : τ
sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]s

(T-UNREFINERECORD)

that is, one may eliminate a field dependency (and potentially a dependent sum type)
by replacing such a field with a concrete value witness, derivable as discussed for the (T-

REFINERECORD) rule. Notice that in this case the invariant on label ordering is automatically
preserved from premise to conclusion.

We illustrate our typing rules with some examples.

Example 21 Recall the function viewAuthorPapers from Chapter 1

let viewAuthorPapers = λ (u).

foreach(x in !Submissions) with y = {} do

let tuple = !x in

if tuple.uid = u then tuple::y else y

When typing expression tuple::y, while typing the then branch, we obtain type

Σ[uid:⊥×sid:⊥×title: A(uid,sid)×abs: A(uid,sid)×paper: A(uid,sid)]∗⊥

However, at this point, we know that tuple.uid = u, which was added to the constraint
set S according to rule (T-IF).

So, to type tuple, we apply rule (T-UNREFINERECORD), adding a new constraint {x .
=

tuple} for a fresh variable x, and entail

S ∪ {tuple.uid=u .
= true,x .

=tuple} |=x.uid .
=u

to eliminate the field dependency uid in the security label, obtaining the type

Σ[uid:⊥×sid:⊥×title:A(u,sid)×abs:A(u,sid)×paper:A(u,sid)]⊥

Finally, in both branches, y is typed as the collection type with element type the
dependent sum type above (since we are adding tuple to y and the conditional branches
must have the same type). So function viewAuthorPapers is assigned type

Π(u:⊥).Σ[uid:⊥× sid:⊥× title:A(u,sid)× . . .]∗⊥

Example 22 We now refer back to Example 5. For clarity, we abbreviate dependent sum
types and mention only the record fields relevant for the discussion.
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let addCommentSubmission = λ(uid_r: ⊥, sid_r: ⊥).
foreach (p in viewAssignedPapers(uid_r)) with _ do

if p.sid = sid_r then

foreach(y in !Reviews) with _ do

let t_rev = !y in

if t_rev.sid = p.sid then

let up_rec =

[uid=t_rev.uid,

PC_only=comment(p.uid,p.sid,p),. . .]
in y := up_rec

To typecheck let up_rec= [uid=t_rev.uid, PC_only=comment(p.uid,p.sid,p),. . .]
in y:= up_rec, we begin with typechecking the record value for identifier up_rec and
then, in the scope of the let-declaration, we need to type up_rec with the declared type for
the elements of collection Reviews (denoted as δ), which we have seen in Chapter 1 to be

Σ[uid:⊥×sid:⊥×PC_only:PC(uid,sid)×review:A(>,sid)×grade:A(>,sid)]⊥

We also know identifier p has type Σ[uid:⊥×sid:⊥×. . .×title:A(uid,sid)]⊥.

The type for the application comment(p.uid,p.sid,p) has level A(p.uid,t_rev.sid)
but, in order for the dependent sum type of the record value used in the let-declaration to
be well-formed, we must either introduce dependency uid in field PC_only or approxi-
mate, by subtyping, to >.

However, we cannot refine the dependent sum type with the given constraint set, so
we approximate the dependency p.uid to > (since lattice assertion A(_,t_rev.sid)≤
A(>,t_rev.sid) holds) and the application comment(p.uid,p.sid,p) has type
A(>,t_rev.sid).

Afterwards, while typing expression up_rec, we must obtain the expected type for
contents of reference y, which is δ.

To do so we first apply (T-SUB) rule, since we have

A(>,t_rev.sid)≤PC(uid,t_rev.sid))

and get type PC(uid,t_rev.sid) for record field PC_only.

The last step consists in refining the type for record field PC_only in order to match
the expected type in type δ. So we refine the type of the PC_only field to PC(uid,sid), by
applying (T-REFINERECORD), since we know

{up_rec .
=[uid=t_rev.uid, PC_only=comment(p.uid,p.sid,p),. . .]}

so, by adding constraint {x .
= up_rec} (x is fresh), we can entail x.sid .

= t_rev.sid.

Thus we obtain type δ and can typecheck the assignment operation.
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By allowing the (T-REFINERECORD) and (T-UNREFINERECORD) rules to approximate the secu-
rity label to a field identifier of another record, as we just did in Example 22, we retrieve
essential precision in our analysis, required to obtain the correct typing for PC_only,
PC(uid,sid), and to typecheck function addCommentSubmission.

Rule (T-FIELD) is the expected for field projection. Notice that, since the security lattice
is formed by concrete security labels, if we type a projection of a field whose security label
has a dependency then it will be eliminated either via (T-UNREFINERECORD) or via (T-SUB)
before applying rule (T-FIELD).

Next, we illustrate some of our key typing rules with some typing derivations.

3.1.5.1 Examples of Typing Derivations

We show some typing derivations to illustrate our rules. To clean up the presentation, we
omit basic types bool and cmd, and only mention those that may play a key role in the
application of a typing rule (e.g. dependent sum and dependent function types) as well as
type’s security labels.

We begin with rules (T-APP) and (T-LET) to show how we collect information in our
system and later apply it to approximate runtime values, namely in the case of a dependent
function application. We avoid showing all the premises of a rule, for brevity sake, and
only show those that are illustrative for the given example.

Example 23 Let us go back to example Example 21,

let viewAuthorPapers = λ (uid_a).

foreach(x in !Submissions) with y = {} do

let tuple = !x in

if tuple.uid = uid_a then tuple::y else y

in let id = 42 in viewAuthorPapers(id)

Function viewAuthorPapers, as we have previously seen, has type

(Π(uid_a:⊥).Σ[uid:⊥×sid:⊥×. . .×paper:A(uid_a,sid)]∗⊥)⊥

For presentation purposes, we define S ′ = S ∪ {id .
= 42}.

So the derivation that types the last let-declaration is the following

1. ∆,id:⊥ `rS ′viewAuthorPapers:
(Π(uid_a:⊥).Σ[uid:⊥ × sid:⊥ × . . .× paper:A(uid_a,sid)]∗⊥)⊥

by (T-ID)

2. ∆,id:⊥ `rS ′id: ⊥
by (T-ID)
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3. S ′{uid_a .
=id} |=uid_a

.
= v ∧

σ′s
′
= (Σ[uid:⊥ × sid:⊥ × . . .× paper:A(uid_a,sid)]){v/x}⊥{v/x}

such that S ′{uid_a .
=id} |=uid_a

.
=42 thus v =42

so σ′s
′
= (Σ[uid:⊥ × sid:⊥ × . . .× paper:A(42,sid)])∗⊥

4. ∆,id:⊥ `rS ′viewAuthorPapers(id): σ′s
′

by (T-APP), 1, 2, 3

5. ∆ `rS42: ⊥
by (T-NUM)

6. ∆ `rS let id = 42 in viewAuthorPapers(id) :
(Σ[uid:⊥ × sid:⊥ × . . .× paper:A(42,sid)])∗⊥

by (T-LET), 4, 5

Notice that had we not gathered constraint {id .
= 42}, then we could not entail uid_a .

=

42. So, in that case, v = > and we would have obtained the less concrete type

Σ[uid:⊥×sid:⊥×. . .×paper:A(>,sid)]∗⊥

Next, we will show how our system disallows insecure assignments via rule (T-ASSIGN).

Example 24 Recall Example 16 where we assume identifier cond has type bool>

let r = refΣ[a:⊥×b:>]⊥ [a = 0, b = 1] in

if !cond then

r := [a = 2, b= 2]

To see how no typing derivation is possible, we discuss a possible attempt.
While attempting a derivation we reach to the following judgment
∆ `⊥t>S r := [a = 2, b= 2]: cmd⊥

which is not derivable because at this point we have
∆ `>S r: ref(Σ[a : ⊥× b : >]⊥)⊥,
∆ `>S [a = 2, b= 2]: Σ[a : ⊥× b : >]⊥, and it is not the case that
>t⊥ ≤ ⊥ so side-condition r t s′ ≤ s of rule (T-ASSIGN) fails.

Because the logical expression in the conditional has security level >, we raised the
computational security level to > (as result of > t ⊥) when typing the branch of the
conditional. Then, when we attempt to apply rule (T-ASSIGN), we check if condition
>t⊥ ≤ ⊥ – corresponding to premise rt s′ ≤ s in the rule – holds. Since it does not hold,
our analysis deems the program insecure.
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We end this section with a typing derivation that relies on rule (T-REFINERECORD), exempli-
fying how we introduce dependencies in dependent sum types.

Example 25 Let us refer back to Example 22.

let addCommentSubmission = λ(uid_r: ⊥, sid_r: ⊥).
foreach (p in viewAssignedPapers(uid_r)) with _ do

if p.sid = sid_r then

foreach(y in !Reviews) with _ do

let t_rev = !y in

if t_rev.sid = p.sid then

let up_rec =

[uid=t_rev.uid,

PC_only=comment(p.uid,p.sid,p), . . .]
in y := up_rec

Recall the type for the elements of collection Reviews (denoted δ from now on)

Σ[uid:⊥×sid:⊥×PC_only:PC(uid,sid)×review:A(>,sid)×grade:A(>,sid)]⊥

We also know identifier p has type Σ[uid:⊥×sid:⊥×. . .×title:A(uid,sid)]⊥

denoted as υ, and comment is a dependent function of type Πu:⊥.Πs:⊥.Πr:υ.A(u,s).
For the sake of presentation, we assume the extension of rules (T-LAMBDA) and (T-APP)

for multiple parameters/arguments.
Let us discuss the derivation of the last let-declaration in the above snippet, where:

{p:υ, y:ref(δ)⊥, t_rev:δ} ⊆ ∆,
{p.sid=sid_r .

= true, t_rev.sid=p.sid
.
= true} ⊆ S ,

S ′ = S ∪ {up_rec .
=[uid=t_rev.uid, PC_only=comment(p.uid,p.sid,p),. . .]},

∆′ = ∆,up_rec: Σ[uid:⊥ × sid:⊥ × PC_only: A(>,t_rev.sid) ×
review: A(>,sid) × grade: A(>,sid) ]⊥.

1. ∆ `⊥S comment : Πu:⊥.Πs:⊥.Πr:υ.A(u,s)

by (T-ID)

2. ∆ `⊥S p.uid : ⊥
by (T-FIELD)

3. ∆ `⊥S p.sid : ⊥
by (T-FIELD)

4. ∆ `⊥S p : υ

by (T-ID)
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5. S ∪ {u .
=p.uid} |=u

.
=p.uid

6. S ∪ {s .
=p.sid} |=s

.
=t_rev.sid

7. S ∪ {r .
=p} |=r

.
=p

8. ∆ `⊥S comment(p.uid,p.sid,p): A(u,s){p.uid/u}{t_rev.sid/s}
by (T-APP),1,2,3,4,5,6,7

9. A(p.uid,t_rev.sid)≤ A(>,t_rev.sid)

10. ∆ `⊥S comment(p.uid,p.sid,p): A(>,t_rev.sid)
by (T-SUB), 8, 9

11. (. . . )
we omit derivation for fields uid, sid, review, and grade

12. ∆ `⊥S [uid=t_rev.uid, PC_only=comment(p.uid,p.sid,p), . . .]:
Σ[uid:⊥ × sid:⊥ × PC_only: A(>,t_rev.sid) ×

review: A(>,sid) × grade: A(>,sid) ]⊥

by (T-RECORD), 10, 11

13. ∆′ `⊥S ′ y: ref(δ)⊥

by (T-ID)

14. ∆′ `⊥S ′ up_rec:
Σ[uid:⊥ × sid:⊥ × PC_only: A(>,t_rev.sid) ×

review: A(>,sid) × grade: A(>,sid) ]⊥

by (T-ID)

15. A(>,t_rev.sid) ≤ PC(uid,t_rev.sid)

by lattice assertion ∀uid1,uid2,sid A(uid1,sid) ≤ PC(uid2,sid)

16. ∆′ `⊥S ′ up_rec:
Σ[uid:⊥ × sid:⊥ × PC_only: PC(uid,t_rev.sid) ×

review: A(>,sid) × grade: A(>,sid) ]⊥

by (T-SUB),14,15

17. S ′ ∪ {x .
=up_rec} |= x.sid .

=t_rev.sid
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18. ⊥ ≤PC(uid,t_rev.sid)↓{uid,sid,PC_only,review,grade}

19. ∆′ `⊥S ′ up_rec:
Σ[uid:⊥ × sid:⊥ × PC_only: PC(uid,sid) ×

review: A(>,sid) × grade: A(>,sid) ]⊥

by (T-REFINERECORD),16, 17, 18

20. ⊥t⊥ ≤ ⊥

21. ∆′ `⊥S ′ y := up_rec: cmd⊥

by (T-ASSIGN),13, 19, 20

22. ∆ `⊥S let up_rec= [uid=t_rev.uid, PC_only=comment(p.uid,p.sid,p), . . .]
in y := up_rec : cmd⊥

by (T-LET),12, 21

Since A(p.uid,t_rev.sid) is not well-formed because dependency p.uid is not
related to any field of the dependent record where the field dependency occurs, we have
to apply subtyping to raise A(p.uid,t_rev.sid) to A(>,t_rev.sid) (step 10), while
typing the record value to be associated to up_rec.

Also, as we have seen before, the security lattice has assertion

∀uid1,uid2,sidA(uid1,sid)≤PC(uid2,sid)

so, while typing expression up_rec we must obtain the expected type for contents of
reference y, which is δ.

To do so we first apply typing rule (T-SUB), since we have A(>,t_rev.sid) ≤
PC(uid,t_rev.sid)), and get type PC(uid,t_rev.sid) for record field PC_only.

Then, the only type that does not match the expected type δ is the type for field
PC_only because its security label is indexed by t_rev.sid instead of field sid.

So we refine the type of the PC_only field to PC(uid,sid), by applying (T-REFINERECORD),
since we know {up_rec .

= [uid=t_rev.uid, PC_only=comment(p.uid,p.sid,p), . . .]}, then
we can entail the projection of their fields.Namely {up_rec.sid .

= t_rev.sid}, and, finally,
by adding constraint {x .

= up_rec} (x is fresh) we can entail x.sid .
= t_rev.sid.

Thus we obtain type δ and can typecheck the assignment operation

In the following section, we proceed by showing the basic preservation and progress
properties for dependent information flow type system.
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3.1.6 Type Safety

We start by introducing some preliminary definitions. These are essentially the same
presented for λτRCV but extended to include the constraint set S in the judgments.

Namely, we introduce the convenient notions of store consistency and well-typed
configurations.
We say that a store S is well-typed with relation to a typing environment ∆ if the values
referred by its locations have the expected type. We define the typing of stores as follows:

Definition 32 (Store Consistency)
Let ∆ be a typing environment and S a store, we say store S is consistent with respect

to typing environment ∆, denoted as ∆ ` S, if dom(S) ⊆ dom(∆) and ∀l ∈ dom(S) then
∆(l) = ref(τs)t and ∆ `r∅ S(l) : τs.

We can now define what it means for a configuration to be well-typed.

Definition 33 (Well-typed Configuration)
A configuration (S; e) is well-typed in typing environment ∆ if ∆ ` S and ∆ `rS e:τs.

So a configuration (S; e) is well-typed if there is a typing environment ∆ that types both
the store and the expression.

To prove type preservation, we rely on the appropriate substitution lemma. Notice
that the substitution lemma takes care of type substitution.

Lemma 3 (Substitution Lemma)
Let v be a value.
If ∆, x : τ′s

′
, ∆′ `rS∪S ′ e : τs and ∆ `r′S v : τ′s

′
then ∆, ∆′{v/x} `rS∪S ′{v/x} e{v/x} : (τs){v/x}.

Proof Induction on the derivation of ∆, x : τ′s
′
, ∆′ `rS∪S ′ e : τs. Notice that by well-

formedness x can only occur in a type if τ′s
′
is a label type, so well-formedness is preserved

as well (see proof in Appendix C.1, Lemma 18). �

Theorem 4 says that well-typed configurations remain well-typed after a reduction step.

Theorem 4 (Type Preservation)
Let vars(∆) = ∅, ∆ ` S and ∆ `rS e : τs.

If (S; e) −→ (S′; e′) then there is ∆′ such that ∆′ `rS e′ : τs, ∆′ ` S′, and ∆ ⊆ ∆′.

Proof By induction on the derivation of ∆ `rS e : τs (see Appendix C.1, Theorem 9). �

Theorem 5, states that well-typed programs never get stuck.

Theorem 5 (Progress)
Let ∆ `rS e : τs, and ∆ ` S, then e is either a value or (S; e) −→ (S′; e′).

Proof By induction on the derivation of ∆ `rS e : τs (see Appendix C.1, Theorem 10). �
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These theorems ensure that our semantics preserves typability and well-typed programs
never get stuck, thus making our type system safe.

However, the relevant soundness result for our information flow analysis is non-
interference.

Thus noninterference together with Theorem 4 and Theorem 5, establishes that our
system ensures well-typed programs do not leak confidential information under the
security policy prescribed by the assumed security lattice. In other words, data does not
flow from a security compartment to another if they are unrelated or if it is a down-flow
in the security lattice.The formulation of non-interference for our language and the proof
that our type system ensures non-interference is the subject of the next chapter.

3.2 Discussion and Related Work

In this chapter, we have described our framework of dependent information flow types.
We began by presenting an extension of the core language presented in Chapter 2, λDIFT,
that accommodates in its abstract syntax of types our dependent function and sum types
as well as our value-dependent security labels. We discussed some challenges that value-
dependency in security labels brings to our analysis and presented our type system. To
illustrate some of our system’s key rules, we presented typing derivations of some of the
relevant examples already discussed in Chapter 1. We concluded with the presentation of
type safety results.

Several recent works explore applications of dependent types to language-based
security in the context of stateful static information flow, which we now review.

Zheng and Myers in [71] introduce a static dependent type-based information flow
analysis where security labels can be dynamically tested via a conditional label-test
primitive. This construction adds label constraints to the typing environment, that are
statically used by the type checker. Zheng and Myers’s work is close to ours in the
sense that a specific dependent type system for information flow is also introduced.
However, in their system, type labels can only depend on (first-class) label values, which
are manipulated at runtime. In this thesis work we do not consider a dynamically changing
lattice but, instead, use runtime values to index security labels to ensure data dependent
security policies. In our framework, we explore type dependency in a quite different way,
using the notion of value indexed label, where the security lattice is fixed, but security
labels can depend on program data values. This allows basic data values to be flexibly
used to represent many different kinds of data dependent security policies, based on
the natural data model of each application, as illustrated in our many examples. In [35],
we introduced a concept of indexed security label as a useful feature to express security
policies but in a DSL with high-level monolithic data manipulation operations, much less
expressive than what we achieve in this thesis work.

In [61] Swamy et al. present FINE, a general-purpose and very expressive dependently
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typed language based on Fable [60], and suggest several encodings in the language of high-
level security concerns such as information flow and access control policies. To express
an information flow analysis in such setting, the programmer is required to hardcode the
security labels as well as the lattice and all its operations/axioms (meet, join, partial order
relation, etc) into inductive types and logic formulae within a module that internalizes the
intended information flow policy inside the framework. Moreover, a value abstraction
result is presented, stating that code within a module does not interfere with another
module’s protected code, which is different from the (standard) notion of noninterference
used in our work, and does not primitively and explicitly address the fundamental notion
of value dependent classification through dependent typing, which is the core contribution
of our work (which, in addition, covers a language with general imperative features). In
that sense, our approach is more lightweight – adopting a simple and primitive notion
of value dependent classification directly at the level of the type structure, leading to an
absolute non-interference theorem – and very expressive for a stateful static information
flow analysis. Also, the use of dependent types to express security properties in such
line of work relies on refinement types and relative logical encodings of meta properties,
which is very different from what we do here, that does not involve refinement types, and
adopts a simple and primitive notion of value dependent classification directly at the level
of the type structure, leading to an specific non-interference theorem.

In [47], Nanevski et al., use a very expressive relational Hoare type theory (RHTT) to
reason about access control and information flow in stateful programs. Besides standard
dependent types, this work introduces a special dependent type, STsec, to specify security
policies via pre and post-conditions, using higher-order logic formulae capable of ex-
pressing heap union disjointness. The STsec type is used to type potentially side-effectful
operations, but the relevant part w.r.t. to information flow analysis is the post-condition
that specifies the behaviour of two different runs of the program, relating the outputs,
input heaps and output heaps of any two terminating executions of the program.

Another interesting work, based on [62] and [47], is RF∗ [5], where Barthe et al. intro-
duce the notion of relational refinement types. The key idea of relational refinement types
consists in extending classic refinement types to relational formulae, which in turn enables
to relate the left and right value of every program variable in scope through projections L
and R. With this setting, the authors’ type system is able to relate expressions at a relational
refined type that can describe the results of both expressions.

A distinguishing feature of these latter approaches is that data is not classified with
security labels (as expected from traditional information flow analyses). Instead, and
similarly to the approach of Swamy et al. [61], the noninterference property is expressed
directly in the post-condition via detailed assertions that relate the initial heap with the
final heap as well as the output values for any two runs of the program. While it might be
conceivable, in principle, to express value-dependent information flow policies in such a
framework, and in fact, in any sufficiently expressive logical framework for imperative
programs supporting general functional properties, the goal of our work follows a much
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lightweight and tractable type-based approach, and aims to single out and address in a
direct and explicit way the core notion of value dependent information classification.

In the next chapter, we address the formulation, statement and results relating to the
non-interference property for our dependent information flow type system.
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4
NONINTERFERENCE

In this chapter we present the main soundness result, the noninterference theorem, for our
dependent information flow type system and programming language λDIFT presented
in Chapter 3. We also illustrate how noninterference is interpreted and how it ensures
well-typed programs do not violate data confidentiality prescribed by the given security
lattice. In our setting, the non-interference property can be stated as follows

Theorem (Non-interference)
Let ∆1; ∆2 `rS1,S2

e1
∼=s e2 : τs′ , with ∆1; ∆2 `M S1 =s S2.

If (S1, e1)
m−−→ (S′1, v1), and (S2, e2)

n−−→ (S′2, v2) then there is ∆′i,M′ such that ∆i ⊆ ∆′i,
M⊆M′, ∆′1; ∆′2 `M′ S′1 =s S′2 and ∆′1; ∆′2 `rS1,S2

v1
∼=s v2 : τs′ .

Intuitively, noninterference states that two equivalent programs executed under equiv-
alent stores will produce effects on the store only at non-observable security levels and,
will have equivalent outputs. So, crucial to the formulation of noninterference property are
the notions of expression equivalence, ∆1; ∆2 `rS1,S2

e1
∼=s e2 : τs′ , and store equivalence,

∆1; ∆2 `M S1 =s S2. In the next sections, we will define and illustrate these two concepts.

4.1 Expression Equivalence

We begin with the relation of location equivalence, used as an auxiliary equivalence rela-
tion for both store and expression equivalence relations. Location equivalence allows us
to relate locations generated by two equivalent programs and becomes necessary since
memory locations are allocated with fresh distinct names (denoting new store addresses)
but also because programs being compared for equivalence may generate different, unob-
servable, locations. So we need to “track” which locations are to be considered observable
and/or “the same” in the store and expression equivalence relations, and this is modelled
by location equivalence.

81



CHAPTER 4. NONINTERFERENCE

Definition 34 (Location Equivalence)
Let S1, S2 be well-typed stores under the typing environments ∆1, ∆2, respectively. We
define location equivalence, denoted asM, as a partial bijection between locations such
thatM⊆ dom(S1)× dom(S2) and ∆1(l1) = ∆2(l2) for all (l1, l2) ∈ M.
We define the projections byM1 = {l | (l, l2) ∈ M} andM2 = {l | (l1, l) ∈ M}.

As already sketched above, the formulation of non-interference relies on a relation of
expression equivalence, relating expressions at the same type and security level.

Intuitively, program expressions e1 and e2 are equivalent up to level s if their results
and effects are indistinguishable to observers able to see information only up to level s.

More formally, we say expressions, e1, e2, of type τs′ are equivalent up to a security
level s, asserted by ∆1; ∆2 `rS1,S2

e1
∼=s e2 : τs′ , if they compute the same result under all

stores equivalent up to s, and always producing stores equivalent up to level s.
The form of the equivalence judgment mimics the one of the typing judgment, with

constraint sets S1, S2 and typing environments ∆1, ∆2 playing the expected roles. In
particular, we have ∆i `rSi

ei : τs′ for i = 1, 2 whenever ∆1; ∆2 `rS1,S2
e1
∼=s e2 : τs′ holds.

Definition 35 (Expression Equivalence) Given expressions e1 and e2, computational se-
curity level r, constraint sets S1 and S2, and a location equivalenceM, we define expres-
sion equivalence of e1 and e2 up to s, asserted by ∆1; ∆2 `rS1,S2

e1
∼=s e2:τs′ , as inductively

defined by the rules in Figure 4.1 and Figure 4.2.

For presentation purposes, we prefer to consider location equivalenceM as a global pa-
rameter in the expression equivalence which is only used in the (E-LOC) and (E-LOCOPAQUE)
rules. Apart from a few exceptions, mentioned below, expression equivalence rules follow
the pattern of our typing rules for λDIFT. For that reason, we only discuss some of the
more relevant rules of our expression equivalence relation.

We begin with the discussion of key rules for expression equivalence with no counter-
part in our typing rules.

Rule (E-VAL) is applied to values of base type (that is, values that are not collections,
records, lambda or variants) and whenever the security level of the values s′ is below or
equal to the observational security level s′ so the values must be the same.

∆ `rS1
v : τs′ ∆ `rS2

v : τs′

τs′ is base type

∆ `rS1,S2
v ∼=s v : τs′

(E-VAL)

Rule (E-EXPROPAQUE) relates expressions e1 and e2 at security level s, given both the
computational context r and expressions security levels s′ are not less or equal than the
observational security level s.

∆ `rS1
e1 : τs′ ∆ `rS2

e2 : τs′

s′ 6≤ s r 6≤ s

∆ `rS1,S2
e1
∼=s e2 : τs′

(E-EXPROPAQUE)
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(E-VAL)
∆1 `rS1

v : τs′ ∆2 `rS2
v : τs′

τs′ is base type
∆1; ∆2 `rS1,S2

v ∼=s v : τs′

(E-VALOPAQUE)
∆1 `rS1

v1 : τs′ ∆2 `rS2
v2 : τs′

s′ 6≤ s

∆1; ∆2 `rS1,S2
v1 ∼=s v2 : τs′

(E-EXPROPAQUE)
∆1 `rS1

e1 : τs′ ∆2 `rS2
e2 : τs′

s′ 6≤ s r 6≤ s

∆1; ∆2 `rS1,S2
e1 ∼=s e2 : τs′

(E-REFINERECORD)
∆1; ∆2 `rS1,S2

e ∼=s e′ :
Σ[. . .×mj : τ

sj

j × . . .×mi : (τsi
i )[v/mj]× . . .]s

′

S1{x
.
= e} |= x.mj

.
= v

S2{x
.
= e′} |= x.mj

.
= v

s ≤ si
↓
{m1,...,mi−1}

∆1; ∆2 `rS1,S2
e ∼=s e′ :

Σ[. . .×mj : τ
sj

j × . . .×mi : τsi
i × . . .]s

′

(E-UNREFINERECORD)
∆1; ∆2 `rS1,S2

e ∼=s e′ :
Σ[. . .×mj : τ

sj

j × . . .×mi : τsi
i × . . .]s

′

S1{x
.
= e} |= x.mj

.
= v

S2{x
.
= e′} |= x.mj

.
= v

∆1; ∆2 `rS1,S2
e ∼=s e′ :

Σ[. . .×mj : τ
sj

j × . . .×mi : (τsi
i )[v/mj]× . . .]s

′

(E-SUB)
∆1; ∆2 `r

′

S1,S2
e ∼=s e′ : τ′s

′′

∆i `∅ τ′s
′′

τ′s
′′
<: τs′ r ≤ r′

∆1; ∆2 `rS1,S2
e ∼=s e′ : τs′

(E-LAMBDA)
∆1, x : τs′ ; ∆2, x : τs′ `r′S1,S2

e ∼=s e′ : σq

∆1; ∆2 `rS1,S2
λ(x : τs′ ).e ∼=s λ(x : τs′ ).e′ : (Πx:τs′ .r′; σq)⊥

(E-APP)
∆1; ∆2 `rS1,S2

e1 ∼=s e′1 : (Πx:τs′ .r′; σq)t

∆1; ∆2 `rS1,S2
e2 ∼=s e′2 : τs′

r ≤ r′ t ≤ q{⊥/x} t ≤ r′

(S1{x
.
= e2} |= x .

= v ∧ S2{x
.
= e′2} |= x .

= v ∧ σ′q
′
= σ{v/x}q{v/x})

∨(σ′q′ = (σq) ↑x)

∆1; ∆2 `rS1,S2
e1(e2) ∼=s e′1(e

′
2) : σ′q′

(E-RECORD)
∀i ∆1; ∆2 `rS1,S2

ei ∼=s e′i : τsi
i

∆1; ∆2 `rS1,S2
[m=e] ∼=s [m=e′] : Σ[mi :τ′s

′ ]s′

(E-FIELD)
∆1; ∆2 `rS1,S2

e1 ∼=s e2 : Σ[. . .×mi : τsi
i × . . .]s

′

∆1; ∆2 `rS1,S2
e1.mi ∼=s e2.mi : τsi

i

(E-INJ)
∀i ∆1; ∆2 `rS1,S2

e ∼=s e′ : τsi
i

τt = {. . . , ni :τ
si
i , . . .}⊥

∆1; ∆2 `rS1,S2
#ni(e) ∼=s #ni(e′) : τt

(E-CASE)
∆1; ∆2 `rS1,S2

e ∼=s e′ : {. . . , ni : τsi
i , . . .}s′

∀i ∆1, xi :τ
si
i ; ∆2, xi :τ

si
i `

r′

S ei ∼=s e′i : τs′ r t s′ ≤ r′

∆1; ∆2 `rS1,S2
case e(. . . , ni · xi ⇒ ei, . . .) ∼=s

case e′(. . . , ni · xi ⇒ e′i , . . .) : τs′

Figure 4.1: Equivalence of expressions up to level s (Part 1)

Intuitively, the rule states if one can only observe up to security level s, then the values of
any expressions classified at a higher or incomparable security level should be indistin-
guishable, and so their actual value does not matter for the observer. Since expressions can
change state via assignment operations, one must ensure the computational context (which
is a lower bound on the security level of memory cells altered) is above or incomparable to
the observational security level, to ensure that no store effect differences will be observed
at level s.
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(E-LET)
∆1; ∆2 `rS1,S2

e1 ∼=s e′1 : τs1

∆1, x : τs1 ; ∆2, x : τs1 `rS1{x
.
=e1},S2{x

.
=e′1}

e2 ∼=s e′2 : τ′s2

∆1; ∆2 `rS1,S2
let x = e1 in e2 ∼=s let x = e′1 in e′2 : τ′s2

(E-IF)
∆1; ∆2 `rS1,S2

c ∼=s c′ : Bools
′

∆1; ∆2 `r
′

S1∪{c
.
=true},S2∪{c′

.
=true} e1 ∼=s e′1 : τs′

∆1; ∆2 `r
′

S1∪{c
.
=false},S2∪{c′

.
=false} e2 ∼=s e′2 : τs′

r t s′ ≤ r′

∆1; ∆2 `rS1,S2
if c then e1 else e2 ∼=s

if c′ then e′1 else e′2 : τs′

(E-ID)

∆1, x : τs′ , ∆′1; ∆2, x : τs′ , ∆′2 `rS1,S2
x ∼=s x : τs′

(E-FOREACH)
∆1; ∆2 `rS1,S2

e1 ∼=s e′1 : τ∗s
′

∆1; ∆2 `rS1,S2
e2 ∼=s e′2 : τ′s

′

∆1, x : τs′ , y : τ′s
′
; ∆2, x : τs′ , y : τ′s

′ `r′S1,S2
e3 ∼=s e′3 : τ′s

′

r t s′ ≤ r′

∆1; ∆2 `rS1,S2
foreach(e1, e2, x.y.e3) ∼=s

foreach(e′1, e′2, x.y.e′3) : τ′s
′

(E-CONS)
∆1; ∆2 `rS1,S2

e1 ∼=s e′1 : τs′ ∆1; ∆2 `rS1,S2
e2 ∼=s e′2 : τ∗s

′

∆1; ∆2 `rS1,S2
e1::e2 ∼=s e′1::e′2 : τ∗s′

(E-COLLECTION)
∀i ∆1; ∆2 `rS1,S2

ei ∼=s e′i : τs′

∆1; ∆2 `rS1,S2
{e1, . . . , en} ∼=s {e′1, . . . , e′n} : τ∗s′

(E-EQUAL)
∆1; ∆2 `rS1,S2

V1 ∼=s V′1 : τs′

∆1; ∆2 `rS1,S2
V2 ∼=s V′2 : τs′

τs′ are base types
∆1; ∆2 `rS1,S2

V1 = V2 ∼=s V′1 = V′2 : Bools′

(E-OR)
∆1; ∆2 `rS1,S2

c1 ∼=s c′1 : Bools
′

∆1; ∆2 `rS1,S2
c2 ∼=s c2 : Bools

′

∆1; ∆2 `rS1,S2
c1 ∨ c2 ∼=s c′1 ∨ c′2 : Bools′

(E-NOT)
∆1; ∆2 `rS1,S2

c ∼=s c′ : Bools
′

∆1; ∆2 `rS1,S2
¬c ∼=s ¬c′ : Bools′

(E-REF)
∆1; ∆2 `rS1,S2

e ∼=s e′ : τs′ r ≤ s′

∆1; ∆2 `rS1,S2
refτs e ∼=s refτs e′ : ref(τs′ )r

(E-DEREF)
∆1; ∆2 `rS1,S2

e ∼=s e′ : ref(τs′ )t t ≤ s′

∆1; ∆2 `rS1,S2
!e ∼=s!e′ : τs′

(E-ASSIGN)
∆1; ∆2 `rS1,S2

e1 ∼=s e′1 : ref(τs′ )t

∆1; ∆2 `rS1,S2
e2 ∼=s e′2 : τs′

r t t ≤ s′

∆1; ∆2 `rS1,S2
e1 := e2 ∼=s e′1 := e′2 : cmd⊥

(E-LOC)
(l1, l2) ∈ M

∆1(l1) = ∆2(l2) = ref(τs′ )t t ≤ s

∆1; ∆2 `rS1,S2
l1 ∼=s l2 : ref(τs′ )t

(E-LOCOPAQUE)
li 6∈ Mi

∆1(l1) = ∆2(l2) = ref(τs′ )t t 6≤ s

∆1; ∆2 `rS1,S2
l1 ∼=s l2 : ref(τs′ )t

Figure 4.2: Equivalence of expressions up to level s (Part 2)

In some cases, however, the condition imposed by (E-EXPROPAQUE) on the computa-
tional context can be too restrictive, so rule (E-VALOPAQUE) only requires the security level
of, potentially different, values s′ not to be less or equal than the observational security
level s. This is because values do not have store effects by themselves.

∆ `rS1
v1 : τs′ ∆ `rS2

v2 : τs′

s′ 6≤ s

∆ `rS1,S2
v1
∼=s v2 : τs′

(E-VALOPAQUE)

Let us see an example to illustrate the difference between these two rules.
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Example 26 Let e1, e2 be two well-typed expressions under typing environment ∆1 and
∆2, respectively

e1
def
= let r = refint> 0 in

if c then

r := 10

else r:= 5

e2
def
= let r = refint> 0 in

if c then

r := 6

else r:= 2

such that ∆1 `⊥S1
e1 : cmd⊥ and ∆2 `⊥S2

e2 : cmd⊥.

In both code snippets we create a new reference for values classified at security level
>, initialising with value 0. Then, given a condition – which is the same for both programs
– we update the reference with distinct values.

However, since these values must be classified at security level >, they are not observ-
able at security level ⊥. Thus expressions e1 and e2 are equivalent up to security level ⊥,
that is ∆1; ∆2 `⊥S1,S2

e1
∼=⊥ e2 : cmd⊥.

Notice, though, that in both snippets the computational context security level is ⊥ so
condition r 6≤ s does not hold and rule (E-EXPROPAQUE) cannot be applied.

So the only way to relate these expressions, with our expression equivalence relation, is
to apply rules (E-LET), (E-REF), (E-IF), (E-ASSIGN), and (E-VALOPAQUE) – to relate the distinct
integer values used in the assignment operations – instead of applying rule (E-EXPROPAQUE)
for the assignment expressions.

We proceed with the only rules that use the location equivalence relation: rules (E-LOC)
and (E-LOCOPAQUE). In rule (E-LOC), we state that two locations are equivalent if they are
related in the location equivalence, share the same type and their security level is within
the observational level s.

(E-LOC)

(l1, l2) ∈ M
∆1(l1) = ∆2(l2) = ref(τs′)t t ≤ s

∆1; ∆2 `rS1,S2
l1 ∼=s l2 : ref(τs′)t

Rule (E-LOCOPAQUE) relates locations that are not in the location equivalence rela-
tion and share the same type as long their security level is not less or equal than the
observational level. This rule is a special case of (E-VALOPAQUE).

(E-LOCOPAQUE)

li 6∈ Mi

∆1(l1) = ∆2(l2) = ref(τs′)t t 6≤ s

∆1; ∆2 `rS1,S2
l1 ∼=s l2 : ref(τs′)t

Let us now discuss rule (E-APP)
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(E-APP)

∆1; ∆2 `rS1,S2
e1
∼=s e′1 : (Πx:τs′ .r′; σq)t

∆1; ∆2 `rS1,S2
e2 ∼=s e′2 : τs′

r ≤ r′ t ≤ q{⊥/x} t ≤ r′

(S1{x
.
= e2} |= x .

= v ∧ S2{x
.
= e′2} |= x .

= v ∧ σ′q
′
= σ{v/x}q{v/x})

∨(σ′q′ = (σq) ↑x)

∆1; ∆2 `rS1,S2
e1(e2) ∼=s e′1(e

′
2) : σ′q′

In order to relate two applications, we must have the function being applied, e1, e′1, is also
equivalent up to security level s as well as the arguments, e2, e′2. We also must entail the
same value v from the augmented constraint sets S1 and S2. Otherwise, we eliminate all
free occurrences of x in σq via operation (σq) ↑x, as previously defined in Definition 31 of
Chapter 3.

Rule (E-UNREFINERECORD)

(E-UNREFINERECORD)

∆1; ∆2 `rS1,S2
e ∼=s e′ :

Σ[. . .×mj : τ
sj
j × . . .×mi : τsi

i × . . .]s
′

S1{x
.
= e} |= x.mj

.
= v

S2{x
.
= e′} |= x.mj

.
= v

∆1; ∆2 `rS1,S2
e ∼=s e′ : Σ[. . .×mj : τ

sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]s

′

eliminates field dependency on equivalent records with the same concrete value, derived
from the constraint sets.

Notice that rules may approximate runtime values via constraint entailment, like
(E-APP), (E-REFINERECORD) and (E-UNREFINERECORD), can assume that the values entailed
are the same since they are of label type.
As a final remark, notice that two expressions may be equivalent up to level s even if they
are typed at a different level s′.

Next we present some properties regarding expression equivalence.
We begin by stating the expected reflexivity property of the expression equivalence. Let
M∆,s = {(l, l) | ∆(l) = ref(τs′)t ∧ t ≤ s}.

Lemma 4 (Reflexivity Lemma)
Let ∆ `rS e : τs′ , then ∆; ∆ `rS ,S e ∼=s e : τs′ withM∆,s.
Proof: By induction on the typing derivation.

Equivalent expressions are well-typed by definition under our dependent information
flow type system. This is because rules for expression equivalence parallel typing rules of
our language.

Lemma 5
Let ∆1; ∆2 `rS1,S2

e1
∼=s e2 : τs′ , then ∆i `rSi

ei : τs′ for i = 1, 2.
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The next lemma states that expression equivalence is preserved by the extension of both
the typing environments and constraint sets.

Lemma 6 (Weakening)
Let ∆1; ∆2 `rS1,S2

e ∼=s e′ : τs′ , then ∆1, ∆′1; ∆2, ∆′2 `rS1∪S1,S2∪S2
e ∼=s e′ : τs′

In the following lemma, notice that two equivalent values of label type must be equal.
The intuition behind this property is simple: label typed values are of security level ⊥,
thus in order to be related under expression equivalence, they must be the same.

Lemma 7
Let v1, v2 be values, and τs′ ∈ LT .
If ∆1; ∆2 `rS1,S2

v1
∼=s v2 : τs′ , then v1 = v2.

Proof: See Appendix C.2.

The next lemma states that we can relate values at any computational context security
level. This follows from the fact that values per se do not affect a program’s store, namely a
function value can only affect the store once it is applied.

Lemma 8 (Computational Context Irrelevance Lemma)
Let ∆1; ∆2 `rS1,S2

v1
∼=s v2 : τs′ , then ∆1; ∆2 `r

′
S1,S2

v1
∼=s v2 : τs′

Finally, we have the substitution lemma for expression equivalence which states that
expression equivalence is preserved under substitution.

Lemma 9 (Substitution Lemma for Expression Equivalence)
If ∆1, x:τ′s

′
, ∆′1; ∆2, x:τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e ∼=s e′:τs′′ , and ∆1; ∆2 `r
′
S1,S2

v1
∼=s v2 : τ′s

′
.

Then ∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e{v1/x} ∼=s e′{v2/x}:(τs′′){v1/x}.

Notice that if τ′s
′ ∈ LT then v1, v2 are label indexes and equal, v1 = v2 by Lemma 7.

Otherwise whenever τ′s
′ 6∈ LT we have x 6∈ fv(τs′′), x 6∈ fv(∆′i), and x 6∈ fv(Si ∪ S ′i ),

since only variables of label type can appear in label indexes or in constraint expressions.
Therefore, for any σt ∈ LT we have σt{v1/x} = σt{v2/x}, otherwise if σt 6∈ LT then
σt = σt{vi/x}, so a common type is preserved under substitution, even in the presence of
dependencies. In Section 4.4 we further discuss extensions to our core system presented
here.

We conclude this section with an example of expression equivalence with dependent
sum type:

Example 27 Let us derive the following expression equivalence
[ name = ”alice”, photo = f1 ] ∼=P(⊥) [ name = ”alice”, photo = f2 ]:

Σ[name: str⊥, photo: jpegP(name)]⊥
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In this example, assuming any f1 6= f2, we conclude that the two (dependently typed)
records are equivalent for an observer that can see up to level P(⊥), meaning that the field
photo is confidential for any such observer.

f1
∼=P(⊥) f2 : jpegP(”alice”) by (E-VALOPAQUE), since P(”alice”) 6≤ P(⊥)

”alice” ∼=P(⊥) ”alice” : str⊥ by (E-VAL), since P(⊥) ≤ P(”alice”)
[ name = ”alice”, photo = f1 ] ∼=P(⊥) [ name = ”alice”, photo = f2 ]:

Σ[name: str⊥, photo: jpegP(”alice”)]⊥

by (E-RECORD)
[ name = ”alice”, photo = f1 ] ∼=P(⊥) [ name = ”alice”, photo = f2 ]:

Σ[name: str⊥, photo: jpegP(name)]⊥

by (E-REFINERECORD), since x = [ name = ”alice”, photo = f2 ] |= x.name = ”alice”

4.2 Store Equivalence

We now define store equivalence which relies on expression equivalence. Intuitively,
two well-typed stores S1, S2 are equivalent up to level s, written ∆1; ∆2 `M S1 =s S2, if
locations observable at security level s that are equivalent, i.e. (l1, l2) ∈ M, also have the
same typing and their contents are equivalent up to security level s, that is ∆1; ∆2 `M
S1(l1) ∼=s S2(l2) : τs′ .

Definition 36 (Store Equivalence)
Let S1, S2 be stores such that ∆1 ` S1, and ∆2 ` S2 (with respect toM), and letM be a
location equivalence. We say S1 is equivalent to S2 up to level s, denoted ∆1; ∆2 `M S1 =s

S2, if and only if:

• for all (l1, l2) ∈ M ∆1; ∆2 `M S1(l1) ∼=s S2(l2) : τs′ where for i = 1, 2
∆i(li) = ref(τs′)t and t ≤ s

• for all l ∈ Dom(Si) such that l 6∈ Mi, ∆i(l) = ref(τs′)t and t 6≤ s

Notice that the second condition, when a location is not related by location equivalence,
needs to be considered since two equivalent expressions may “diverge” into different
sub-expressions (e.g., in the if-then-else construct). Since expressions can only diverge in
computations that are not observable (i.e., 6≤ s), then any reference allocations, during
such computations, are also not observable.
Let us see an example of equivalent stores followed up by one of non-equivalent stores.

Example 28 Assume user(42)#user(666), and let S1 and S2 be stores well-typed under
typing environment ∆1, ∆2, respectively, such that

∆1 = {private_file: ref(Σ[uid:⊥×content:user(uid)]∗⊥)⊥}
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∆2 = {my_file: ref(Σ[uid:⊥×content:user(uid)]∗⊥)⊥}

with location equivalence M = {(private_file, my_file)} and

S1(private_file) = { [uid = 42, content = "walking debt"],

[uid = 666, content = "varoufakis"] }
S2(my_file) = { [uid = 42, content = "greek minister of awesome"],

[uid = 666, content = "varoufakis"] }

We have ∆1; ∆2 `M S1 =user(666) S2 since values "walking debt" and "greek minister

of awesome", classified as user(42), are not visible at level user(666):

Indeed, by rule (E-VALOPAQUE) with user(42)#user(666), we have
∆1; ∆2 `⊥∅,∅ "walking debt" ∼=user(666) "greek minister of awesome": user(42), so
∆1; ∆2 `⊥∅,∅ [uid = 42, content = "walking debt"] ∼=user(666)

[uid = 42, content = "greek minister of awesome"]: Σ[uid:⊥ × content:user(uid)]⊥.
Thus, ∆1; ∆2 `⊥∅,∅ S1(private_file) ∼=user(666) S2(my_file) : Σ[uid:⊥ × content:user(uid)]∗⊥.

However, S1 and S2 are not equivalent at security level user(42) since values "walking
debt" and "greek minister of awesome" are visible at level user(42):

We cannot apply rule (E-VALOPAQUE) because user(42)≤user(42), so only rule (E-VAL)
would be applicable. However since "walking debt" 6= "greek minister of awesome",
we have:
∆1; ∆2 `⊥∅,∅ "walking debt" 6∼=user(42) "greek minister of awesome": user(42), so
∆1; ∆2 `⊥∅,∅ [uid = 42, content = "walking debt"] 6∼=user(42)

[uid = 42, content = "greek minister of awesome"]: Σ[uid:⊥ × content:user(uid)]⊥.
Thus, ∆1; ∆2 `⊥∅,∅ S1(private_file) 6∼=user(42) S2(my_file) : Σ[uid:⊥ × content:user(uid)]∗⊥

Therefore ∆1; ∆2 `M S1 6=user(42) S2.

Having defined the key base notions of expression equivalence and store equivalence
we may now present our non-interference results.

4.3 Noninterference Theorem

In this section we show our noninterference result and the outline of its proof. Full proofs
and auxiliary results can be found in the Appendix C.2.

We begin by stating the following lemma, important for the proof of the noninterference
theorem relies on.

Lemma 10
Let ∆ `rS e:τs′ , ∆0; ∆ `M S0 =s S, and r 6≤ s.
If (S, e) −→ (S′, e′), then there are ∆′,M′ such that ∆ ⊆ ∆′,M⊆M′, and
∆0; ∆′ `M′ S0 =s S′.

89



CHAPTER 4. NONINTERFERENCE

Proof By induction on the derivation of ∆ `rS e:τs′ . Full proof in Appendix C.2. �

This lemma states whenever a well-typed expression e, whose store S is equivalent to a
store S0, reduces, the resulting store S′ is equivalent to the stores equivalent to the one
under which the expression reduced, S0, given that the computational security level r is
not less or equal than the observational security level s.

The lemma is proved by induction on the derivation of ∆ `rS e:τs′ . Since the computa-
tional context security level r is a lower bound on the effects an expression has on the store,
it is straightforward to see that if by hypothesis we have r 6≤ s then any effects expression
e might produced in the store are not observable up to security level s.

We proceed with the general noninterference theorem, used to prove the main nonin-
terference result.

Theorem 6 (Preservation of Equivalence)
Let ∆1; ∆2 `M S1 =s S2, and ∆1; ∆2 `S1,S2 e1

∼=s e2 : τs′ .
Then one of the following cases must hold:

1. e1, e2 are values
2. (S1; e1) −→ (S′1; e′1) and (S2; e2) −→ (S′2; e′2), and there is ∆′1, ∆′2 such that ∆i ⊆ ∆′i,

there isM′ such thatM ⊆ M′, ∆′1; ∆′2 `M′ S′1 =s S′2, and ∆′1; ∆′2 `S1,S2 e′1 ∼=s e′2 :
τs′ .

3. (S1; e1) −→ (S′1; e′1), and there is ∆′1 such that ∆1 ⊆ ∆′1, there is M′ such that
M⊆M′, ∆′1; ∆2 `M′ S′1 =s S2, and ∆′1; ∆2 `S1,S2 e′1 ∼=s e2 : τs′ .

4. (S2; e2) −→ (S′2; e′2), and there is ∆′2 such that ∆2 ⊆ ∆′2, there is M′ such that
M⊆M′, ∆1; ∆′2 `M′ S1 =s S′2, and ∆1; ∆′2 `S1,S2 e1

∼=s e′2 : τs′ .

Proof By induction on the derivation of ∆1; ∆2 `S1,S2 e1
∼=s e2 : τs′ . �

Theorem 6 states how, during the reduction of equivalent configurations, equivalence
of expressions and stores are preserved. So, for instance, case 2 addresses the situation
where two equivalent programs can both perform a step and the resulting stores remain
indistinguishable up to security level s, as well as the resulting program residuals remain
equivalent at the same level. Then case 3 and 4 are particular cases of case 2, when only
one of the expressions may take a reduction step to preserve the equivalence relations on
expressions and stores.

Let us now see an example of an application of the theorem, to illustrate how, starting
from equivalent programs, the theorem gives the necessary and right reduction steps to
preserve equivalence.

Example 29
Assume we have ∆1; ∆2 `S1,S2 e1

∼=⊥ e2 : τ> by (E-EXPROPAQUE) with
(S1; e1) −→ (S′1; e′1) −→ (S′′1 ; v1) and (S2; e2) −→ (S′2; v2).
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We then have the following application of Theorem 6:
∆1; ∆2 `S1,S2 let x = e1 in (λ(y : τ>).9)x ∼=⊥ let x = e2 in (λ(y : τ>).9)x : int⊥

by Case 3 of Theorem 6, with (S1; e1) −→ (S′1; e′1), we obtain
∆1; ∆2 `S1,S2 let x = e′1 in (λ(y : τ>).9)x ∼=⊥ let x = e2 in (λ(y : τ>).9)x : int⊥

by Case 3 of Theorem 6, with (S′1; e′1) −→ (S′′1 ; v1), we obtain
∆1; ∆2 `S1,S2 let x = v1 in (λ(y : τ>).9)x ∼=⊥ let x = e2 in (λ(y : τ>).9)x : int⊥

by Case 4 of Theorem 6, with (S2; e2) −→ (S′2; v2), we obtain
∆1; ∆2 `S1,S2 let x = v1 in (λ(y : τ>).9)x ∼=⊥ let x = v2 in (λ(y : τ>).9)x : int⊥

by Case 2 of Theorem 6, with (S′′1 ; let x = v1 in (λ(y : τ>).9)x) −→ (S′′1 ; (λ(y : τ>).9)v1)

and (S′2; let x = v2 in (λ(y : τ>).9)x) −→ (S′2; (λ(y : τ>).9)v2), we obtain
∆1; ∆2 `S1,S2 (λ(y : τ>).9)v1

∼=⊥ (λ(y : τ>).9)v2 : int⊥

by Case 2 of Theorem 6, with (S′′1 ; (λ(y : τ>).9)v1) −→ (S′′1 ; 9) and
(S′2; (λ(y : τ>).9)v2) −→ (S′2; 9), we obtain
∆1; ∆2 `S1,S2 9 ∼=⊥ 9 : int⊥

So Theorem 6 is able to provide the adequate reduction steps in order to preserve expres-
sion equivalence of two equivalent programs.

We now discuss the proof sketch of Theorem 6.

Proof (Outline) We show the proof of cases (E-EXPROPAQUE), (E-IF), and (E-APP), the com-
plete proof can be found in Appendix C.2.

CASE (E-EXPROPAQUE):

We have as hypothesis
∆1; ∆2 `rS1,S2

e1
∼=s e2 : τs′ , and

∆1; ∆2 `M S1 =s S2,

Then by inversion of the expression equivalence relation on the hypothesis we obtain
∆i `rSi

ei : τs′ , s′ 6≤ s, and r 6≤ s.
So we now have one of the following cases:

• SUB-CASE e1, e2 are values then we establish case 1 of the theorem.

Otherwise, either e1 or e2 reduces, by progress.

• SUB-CASE (S1; e1) −→ (S′1; e′1)
Then by Lemma 10 using our hypothesis, we have
∆1 ⊆ ∆′1,M⊆M′, and ∆′1; ∆2 `M′ S′1 =s S2.
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So by subject reduction, Theorem 4, we obtain ∆′1 `rS1
e′1 : τs′ .

We finally conclude by applying rule (E-EXPROPAQUE) to get
∆′1; ∆2 `S1,S2 e′1 ∼=s e2 : τs′ .
We thus establish case 3 of the theorem.

• SUB-CASE (S2; e2) −→ (S′2; e′2)
Same as previous case.
We establish case 4 of the theorem.

CASE (E-IF):

Here we consider four sub-cases, two for when both expressions take the same branch
of the conditional, and the remaining two when they diverge in their reduction step to
different branches.

The former sub-cases are straightforward application of the induction hypothesis.

The proof for the latter sub-cases, where expressions diverge, are symmetric to
each other so we will just outline the sub-case where CJcK = true and CJc′K =

false, so expression if c then e1 else e2 reduces to the then-branch and expression
if c′ then e3 else e4 reduces to the else-branch.

So as hypothesis we have

∆1; ∆2 `rS1,S2
if c then e1 else e2 ∼=s if c′ then e′1 else e′2 : τs′ ,

∆1; ∆2 `M S1 =s S2,
(S1; if c then e1 else e2) −→ (S1; e1), and
(S2; if c′ then e′1 else e′2) −→ (S2; e′2).
And by inversion of the expression equivalence we obtain

∆1; ∆2 `rS1,S2
c ∼=s c′ : Bools

′
,

∆1; ∆2 `r
′

S1∪{c
.
=true},S2∪{c′

.
=true} e1

∼=s e′1 : τs′ ,

∆1; ∆2 `r
′

S1∪{c
.
=false},S2∪{c′

.
=false} e2 ∼=s e′2 : τs′ , and

r t s′ ≤ r′.

We know that if ∆1, ∆2 `rS1,S2
c1
∼=s c2 : Bools

′
, then by Lemma 32

∆1; ∆2 `rS1,S2
CJc1K ∼=s CJc2K : Bools

′
must hold.

This means ∆1; ∆2 `rS1,S2
true ∼=s false : Bools

′
which must have been derived by

(E-VALOPAQUE), and implies s′ 6≤ s.

Since expression equivalences of the then-branches and else-branches are well formed,
we also have
∆1 `r

′

S1∪{c
.
=true} e1 : τs′ , and ∆2 `r

′

S2∪{c′
.
=false} e′2 : τs′ .

Then by Constraint Cut Lemma, since S1 |= c .
= true and S2 |= c′ .

= false, we obtain
∆1 `r

′
S1

e1 : τs′ , and ∆2 `r
′
S2

e′2 : τs′ .

To show r′ 6≤ s, assume for contradiction r′ ≤ s:
We know by hypothesis s′ ≤ r′, which together with our assumption, r′ ≤ s, leads to
s′ ≤ s. But this contradicts s′ 6≤ s. We conclude r′ 6≤ s.
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By rule (E-EXPROPAQUE) together with (E-SUB) (to lower computational security level),
we conclude ∆1; ∆2 `rS1,S2

e1
∼=s e′2 : τs′ .

So we establish case 2 of the theorem with S′i = Si andM′ =M.

CASE (E-APP):

In this sketch we consider the sub-cases where where a β reduction occurs, the remain-
ing subcases follow directly from the induction hypothesis.
So as hypothesis we have

∆1; ∆2 `rS1,S2
e1(e2) ∼=s e′1(e

′
2) : σ′q

′
, and ∆1; ∆2 `M S1 =s S2.

By inversion of (E-APP) rule we obtain
∆1; ∆2 `rS1,S2

e1
∼=s e′1 : (Πx:τs′ .r′; σq)t,

∆1; ∆2 `rS1,S2
e2 ∼=s e′2 : τs′ ,

r ≤ r′, t ≤ q{⊥/x}, t ≤ r′, and either
(a) (S1{x

.
= v2} |= x .

= v ∧ S2{x
.
= v′2} |= x .

= v ∧ σ′q
′
= σ{v/x}q{v/x}), or

(b) (σ′q
′
= (σq) ↑x).

As hypothesis of the sub-case we are proving, we know
e1, e′1 are values such that e1 = λ(x:τ′′s

′′
).e and e′1 = λ(x:τ′′s

′′
).e′, and

e2, e′2 are values such that e2 = v2 and e′2 = v′2.

We then have
∆1; ∆2 `rS1,S2

λ(x:τ′′s
′′
).e ∼=s λ(x:τ′′s

′′
).e′ : (Πx:τs′ .r′; σq)t, and

∆1; ∆2 `rS1,S2
v2 ∼=s v′2 : τ′s

′
.

Then by Inversion Lemma of expression equivalence (Lemma 30) we obtain
∆1, x : τ′′s

′′
; ∆2, x : τ′′s

′′ `r′S1,S2
e ∼=s e′ : σq, and τ′s

′
<: τ′′s

′′
.

We can now apply subsumption rule to get ∆1; ∆2 `rS1,S2
v2 ∼=s v′2 : τ′′s

′′
.

Now we have to do a case analysis for the possible types in the conclusion of rule
(E-APP), which is either given by condition (a) or (b).

In the case of hypothesis (a), by Lemma 29 we have (i) ∆1; ∆2 `r
′
S1,S2

e{v2/x} ∼=s

e′{v′2/x} : (σq){v2/x}.

While in the case of hypothesis (b), by Lemma 2 we have σq <: (σq) ↑x.

By (E-SUB) we obtain ∆1, x : τ′′s
′′
; ∆2, x : τ′′s

′′ `r′S1,S2
e ∼=s e′ : (σq) ↑x

And then by Lemma 29 we obtain (ii) ∆1; ∆2 `r
′
S1,S2

e{v2/x} ∼=s e′{v′2/x} : (σq) ↑x.
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In either case (i) or (ii), by (E-SUB) we have ∆1; ∆2 `rS1,S2
e{v2/x} ∼=s e′{v′2/x} : σ′q

′
.

Then (S1; λ(x:τ′′s
′′
).e(v2)) −→ (S1, e{v2/x}), and (S2; λ(x:τ′′s

′′
).e′(v′2)) −→ (S2, e′{v′2/x}).

Which establishes case 2 of the theorem.

�

We can then state our main non-interference theorem:

Theorem 7 (Non-interference)
Let ∆1; ∆2 `rS1,S2

e1
∼=s e2 : τs′ , with ∆1; ∆2 `M S1 =s S2.

If (S1, e1)
m−−→ (S′1, v1), and (S2, e2)

n−−→ (S′2, v2) then there is ∆′i,M′ such that ∆i ⊆ ∆′i,
M⊆M′, ∆′1; ∆′2 `M′ S′1 =s S′2 and ∆′1; ∆′2 `rS1,S2

v1
∼=s v2 : τs′ .

Proof By induction on m + n, using Theorem 6 (see full proof in Appendix C.2).

The noninterference theorem states that equivalent (at level s) programs, under equivalent
stores S1 and S2, compute equivalent results and no changes are observable in the resulting
stores. In particular, if the result is classified at security level s or below, then both programs
return the same value.
Suppose we apply Theorem 7 to a program e = e1 = e2 (so ∆; ∆ `rS1,S2

e ∼=s e:τs′ holds
by reflexivity). Then, if s ≤ s′ and τs′ is a base type, we must have v1 = v2 (since neither
(E-EXPROPAQUE) or (E-VALOPAQUE) are applicable to derive ∆′; ∆′ `rS1,S2

v1
∼=s v2:τs′).

One can thus conclude that an attacker “located" at security level s never distinguishes
the result of a (base type) program executed under stores that only differ in data that
should be considered confidential for level s (data classified at any level l such that l 6≤ s).
Notice that for the current purposes, we assume that the observer can only compare values
of base type (cf. (T-EQUAL) type rule). This can be expressed by the following:

Corollary 8 (Non-interference)
Let ∆ `rS e : τs′ , with ∆; ∆ `M S1 =s S2, whereM =M∆,s and vars(∆) = ∅.

a). If (S1, e) ∗−−→ (S′1, v1), and (S2, e) ∗−−→ (S′2, v2) then there is ∆′,M′ such that ∆ ⊆ ∆′,
M⊆M′, ∆′; ∆′ `M′ S′1 =s S′2 and ∆′; ∆′ `rS1,S2

v1
∼=s v2 : τs′ .

b). Moreover, if s′ ≤ s and τ is base type then v1 = v2.

Proof a) By using Theorem 7 together with Lemma 4.
b) If s′ ≤ s then ∆′; ∆′ `rS1,S2

v1
∼=s v2 : τs′ must be derived by (E-VAL), hence v1 = v2. �

We now illustrate our noninterference results using some simple examples of programs
typed with dependent information flow types.

Example 30 Recall our conference manager from Chapter 1, and consider the following
program that retrieves the profile of author with uid 42 and then inserts a new profile in
collection Users using some of the information previously retrieved.
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τc
def
= Σ[uid : ⊥× name : U(uid)× univ : U(uid)× email : U(uid)]

let p = first(viewUserProfile(42)) in

Users := refτc⊥ [ uid = 42, name = p.name,

univ = p.univ, email = p.email ] :: !Users

Since the new record value associates information of security level U(42) (value p) with
user id 42, this program should be deemed secure and the noninterference property
validated.

Let us interpret what the theorem says in this case. The evaluation of the assignment
operation is the relevant part of this program since the program does not compute a value
but changes the state at location Users.

Thus, to illustrate the compliance of the noninterference theorem, we will just analyse
this part of the program’s evaluation, referring back to the assignment operation as
expression e:

Users:= refτc⊥[uid=42, name=p.name, univ=p.univ, email=p.email]:: !Users

Assume U(42)#U(666),M =(Users,Users′), (l,l′), (l1,l′1), (l2,l′2), (l3,l′3), and let
S1 and S2 be stores such that

S1 = { Users 7→ l, l 7→ {l1, l2},
l1 7→ [uid = 42, name = A1, univ = A2, email = A3],

l2 7→ [uid = 666, name = B1, univ = B2, email = B3] }
S2 = { Users′ 7→ l′, l′ 7→ {l′1, l′2},

l′1 7→ [uid = 42, name = C1, univ = C2, email = C3],

l′2 7→ [uid = 666, name = B1, univ = B2, email = B3] }

We have ∆; ∆ `M S1 =U(666) S2 since the values Ai and Ci, classified as U(42), are not
visible at level U(666), by definition of store equivalence and U(42)#U(666), i.e. they are
related by (E-VALOPAQUE).

Also, we have ∆; ∆ `rS1,S2
e ∼=U(666) e : cmd⊥.

Let us, then, consider the reductions (S1; e) −→ (S′1; ()) and (S2; e) −→ (S′2; ()).

Then the resulting stores are the following

S′1 = { Users 7→ l, l 7→ {l3, l1, l2},
l3 7→ [uid = 42, name = A1, univ = A2, email = A3],

l1 7→ [uid = 42, name = A1, univ = A2, email = A3],

l2 7→ [uid = 666, name = B1, univ = B2, email = B3] }
S′2 = { Users′ 7→ l′, l′ 7→ {l′3, l1, l′2},

l′3 7→ [uid = 42, name = C1, univ = C2, email = C3],

l′1 7→ [uid = 42, name = C1, univ = C2, email = C3],

l′2 7→ [uid = 666, name = B1, univ = B2, email = B3] }
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so noninterference is satisfied, since ∆; ∆ `rS1,S2
Ai
∼=U(666) Ci : U(uid) then we have

∆; ∆ `rS1,S2
S′1(l3) ∼=U(666) S′2(l

′
3) : τ⊥c . That is, ∆; ∆ `M S′1 =U(666) S′2.

Thus, the effects of expression e are not visible at security level U(666), as expected.

Now let us consider a slight modification to the code above in the assignment operation.

Example 31 This program will now associate the contents of the profile of author with id
42 to a profile of author with id 666, via the assignment expressions (expression e′ from
this point onwards), using the same initial stores S1 and S2 of Example 30.

τc
def
= Σ[uid : ⊥× name : U(uid)× univ : U(uid)× email : U(uid)]

let p = first(viewUserProfile(42)) in

Users := refτc⊥ [ uid = 666, name = p.name,

univ = p.univ, email = p.email ] :: !Users

This clearly violates confidentiality, among other things, and is disallowed by the security
lattice since U(42)#U(666), so the program should be considered insecure.
Let us look this in detail. Suppose that ∆; ∆ `rS1,S2

e′ ∼=U(666) e′:cmd⊥.
After the reduction steps (S1; e′) −→ (S′1; ()) and (S2; e′) −→ (S′2; ()), we have

S′1 = { Users 7→ l, l 7→ {l3, l1, l2},
l3 7→ [uid = 666, name = A1, univ = A2, email = A3],

l1 7→ [uid = 42, name = A1, univ = A2, email = A3],

l2 7→ [uid = 666, name = B1, univ = B2, email = B3] }
S′2 = { Users′ 7→ l′, l′ 7→ {l′3, l′1, l′2},

l′3 7→ [uid = 666, name = C1, univ = C2, email = C3],

l′1 7→ [uid = 42, name = C1, univ = C2, email = C3],

l′2 7→ [uid = 666, name = B1, univ = B2, email = B3] }

But now, ∆; ∆ `M S′1 6=U(666) S′2 since after executing e′ the values Ai and Ci of the new
record are observable at level U(666), and ∆; ∆ `rS1,S2

Ai 6∼=U(666) Ci : U(uid).
This is captured by the notion of store equivalence since it enforces Ai and Ci to be
equivalent, so since they are not it means the stores are not equivalent and, as expected,
the thesis of non-interference theorem is not satisfied. Thus we conclude that e′ cannot
be well-typed. In fact, to type e′ we would need to introduce field dependency uid to
obtain the reference’s type to add to Users. However, since p.name, p.univ, and p.email

have security level U(42), and we cannot entail from the constraint set uid .
= 42, then

we cannot apply rule (E-REFINERECORD) to obtain the dependent sum type τc.

Of course, insecure programs like Example 31 are rejected by our type system. In this
particular case, it would not be possible to give the perhaps expected dependent type

96



4.4. DISCUSSION

τc, to record [uid = 666, sid= p.sid, name = p.name, univ = p.univ, email =

p.email] using rule (T-REFINERECORD) because the security level of p.name, p.univ, and
p.email is U(42) but field uid has value 666. Thus, as shown in Example 30, well-typed
programs do not leak confidential data.

4.4 Discussion

In this chapter, we presented the main soundness result for our dependent information
flow type system, noninterference. Together with type safety, noninterference ensures that
well-typed programs are compliant with the prescribed security policy (according to the
defined security lattice).

In Chapter 3, we defined label types as the subset of dependent information flow types
that type label indexes in security labels. In particular, we stated that a label index can
only be a basic value, a collection or a record value, so the types of label indexes can
only be the base types, collection type and record type. Additionally, we restricted label
types to only be classified at level ⊥ only. This restriction is convenient in the formulation
of noninterference in our dependent information flow types setting, without restricting
much the expressiveness of our analysis as can be seen in the examples. Notice that label
indexes, as values inside security labels, are never directly observed by programs.

A way of enabling label types to be classified at any security label, we would have to
extend expression equivalence to include type for each expression ∆1; ∆2 `rS1,S2

e1 : τs2
1
∼=s

e2 : τs2
2 . For example, if the security level of a record field may depend on a high security

data, then the types of the dependent fields could be of slightly different types (differing
on the index). That is, essentially, equivalent types would have the same structure but
would differ on values undistinguishable at the observation level. This type equivalence
could be formulated using a relation ∆1; ∆2 ` τs2

1
∼=s τs2

2 .
In the following chapter, we will discuss some applications of this work. Namely, how

one can reason about data confidentiality in data-centric systems and how one can apply
our analysis to a data manipulation language.
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PROGRAMMING WITH DEPENDENT INFORMATION

FLOW TYPES

In this chapter we discuss the applications of this thesis work, which are twofold: a)
examples of enforcing data-dependent information flow policies in data-centric applica-
tions; and b) how our approach can be applied to type check primitives of a typical data
manipulation language.

We show the former through an example of typical data-centric systems programmed
in our core language in Section 5.1, and the latter by showing our encodings of typical DML
primitives and how its typing rules can be derived from our type system (Section 5.2).

5.1 An Academic Information Manager System Scenario

We have shown in Chapter 1 how to reason about data confidentiality in a conference man-
ager system, in this section we further illustrate with another toy example, an academic
information manager system.

In this scenario, a user of the system can be either a student or faculty member. The
system stores data concerning its users’ information, including a student’s curriculum and
tuition balance, a faculty member’s department and salary, the evaluations of students in
courses, and a student’s final grades in “database tables” which we will represent in our
core programming language as lists of (references to) records (e.g., mutable lists).

For our academic information manager example, we declare “database tables” as:

τ = Σ[ suid: int⊥, curriculum: intU(suid), tuition_balance: intU(suid) ]⊥

σ = Σ[ puid: int⊥, department: int⊥, salary: intU(puid)]⊥

δ = Σ[ puid:int⊥, cuid:int⊥, criteria:intP(puid,cuid), test:intS(>,cuid),

scores: ref(Σ[ suid: int⊥, score: intS(suid,cuid)]∗⊥ )⊥ ]⊥

υ = Σ[ suid: int⊥, cuid: int⊥, grade: intS(suid,cuid) ]⊥
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let Studts = refref(τ)∗⊥ (refτ [])::{} in

let Faculty = refref(σ)∗⊥ (refσ [])::{} in

let Evals = refref(δ)∗⊥ (refδ [])::{} in

let Grades = refref(υ)∗⊥(refυ [])::{}

Where Studts stores information for each student; Faculty keeps track of faculty infor-
mation such as their department and salary; Evals stores information regarding students’
evaluation tests, namely: the id of the professor (evaluator), the id of the course whom the
test concerns about, the criteria defined for the test (including its solution), and the scores
obtained in a course’s evaluation test; and Grades registers a student’s final grade in its
enrolled courses.

The system offers operations to add new data as well as some listing operations, we
exemplify some of them.

Example 32 Operation enrollStudent2Course enrols a given student to a given course,
initialising the final grade as 0.

let enrollStudent2Course = λ(s, c).

let new_rec = refυ [suid = s, cuid = c, grade = 0]

in Grades := new_rec :: !Grades

Example 33 Operation viewAverageScore computes a given student’s average of all
evaluations of a given course

let viewAverageScore = λ (s, c).

let counter = ref 0 in

( foreach (x in !Evaluations) with avg = 0 do

let tuple = !x in

if( tuple.cuid = c) then

foreach (y in !(tuple.scores)) with sum = 0 do

( if (y.suid = s) then

( counter := !counter + 1;

y.score ) + sum

else sum

) + avg

else avg

)/!counter

Example 34 Operation computeFinalGrade4Course is a join operation between tables
Evaluations (via operation viewAverageScore) and Grades to compute the final grade
of all enrolled students in a given course.
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let computeFinalGrade4Course = λ(c).

foreach(x in !Grades) with y = skip do

let tuple = !x in

let s = tuple.suid in

let up_rec = [suid = s, cuid = c, grade =

viewAverageScore(s ,c) ]

in x := up_rec

Before explaining the types declared for each collection, we introduce the security labels
used in this system to classify data. Thus, we assume the following security levels for our
academic information manager system:

• ⊥, for data observable by anyone;
• U(uid), for data observable by registered user with id uid;
• S(suid,cuid), for data observable by student with id suid enrolled in course of id
cuid;
• P(puid,cuid), for data observable by professor with id puid that teaches course of

id cuid;
• >, for data observable by the admin user.

As seen in Chapter 3, the security lattice is required to enforce `(v, u, w) ≤ `(v,>, w)

and `(v,⊥, w) ≤ `(v, u, w). So, for example, for all uid we have U(⊥) ≤ U(uid) ≤
U(>). Moreover, we can see U(>) as the approximation (by above) of any U(uid), e.g,
standing for the standard label U.

We interpret security labels indexed by > or ⊥ as follows:

• S(⊥,⊥), denotes the security compartment accessible to any student;
• P(⊥,⊥), stands for the security compartment accessible to any professor;
• S(>,>), represents the security compartment containing the information of all

students;
• P(>,>) denotes the security compartment containing the information of all profes-

sors;
• S(suid,⊥), stands for a student that has no authority over enrolled courses;
• P(puid,⊥), denotes a professor that has no authority over allocated courses;
• S(suid,>), stands for registered users with uid suid that are students;
• P(puid,>), represents registered users with uid puid that are professors,
• S(>, cuid), stands for the security compartment of all students enrolled in course

with id cuid;
• P(>, cuid) represents the security compartment of all professors of the course

with id cuid.
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We can now discuss the types given for the above collections. So we have the following
types for the contents of Studts, Faculty, Evals, and Grades, respectively:

τ
def
= Σ[ suid : ⊥× CV : U(suid)× tuitions : U(suid) ]⊥

σ
def
= Σ[ puid : ⊥× dep : U(puid)× salary : U(puid) ]⊥

δ
def
= Σ[ puid:⊥× cuid:⊥× criteria:P(puid, cuid)× test:S(>, cuid)× scores:γ⊥ ]

γ
def
= ref(Σ[ suid : ⊥ × score : S(suid, cuid) ]∗⊥)

υ
def
= Σ[ suid : ⊥× cuid : ⊥× grade : S(suid, cuid) ]⊥

Our goal is to statically ensure, by typing, the confidentiality of the data stored in the
academic information manager system. So, the security policy that we want to ensure is
the following:

• A registered user’s personal information (including both students and faculty sensi-
tive data) is only observable by himself/herself, meaning no other registered user can
see it;

• The contents of a test’s criteria (including the test’s solution) can be observable only
by the professor of the course it concerns;

• The test and its scores are only visible to all enrolled students – as well as the corre-
sponding course’s professors;

• The final grade of a course can only be observed by the student it concerns.

For our academic information manager, and in order to define policy above, we have
the following axioms (quantifiers ranging over natural numbers) that define the security
lattice of the system:

∀uid. U(uid)≤ S(uid,_) (Axiom 3)

∀uid. U(uid)≤ P(uid,_) (Axiom 4)

∀cuid. S(_, cuid)≤ P(_,cuid) (Axiom 5)

Axiom 5 state that information observable by a student of a given course is also observable
to a professor of the said course, while Axiom 3 and Axiom 4 denote that data visible to a
registered user is also observable by a student or professor, respectively, if the ids match
(the id represents the same user).

So, essentially, these axioms together with the defined policy (prescribed in the types),
disallow for students to see tests in a course which they are not enrolled in and prevents
from any student to see other student’s scores or final grades in evaluations and courses,
respectively. Moreover, only professors allocated to a course may see its tests, criteria and
scores.
Thus, the types presented, together with the security lattice, establish the intended security
policy. We will illustrate below with some examples on how these work to disallow
insecure programs.
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Consider then the following code

Example 35 This code snippet retrieves the average score of student with id 42 for the
course with id 70 and then updates the student’s final score with the obtained average

let grades_val = viewAverageScore(42,70)

in foreach(x in !Grades) with y = skip do

let t_grade = !x in

if(t_grade.suid = 42 and t_grade.cuid = 70) then

let up_rec = [ suid = t_grade.suid,

cuid = t_grade.cuid, grade = grades_val ]

in x := up_rec

The type of Grades collection is υ,

Σ[ suid : int⊥ × cuid : int⊥ × grade : intS(suid,cuid) ]⊥

which is a dependent sum type where the security level of some fields depend on the
actual values bound to other fields. For instance, notice that the security level of the
grade field is declared as S(suid,cuid) where suid and cuid are other fields of the (thus
dependent) record type.

So, in the first part of the code snippet, we extract the average score associated to stu-
dent with suid = 42 for course with cuid = 70 so, according to type υ, the grades_val
identifier has security label S(42,70).

Then we update the student’s final score in mutable collection Grades whose suid

value is 42 and cuid 70 with values t_grade.suid, t_grade.cuid, and grades_val,
respectively.

Since we are adding a record whose suid = 42 and cuid = 70 (which we know from
t_grade.suid = 42 and t_grade.cuid = 70 in the conditional), then the expected
type is υ where in place of the indexes suid and cuid we have the runtime values 42 and
70, respectively. That is, we expect the new record value

[suid = t_grade.suid, cuid = t_grade.cuid, grade = grades_val]

to be typed as Σ[suid : ⊥× cuid : ⊥× grade : S(42, 70)].
Because we are using the “old” values of fields suid and cuid for the new record value

then, of course, they have the expected type. Finally, since identifier grade has security
level S(42,70), then the assignment operation of Example 35 is deemed secure.

On the other hand, if we change the last conditional to be if t_grade.suid = 666

and t_grade.cuid = 70, then we would be attempting to update record of suid = 666,
so the record value

[ suid = t_grade.suid, cuid = t_grade.cuid, grade = grades_val ]
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would have type Σ[suid : ⊥× cuid : ⊥× grade : S(666, 70)].
But since we are using identifier grades_val for the field grade, which we already

checked to have security level S(42,70), then this assignment operation is not typeable
and thus deemed insecure.

This is intended, of course, since we were using the average score of student with id 42

as the final grade of student with id 666 for the course with id 70, so the latter student was
using private information from the former potentially for his benefit (if, say, the former’s
grade was greater then the latter’s).

Consider now the following operation

let viewStudentProfile = λ (uid_a).

foreach (x in !Studts) with y = {} do

let t_usr = !x in

if (t_usr.suid = uid_a) then t_usr::y else y

Function viewStudentProfile returns a collection of records of dependent sum type
whose security labels on fields CV, and tuitions depend on the value of the parameter
uid_a. A precise typing for viewStudentProfile is

Π(uid_a:⊥).Σ[suid:⊥×CV:U(uid_a)×tuitions: U(uid_a)]∗⊥

Now say a user with id 10, so we assume his observational level is then U(10), attempts
to observe the result of the viewStudentProfile(42). Then, in order for this attempt
to be successful the system tries to establish that U(42)≤ U(10), for the fields CV and
tuitions. This, however, is not possible since the security lattice disallows such flow.

Indeed, in fact the security levels are incomparable U(10)# U(42). So, a user with
id 10 can observe the record (its structure) and the projection of field suid but not the
projection of field CV and tuitions, as intended by the defined policy.

Let us conclude with a final example to illustrate our analysis in this scenario.

Example 36 The addCriteria operation is used by a professor to define the criteria of an
evaluation test.

let addCriteria = λ(p, c).

foreach (x in !Evals) with y = skip do

let tuple = !x in

if(tuple.puid = p and tuple.cuid = c) then

let up_rec = [ puid = tuple.puid,

cuid = tuple.cuid,

criteria = defineTestCriteria(c,tuple.test),

test = tuple.test,

scores = tuple.scores ]

in x := up_rec
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Function defineTestCriteria returns a given evaluation test’s criteria for a given course
and has type ( Π(u:⊥, t:⊥); S(>,u) )⊥. Notice that its return type in the call
defineTestCriteria(c,tuple.test) has security label S(>, c).

Additionally, we know that tuple has the type of the collection’s references (type δ).
So, in order to typecheck the assignment expression x := up_rec, we need to check that
up_rec has the same type as the prescribed type for the collection’s elements, δ. Namely,
we have to check if defineTestCriteria(c,tuple.test) has type P(puid,cuid).

As we said, the type for defineTestCriteria(c,tuple.test) is S(>, c) but since
it has a dependency, we need to infer a value for it. In this case, because we know
by the conditional tuple.cuid = c, we can index the security level by field selection
tuple.cuid, which allows us to type the assignment operation since field cuid is bounded
by the dependent sum type of the record being used for the assignment.

Then we can type defineTestCriteria(c, tuple.test) with type S(>,cuid) and
thus, due to S(>,cuid) ≤ P(⊥,cuid) (Axiom 5), we can up-classify
defineTestCriteria(c,tuple.test) with P(puid,cuid).

Notice that this up-classification is only possible to professors allocated to the course
whose cuid is tuple.cuid, so only those professors will be able to see the added criteria
for the evaluation test.

So we can, finally, type the record up_rec with the dependent sum type

Σ[puid:⊥×cuid:⊥×criteria:P(puid,cuid)×test:S(>,cuid)×scores:υ]⊥

Thus this program is deemed secure.

We now proceed with how we can reason about confidentiality in Data Manipulation
Languages’ applications.

5.2 Data Manipulation Languages

We have shown in [35] how value-dependent security labels are useful to express “row-
level” security policies for Data Manipulation Language (DML) applications via a typed
λ-calculus equipped with SQL-like DML primitives (inspired in proposals such as [7, 14,
38]). We will now show our dependent information flow types can be applied to such
applications by encoding DML primitives in our core language and showing how we can
derive the typing rules of these primitives [35] with our type system.

We begin by explaining the semantics of typical DML primitives: entity t(m1:τs1
1 ,. . .,

mn:τsn
n )in e denotes the allocation of a new database relation named t with attributes m1

to mn; from (x in t) where c select e denotes the projection of a set of attributes e
in a relation t for which condition c holds; insert e in t denotes the insertion of a tuple
denoted by expression e in the relation t; update (x in t) where c with e denotes
the replacement of each tuple in the relation t for which condition c holds by the tuple
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expressed by evaluating e, where x denotes the initial tuple value in c and e. Expression
e is required to produce a tuple of the same type as the table, thus mentioning all of its
fields. This does not limit the generality of the update primitive, since old values can be
reused in the updated fields through x in e. Finally, delete (x in t) wjere c denotes
the deletion from relation t of the set of tuples for which the condition c is met.

5.2.1 A Conference Manager using DML primitives

We illustrate typical DML primitives by revisiting our conference manager system example
from previous chapters.

We begin with the declaration of the entities (“database tables”)

entity Users(uid:⊥, name:U(uid), univ:U(uid), email:U(uid)) in

entity Submissions(uid:⊥, sid:⊥, title:A(uid,sid),

abst:A(uid,sid), paper:A(uid,sid)) in

entity Reviews(uid:⊥, sid:⊥, PC_only:PC(uid,sid),

review:A(>,sid), grade:A(>,sid)) in . . .

and proceed with the presented operations of the conference manager system

let viewUserProfile = λ uida.

( from(x in Users) where x.uid = uida select x )

let viewAuthorPapers = λ uida. ( from (x in Submissions)

where x.uid = uida

select x)

let viewAssignedPapers = λ uidr.

( from (x in Reviews)

where x.uid = uidr

select ( from (y in Submissions)

where y.sid = x.sid

select y ) )

let addCommentSubmission = λ uid_r, sidr.

( foreach(p in viewAssignedPapers(uid_r)) with dummy = skip do

if(p.sid == sidr ) then

update (x in Reviews)

where x.sid = p.sid

with [uid= x.uid, sid= x.sid,

PC_only= comment(p.uid,p.sid,p),

review= x.review, grade= x.grade] )

Operation from (x in t) where condition select e
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So functions viewUserProfile and viewAuthorPapers are simple queries to entities
Users and Submissions, respectively; function viewAssignedPapers is a join opera-
tion between entities Reviews and Submissions; and function addCommentSubmission

updates all the tuples that match the submission id of each resulting tuple of query
viewAssignedPapers for the given input.

Finally, we show some of the code snippets we presented in Chapter 1, we begin with
Example 4

let t = first( from(x in Submissions)

where x.uid = 42 and x.sid = 70

select x.title )

in update (x in Submissions)

where x.uid =42 and x.sid = 70

with [uid= x.uid, sid= x.sid, title= t, abs= x.abs, paper= x.paper]

let t = first( from(x in Submissions)

where x.uid = 42 and x.sid = 70

select x.title )

in update (x in Submissions)

where x.uid =32

with [uid= x.uid, sid= x.sid, title= t, abs= x.abs, paper= x.paper]

As we have seen before, the first code snippet is secure while the latter is insecure because
we are updating the tuple of an author using another author’s information.

Let us see a modification of function addCommentSubmission where the update oper-
ation is applied to all resulting tuples of query viewAssignedPapers for the given input.
that match the submission id of each resulting tuple of query viewAssignedPapers for
the given input.

let addCommentSubmission = λ uid_r, sidr.

( foreach(p in viewAssignedPapers(uid_r)) with dummy = skip do

if(p.sid == sidr ) then

update (x in Reviews)

where true

with [uid= x.uid, sid= x.sid,

PC_only= comment(p.uid,p.sid,p),

review= x.review, grade= x.grade] )

That is, we do not filter out those tuples whose submission id does not match the input,
therefore this version of the function addCommentSubmission is insecure because we
might be interfering with other submission’s reviews.

We conclude with the following code snippet

let p = first(viewUserProfile(42) ) in
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insert [uid= 42, name= p.name, univ= p.univ, email= p.email] in Users

that inserts a new tuple in entity Users using the profile of user with id 42 (retrieved by
query viewUserProfile). This is deemed secure since we are associating the retrieved
information with the author of id 42.

5.2.2 Encoding of DML primitives

Let us illustrate how we can derive typed DML primitives based on our core language,
given that
τ = Σ[m1 : τs1

1 × . . .×mn : τsn
n ] and s = ⊥.

We begin with entity declarations,

entity t(m1:τs1
1 , . . . , mn:τsn

n ) in e def
= let t = refref(τs)∗s ( (refτs []):: {}) in e

so entities can be encoded in our language as collections of (references of) record values,
each representing a tuple of the entity.

Let us proceed with entity manipulation primitives, starting with queries to an entity

from (x in t) where c select e def
= foreach(x in !t) with y = {} do

if c then e::y else y

so a query to an entity under condition c corresponds to an iteration of the collection
that represents the entity, accumulating the records that satisfy the given condition into a
collection.

Insertions to an entity can be encoded as follows

insert e in t def
= let new_rec = refτs e in t := new_rec:: !t

which essentially consists in creating a new reference with the record value representing
the new tuple, and then add it to the collection denoting the entity.

Removing a tuple from an entity given a condition is encoded as

delete (x in t) where c def
= let res = foreach(x in !t) with y = {} do

if not c then x::y else y

in t ::= res

consisting in computing a new collection of records that do not satisfy the condition.

Finally an update operation on an entity is encoded by the following

update (x in t) where c with e def
= foreach(x in !t) with y = skip do

if c then x := e else skip
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so, basically, we need to iterate over the collection representing the entity to assign the
new record value to all references representing tuples that satisfy the given condition.

We have shown how we can use our expressive core language, λDIFT, to encode a
typical DML language, and next we present insecure information flows that might arise in
these DML primitives.

Notice that since we can encode DML primitives into our core language then our
dependent information flow types are applicable to programs coded by DML languages.
Moreover, we can derive the typing rules presented in [35] from our type system. Therefore,
our analysis ensures data-confidentiality in these scenarios.

Next, we will discuss the insecure information flows that may arise via DML primitives.

5.2.3 Information Flow Analysis for DML Primitives

We now discuss, identify, and analyse the insecure information flows that can arise in
DML primitives. Value-dependent labels introduces some subtleties in the analysis, which
we will point out in this discussion.

As we have seen in previous chapters, types themselves play no role in the information
flow analysis so we will omit them in the discussion, focusing on the security level of
expressions instead.

We recall entity Users declaration from Chapter 1 and declare an additional one, Temp,
for the sake of this discussion:

entity Users(uid:⊥, name: U(uid), univ:U(uid), email: U(uid)) in

entity Temp(a: ⊥, b:⊥) in

let s_email = first(from (x in Users)

where x.uid = 42 select x.email) in

let pub = ‘‘my_public_email@gmail.com’’

Then, similar to what we have seen in Example 35 in the previous section, identifier
s_email has security level U(42) since we are extracting the email of user with id 42, and
pub has security level ⊥ since by default values are public.
Let us assume in the following examples U(10)# U(42).

EXPLICIT FLOWS. A program state is represented by the set of entities (locations) that
a program manipulates and the collection of tuples (references of records) they hold.
Obviously, the DML primitives that enable modification of entities state pose the same
issues that a typical assignment expression would when it comes to explicit flows.

Namely, in a insert operation

insert e in t

e corresponds to a new record to be added to the collection of (references of) records, that
represents the entity located at t.
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So we can look at this operation as an assignment to location t of the resulting collection
of adding e to the collection stored at t, that is, t := e :: !t.

Let us take a look at a couple of examples. In the following insertion

insert [a = 42, b = s_email] in Temp

an explicit flow occurs because we are storing s_email, of security level U(42), in field b

that has a lower security level, ⊥, so the operation is equivalent to b:= s_email.
The converse, however, is not true:

insert [uid = 10, . . ., email = pub] in Users

we are inserting a record that assigns a value of security level ⊥ to a field of a higher
security level U(42), equivalent to operation email:= pub.

This does not violate the non-interference property since we are increasing the value’s
security level by storing it in a container of a higher security level, and so does not violate
data confidentiality.

update (x in t) with e where c

In an update, expression e represents a record to be used to update all tuples that satisfy
condition c, say r, in entity located at t. Roughly, we can see this operation as ri := e for
all tuples (references of records) in r. So the issues posed by an update, regarding explicit
flows, are similar to those of the insert operation.

Thus, the following update

update (x in Users) with [uid = 10, . . ., email = s_email] where true

is insecure since we are updating a field of security label U(10) with information of
incomparable security label, U(42).

Notice that the declared type for field email is, in fact, U(uid) and not U(10). That is,
the security label of this field depends on the value of field uid, so our analysis needs to
be able to infer that when updating records with uid = 10 we require field email to have
label U(10).

Finally, like in insert, the converse is secure:

update (x in Users) with [uid = 10, . . ., email = pub] where true

Notice that condition c plays no part in explicit flows.

IMPLICIT FLOWS. Implicit flows may arise in DML primitives that depend on conditional
expressions to filter tuples, the issues are much like the same as in a if-then-else expression.
In particular:

from (x in t) where c select e
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a select operation filters the collection of tuples located at t and executes expression e if
the conditional expression c is satisfied.

So, regarding implicit flows, we can see this primitive as a conditional if c then e

for each tuple of entity t. That means an implicit flow can occur if the guarded expression
e changes the state. For example, the following query

from (x in Users) where x.email = pub and x.uid = 42 select leakUpdate

leakUpdate , update (y in Users)

with [uid = 10, name= y.name, univ = y.univ,

email = ‘‘youremailisgone@toobad.org’’]

where y.uid = 10

has an implicit flow because we are interfering with information of user with uid =

10 (fields uid and email via leakUpdate) based on data of incomparable security level
(field email of user with uid = 42). That is, we have something similar to the following
insecure expression

if (x.email = pub and x.uid = 42 and y.uid = 10) then

y.uid:= 10; y.email:= ‘‘youremailisgone@toobad.org’’

where the conditional expression is classified with security level U(42) because of the
usage of field emails of user with uid = 42.

update (x in t) with e where c

As stated previously, this operation updates all tuples that satisfy condition c, say r, in
entity located at t. Roughly, it is equivalent to if c then ri := e for all tuples (references
of records) in r. Then, implicit flows can occur in an update operation via its where clause
whenever its security label is higher than the security label of the updated fields:

update (x in Users)

with [uid= 10, name = x.name, univ = x.univ, email= x.email]

where x.email= s_email

here condition x.email= s_email has security level U(42) and the field being updated
(uid) has security level ⊥.

delete (x in t) where c

The delete operation removes all the tuples of a collection of tuples located at t that satisfy
the conditional expression c. Since a tuple may have fields with different security levels,
namely with lower security level than the condition c, implicit flows may occur after
executing a delete operation. For instance
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delete (x in Users) where x.email = s_email and x.uid = 42

is insecure because we remove information of security level ⊥, value of field uid for user
with uid = 42, based on a condition with a higher security level, U(42). So an attacker at
observational level ⊥ could observe the removal of these tuples.

Notice that, like before, our analysis needs to be able to infer the correct values for the
dependent security labels that occur in select, update and delete primitives. In these
particular cases, our analysis can extract relevant information from the where clauses in
order to infer the correct value for the dependent labels (as shown in the examples).

In the following section, we show how typing rules for DML can be derived using the
type system for λDIFT.

5.2.4 Deriving DML Typing Rules

We will now show how the typing rules for DML primitives can be shown admissible in
our type system. We start with primitive entity t(m1 : τs1

1 , . . . , mn : τsn
n ) in e, its typing

rule is

∆, t : [m1 : τs1
1 , . . . , mn : τsn

n ]∗⊥ `rS e : τs′

∆ `rS entity t(m1 : τs1
1 , . . . , mn : τsn

n ) in e : τs′
(T-ENTITY)

Recall our encoding

entity t(m1:τs1
1 , . . . , mn:τsn

n ) in e def
= let t = refref(τs)∗s ( (refτs []):: {}) in e

where τ = Σ[m1 : τs1
1 × . . .×mn : τsn

n ] and s = usi
↓
{m1,...,mn}.

So we can derive the following, where ∆′ = ∆, t : ref(ref(τs)∗s)⊥:

1. ∆ `rS []: τs

by (T-RECORD)

2. r ≤ s

3. ∆ `rS refτs []: ref(τs)⊥

by (T-REF), 1, 2

4. ⊥ ≤ s

5. ∆ `rS {} : ref(τs)∗s

by (T-EMPTY)
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6. ∆ `rS (refτs []):: {} : ref(τs)∗s

by (T-CONS), 3, 5

7. r ≤ s

8. ∆ `rS refref(τs)∗s ( (refτs []):: {} ): ref(ref(τs)∗s)⊥

by (T-REF), 6, 7

9. ∆′ `rS e: τs′

10. ∆ `rS let t = refref(τs)∗s ( (refτs []):: {} ) in e : τs′

by (T-LET), 8, 9

Note that the language in [35] does not have references, instead entities were treated as
locations that store mutable collections of mutable records (as encoded in our language).
So step 9 is equivalent to the premise of rule (T-ENTITY) since ∆′ = ∆, t : ref(ref(τs)∗s)⊥

and τs = Σ[m1 : τs1
1 × . . .×mn : τsn

n ]
usi
↓
{m1,...,mn} .

Next we have primitive insert e in t, its typing rule is

∆(t) = [. . . , mi:τ
si
i , . . .]∗s

∆ `rS e : [. . . , mi:τ
si
i , . . .]s

∀i r ≤ θx(S{x
.
= e}, si)

∆ `rS insert(t, e) : cmd⊥
(T-INSERT)

where θx(S{x
.
= e}, si), with x fresh, is used to approximate the concrete values in

dependencies occurring in security labels si.
So, in our encoding we have

insert(t, e)
def
= let new_rec = refτs e in t := new_rec:: !t

We assume for the next derivation: ∆(t) = ref(ref(τs)∗s)⊥, and
∆′ = ∆, new_rec : ref(τs)s.
Then, from the above encoding, we derive the following

1. ∆ `rS e : τs

2. r ≤ s

3. ∆ `rS refτs e : ref(τs)r

by (T-REF), 1, 2
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4. ∆ `rS refτs e : ref(τs)s

by (T-SUB), 3, 2

5. ∆′ `rS new_rec: ref(τs)s

by (T-ID)

6. ∆′ `rS t: ref(ref(τs)∗s)⊥

by (T-ID)

7. ⊥ ≤ s

8. ∆′ `rS !t: ref(τs)∗s

by (T-DEREF), 6, 7

9. ∆′ `rS new_rec :: !t: ref(τs)∗s

by (T-CONS), 5, 8

10. r t⊥ ≤ s

11. ∆′ `rS t := new_rec :: !t: cmd⊥

by (T-ASSIGN), 6, 9, 10

12. ∆ `rS let new_rec = refτs e in t := new_rec :: !t : cmd⊥

by (T-LET), 4, 11

So by step 1, and by (W-RECORD), we have s ≤ usi
↓
{m1,...,mn}. Thus, by step 10 we have

r ≤ usi
↓
{m1,...,mn}. This corresponds to the side-condition ∀i r ≤ θx(S{x

.
= e}, si) in the

typing rule (T-INSERT) since:

• r ≤ usi
↓
{m1,...,mn} ≡ ∀i r ≤ si

↓
{m1,...,mn} and

• ∀i si
↓
{m1,...,mn} ≤ θx(S{x

.
= e}, si)

Note that the last condition holds because by definition of `(v)↓F any dependency occur-
ring in label si is approximated by ⊥ so by the security lattice axioms we know that any
approximation to a concrete value obtained via θx(S{x

.
= e}, si) will always be greater or

equal to usi
↓
{m1,...,mn}.

We proceed with primitive from (x in t) where c select e, its typing rule is
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∆(t) = [. . . , mi:τ
si
i , . . .]∗s

S ′ = S ∪ {c .
= true}

∆, x : [. . . , mi:τ
si
i , . . .]s `rS c : Boolu

∆, x : [. . . , mi:τ
si
i , . . .]s `rts′S ′ e : τu

∆ `rS select(t, x.c, x.e) : τ∗u
(T-SELECT)

Let us recall our encoding of the select primitive

select(t, x.c, x.e) def
= foreach(x in !t) with y = {} do

if c then e::y else y

We assume in the following derivation:
∆(t) = ref(ref(τs)∗s)⊥, and
∆′ = ∆,x : ref(τs)s, y : τ′∗u.
So we have the following type derivation for the encoding above

1. ∆ `rS t: ref(ref(τs)∗s)⊥

by (T-ID)

2. ⊥ ≤ s

3. ∆ `rS !t: ref(τs)∗s

by (T-DEREF), 1,2

4. ∆ `rS {} : τ′∗u

by (T-EMPTY)

5. ∆′ `rS c : boolu

6. ∆′ `rtuS∪{c .
=true} e : τ′u

7. ∆′ `rtuS∪{c .
=true} y : τ′∗u

8. ∆′ `rtuS∪{c .
=true} e :: y : τ′∗u

by (T-CONS), 6, 7

9. ∆′ `rtuS∪{c .
=false} y : τ′∗u

by (T-ID)

10. ∆′ `rS if c then e :: y else y : τ′∗u

by (T-IF), 5, 8, 9
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11. ∆ `rS foreach(x in !t) with y = {} do

if c then e :: y else y : τ′∗u

by (T-LET), 3, 10

We point out that expression e, in step 6, which is the query to be applied to the collection
of tuples that satisfy condition c, is typed in our system as ∆′ `rtuS∪{c .

=true} e : τ′u.
This typing corresponds to the one we find in rule (T-SELECT), which is
∆, x : [. . . , mi:τ

si
i , . . .]s `rts′S∪{c .

=true} e : τu, such that in this case we have τ = τ′.

Let us now see primitive delete (x in t) where c, with typing rule

∆(t) = [. . . , mi:τ
si
i , . . .]∗s

∆, x : [. . . , mi:τ
si
i , . . .]s `rS c : Bools

′

∀i r t s′ ≤ θx(S ∪ {c
.
= true}, si)

∆ `rS delete(t, x.c) : cmd⊥
(T-DELETE)

Our encoding of the delete primitive

delete(t, x.c)
def
= let res = foreach(x in !t) with y = {} do

if not c then x::y else y

in t := res

Assuming

∆(t) = ref(ref(τs)∗s)⊥,
∆′ = ∆,x : ref(τs)∗s, y : ref(τs)∗sts

′
,

∆′′ = ∆, res : ref(τs)∗sts
′
.

We derive for the encoding above

1. ∆ `rS t: ref(ref(τs)∗s)⊥

by (T-ID)

2. ⊥ ≤ s

3. ∆ `rS !t: ref(τs)∗s

by (T-DEREF), 1,2

4. ∆ `rS {} : ref(τs)∗sts
′

by (T-EMPTY)

5. ∆′ `rS not c : bools
′
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6. s′ ≤ st s′

7. ∆′ `rS not c : boolsts
′

by (T-SUB), 5, 6

8. ∆′ `rts′S∪{not c .
=true} x : ref(τs)s

by (T-ID)

9. s ≤ st s′

10. ∆′ `rts′S∪{not c .
=true} x : ref(τs)sts

′

by (T-SUB), 8, 9

11. ∆′ `rts′S∪{not c .
=true} y : ref(τs)∗s

by (T-ID)

12. s ≤ st s′

13. ∆′ `rts′S∪{not c .
=true} y : ref(τs)∗sts

′

by (T-SUB), 11, 12

14. ∆′ `rts′S∪{not c .
=true} x::y : ref(τs)∗sts

′

by (T-CONS), 10, 13

15. ∆′ `rts′S∪{not c .
=false} y : ref(τs)∗s

by (T-ID)

16. s ≤ st s′

17. ∆′ `rts′S∪{not c .
=false} y : ref(τs)∗sts

′

by (T-SUB), 15, 16

18. ∆′ `rS if not c then x::y else y : ref(τs)∗sts
′

by (T-IF), 14, 17

19. ∆ `rS foreach(x in !t) with y = {} do

if not c then x::y else y : ref(τs)∗sts
′

by (T-FOREACH), 3, 4, 18
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20. ∆′′ `rS t: ref(ref(τs)∗s)⊥

by (T-ID)

21. ∆′′ `rS res: ref(τs)∗sts
′

by (T-ID)

22. st s′ ≤ s

23. ∆′′ `rS res: ref(τs)∗s

by (T-SUB), 21, 22

24. r t⊥ ≤ st s′

25. ∆′′ `rS t := res : cmd⊥

by (T-ASSIGN), 20, 23, 24

26. ∆ `rS let res = foreach(x in !t) with y = {} do

if not c then x::y else y

in t := res : cmd⊥ by (T-LET), 19, 25

Then by step 9 and step 22 we have st s′ = s.

And by step 6 and step 24 we conclude s′ ≤ s and r ≤ s, respectively.

Therefore, we can infer r t s′ ≤ usi
↓
{m1,...,mn} (since s = usi

↓
{m1,...,mn}) holds. This cor-

responds to the condition imposed in rule (T-DELETE), ∀i r t s′ ≤ θx(S ∪ {c
.
= true}, si),

since:

• r t s′ ≤ usi
↓
{m1,...,mn} ≡ ∀i r t s′ ≤ si

↓
{m1,...,mn} and

• ∀i si
↓
{m1,...,mn} ≤ θx(S ∪ {c

.
= true}, si)

Note that the last condition holds because by definition of `(v)↓F any dependency
occurring in label si is approximated by ⊥ so by the security lattice axioms we know that
any approximation to a concrete value obtained via θx(S ∪ {c

.
= true}, si) will always be

greater or equal to si
↓
{m1,...,mn}.

We conclude with primitive update (x in t) with e where c, whose typing rule is
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∆(t) = [. . . , mi:τ
si
i , . . .]∗s

S ′ = S ∪ {c .
= true}

∆, x : [. . . , mi:τ
si
i , . . .]s `rS c : Bools

′

∆, x : [. . . , mi:τ
si
i , . . .]s `rS ′ e : [. . . , mi:τ

si
i , . . .]s

′

∀i r t s′ ≤ θx(S ′, si) u θy(S{y
.
= e}, si)

∆ `rS update(t, x.e, x.c) : cmd⊥
(T-UPDATE)

Our encoding of the update primitive

update(t, x.e, x.c)
def
= foreach(x in !t) with y = skip do

if c then x := e else skip

For the next derivation, we assume

∆(t) = ref(ref(τs)∗s)⊥,
∆′ = ∆,x : ref(τs)s, y : cmd⊥.
The type derivation for the encoding above is as follows

1. ∆ `rS t: ref(ref(τs)∗s)⊥

by (T-ID)

2. ⊥ ≤ s

3. ∆ `rS !t: ref(τs)∗s

by (T-DEREF), 1,2

4. ∆′ `rS skip : cmd⊥

5. ⊥t s′

6. ∆′ `rS skip : cmds
′

by (T-SUB), 4, 5

7. ∆′ `rS c : bools
′

8. ∆′ `rts′S∪{c .
=true} x : ref(τs)s

by (T-ID)

9. ∆′ `rts′S∪{c .
=true} e : τs

10. (r t s′) t s ≤ s
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11. ∆′ `rts′S∪{c .
=true} x := e : cmd⊥ by (T-ASSIGN), 8, 9, 10

12. ⊥ ≤ s′

13. ∆′ `rts′S∪{c .
=true} x := e : cmds

′

by (T-SUB), 11, 12

14. ∆′ `rts′S∪{c .
=false} skip : cmd⊥

15. ⊥ ≤ s′

16. ∆′ `rts′S∪{c .
=false} skip : cmds

′

by (T-SUB), 14, 15

17. ∆′ `rS if c then x := e else skip : cmds
′

by (T-IF), 7, 13, 16

18. ∆ `rS foreach(x in !t) with y = skip do

if c then x := e else skip : cmds
′

by (T-FOREACH), 3, 6, 17

Note that we type the expression e (step 9), used to update the tuples that satisfy condition
c, in our type system as ∆′ `rts′S∪{c .

=true} e : τs.
This corresponds to the premise in rule (T-UPDATE)

∆, x : [. . . , mi:τ
si
i , . . .]s `rS∪{c .

=true} e : [. . . , mi:τ
si
i , . . .]s

′

The difference resides in

(i) we require the computational context to be r t s′ instead of just r, since in our encoding
expression e is typed in an assignment operation under a conditional’s branch;

(ii) in our system we type expression e with security level s instead of s′

But (i) is used to prevent implicit flows on writes occurring on expression e, which in this
case we know to be a record value, so we could in fact, if not for the conditional rule, type
expression e safely under computational context r like it is done in its DML counterpart.

As for (ii) we have to check if the record value matches the type for the entity’s tuples
but on its DML counterpart rule, we have to check if this record value can be raised the
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security level of the condition being used for the update, c, because we treat the update
operation as a conditional.

Also, by step 10 we have (r t s′) t s ≤ s , that is, r t s′ ≤ usi
↓
{m1,...,mn} (since s =

usi
↓
{m1,...,mn}). This corresponds to the condition imposed on rule (T-UPDATE)

∀i r t s′ ≤ θx(S ′, si) u θy(S{y
.
= e}, si)

This is so because:

• r t s′ ≤ usi
↓
{m1,...,mn} ≡ ∀i r t s′ ≤ si

↓
{m1,...,mn} and

• ∀i si
↓
{m1,...,mn} ≤ θx(S ′, si) u θy(S{y

.
= e}, si)

Note that the last condition holds because by definition of `(v)↓F any dependency occurring
in label si is approximated by ⊥ so by the security lattice axioms we know that any
approximation to a concrete value obtained via θx(S ∪ {c

.
= true}, si) or θy(S{y

.
= e}, si)

will always be greater or equal to si
↓
{m1,...,mn}.

We conclude by taking note that the type given by our type system to our encoding for
the update primitive is more conservative than it’s DML counterpart typing rule since we
require, using our type system, the encoding to be typed as cmds

′
instead of typing with

security level ⊥.

5.3 Discussion and Related Work

In this chapter we have discussed applications of this thesis work. First we illustrated, via
a toy example, how we can use our type system to reason about data confidentiality in
a data-centric system. We proceeded, then, to show how our core language can encode
typical Data Manipulation Language’s (DML) primitives.

By encoding such primitives we can apply our type-based information flow analysis
to ensure data confidentiality in typical DML programs. We also discussed the possible
information flows that can arise in DML primitives, followed by typing derivations for
each encoding. We then established that we can derive from our typing rules, the rules
that one would expect for DML primitives (based on those presented in [35]). We also
have illustrated how we could use DML primitives to program our conference manager
example more directly.

There has been a growing interest in studying security in data-centric applications, to
cite a few of the relevant work: [7, 10, 12, 15].

In [15] Corcoran et al. present a static analysis to enforce label-based security policies
in the web programming language SELinks. Their analysis is able to enforce relevant
information flow policies in web applications although the authors do not discuss the
noninterference property. The approach taken by Chlipala [12] consists in adding program
specifications expressed by SQL-queries which are then typechecked, while in [7], Bierman
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et al. use refinement types and semantic subtyping to enforce properties that may be
relevant for security. In [10], Caires et al. present a functional language with SQL-based
constructions to represent and manipulate information. Their goal consists in statically
enforcing, via a type-based approach, access control policies in a data-centric setting.
They use refinement types that can specify policies that depend on the current state of a
database. Their work however does not deal with any kind of information flow analysis.

Unlike our approach, these works do not provide a value-dependent information flow
analysis leading to non-interference results, as this thesis work proposes. Moreover, our
core language can easily encode common data manipulation language (DML) operations
(as shown in this chapter) and thus our analysis is general enough to ensure noninter-
ference on data-centric applications, which usually involves expressive security policies,
depending on runtime values, often required in realistic applications.

To argue furrher about the practicality of our framework, in the following chapter we
present a typechecking algorithm for our dependent information flow type system and
discuss its prototype implementation.
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ALGORTIHMIC TYPECHECKING

In this chapter we present a typechecker algorithm of our type system and discuss details
of its prototype implementation.

6.1 Algorithm

In this section we discuss a type-checking algorithm for a suitable annotated version of
our core language. The algorithm allows us to verify many interesting examples, including
those presented in this thesis, and lead to a prototype implementation that can be found at
http://ctp.di.fct.unl.pt/DIFTprototype/ (a live version can be found at rise4fun:
http://rise4fun.com/DIFT/).

For pragmatic reasons, we require type annotations on reference creation, empty
collection, record fields, and variant labels, leaving for future work possible inference. We
introduce type cast constructs, of the forms [τs]e and ]s[e, useful to manually up-classify
primitive values and raise the level of the computational context, respectively. Although
this development should be essentially seen as a proof-of-concept, as we do not formally
prove completeness, we believe that given enough annotations, the algorithm should
be able to reproduce a derivation for a typeable program (up to completeness of the
underlying constraint solving procedure).

The algorithm depends on subsidiary procedures for subtyping, which we represent
by the σ <: τ tests; on a constraint solving procedure, which we represent by S |= V .

=

U tests; and on a procedure that checks whether a type is well-formed. The auxiliary
procedure elimDeps(S , [. . . , mi:τ

si
i = ei, . . .]) eliminates field dependencies on the given

(possibly dependent) record type, and returns an unrefined record type by attempting the
most precise possible approximations to the field values vi given by each expression ei,
using S{x .

= ei} |= x .
= vi. Also we have procedure upwardAppr(τs, x) to eliminate free

occurrences of variable x in τs, by upward approximation (τs)↑x, as defined in Chapter 3.
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The subtyping test essentially implements the subtyping rules, given a suitable security
lattice, while the check for well-formedness of types implements the well-formed types
rules. For simplicity, we will omit in the algorithm presentation of the well-formedness
checks but point out in the discussion when relevant. In our prototype implementation
the security lattice can be user-defined, in a preamble to the code to be type checked. As
far as constraint solving is concerned, our current prototype relies on an encoding of the
required entailment checks into queries of the Z3 SMT solver [42].

Since our typechecking algorithm is syntax-oriented, its efficiency is dependent on the
decidability of the SMT solver. That is, the completeness of the algorithm is relative to the
completeness of the required constraint solving problem. However, in all the tests made,
the programs were always typechecked quickly so we believe our typechecking algorithm
is, in general, efficient.

We now present the type-checking algorithm, tc(∆,S , r, e), that given as input a typing
environment ∆, a constraint set S (both initially empty), the current computational context
r (begins as⊥) and an expression e, returns as output the type of expression e, if successful,
and a typing error otherwise.

We begin with unit values, booleans, integers, abstractions, variants, and identifiers. The
typechecking procedure is as expected from our typing rules

tc(∆,S , r, ()) def
= cmd⊥

tc(∆,S , r, true) def
= bool⊥

tc(∆,S , r, 1) def
= int⊥

tc(∆,S , r, λ(x:τs).e) def
= let σt = tc(∆ ∪ {x:τs},S , r, e) in (Πx:τs.r; σt)⊥

tc(∆,S , r, #n(e) as {. . . , n : τs, . . .}t) def
=

if tc(∆,S , r, e) <: τs then {. . . , n : τs, . . .}t else typerror

tc(∆,S , r, x) def
= if x ∈ ∆ then ∆(x) else typerror

Then we have our type cast constructs,

tc(∆,S , r, [τs]e) def
= if tc(∆,S , r, e) <: τs then τs else typerror

tc(∆,S , r, ]s[e) def
= if r ≤ s then tc(∆,S , s, e) else typerror

where, for the up-cast primitive, we check if the type of expression e is a subtype of the
upcast type. While in the context cast operator we check if the current computational
context security level is lower or equal than the cast security level. If so then we typecheck
expression e under the cast computational context security level, otherwise a type error is
returned.

When typechecking an application

tc(∆,S , r, e1(e2))
def
=
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if tc(∆,S , r, e1) = (Πx:τs.r′; σt)q and τs <: tc(∆,S , r, e2) and

r ≤ r′ and t ≤ q{⊥/x} and t ≤ r′ then

if S |= e2
.
= v then σt{v/x} else upwardAppr(σt, x)

else typerror

we match the first expression’s type with a dependent product type, check whether the
declared type (for the function’s parameter) is a subtype of the argument type, check if its
computational context security level is below the function’s computational context security
level, and if the function’s security level is below both the function’s computational context
level and the function’s result security level. This is what one would expected but notice
that, afterwards, we have to approximate the runtime value for the argument expression
via S |= e2

.
= v and then replace the occurrences of x in the return type with the entailed

value v, if it is derivable. Otherwise we do a upward approximation (see Definition 31 in
Chapter 3) to eliminate, if possible, all occurrences of x in the return type accordingly.

Let us now take a look at the algorithm for the case of a record expression

tc(∆,S , r, [. . . , mi:τ
si
i = ei, . . .]) def

= in

let Σ[. . .×mi:τ′i
s′i× . . .]s = elimDeps(S , [. . . , mi:τ

si
i = ei, . . .])

forall ei. σt
i = tc(∆,S , r, ei)

if σt
i is concrete then

if σt
i <: τ′i

s′i then Σ[. . .×mi:τ
si
i × . . .]⊥ else typerror

else if σt
i <: τi

si then Σ[. . .×mi:τ
si
i × . . .]⊥ else typerror

As we already stated, record fields are type annotated. So we first use procedure elimDeps
to eliminate field dependencies in the given (possibly dependent) record – this step is
equivalent to applying rule (T-UNREFINERECORD) – thus obtaining a dependent sum type
whose field’s types, τ′i

s′i , have no field dependencies.
Then, we typecheck each field expression ei whose type σt

i may have dependencies
(as long it is well-formed). If it is a concrete type (no field dependencies), then we must
check whether it is a subtype of the unrefined (concrete) type. Otherwise, if it has field
dependencies, we verify if it is a subtype of the declared (record field), possibly depen-
dent, type. If any of these checks fails the algorithm outputs a type error, otherwise
returns the dependent sum type obtained with the given field type annotations – that is,
Σ[. . .×mi:τi

si× . . .]⊥.

To typecheck a field access expression

tc(∆,S , r, e.m)
def
=

let τs = tc(∆,S , r, e) in

if τ = Σ[. . .×m:σ`(u)× . . .] then

if u is concrete then σ`(u)

else ( if u = n and S{x .
= e} |= x.n .

= v then σ`(v) else (σ`(v))↑m )

else typerror
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tc(∆,S , r, refτs e) def
= let σt = tc(∆,S , r, e) in

if σt <: τs and r ≤ s then (refτs)r else typerror

tc(∆,S , r, !e) def
= let σt = tc(∆,S , r, e) in

if σt <: (refτs)t and t ≤ s then τs else typerror

tc(∆,S , r, e1 := e2)
def
= let σt = tc(∆,S , r, e1) in

let τs = tc(∆,S , r, e2) in

if σt <: (refτs)t and r t t ≤ s then cmd⊥ else typerror

Figure 6.1: Typechecking algorithm: Imperative expressions

the procedure first checks if the type of expression e is a dependent sum type.
Afterwards, for the given field we check whether its security level is concrete. If so,

then we return the type for the given field.
If the security level of the given field’s type has a field dependency n, then the algorithm

attempts to approximate the field value via the constraint solving procedure, using fresh
variable x to denote the record expression e. If successful then the output is the concrete
field’s type σ`(v)(using the entailed value v), otherwise the algorithm returns an upward
approximation, (σ`(v))↑m.

We conclude with the case primitive

tc(∆,S , r, case e(n · x : τs ⇒ e)) def
= let {n : τ′s′}q = tc(∆,S , r, e) in

if {n : τ′s′}q 6<: {n : τs}t then typerror

else forall ei. σqi = tc(∆, xi : τi
si ,S , r t q, ei)

return σtqi

The algorithm starts by checking if the expressions being case-analysed is a variant type,
namely a subtype of the variant type obtained through the variant label’s type annotations.
Then, typechecks all the branches of the case, expressions ei, with computational context
level r t q, and checks whether their base type is the same between all branches. The
output will then be the base type of the branches expressions with the security same level
as all branches and the expression being case-analysed.

The remaining cases of the algorithm are a direct translation of the typing rules and
can be found in Figure 6.1, and Figure 6.2.

6.2 Implementation

In this section we discuss some implementation details of our prototype typechecker.
Our typechecker is implemented in Scala and uses Z3 SMT solver for constraint solving

during the typechecking procedure. As input for Z3 SMT solver we use SMT-LIB 2.0 1

1http://www.smt-lib.org/
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tc(∆,S , r, if e1 then e2 else e3)
def
=

let τs = tc(∆,S , r, e1) in
if τ = bool then
( let τ2

s2 = tc(∆,S ∪ {e1
.
= true}, r t s, e2) in

let τ3
s3 = tc(∆,S ∪ {e1

.
= false}, r t s, e3) in

if τ2 = τ3 then τsts2ts3
2 else typerror

) else typerror

tc(∆,S , r, let x = e1 in e2)
def
=

let σt = tc(∆,S , r, e1) in
if σt <: τs then tc(∆ ∪ {x:τs},S{x .

= e1}, r, e2)
else typerror

tc(∆,S , r, {e1, . . . , en})
def
=

forall ei do
( let τi

si = tc(∆,S , r, ei) in
if τi

si 6<: τ1
s1 then typerror )

return τ1
∗s1

tc(∆,S , r, e1::e2)
def
= let σt = tc(∆,S , r, e1) in

let τ′s = tc(∆,S , r, e2) in
if τ′ = τ∗ then
(if σt <: τs then τ∗s else typerror) else typerror

tc(∆,S , r, foreach(e1, e2, x.y.e3))
def
=

let σ′t = tc(∆,S , r, e1) in
if σ′ = σ∗ then
( let τs = tc(∆,S , r, e2) in

let τq = tc(∆ ∪ {x:σt, y:τs},S , r, e3) in τstttq )
else typerror

tc(∆,S , r, e1 ∨ e2)
def
= let τt = tc(∆,S , r, e1) in

let σs = tc(∆,S , r, e2) in
if τ = bool and σ = bool then booltts else typerror

tc(∆,S , r,¬e) def
= let τs = tc(∆,S , r, e) in

if τ = bool then bools else typerror

tc(∆,S , r, V1 = V2)
def
= let τt = tc(∆,S , r, V1) in

let σs = tc(∆,S , r, V2) in
if τ = σ then booltts else typerror

Figure 6.2: Typechecking algorithm: Pure expressions
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scripts with Z3’s extensions, which we generate with a scala library 2 (a Generic SMT
Front-End for Z3) for that purpose. Calls to the solver only occur when typechecking a
function application, a record, field access, and upcast operations (since the cast type may
be a dependent sum type).

Dependent sum types are encoded as Z3’s recursive datatypes, for instance to encode
the type of record [uid = 1, count = 23] we have:

( declare-datatypes ()

( ( Record<uid^Int.count^Int> ( mkRecord (uid Int) (count Int) ) ) ) )

Notice that we do not encode security labels since they play no role in this step of our
analysis (constraint solving dependencies).
Let us now see some examples (using our prototype’s syntax) of calls to the SMT solver.

Example 37 Suppose we have the following program:

(fun x: Sigma[ uid: int^BOT, count: int^U(uid) ]^BOT =>

if x.uid == 1 then x.count else [int^U(1)] 0);;

Then we need to make a call to the SMT solver in the field access x.count since it has
a dependency in its security label. To do so, we first add to the current constraint set,
{x.uid == 1

.
= true} (because we are typing under the then-branch), followed by the

constraint {y .
=x}, for a fresh y, since we are going to “unrefine” record x.

Then, to generate the intended SMT script, we first declare a constant fconst to entail
the value of the field dependency, that is {y .

=x, x.uid == 1
.
= true} |= y.uid .

=fconst.
This constraint set is encoded as the universal closure of the formula

((x.uid = 1) ≡ true) ∧ ((x = y) ≡ true)

so to derive knowledge from it we generate the following logical implication:

∀x,y ((x.uid = 1) ≡ true) ∧ ((x = y) ≡ true) =⇒ y.uid =fconst

Thus we generate the following SMT script:

(declare-datatypes ()

((Record<uid^Int.count^Int> (mkRecord (uid Int) (count Int)))))

(declare-const fconst Int)

(declare-const y Record<uid^Int.count^Int>)

(declare-const x Record<uid^Int.count^Int>)

(assert

(forall ( (x Record<uid^Int.count^Int>) (y Record<uid^Int.count^Int>) )

2https://bitbucket.org/tvcsantos/smtlib/overview
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(=> (and (equiv (= ((as uid (Int)) x) 1) true) (equiv (= y x) true) )

(= ((as uid (Int)) y) (as fconst (Int)))) ) )

(check-sat)

(get-model)

and then ask the solver for a model, obtaining the value 1 for the constant fconst.

This example shows how we encode record values (and dependent sum types), field pro-
jection and the entailment that allows our analysis to “unrefine” record x, obtaining the
concrete dependent sum type Σ[uid: int⊥ × count: intU(1)].
Next we show how we entail functional dependencies.

Example 38 In the following function we retrieve the field count of a dependent record
given two parameters of the function

fun u: int^BOT, s: int^BOT,

r: Sigma[uid:int^BOT, sid:int^BOT, count:int^U(uid,sid)]^BOT =>

[int^U(u,s)] (if(r.uid == u and r.sid == s) then r.count else 0 );;

So when we call the solver for the field access operation r.count, we attempt to “unrefine”
record r like we did in the previous example.

However, the formula generated will be unsat since no constant can be entailed
from the constraint set, that is from {r.uid == u and r.sid == s, y .

=r} |=y.uid= v1 and
{r.uid == u and r.sid == s, y .

=r} |=y.sid= v2 we cannot entail constants for v1 and v2.
For these cases, we declare an uninterpreted function symbol whose parameters match

all constraints free variables that have the same type as the dependency we are attempting
to eliminate. That is, for instance, to eliminate dependency sid, we declare function
symbol f_y with two parameters of type Int, corresponding to the free variables u and s

of constraints in {r.uid == u and r.sid == s, y .
=r}.

Then, we add axioms for the projection of each parameter of the uninterpreted function
symbol, in this example we add: ∀u,s f_y(u, s) = u ∨ ∀u,s f_y(u, s) = s.

Finally, we generate the same kind of formula we did in the previous example but
instead of entailing the value of the field dependency via a constant, we use the uninter-
preted function symbol f_y:

(∀u,s f_y(u, s) = u ∨ ∀u,s f_y(u, s) = s)

∧

(∀r, u, s, y ((r.uid = u ∧ r.sid = s) ≡ true ∧ (y = r) ≡ true) =⇒ y.sid = f_y(u, s))

Thus the generated SMT-LIB script to eliminate field dependency sid is
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(declare-datatypes ()

( ( Record<uid^Int.sid^Int.count^Int> ( mkRecord (uid Int) (sid Int)

(count Int) ) ) ) )

(declare-const s Int)

(declare-const r Record<uid^Int.sid^Int.count^Int>)

(declare-const u Int)

(declare-const y Record<uid^Int.sid^Int.count^Int>)

(declare-fun f_y (Int Int) (Int) )

(assert

(and (or (forall ( (u Int) (s Int) ) (= ( (as f_y (Int) ) u s) u))

(forall ( (u Int) (s Int) ) (= ( (as f_y (Int) ) u s) s)) )

(forall ( (r Record<uid^Int.sid^Int.count^Int>) (u Int) (s Int)

(y Record<uid^Int.sid^Int.count^Int>) )

(=> ( and (equiv (and

(= ((as uid (Int)) r) u)

(= ((as sid (Int)) r) s)) true)

(equiv (= y r) true) )

(= ( (as sid (Int) ) y) ( (as f_y (Int) ) u s) ) ) )

) )

(check-sat)

(get-model)

which will return a model with the brujin index 2 that represents the second parameter of
the uninterpreted function symbol f_y. This means we eliminate dependency sid with
the function parameter s, as intended.

We now point out some of our prototype’s open problems.

In the next section, we illustrate with some examples that can be run in our prototype.

6.3 Examples

We now present some examples using the prototype typechecker’s syntax. The full set of
examples can be found in Appendix A.

We use the following lattice definition, part of the prototype’s configuration, in the
following examples

forall [x] A(_,x) ~> PC(_,x)

forall [x] U(x) ~> A(x,_)

forall [x] U(x) ~> PC(x,_)

which corresponds to the axioms presented in Chapter 1.
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6.3.1 Simple Examples

We start with some simple examples to illustrate our typechecker.
Input:

(fun x: Sigma[usr: int^BOT, counter: int^U(usr)]^BOT =>

if x.usr == 1 then x.counter else [int^U(1)] 0);;

Output:

Type: ( Pi(x: Sigma[usr: int^BOT, counter: int^U(usr)]^BOT).BOT;

int^U(1) )^BOT

Here we declare a function that given a record (storing the counter of a user) retrieves the
counter of user 1 or returns 0 if the record does not corresponds to user’s 1.

So while typechecking the body of the function, and more concretely the conditional’s
then-branch, we obtain security level U(usr) from the projection of field counter but this
is not well-formed (field dependencies only occur in the scope of a dependent sum type),
so we have to eliminate the field dependency usr.

Since we know x.usr == 1, we obtain security level U(1) in the then-branch. So, since
we are raising the security level of expression 0 to U(1), the function’s body is typed with
security level U(1).

Now suppose we have
Input:

(fun x:Sigma[usr: int^BOT, counter: int^U(usr)]^BOT =>

if x.usr == 1 then x.counter else [int^U(2)] 0);;

Output:

Type: ( Pi(x: Sigma[usr: int^BOT, counter: int^U(usr)]^BOT).BOT;

int^U(TOP) )^BOT

As before, the then-branch is typed with security level U(1). However, we are up-casting
the else-branch to security level U(2).

So the security level of the conditional is the least upper bound of the security level of
its branches, that is U(1)tU(2) = U(>), hence the security level of the function’s result
type is U(TOP).

Let us look further into dependent functions
Input:

let f = (fun x:int^BOT => [int^U(x)] x) in f ;;

Output: Type: (Pi(x: int^BOT).BOT; int^U(x))^BOT

We upcast the body of the function so we can type f as a dependent function type.
So if we call function f with integer 1.
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Input:

let f = (fun x:int^BOT => [int^U(x)] x) in f(1) ;;

Output: Type: int^U(1)

Then we obtain a result of security level U(1).
However, if we sum the results of invoking f with integers 1 and 2

Input:

let f = (fun x:int^BOT => [int^U(x)] x) in f(1) + f(2) ;;

Output: Type: int^U(TOP)

Then we obtain a result of security level U(TOP).

Let us now see some examples of dependent records
Input:

[Sigma[usr: int^BOT, counter: int^U(usr)]^BOT]

[usr: int^BOT = 1, counter :int^U(1) = 2] ;;

Output:

Type: Sigma[usr: int^BOT, counter: int^U(usr)]^BOT

In this snippet, we are attempting to cast the record value with a dependent sum type
where field counter’s security level depends on field usr.

Thus, the typechecker verifies if the record value can be refined into the cast type,
which in this case is true since the value of field usr in the record value matches the value
of the security level of field counter in the record value.

Now suppose the value of field usr changes
Input:

[Sigma[usr: int^BOT, counter: int^U(usr)]^BOT]

[usr: int^BOT = 2, counter :int^U(1) = 2] ;;

Output:

Wrong type:

Expected declared type Sigma[usr: int^BOT, counter: int^U(usr)]^BOT

but found type Sigma[usr: int^BOT, counter: int^U(1)]^BOT

Then the typechecker will not be able to refine the record value, hence it gives a type error
stating the types do not match.
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We now refer back to Example 12 in Chapter 3.
Input:

let topSecrets = ( let h = [bool^TOP] true in

if h then {1,2,3,4,5}

else {} : { int^TOP } ) ;;

foreach (x in topSecrets) with count = 0 do count + 1 ;;

Output: Type: int^TOP

As we have seen, the result of counting the elements of a collection has its elements
security level. So in this case, since we are counting a collections of integers classified at >,
the result is only observable at security level >.
However,
Input:

let boxed = { [usr: int^BOT = 42, pwd :int^TOP = 1234],

[usr: int^BOT = 24, pwd :int^TOP = 4321] };;

foreach (x in boxed) with count = 0 do count + 1 ;;

Output: Type: int^BOT

we can observe the boundaries of a collection of records, and the boundaries of the records
themselves, since they are both classified at ⊥.

This is secure because we still cannot observe the value of field pwd (classified at >)
even if we can see the record containing it.

To conclude this set of examples, we now discuss some examples with references.
Input:

let low = ref 0 in

if [bool^TOP] true then

low := 1 ;;

Output: Insecure flow detected from label TOP to label BOT!

As one would expect, this is an insecure assignment operation because data stored in low

will depend on the value of a higher classified value.

The converse, as seen before, is secure.
Input:

let high = ref [int^TOP] 0 in

if true then

high := 1 ;;

Output: Type: cmd^BOT
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Now suppose we try to circumvent explicit flows with implicit flows, by defining a write
operation that writes on a low container.

Input:

let low = ref 0 in

let write = (fun r: ref(int^BOT)^BOT, x:int^BOT => r := x)

if [bool^TOP] true then

write(low,1) ;;

Output: Insecure flow detected from label TOP to label BOT!

However, this implicit flow is detected because function write was typed under compu-
tational context ⊥ so it can only be invoked in computational contexts that are lower or
equal than ⊥.

On the other hand, this condition leads to some false negatives like the following

Input:

let high = ref [int^TOP] 0 in

let write = ( fun r: ref(int^TOP)^BOT, x: int^BOT => r := x )

in if [bool^TOP] true then

write(high,1) ;;

Output: Insecure flow detected from label TOP to label BOT!

The snippet above is secure since we are writing on a container with security level> under
a computational context with the same security level. But since we are performing the
assignment via function write, then our typechecker conservatively rejects this program
as being insecure.

So in order to typecheck this write operation we must raise the computational context
under which we type the function write, we achieve this with primitive ]s[e:

Input:

let high = ref [int^TOP] 0 in

let write = ( ]TOP[ (fun r: ref(int^TOP)^BOT, x: int^BOT => r := x ) )

in if [bool^TOP] true then

write(high,1) ;;

Output: Type: cmd^TOP

Now the typechecker accepts the above program as secure.
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6.3.2 A Conference Manager System

Let us see how we encode our conference manager system from Chapter 1. We begin
with type declarations for the collections Users, Submissions, and Reviews as well the
declaration of the collections themselves.

Input:

typedef usr_type =

{ ref (Sigma[ uid: int^BOT, name: int^U(uid),

univ: int^U(uid), email: int^U(uid) ]^BOT)^BOT };;

typedef sub_type =

{ ref (Sigma[ uid: int^BOT, sid: int^BOT, title: int^A(uid,sid),

abst: int^A(uid,sid), paper: int^A(uid,sid) ]^BOT)^BOT };;

typedef rev_type =

{ ref (Sigma[ uid: int^BOT, sid: int^BOT, PC_only: int^PC(uid,sid),

review: int^A(TOP,sid), grade: int^A(TOP,sid)]^BOT)^BOT };;

let Users = ref {}: usr_type ;;

let Submissions = ref {}: sub_type ;;

let Reviews = ref {}: rev_type ;;

Next we encode viewAuthorPapers (Example 2 from Chapter 1):

Input:

typedef ret_type =

{ Sigma[ uid: int^BOT, sid: int^BOT, title: int^A(uida,sid),

abst:int^A(uida,sid), paper:int^A(uida,sid) ]^BOT } ;;

let viewAuthorPapers = fun uida: int^BOT =>

[ ret_type ]( foreach(x in !Submissions) with y = {}: ret_type do

let tuple = !x in

if(tuple.uid == uida) then tuple::y else y ) ;;

let n = 42 in (viewAuthorPapers(n)) ;;

Output:

Type: { Sigma[uid: int^BOT, sid: int^BOT, title: int^A(42, sid),

abst: int^A(42, sid), paper: int^A(42, sid)]^BOT }

As we have seen, function viewAuthorPapers is a dependent function since its return
type (declared as ret_type above) depends on parameter uida.

So if we invoke function viewAuthorPapers with identifier n, the typechecker will
determine the value of n – given the knowledge obtained from the declaration of identifier
n– and type the call with type ret_type{42/uida}.
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Likewise for function viewAssignedPapers (Example 3 of Chapter 1):
Input:

typedef sub_elem = Sigma[uid: int^BOT, sid: int^BOT, title: int^A(uid,sid),

abst:int^A(uid,sid), paper:int^A(uid,sid) ]^BOT ;;

typedef sub = { sub_elem } ;;

let viewAssignedPapers = fun uidr: int^BOT =>

( foreach(x in !Reviews) with res_x = {}:sub do

let tuple_rev = !x in

if(tuple_rev.uid == uidr ) then

( foreach(y in !Submissions) with res_y = {}:sub do

let tuple_sub = !y in

if(tuple_sub.sid == tuple_rev.sid) then

tuple_sub::res_y

else res_y )

else res_x ) ;;

let r = first(viewAssignedPapers(42)) in r ;;

Output:

Type: Sigma[uid: int^BOT, sid: int^BOT, title: int^A(uid, sid),

abst: int^A(uid, sid), paper: int^A(uid, sid)]^BOT

Let us now see the code snippet (Example 4):
Input:

let t = first(

( foreach(x in !Submissions) with y = {}: { int^A(42,70) } do

let t_sub = !x in

if(t_sub.uid == 42 and t_sub.sid == 70 ) then t_sub.title::y else y) )

in foreach(x in !Submissions) with y = skip do

let t_sub = !x in

if(t_sub.uid == 42 and t_sub.sid == 70) then

let new_rec = [uid: int^BOT = t_sub.uid, sid: int^BOT = t_sub.sid,

title: int^A(uid, sid) = t,

abst: int^A(uid, sid) = t_sub.abst,

paper: int^A(uid, sid) = t_sub.paper ]

in x := new_rec ;;

Output: Type: cmd^BOT

which we saw in Chapter 1 to be secure.

And now a slightly modified version of the same code snippet, where we attempt to
associate to author with id 32 information of author with id 42:
Input:
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let t = first(

( foreach(x in !Submissions) with y = {}: { int^A(42,70) } do

let t_sub = !x in

if(t_sub.uid == 42 and t_sub.sid == 70 ) then t_sub.title::y else y) )

in foreach(x in !Submissions) with y = skip do

let t_sub = !x in

if(t_sub.uid == 32) then

let new_rec = [uid: int^BOT = t_sub.uid, sid: int^BOT = t_sub.sid,

title: int^A(uid, sid) = t,

abst: int^A(uid, sid) = t_sub.abst,

paper: int^A(uid, sid) = t_sub.paper ]

in x := new_rec ;;

Output:

Wrong type: Expected declared type

Sigma[uid: int^BOT, sid: int^BOT, title: int^A(uid, sid),

abst: int^A(uid, sid), paper: int^A(uid, sid)]^BOT

but found type

Sigma[uid: int^BOT, sid: int^BOT, title: int^A(42, 70),

abst: int^A(32, sid), paper: int^A(32, sid)]^BOT

As expected, our typechecker deems the above code insecure because the declared depen-
dent sum type (obtained from the declared fields types) does not match the expressions
new_rec’s dependent sum type. In particular, the type for field title does not match.

Recall the operation addCommentSubmission (Example 5 from Chapter 1)

Input:

let comment = fun u: int^BOT, s: int^BOT, r: sub_elem =>

[ int^A(u,s) ] (if(r.uid == u and r.sid == s) then r.paper else 1) in

let addCommentSubmission = fun uid_r: int^BOT, sidr: int^BOT =>

( foreach(p in viewAssignedPapers(uid_r)) with dummy = skip do

if(p.sid == sidr) then

( foreach(y in !Reviews) with dummy2 = skip do

let trev = !y in

if(trev.sid == p.sid) then

( let up_rec = [uid: int^BOT = trev.uid,

sid: int^BOT = trev.sid,

PC_only:int^PC(uid,sid) = comment(p.uid,p.sid,p),

review: int^A(TOP, sid) = trev.review,

grade: int^A(TOP, sid) = trev.grade ]

in y := up_rec ) ) )

in addCommentSubmission;;

Output: Type: ( Pi(uid_r: int^BOT, sidr: int^BOT).(cmd^BOT))^BOT

137



CHAPTER 6. ALGORTIHMIC TYPECHECKING

This program is secure, as we have seen in Chapter 1, because we can raise the security
level of expression comment(p.uid,p.sid,p) to the declared type for field PC_only via
subtyping.

However, if we remove the last conditional, if(trev.sid == p.sid):
Input:

let comment = fun u: int^BOT, s: int^BOT, r: sub_elem =>

[ int^A(u,s) ] (if(r.uid == u and r.sid == s) then r.paper else 1) in

let addCommentSubmission = fun uid_r: int^BOT, sidr: int^BOT =>

( foreach(p in viewAssignedPapers(uid_r)) with dummy = skip do

if(p.sid == sidr ) then

( foreach(y in !Reviews) with dummy2 = skip do

let trev = !y in

if(trev.sid == p.sid ) then

( let up_rec = [uid: int^BOT = trev.uid,

sid: int^BOT = trev.sid,

PC_only:int^PC(uid,sid) = comment(p.uid,p.sid,p),

review: int^A(TOP, sid) = trev.review,

grade: int^A(TOP, sid) = trev.grade ]

in y := up_rec ) ) )

in addCommentSubmission;;

Output:

Wrong type: Expected declared type

Sigma[uid: int^BOT, sid: int^BOT, PC_only: int^PC(uid, sid),

review: int^A(TOP, sid), grade: int^A(TOP, sid)]^BOT

but found type

Sigma[uid: int^BOT, sid: int^BOT, PC_only: int^A(TOP, sidr),

review: int^A(TOP, sid), grade: int^A(TOP, sid)]^BOT

Then we are not able to raise the security level of comment(p.uid,p.sid,p) (which would
be A(>,sidr) because of the first conditional) to the required type. This is, of course,
detected by our typechecker.

We give more examples tested in our prototype typechecker in Appendix A.

6.4 Discussion

In this chapter, we have presented a typechecking algorithm that lead to the implemen-
tation of a prototype typechecker. We proceeded with the discussion of technical details
regarding the prototype’s implementation, followed by a set of examples tested in our
prototype.

Our prototype is a proof-of-concept typechecker of our dependent information flow
types, and not a fully fledged programming language. As such, the first version still has
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some unimplemented features. For instance, it does not support yet variant values and
types nor records and collections indexes in our prototype. We leave extensions to future
work.

In the past years, there has been some many efforts in implementations of program-
ming languages that ensure noninterference via a type-based information flow analysis.
While we developed a prototype typechecker, in this section we will discuss some of these
implementations and how they relate to our prototype with respect to the expressiveness
of the security policies.

Jif [43, 46] extends Java with static analysis of information flow with a decentralised
label model [45] (DLM). Flow Caml [58], is an extension of Objective Caml with a type
system to trace information flow [52]. An interesting feature of this language is its type
inference algorithm. Both previous tools are unable to express fine-grained security policies
like ours, where labels may be dependent on runtime data values. Jif, however, is able to
express dynamic policies through dynamic labels, which we do not have in our setting.

Other implementations of programming languages for verifying system security have
emerged: Jeeves [68], a DSL library for Scala that enforces noninterference during execution
time; Fabric [34], a high-level programming language for open distributed applications
based on Jif; Paragon [9], a programming language that uses Flow Locks-based policy lan-
guage [8] to enforce security policies; F* [62], a dependently typed ML-style programming
language based on prior work [60].

In Paragon, security policies may be defined using Flow Locks policy language and
types instead of labelled types. On one hand this could be an advantage to a programmer
by allowing him/her to focus on security policies as orthogonal to the program being
developed; but on the other hand, it can be cumbersome to write expressive security
policies while with labelled types one can effortlessly write such policies.

Moreover, although it is possible to have policies dependent on runtime principals
(dynamic policies, much like in Jif) it does not seem possible to express value-dependent
security policies as we do with our dependent information flow types.

Regarding F*, it can arguably encode the same type of value-dependent security
policies as we do in our approach however in our approach doing so is more lightweight
and simple since it does not involve axiomatizing security labels, lattice and its operators
via logic formulae. Instead we simply require data to be annotated with value-dependent
security labels that express security concerns.

The following chapter closes this thesis with some concluding remarks and possible
future directions for this thesis work.
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In this thesis we introduced and studied a novel theory of dependent information flow
types, which provide a direct, natural and elegant way to express and statically enforce
fine grained security policies on programs (Chapter 3).

In our framework, the security level of data types, rather than just the data types
themselves, may depend on runtime values, unlike in traditional dependent type systems.
We have illustrated, including by means of many examples, how the proposed approach
provides a general, expressive and fine grained way to formulate realistic, yet challenging,
security policies (Chapter 1, Chapter 4). Namely, we have showed how we can reason
about data confidentiality in data-centric systems by means of DML primitives encodings
in our approach (Chapter 5).

Our development is carried out on top of a minimalistic λ-calculus with general
references and collections (Chapter 2), thus adding generality and application scope to the
approach. Our main technical results are expressed by type safety and non-interference
theorems (Chapter 4), which ensure the soundness of our value dependent information
flow analysis: well-typed programs do not disclose information in ways violating the
prescribed security polices.

Lastly, we have presented a typechecking algorithm that lead to the implementation of
a proof-of-concept typechecker prototype (http://ctp.di.fct.unl.pt/DIFTprototype/)
that already allows us to verify many interesting examples (Chapter 6). A live version of
the tool is also avaiable at Microsoft’s rise4fun http://rise4fun.com/DIFT/.

We point out some possible directions for this thesis work. It would be interesting to
investigate formulations of our type system integrating notions of type refinement (e.g,
[67]), and type inference. The former would increase the expressiveness of the security
policies, namely with refinement types one could conceive some form of declassification
of information.

For instance, going back to our conference manager system, one could prevent authors
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from reading submission’s reviews (initially classified at PC level) until the author’s
notification process started. One could express such concern by having reviews typed as

{x : strPC(uid,sid) | authorNotification(sid) => A(>, sid)}

such that predicate authorNotification(sid) only held whenever the process of notify-
ing authors of submission sid started, then the security level would be declassified to
A(>,sid) so all submission’s authors could see the reviews.

Notice that this is not a typical refinement type that usually take the form {x : τ | φ(x)},
here we would associate to the type a security label and a logical formulae that also
includes a security label (for declassification purposes), so it would be something like
{x : τs | φ(x, v) => t} (where v is a label index) to state that whenever φ holds, the
security type associated to τ is t.

One interesting point of this approach would be that one could have predicates de-
pending on the security label dependencies instead of just the language’s terms. To the
best of our knowledge, declassification has not been studied within the context of value-
dependent security labels.

As another follow up topic, since information flow analysis per se is not enough to
ensure full data security guarantees, we would like to investigate the combination of our
dependent information flow types with an adequate form of role-based access control.
Again, as explored previously by [10], refinement types could play a key role. Another
path could be to integrate our dependent information flow types into a DLM-style (which
allows for access control) type-based information flow analysis.

Static type-based information flow system can be very conservative and dismiss as
insecure programs that are actually secure. On the other hand, a purely dynamic type-
based information flow analysis is limited to the execution paths the program takes, nor
foreseeing other possible insecure paths (for e.g., implicit flows may not be detected).

As such, it would be interesting to study combinations of static and dynamic typ-
ing in the context of our dependent type system in order to increase the precision (i.e.,
permissiveness) of the analysis.
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PROTOTYPE TYPECHECKER EXAMPLES

In this appendix we show the remaining examples verified by our prototype typechecker.

A.1 An Academic Information Manager System

We start with our academic information manager system, presented in Section 5.1 of
Chapter 5. We use the following lattice definition for this example:

forall [x] U(x) ~> P(x,_)

forall [x] U(x) ~> S(x,_)

forall [x] S(_,x) ~> P(_,x)

which corresponds to the axioms presented in Section 5.1.

Next we declare the collections and their types (via type declarations) used by the
system: Students, Faculty, Evals and Grades.

Input:

typedef student_type =

{ ref (Sigma[ suid: int^BOT, curriculum: int^U(suid),

tuition_balance: int^U(suid) ]^BOT )^BOT } ;;

typedef faculty_type =

{ ref (Sigma[ puid: int^BOT, department: int^BOT,

salary: int^U(puid) ]^BOT)^BOT } ;;

typedef evaluation_type =

{ ref (Sigma[ puid: int^BOT, cuid: int^BOT,

criteria: int^P(puid,cuid), test: int^S(TOP,cuid),

scores: ref ( { Sigma[suid: int^BOT,

score: int^S(suid,cuid)]^BOT } )^BOT

]^BOT)^BOT } ;;
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typedef grade_type =

{ ref (Sigma[ suid: int^BOT, cuid: int^BOT,

grade: int^S(suid,cuid) ]^BOT)^BOT } ;;

let Students = ref {}: student_type ;;

let Faculty = ref {}: faculty_type ;;

let Evals= ref {}: evaluation_type ;;

let Grades= ref {}: grade_type ;;

We can now encode the first operations, enrollStudent2Course and viewAverageScore

(Example 32 and Example 33 from Chapter 5):

Input:

let enrollStudent2Course = fun s: int^BOT, c: int^BOT =>

Grades := ref [suid: int^BOT = s, cuid: int^BOT = c, grade: int^S(suid,

cuid) = 0] :: !Grades ;;

let viewAverageScore = fun suid: int^BOT, cuid: int^BOT =>

let counter = ref 0 in

( foreach (x in !Evals) with avg = 0 do

let tuple = !x in

if( tuple.cuid == cuid) then

foreach (y in !(tuple.scores)) with sum = 0 do

( if (y.suid == suid) then

( counter := !counter + 1;

y.score ) + sum

else sum

) + avg

else avg

)/!counter ;;

As we have seen, function enrollStudent2Course adds a new student record to a given
course’s enrolled student records and function viewAverageScore computes a given
student’s average on a given course.

Next we encode addCriteria and defineTestCriteria (Example 36) from Chapter 5):

Input:

let defineTestCriteria = fun u:int^BOT, t: int^BOT => [ int^S(TOP,u) ] t+10 ;;

defineTestCriteria;;

let std = 42 in (defineTestCriteria(std, 10)) ;;

Output:

Type: (Pi(u: int^BOT, t: int^BOT).BOT; int^S(TOP, u))^BOT

Type: int^S(TOP, 42)
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So function defineTestCriteria is a dependent function since its return type depends on
parameter u. So if we input the function’s identifier we obtain its type (Pi(u: int^BOT,

t: int^BOT).BOT; int^S(TOP, u))^BOT. Now if invoke function defineTestCriteria

with identifier std, the typechecker will determine the value of std – given the knowledge
obtained from the declaration of identifier std– and type the call with type S(>,u){42/u}.

Function addCriteria adds, for a given professor, a given course’s evaluation criteria
(here represented as an integer)

Input:

typedef scores_type = ref ( { Sigma[ suid: int^BOT,

score: int^S(suid,cuid) ]^BOT } )^BOT;;

let addCriteria = fun p: int^BOT, c: int^BOT =>

foreach (x in !Evals) with y = skip do

let tuple = !x in

if(tuple.puid == p and tuple.cuid == c) then

let new_rec = [ puid: int^BOT = tuple.puid,

cuid: int^BOT = tuple.cuid,

criteria: int^P(puid,cuid) = defineTestCriteria(c,

tuple.test),

test: int^S(TOP,cuid) = tuple.test,

scores: scores_type = tuple.scores ]

in x := new_rec ;;

Output:

Type: (Pi(p: int^BOT, c: int^BOT).BOT; cmd^BOT)^BOT

This program is secure, as we have seen in Chapter 5, because we can raise the security
level of expression defineTestCriteria(tuple.cuid, tuple.test) to the declared
type for field criteria via subtyping. However, if we remove the last conditional,
if(tuple.puid == p and tuple.cuid == c):

Input:

let addCriteria = fun p: int^BOT, c: int^BOT =>

foreach (x in !Evals) with y = skip do

let tuple = !x in

let new_rec = [ puid: int^BOT = tuple.puid,

cuid: int^BOT = tuple.cuid,

criteria: int^P(puid,cuid) = defineTestCriteria(c,

tuple.test),

test: int^S(TOP,cuid) = tuple.test,

scores: scores_type = tuple.scores ]

in x := new_rec ;;

Output:
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Wrong type: Expected declared type

Sigma[ puid: int^BOT, cuid: int^BOT, criteria: int^P(puid,cuid),

test: int^S(TOP,cuid),

scores: ref( { Sigma[ suid: int^BOT,

score: int^S(suid,cuid)]^BOT } )^BOT ]^BOT

but found type

Sigma[ puid: int^BOT, cuid: int^BOT, criteria: int^S(TOP,c),

test: int^S(TOP,cuid),

scores: ref( { Sigma[suid: int^BOT,

score: int^S(suid,cuid)]^BOT } )^BOT ]^BOT

Then we are not able to raise the security level of defineTestCriteria(tuple.cuid,
tuple.test) (which is S(TOP,c)) to the required type. This is, of course, detected by our
typechecker.

We end this toy example with the following code snippet from Example 35 of Chapter 5:

Input:

let grades_val = viewAverageScore(42,70)

in foreach(x in !Grades) with y = skip do

let t_grade = !x

in if(t_grade.suid == 42 and t_grade.cuid == 70) then

let new_rec = [ suid: int^BOT = t_grade.suid,

cuid: int^BOT = t_grade.cuid,

grade: int^S(suid,cuid) = grades_val ]

in x := new_rec ;;

Output: Type: cmd^BOT

which we saw in Chapter 5 to be secure. And now a slightly modified version of the same
code snippet, where we attempt to associate to student with id 666 the grade, for a given
course, of student with id 42:
Input:

let grades_val = viewAverageScore(42,70)

in foreach(x in !Grades) with y = skip do

let t_grade = !x

in if(t_grade.suid == 666 and t_grade.cuid == 70) then

let new_rec = [ suid: int^BOT = t_grade.suid,

cuid: int^BOT = t_grade.cuid,

grade: int^S(suid,cuid) = grades_val ]

in x := new_rec ;;

Output:

Wrong type: Expected declared type

Sigma[suid: int^BOT, cuid: int^BOT, grade: int^S(suid, cuid)]^BOT
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but found type

Sigma[suid: int^BOT, cuid: int^BOT, grade: int^S(42, 70)]^BOT

As expected, our typechecker deems the above code insecure because the declared depen-
dent sum type (obtained from the declared fields types) does not match the expressions
new_rec’s dependent sum type. In particular, the type for field grade does not match.

A.2 A Cloud Storage Service

We now illustrate a cloud storage service. In this scenario, the system associates a storage
space in the cloud for each user, which is reffered to as the user’s “box”. So we begin with
the declaration of the types for the cloud store as a collection of mutable “box” interfaces.
A “box” interface has associated its user’s uid, a drop operation to store new data to the
user’s “box” and a fetch operation to retrieve data from the user’s “box”.

Input:

typedef intf_type = Sigma[ uid:int^BOT,

drop: (int^U(uid) => cmd^BOT)^BOT,

fetch: (cmd^BOT => int^U(uid))^BOT ]^BOT ;;

typedef store_type = { ref (intf_type)^BOT } ;;

let store = ref ( { } : store_type ) ;;

let usr_uid = ref [int^BOT] 0 ;;

Reference usr_uid is global to ensure each new user gets a unique identifier. We now de-
fine the operation new_box that registers a new user in the cloud storage service returning
his uid:

Input:

let new_box = fun x: cmd^BOT =>

( usr_uid := !usr_uid + 1 ;

let u = !usr_uid in

let refr = ref [ int^U(u) ] 0 in

let stub = [ uid:int^BOT = u,

drop: ( int^U(u) => cmd^BOT )^BOT =

( fun d: int^U(u) => ( refr := d + !refr ) ),

fetch: ( cmd^BOT => int^U(u) )^BOT =

( fun x: cmd^BOT => !refr ) ]

in let usr_intf = [ intf_type ] stub in

let new_usr = ref usr_intf in

( store := (new_usr :: !store) ; u ) ) ;;

Output:

Type: (Pi(x: cmd^BOT).BOT; int^BOT)^BOT
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Before being able to interact with its “box” a user must first open it via operation open_box.
This operation essentially retrieves the user’s “box” interface:

Input:

typedef open_type = { Sigma[ uid:int^BOT,

drop: ( int^U(u) => cmd^BOT )^BOT,

fetch: ( cmd^BOT => int^U(u) )^BOT ]^BOT } ;;

let open_box = fun u:int^BOT =>

( let drops = !store in

let r = (foreach (dr in drops) with acum = {}: open_type do

let d = !dr in

if (d.uid == u) then

d::acum

else acum )

in first(r) ) ;;

Output:

Type: (Pi(u: int^BOT).BOT; Sigma[uid: int^BOT,

drop: (Pi(_: int^U(u)).BOT; cmd^BOT)^BOT,

fetch: (Pi(_: cmd^BOT).BOT; int^U(u))^BOT]^BOT)^BOT

Notice that the type of open_box is a dependent function type whose return type is a
record type where some of its fields dependent on the function’s parameter.

We can now encode the following program:

Input:

let main = fun a: cmd^BOT =>

( let my_usr = new_box ( skip ) in

let my_box = open_box (my_usr) in

(

my_box.drop ( [int^U(my_usr)] 10 );

let my_data = my_box.fetch (skip) in

my_box.drop (my_data) ) ) ;;

main(skip);;

Output:

Type: cmd^BOT

In this code snippet, a user registers into the cloud storage service, obtaining his uid, and
retrieves his “box” interface by calling open_box with the given uid. Then he stores the
value 10 into his “box”, fetch all the contents stored in his “box” and stores them again in
the “box”.

Now suppose we had instead the following code snippet:

Input:
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let main_err = fun a: cmd^BOT =>

( let my_usr = new_box( skip ) in

let other_usr = new_box( skip ) in

let my_box = open_box (my_usr) in

let other_box = open_box (other_usr) in

( my_box.drop ( [ int^U(my_usr) ] 10);

let my_data = my_box.fetch (skip) in

other_box.drop ( my_data ) ) ) ;;

Output:

Wrong type on arguments: Expected declared type int^U(other_usr)

but found type int^U(my_usr)!

Two users, my_usr and other_usr, register in the cloud storage service, retrieving their
“box” interfaces respectively. Then user with uid my_usr stores the value 10 in his “box”,
and all the contents on user my_usr’s “box” are kept in identifier my_data. Finally, an
attempt to store my_data on user other_usr’s “box” is made but our typechecker deems
this operation insecure since we would be storing in a user’s “box” another user’s data,
clearly violating data confidentiality.
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In this appendix we show the omitted definitions of chapter Chapter 2.

Definition 37 (Free Variables) The set of free variables of an expression (or condition) e,
denoted as f v(e), is defined as follows:

f v(λx.e) = f v(e) \ {x}
f v(e1(e2)) = f v(e1) ∪ f v(e2)

f v(x) = {x}
f v([m1 : e1, . . . , mn : en]) =

⋃n
i f v(ei)

f v(e.m) = f v(e)
f v({e1, . . . , en}) =

⋃n
1 f v(ei)

f v(e1::e2) = f v(e1) ∪ f v(e2)

f v(foreach (e1, e2, x.y.e3)) = f v(e1) ∪ f v(e2) ∪ ( f v(e3) \ {x, y})
f v(#n(e)) = f v(e)
f v(case e(n1.x1 ⇒ e1, . . . , nn.xn ⇒ en)) = f v(e) ∪⋃n

1( f v(ei) \ {xi})
f v(let x = e1 in e2) = f v(e1) ∪ ( f v(e2) \ {x})
f v(if c then e1 else e2) = f v(c) ∪ f v(e1) ∪ f v(e2)

f v(ref e) = f v(e)
f v(e1 := e2) = f v(e1) ∪ f v(e2)

f v(!e) = f v(e)
f v(¬c) = f v(c)
f v(c1 ∨ c2) = f v(c1) ∪ f v(c2)

f v(V1 = V2) = f v(V1) ∪ f v(V2)

f v(true) = ∅
f v(false) = ∅
f v(l) = ∅
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f v(()) = ∅

Definition 38 (Substitution) We define the substitution of all free occurrences of variable
x with a value v in an expression e, denoted as e{v/x}, with the following inductive defini-
tion where we assume α-renaming of bound variables whenever necessary:

x{v/x} = v
x{v/y} = x where x 6= y
(λx : τs.e){v/x} = λx : (τs){v/x}.e
(λy : τs.e){v/x} = λy : (τs){v/x}.e{v/x} where x 6= y and y 6∈ fv(v)

(e1(e2)){v/x} = (e1){v/x}(e2{v/x})
([m1 : e1, . . . , mn : en]){v/x} = [m1 : e1{v/x}, . . . , mn : en{v/x}]
(e.m){v/x} = e{v/x}.m
({e1, . . . , en}){v/x} = {e1{v/x}, . . . , en{v/x}}
(e1::e2){v/x} = (e1){v/x}::e2{v/x}

(foreach(e1, e2, x.y.e3)){v/z} = foreach(e1{v/z}, e2{v/z}, x.y.e3) where z = x ∨ z = y
(foreach(e1, e2, x.y.e3)){v/z} = foreach(e1{v/z}, e2{v/z}, x.y.e3{v/z})

where z 6= x ∧ z 6= y and x, y 6∈ fv(v)
(#n(e)){v/x} = #n(e{v/x})
(case e(n1.x1 ⇒ e1, . . . , nn.xn ⇒ en)){v/z} = (case e{v/z}(ni.xi ⇒ e′i)

where e′i = ei{v/z} if z 6= xi and e′i = ei if z = xi and xi 6∈ fv(v)

(let x = e1 in e2){v/x} = let x = e1 in e2

(let y = e1 in e2){v/x} = let y = e1{v/x} in e2{v/x} where x 6= y and y 6∈ fv(v)

(if c then e1 else e2){v/x} = if c{v/x} then e1{v/x} else e2{v/x}
(ref e){v/x} = ref(e){v/x}
(e1 := e2){v/x} = e1{v/x} := e2{v/x}
(!e){v/x} = e{v/x}
(¬c){v/x} = ¬c{v/x}
(c1 ∨ c2){v/x} = c1{v/x} ∨ c2{v/x}
(V1 = V2){v/x} = V1{v/x} = V2{v/x}
(true){v/x} = true
(false){v/x} = false
(){v/x} = ()
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In this appendix we show the proofs of our main results and the necessary auxiliary
results. We omit some standard proofs.

C.1 Type Safety

We start with the lemmas used to prove type safety.

Lemma 11
If ∆, x : τt, ∆′ `N s and ∆ `N v : τt, then ∆, ∆′{v/x} `N s{v/x}.

Lemma 12
If ∆, x : σt, ∆′ `N τs and ∆ `N v : σt, then ∆, ∆′{v/x} `N (τs){v/x}.

Lemma 13
For all security labels s, s′, if s ≤ s′ then s{v/x} ≤ s′{v/x}.

Definition 39
We denote as ∆ `N1,N2 τs <: τ′s

′
, the well-formed subtyping relation τs <: τ′s

′
between

well formed type τs, that is ∆ `N1 τs, and the well-formed type τ′s
′
, i.e. ∆ `N2 τ′s

′
.

Lemma 14 (Substitution Lemma for Subtyping)
Let ∆, x:γp, ∆′ `N1,N2 τs <: τ′s

′
, and ∆ `rS v:γp, where v is a value, then ∆, ∆′{v/x} `N1,N2

(τs){v/x} <: (τ′s
′
){v/x}.

Proof Induction on the derivation of τs <: τ′s
′
.

Notice that if γp ∈ LT then v is a label index, otherwise whenever γp 6∈ LT then we have
that x 6∈ fv(τs) and x 6∈ fv(τ′s

′
) since only values of label types can be a label index by
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definition of label indexes.

Case (S-REFLEX):

∆, x:γp, ∆′ `N1,N2 τs <: τs (1) - hyp
∆ `rS v:γp (2) - hyp
∆, x:γp, ∆′ `N1 τs (3) - by Definition 39 with (1)
∆, x:γp, ∆′ `N2 τs (4) - by Definition 39 with (1)
∆, ∆′{v/x} `N1 (τs){v/x} (5) - by Lemma 12 with (2,3)
∆, ∆′{v/x} `N2 (τs){v/x} (6) - by Lemma 12 with (2,4)
(τs){v/x} <: (τs){v/x} (7) - by (S-REFLEX)
∆, ∆′{v/x} `N1,N2 (τs){v/x} <: (τs){v/x} by Definition 39 with (5,6,7)

Case (S-TRANS):

∆, x:γp, ∆′ `N1,N2 τs <: τ′r (1) - hyp
∆ `rS v:γp (2) - hyp
τs <: τ′r (3) - by Definition 39 with (1)
τs <: τ′′t (4) - inv. of (S-TRANS) of (3)
τ′′t <: τ′r (5) - inv. of (S-TRANS) of (3)
∆, x:γp, ∆′ `N1,N3 τs <: τ′′t (8) - by Definition 39 with (4)
∆, x:γp, ∆′ `N3,N2 τ′′t <: τ′r (9) - by Definition 39 with (5)
∆, ∆′{v/x} `N1,N3 (τs){v/x} <: (τ′′t){v/x} (10) - by I.H. with (8,2)
∆, ∆′{v/x} `N3,N2 (τ′′t){v/x} <: (τ′r){v/x} (11) - by I.H. with (9,2)
(τs){v/x} <: (τ′′t){v/x} (12) - by Definition 39 with (10)
(τ′′t){v/x} <: (τ′r){v/x} (13) - by Definition 39 with (11)
(τs){v/x} <: (τ′r){v/x} (14) - by (S-TRANS) with (12,13)
∆, ∆′{v/x} `N1,N2 (τs){v/x} <: (τ′r){v/x} by Definition 39 with (14)

Case (S-ARROW):

∆, x:γp, ∆′ `N1,N2 (Πy:τs.r; σq)t <: (Πy:τ′s
′
.r′; σ′q

′
)t
′

(1) - hyp
∆ `rS v:γp (2) - hyp
∆, x:γp, ∆′ `N1 (Πy:τs.r; σq)t (3) - by Definition 39 with (1)
∆, x:γp, ∆′ `N2 (Πy:τ′s

′
.r′; σ′q

′
)t
′

(4) - by Definition 39 with (1)
(Πy:τs.r; σq)t <: (Πy:τ′s

′
.r;′ σ′q

′
)t
′

(5) - by Definition 39 with (1)
τ′s
′
<: τs (6) - inv. of (S-ARROW) of (5)

σq <: σ′q
′

(7) - inv. of (S-ARROW) of (5)
r′ ≤ r (8) - inv. of (S-ARROW) of (5)
t′ ≤ q′{⊥/y} (9) - inv. of (S-ARROW) of (5)
t′ ≤ r′ (10) - inv. of (S-ARROW) of (5)
∆, x:γp, ∆′ `N1 τs (11) - inv. of (W-ARROW) of (3)
∆, x:γp, ∆′, y : τs `N1 σq (12) - inv. of (W-ARROW) of (3)
t ≤ r (13) - inv. of (W-ARROW) of (3)
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t ≤ q{⊥/y} (14) - inv. of (W-ARROW) of (3)
∆, x:γp, ∆′ `N2 τ′s

′
(15) - inv. of (W-ARROW) of (4)

∆, x:γp, ∆′, y : τ′s
′ `N2 σ′q

′
(16) - inv. of (W-ARROW) of (4)

∆, ∆′{v/x} `N1 (τs){v/x} (17) - by Lemma 12 with (11,2)
∆, ∆′{v/x}, y : (τs){v/x} `N1 (σq){v/x} (18) - by Lemma 12 with (12,2)
t{v/x} ≤ r{v/x} (19) - by Lemma 13 with (13)
t{v/x} ≤ (q{⊥/y}){v/x} (20) - by Lemma 13 with (14)
t{v/x} ≤ (q{v/x}){⊥/y} (21) - by (20)
∆, ∆′{v/x} `N1 (Πy:(τs){v/x}.r{v/x}; (σq){v/x})t{v/x}

(22) - by (W-ARROW) with (17,18,19,21)
∆, ∆′{v/x} `N1 ((Πy:τs.r; σq)t){v/x} (23) - Definition 22 with (22)

∆, ∆′{v/x} `N2 (τ′s
′
){v/x} (24) - by Lemma 12 with (15,2)

∆, ∆′{v/x}, y : (τ′s
′
){v/x} `N2 (σ′q

′
){v/x} (25) - by Lemma 12 with (16,2)

t′{v/x} ≤ (q′{⊥/y}){v/x} (26) - by Lemma 13 with (9)
t′{v/x} ≤ (q′{x/x}){⊥/y} (27) - by (26)
t′{v/x} ≤ r′{v/x} (28) - by Lemma 13 with (10)
∆, ∆′{v/x} `N2 (Πy:(τ′s

′
){v/x}.r′{v/x}; (σ′q′){v/x})t′{v/x}

(29) - by (W-ARROW) with (24,25,26,28)
∆, ∆′{v/x} `N2 ((Πy:τ′s

′
.r′; σ′q

′
)t
′
){v/x} (30) - Definition 22 with (29)

∆, x:γp, ∆′ `N1,N2 τ′s
′
<: τs (31) - by Definition 39 with (6,11,15)

∆, x:γp, ∆′, y : τs `N1,N2 σq <: σ′q
′

(32) - by Definition 39 with (7,12,16)
∆, ∆′{v/x} `N1,N2 (τ′s

′
){v/x} <: (τs){v/x} (33) - by I.H. with (31,2)

∆, ∆′{v/x}, y : (τs){v/x} `N1,N2 (σq){v/x} <: (σ′q
′
){v/x} (34) - by I.H. with (32,2)

(τ′s
′
){v/x} <: (τs){v/x} (35) - by Definition 39 with (33)

(σq){v/x} <: (σ′q
′
){v/x} (36) - by Definition 39 with (34)

r′{v/x} ≤ r{v/x} (37) - by Lemma 13 with (8)
(Πy:(τs){v/x}.r{v/x}; (σq){v/x})t{v/x} <: (Πy:(τ′s

′
){v/x}.r′{v/x}; (σ′q′){v/x})t′{v/x}

(38) - by (S-ARROW) with (35,36, 27,28,37)
((Πy:τs.r; σq)t){v/x} <: ((Πy:τ′s

′
.r′; σ′q

′
)t
′
){v/x} (39) - by Definition 22 with (38)

∆, ∆′{v/x} `N1,N2 ((Πy:τs.r; σq)t){v/x} <: ((Πy:τ′s
′
.r′; σ′q

′
)t
′
){v/x}

by Definition 39 with (23,30,39)

Case (S-RECORD):

∆, x:γp, ∆′ `N1,N2 Σ[m : τs]t <: Σ[m : τ′s
′
]t
′

(1) - hyp
∆ `rS v:γp (2) - hyp
∆, x:γp, ∆′ `N1 Σ[m : τs]t (3) - by Definition 39 with (1)
∆, x:γp, ∆′ `N2 Σ[m : τ′s

′
]t
′

(4) - by Definition 39 with (1)
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Σ[m : τs]t <: Σ[m : τ′s
′
]t
′

(5) - by Definition 39 with (1)
∀i ∆, x:γp, ∆′ `N ′1 τsi

i

(6) - inv. (W-RECORD) of (3) with N ′1 = N1 ] {m1 : τ1
s1 , . . . , mi−1 : τi−1

si−1}
∆, x:γp, ∆′ `N1 t (7) - inv. (W-RECORD) of (3)
t ≤ usi

↓
{m1,...,mi−1}

(8) - inv. (W-RECORD) of (3)

∀i ∆, x:γp, ∆′ `N ′2 τ′i
s′i

(9) - inv. (W-RECORD) of (4) where N ′2 = N2 ] {m1 : τ′1
s′1 , . . . , mi−1 : τ′i−1

s′i−1}
∆, x:γp, ∆′ `N2 t′ (10) - inv. (W-RECORD) of (4)
t′ ≤ us′i

↓
{m1,...,mi−1} (11) - inv. (W-RECORD) of (4)

∀i τsi
i <: τ′

s′i
i (12) - inv. (S-RECORD) of (5)

t ≤ t′ ≤ us′i
↓
{m1,...,mi−1} (13) - inv. (S-RECORD) of (5)

∀i ∆, ∆′{v/x} `N ′1 (τsi
i ){v/x} (14) - by Lemma 12 with (6,2)

∆, ∆′{v/x} `N1 t{v/x} (15) - by Lemma 13 with (7)
∀i t ≤ si

↓
{m1,...,mi−1}

(16) - by def. of lub with (8)

∀i t{v/x} ≤ si
↓
{m1,...,mi−1}

{v/x} (17) - by Lemma 13 with (16)

t{v/x} ≤ u(si
↓
{m1,...,mi−1}

{v/x}) (18) - by def. of lub with (17)

∆, ∆′{v/x} `N1 Σ[m : (τs){v/x}]t{v/x} (19) - by (W-RECORD) with (14,15,18)
∆, ∆′{v/x} `N1 (Σ[m : (τs)]t){v/x} (20) - Definition 22 with (19)

∀i ∆ `N ′2 (τ′i
s′i){v/x} (21) - by Lemma 12 with (9,2)

∆, ∆′{v/x} `N2 t′{v/x} (22) - by Lemma 13 with (10)
∀i t
′ ≤ s′i

↓
{m1,...,mi−1} (23) - by def. of lub with (11)

∀i t
′{v/x} ≤ s′i

↓
{m1,...,mi−1}{v/x} (24) - by Lemma 13 with (23)

t′{v/x} ≤ u(s′i
↓
{m1,...,mi−1}{v/x}) (25) - by def. of lub with (24)

∆, ∆′{v/x} `N2 Σ[m : (τ′s
′
){v/x}]t′{v/x} (26) - by (W-RECORD) with (21,22,25)

∆, ∆′{v/x} `N2 (Σ[m : (τ′s
′
)]t
′
){v/x} (27) - Definition 22 with (26)

∀i ∆, x:γp, ∆′ `N ′1,N ′2 τi
si <: τ′i

s′i (28) - by Definition 39 with (6,9,12)
∀i ∆, ∆′{v/x} `N ′1,N ′2 (τi

si){v/x} <: (τ′i
s′i){v/x} (29) - by I.H. with (28,2)

∀i (τi
si){v/x} <: (τ′i

s′i){v/x} (30) - by Definition 39 with (29)
∀i t ≤ t′ ≤ s′i

↓
{m1,...,mi−1} (31) - by def. of lub with (13)

∀i t{v/x} ≤ t′{v/x} ≤ s′i
↓
{m1,...,mi−1}{v/x} (32) - by Lemma 13 with (31)

t{v/x} ≤ t′{v/x} ≤ u(s′i
↓
{m1,...,mi−1}{v/x}) (33) - by def. of lub with (32)

(Σ[m : (τs){v/x}]t{v/x}) <: (Σ[m : (τ′s′){v/x}]t′{v/x}) (34) - by (S-RECORD) with (30,33)
(Σ[m : (τs)]t){v/x} <: (Σ[m : (τ′s′)]t

′
){v/x} (35) - by Definition 22 with (34)

∆, ∆′{v/x} `N1,N2 (Σ[m : τs]t){v/x} <: (Σ[m : τ′s
′
]t
′
){v/x}

by Definition 39 with (20,27,35)
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Case (S-VARIANT):

∆, x:γp, ∆′ `N1,N2 {n : τs}t <: {n : τ′s
′}t′ (1) - hyp

∆ `rS v:γp (2) - hyp
∆, x:γp, ∆′ `N1 {n : τs}t (3) - by Definition 39 with (1)
∆, x:γp, ∆′ `N2 {n : τ′s

′}t′ (4) - by Definition 39 with (1)
{n : τs}t <: {n : τ′s

′}t′ (5) - by Definition 39 with (1)
∀i ∆, x:γp, ∆′ `N1 τsi

i (6) - inv. (W-VARIANT) of (3)
∆, x:γp, ∆′ `N1 t (7) - inv. (W-VARIANT) of (3)
∀i ∆, x:γp, ∆′ `N2 τ′i

s′i (8) - inv. (W-VARIANT) of (4)
∆, x:γp, ∆′ `N2 t′ (9) - inv. (W-VARIANT) of (4)
∀i τsi

i <: τ′
s′i
i (10) - inv. (S-VARIANT) of (5)

t′ ≤ us′i (11) - inv. (S-VARIANT) of (5)

∀i ∆, ∆′{v/x} `N1 (τsi
i ){v/x} (12) - by Lemma 12 with (6,2)

∆, ∆′{v/x} `N1 t{v/x} (13) - by Lemma 13 with (7)
∆, ∆′{v/x} `N1 {n : (τs){v/x}}t{v/x} (14) - by (W-VARIANT) with (12,13)
∆, ∆′{v/x} `N1 ({n : (τs)}t){v/x} (15) - Definition 22 with (14)

∀i ∆, ∆′{v/x} `N2 (τ′i
s′i){v/x} (16) - by Lemma 12 with (8,2)

∆, ∆′{v/x} `N2 t′{v/x} (17) - by Lemma 13 with (9)
∆, ∆′{v/x} `N2 {n : (τ′s

′
){v/x}}t′{v/x} (18) - by (W-VARIANT) with (16,17)

∆, ∆′{v/x} `N2 ({n : (τ′s
′
)}t′){v/x} (19) - Definition 22 with (18)

∀i ∆, x:γp, ∆′ `N1,N2 τi
si <: τ′i

s′i (20) - by Definition 39 with (6,8,10)
∀i ∆, ∆′{v/x} `N1,N2 (τi

si){v/x} <: (τ′i
s′i){v/x} (21) - by I.H. with (20,2)

∀i (τi
si){v/x} <: (τ′i

s′i){v/x} (22) - by Definition 39 with (21)
∀i t
′ ≤ s′i (23) - by def. of lub with (11)

∀i t
′{v/x} ≤ s′i{v/x} (24) - by Lemma 13 with (23)

t′{v/x} ≤ u(s′i{v/x}) (25) - by def. of lub with (24)
({n : (τs){v/x}}t{v/x}) <: ({n : (τ′s′){v/x}}t′{v/x}) (26) - by (S-VARIANT) with (22,25)
({n : (τs)}t){v/x} <: ({n : (τ′s′)}t′){v/x} (27) - by Definition 22 with (26)

∆, ∆′{v/x} `N1,N2 ({n : τs}t){v/x} <: ({n : τ′s
′}t′){v/x}

by Definition 39 with (15,19,27)

Case (S-REF):

∆, x:γp, ∆′ `N1,N2 ref(τs)t <: ref(τs)t
′

(1) - hyp
∆ `rS v:γp (2) - hyp
∆, x:γp, ∆′ `N1 ref(τs)t (3) - by Definition 39 with (1)
ref(τs)t <: ref(τs)t

′
(5) - by Definition 39 with (1)
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∆, x:γp, ∆′ `N1 τs (6) - inv. (W-REF) of (3)
∆, x:γp, ∆′ `N1 t (7) - inv. (W-REF) of (3)
∆, x:γp, ∆′ `N2 τs (8) - inv. (W-REF) of (4)
∆, x:γp, ∆′ `N2 t′ (9) - inv. (W-REF) of (4)
τs <: τs (10) - by (S-REFLEX)
t ≤ t′ (11) - inv. (S-REF) of (5)

∆, ∆′{v/x} `N1 (τs){v/x} (12) - by Lemma 12 with (6,2)
∆′{v/x} `N1 t{v/x} (13) - by Lemma 13 with (7)
∆, ∆′{v/x} `N1 ref((τs){v/x})t{v/x} (14) - by (W-REF) with (12,13)
∆, ∆′{v/x} `N1 (ref(τs)t){v/x} (15) - Definition 22 with (14)

∆, ∆′{v/x} `N2 (τs){v/x} (16) - by Lemma 12 with (8,2)
∆, ∆′{v/x} `N2 t′{v/x} (17) - by Lemma 13 with (9)
∆, ∆′{v/x} `N2 ref((τs){v/x})t′{v/x} (18) - by (W-REF) with (16,17)
∆, ∆′{v/x} `N2 (ref(τs)t

′
){v/x} (19) - Definition 22 with (18)

∆, x:γp, ∆′ `N1,N2 τs <: τs (20) - by Definition 39 with (6,8,10)
∆, ∆′{v/x} `N1,N2 (τs){v/x} <: (τs){v/x} (21) - by I.H. with (20,2)
(τs){v/x} <: (τs){v/x} (22) - by Definition 39 with (21)
t{v/x} ≤ t′{v/x} (23) - by Lemma 13 with (11)
ref((τs){v/x})t{v/x} <: ref((τs){v/x})t′{v/x} (24) - by (S-VARIANT) with (22,23)
(ref(τs)t){v/x} <: (ref(τs)t

′
){v/x} (25) - by Definition 22 with (24)

∆, ∆′{v/x} `N1,N2 ref(τs)t){v/x} <: (ref(τs)t
′
){v/x} by Definition 39 with (15,19,25)

Case (S-COLLECTION):

∆, x:γp, ∆′ `N1,N2 τ∗s <: τ′∗s
′

(1) - hyp
∆ `rS v:γp (2) - hyp
∆, x:γp, ∆′ `N1 τ∗s (3) - by Definition 39 with (1)
∆, x:γp, ∆′ `N2 τ′∗s

′
(4) - by Definition 39 with (1)

τ∗s <: τ′∗s
′

(5) - by Definition 39 with (1)
∆, x:γp, ∆′ `N1 τs (6) - inv. (W-COLLECTION) of (3)
∆, x:γp, ∆′ `N2 τ′s

′
(7) - inv. (W-COLLECTION) of (4)

τs <: τ′s
′

(8) - inv. (S-COLLECTION) of (5)

∆, x:γp, ∆′ `N1,N2 τs <: τ′s
′

(9) - by Definition 39 with (6,7,8)
∆, ∆′{v/x} `N1,N2 (τs){v/x} <: (τ′s

′
){v/x} (10) - by I.H. with (9,2)

∆, ∆′{v/x} `N1 (τs){v/x} (11) - by Definition 39 with (10)
∆, ∆′{v/x} `N1 τ{v/x}s{v/x} (12) - by Definition 22 with (11)
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∆, ∆′{v/x} `N1 τ{v/x}∗s{v/x} (13) - by (W-COLLECTION) with (12)
∆, ∆′{v/x} `N1 (τ∗s){v/x} (14) - by Definition 22 with (13)

∆, ∆′{v/x} `N2 (τ′s
′
){v/x} (15) - by Definition 39 with (10)

∆, ∆′{v/x} `N2 τ′{v/x}s′{v/x} (16) - by Definition 22 with (15)
∆, ∆′{v/x} `N2 τ′{v/x}∗s′{v/x} (17) - by (W-COLLECTION) with (16)
∆, ∆′{v/x} `N2 (τ′∗s

′
){v/x} (18) - by Definition 22 with (17)

(τs){v/x} <: (τ′s
′
){v/x} (19) - by Definition 39 with (10)

τ{v/x}s{v/x} <: τ′{v/x}s
′{v/x} (20) - by Definition 22 with (19)

τ{v/x}∗s{v/x} <: τ′{v/x}∗s
′{v/x} (21) - by (S-COLLECTION) with (20)

(τ∗s){v/x} <: (τ′∗s
′
){v/x} (22) - by Definition 22 with (21)

∆, ∆′{v/x} `N1,N2 (τ∗s){v/x} <: (τ′∗s
′
){v/x} by Definition 39 with (14,18,22)

Case (S-EXPR):

∆, x:γp, ∆′ `N1,N2 τs <: τs′ (1) - hyp
∆ `rS v:γp (2) - hyp
∆, x:γp, ∆′ `N1 τs (3) - by Definition 39 with (1)
∆, x:γp, ∆′ `N2 τs′ (4) - by Definition 39 with (1)
τs <: τs′ (5) - by Definition 39 with (1)
∆, ∆′{v/x} `N1 τs{v/x} (6) - by Lemma 12 with (3,2)
∆, ∆′{v/x} `N2 τs′{v/x} (7) - by Lemma 12 with (4,2)
s ≤ s′ (8) - by inv. (S-EXPR) of (5)
s{v/x} ≤ s′{v/x} (9) - by Lemma 13 with (8)
τs{v/x} <: τs′{v/x} (10) - by (S-EXPR) with (9)
(τs){v/x} <: (τs′){v/x}

(11) - by (10), since τ is a base type we have (τs){v/x} = τs{v/x}

∆, ∆′{v/x} `N1,N2 (τs){v/x} <: (τs′){v/x} by Definition 39 (6,7,11)

�

Lemma 15
Let τs be such that ∆, x : σt `N τs.

Then for all variables x we have

 a) ∆ `N τs↑x and τs <: τs↑x and

b) ∆ `N τs↓x and τs↓x <: τs

Proof Mutual induction on the definition of τs ↑x and τs ↓x.
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Notice that the conditions for substitution on labels are met whenever we need to apply it
in the proof.

Case τs = Ints:

(Subcase τs ↑x)
∆, x : σt `N Ints (1) - by hyp.
Ints ↑x= Ints{>/x} (2) - by Definition 31
∆, x : σt `N s (3) - by inv. of (W-INT) with (1)
∆ `N > : σt (4) - by (W-INDEX-TOP)
∆ `N s{>/x} (5) - by Lemma 11 with (3,4)
∆ `N Ints{>/x} by (W-INT) with (5)
Ints <: Ints{>/x} by (S-EXPR) and lattice property s ≤ s{>/x}

(Subcase τs ↓x)
∆, x : σt `N Ints (1) - by hyp.
Ints ↓x= Ints{⊥/x} (2) - by Definition 31
∆, x : σt `N s (3) - by inv. of (W-INT) with (1)
∆ `N ⊥ : σt (4) - by (W-INDEX-BOT)
∆ `N s{⊥/x} (5) - by Lemma 11 with (3,4)
∆ `N Ints{⊥/x} by (W-INT) with (5)
Ints{⊥/x} <: Ints by (S-EXPR) and lattice property s{⊥/x} ≤ s

Case τs = Bools:

(Subcase τs ↑x)
∆, x : σt `N Bools (1) - by hyp.
Bools ↑x= Bools{>/x} (2) - by Definition 31
∆, x : σt `N s (3) - by inv. of (W-BOOL) with (1)
∆ `N > : σt (4) - by (W-INDEX-TOP)
∆ `N s{>/x} (5) - by Lemma 11 with (3,4)
∆ `N Bools{>/x} by (W-BOOL) with (5)
Bools <: Bools{>/x} by (S-EXPR) and lattice property s ≤ s{>/x}

(Subcase τs ↓x)
∆, x : σt `N Bools (1) - by hyp.
Bools ↓x= Bools{⊥/x} (2) - by Definition 31
∆, x : σt `N s (3) - by inv. of (W-BOOL) with (1)
∆ `N ⊥ : σt (4) - by (W-INDEX-BOT)
∆ `N s{⊥/x} (5) - by Lemma 11 with (3,4)
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∆ `N Bools{⊥/x} by (W-BOOL) with (5)
Bools{⊥/x} <: Bools by (S-EXPR) and lattice property s{⊥/x} ≤ s

Case τs = cmds:

(Subcase τs ↑x)
∆, x : σt `N cmds (1) - by hyp.
cmds ↑x= cmds{>/x} (2) - by Definition 31
∆, x : σt `N s (3) - by inv. of (W-CMD) with (1)
∆ `N > : σt (4) - by (W-INDEX-TOP)
∆ `N s{>/x} (5) - by Lemma 11 with (3,4)
∆ `N cmds{>/x} by (W-CMD) with (5)
cmds <: cmds{>/x} by (S-EXPR) and lattice property s ≤ s{>/x}

(Subcase τs ↓x)
∆, x : σt `N cmds (1) - by hyp.
cmds ↓x= cmds{⊥/x} (2) - by Definition 31
∆, x : σt `N s (3) - by inv. of (W-CMD) with (1)
∆ `N ⊥ : σt (4) - by (W-INDEX-BOT)
∆ `N s{⊥/x} (5) - by Lemma 11 with (3,4)
∆ `N cmds{⊥/x} by (W-CMD) with (5)
cmds{⊥/x} <: cmds by (S-EXPR) and lattice property s{⊥/x} ≤ s

Case τs = ref(τt)s:

(Subcase τs ↑x)
∆, x : σt `N ref(τt)s (1) - by hyp.
(ref(τt)s) ↑x= ref(τt)s{>/x} (2) - by Definition 31
∆ `N > : σt (5) - by (W-INDEX-TOP)
∆, x : σt `N s (6) - by inv. of (W-REF) with (1)
∆ `N s{>/x} (7) - by Lemma 11 with (5,6)
∆ `N ref(τt)s{>/x} by (W-REF) with (1,7)
ref(τt)s <: ref(τt)s{>/x} by (S-REF) with (3) and lattice property s ≤ s{>/x}

(Subcase τs ↓x)
∆, x : σt `N ref(τt)s (1) - by hyp.
(ref(τt)s) ↓x= ref(τt)s{⊥/x} (2) - by Definition 31
∆ `N ⊥ : σt (5) - by (W-INDEX-BOT)
∆, x : σt `N s (6) - by inv. of (W-REF) with (1)
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∆ `N s{⊥/x} (7) - by Lemma 11 with (5,6)
∆ `N ref(τt)s{⊥/x} by (W-REF) with (1,7)
ref(τt)s{⊥/x} <: ref(τt)s by (S-REF) with (3) and lattice property s{⊥/x} ≤ s

Case τs = τ∗s:

(Subcase τs ↑x)
∆, x : σt `N τ∗s (1) - by hyp.
(τ∗s) ↑x= τs ↑∗x (2) - by Definition 31
τs <: (τs) ↑x (3) - by I.H. a)
∆ `N τs ↑x (4) - by I.H. a)
τ∗s <: τ∗s ↑x by (S-COLLECTION) with (3)
∆ `N τ∗s ↑x by (W-COLLECTION) with (4)

(Subcase τs ↓x)
∆, x : σt `N τ∗s (1) - by hyp.
(τ∗s) ↓x= (τs ↓x)∗ (2) - by Definition 31
(τs) ↓x<: τs (3) - by I.H. b)
∆ `N τs ↓x (4) - by I.H. b)
τ∗s ↓x<: τ∗s by (S-COLLECTION) with (3)
∆N ` τ∗s ↓x by (W-COLLECTION) with (4)

Case τs = {n : τt}s:

(Subcase τs ↑x)
∆, x : σt `N {n : τt}s (1) - by hyp.
({n : τt}s) ↑x= {n : (τt) ↑x}s{>/x} (2) - by Definition 31
∀i τi

ti <: (τi
ti) ↑x (3) - by I.H. a)

∀i ∆N ` τi
ti ↑x (4) - by I.H. a)

∆ `N > : σt (5) - by (W-INDEX-TOP)
∆, x : σt `N s (6) - by inv. of (W-VARIANT) with (1)
∆ `N s{>/x} (7) - by Lemma 11 with (5,6)
∆N ` {n : (τt) ↑x}s{>/x} by (W-VARIANT) with (4,7)
{n : (τt)}s <: {n : (τt) ↑x}s{>/x}

by (S-VARIANT) with (3) and lattice property s ≤ s{>/x}

(Subcase τs ↓x)
∆, x : σt `N {n : τt}s (1) - by hyp.
({n : τt}s) ↓x= {n : (τt) ↓x}s{⊥/x} (2) - by Definition 31
∀i (τi

ti) ↓x<: τi
ti (3) - by I.H. a)

∀i ∆N ` τi
ti ↓x (4) - by I.H. a)
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∆ `N ⊥ : σt (5) - by (W-INDEX-BOT)
∆, x : σt `N s (6) - by inv. of (W-VARIANT) with (1)
∆ `N s{⊥/x} (7) - by Lemma 11 with (5,6)
∆N ` {n : (τt) ↓x}s{⊥/x} by (W-VARIANT) with (4,7)
{n : (τt) ↓x}s{⊥/x} <: {n : τt}s

by (S-VARIANT) with (3) and lattice property s{⊥/x} ≤ s

Case τs = Σ[m : τt]s:

(Subcase τs ↑x)
∆, x : σt `N Σ[m : τt]s (1) - by hyp.
(Σ[m : τt]s) ↑x= Σ[m : (τt) ↑x]s{

>/x} (2) - by Definition 31
∀i τi

ti <: (τi
ti) ↑x (3) - by I.H. a)

∀i ∆ `N]{m1 :τ
s1
1 ,...,mi−1 :τ

si−1
i−1 } τi

ti ↑x (4) - by I.H. a)
∆ `N > : σt (5) - by (W-INDEX-TOP)
∆, x : σt `N s (6) - by inv. of (W-RECORD) with (1)
s ≤ ut′i

↓
{m1,...,mi−1} (7) - by inv. of (W-RECORD) with (1)

∆ `N s{>/x} (8) - by Lemma 11 with (5,6)
s ≤ t′i

↓
{m1,...,mi−1} (9) - by def. of lub with (7)

s{>/x} ≤ t′i
↓
{m1,...,mi−1}{>/x} (10) - by Lemma 13 with (9)

s{>/x} ≤ u(t′i
↓
{m1,...,mi−1}{>/x}) (11) - by def. of lub with (10)

∆N ` Σ[m : (τt) ↑x]s{
>/x} by (W-RECORD) with (4,8,11)

Σ[m : τt]s <: Σ[m : (τt) ↑x]s{
>/x} by (S-RECORD) with (4,11)

(Subcase τs ↓x)
∆, x : σt `N Σ[m : τt]s (1) - by hyp.
(Σ[m : τt]s) ↓x= Σ[m : (τt) ↓x]s{⊥/x} (2) - by Definition 31
∀i (τi

ti) ↓x<: τi
ti (3) - by I.H. b)

∀i ∆ `N]{m1 :τ
s1
1 ,...,mi−1 :τ

si−1
i−1 } τi

ti ↓x (4) - by I.H. b)
∆ `N ⊥ : σt (5) - by (W-INDEX-BOT)
∆, x : σt `N s (6) - by inv. of (W-RECORD) with (1)
s ≤ ut′i

↓
{m1,...,mi−1} (7) - by inv. of (W-RECORD) with (1)

∆ `N s{⊥/x} (8) - by Lemma 11 with (5,6)
s ≤ t′i

↓
{m1,...,mi−1} (9) - by def. of lub with (7)

s{⊥/x} ≤ t′i
↓
{m1,...,mi−1}{⊥/x} (10) - by Lemma 13 with (9)

s{⊥/x} ≤ u(t′i
↓
{m1,...,mi−1}{⊥/x}) (11) - by def. of lub with (10)

∆N ` Σ[m : (τt) ↑x]s{
⊥/x} by (W-RECORD) with (4,8,11)

Σ[m : (τt) ↑x]s{
⊥/x} <: Σ[m : τt]s by (S-RECORD) with (4,11)
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Case τs = (Πy:τt.r; σq)s:

(Subcase τs ↑x)
∆, x : σ′t

′ `N (Πy:τt.r; σq)s (1) - by hyp.
((Πy:τt.r; σq)s) ↑x= (Πy:(τt) ↓x .r; (σq) ↑x)s{

>/x} (2) - by Definition 31
(τt) ↓x<: τt (2) - by I.H. b)
σq <: (σq) ↑x (3) - by I.H. a)
∆ `N (τt) ↓x (4) - by I.H. b)
∆, y : τt `N (σq) ↑x (5) - by I.H. a)
∆ `N > : σ′t

′
(6) - by (W-INDEX-TOP)

∆, x : σ′t
′ `N s (7) - by inv. of (W-ARROW) with (1)

s ≤ r (8) - by inv. of (W-ARROW) with (1)
s ≤ q{⊥/y} (9) - by inv. of (W-ARROW) with (1)
∆ `N s{>/x} (10) - by Lemma 11 with (6,7)
s{>/x} ≤ r{>/x} (11) - by Lemma 13 with (8)
s{>/x} ≤ (q{⊥/y}){>/x} (12) - by Lemma 13 with (9)
∆ `N (Πy:(τt) ↓x .r; (σq) ↑x)s{

>/x} by (W-ARROW) with (4,5,10,11,12)
(Πx:τt.r; σq)s <: ((Πx:τt.r; σq)s) ↑x by (S-ARROW) with (2,3,11,12)

(Subcase τs ↓x)
∆, x : σ′t

′ `N (Πy:τt.r; σq)s (1) - by hyp.
((Πy:τt.r; σq)s) ↓x= (Πy:(τt) ↑x .r; (σq) ↓x)s{⊥/x} (2) - by Definition 31
τt <: (τt) ↑x (2) - by I.H. b)
(σq) ↓x<: σq (3) - by I.H. a)
∆ `N (τt) ↑x (4) - by I.H. b)
∆, y : τt `N (σq) ↓x (5) - by I.H. a)
∆ `N ⊥ : σ′t

′
(6) - by (W-INDEX-BOT)

∆, x : σ′t
′ `N s (7) - by inv. of (W-ARROW) with (1)

s ≤ r (8) - by inv. of (W-ARROW) with (1)
s ≤ q{⊥/y} (9) - by inv. of (W-ARROW) with (1)
∆ `N s{⊥/x} (10) - by Lemma 11 with (6,7)
s{⊥/x} ≤ r{⊥/x} (11) - by Lemma 13 with (8)
s{⊥/x} ≤ (q{⊥/y}){⊥/x} (12) - by Lemma 13 with (9)
∆ `N (Πy:(τt) ↑x .r; (σq) ↓x)s{⊥/x} by (W-ARROW) with (4,5,10,11,12)
((Πx:τt.r; σq)s) ↓x<: (Πx:τt.r; σq)s by (S-ARROW) with (2,3,11,12)

�

Lemma 16
Let ∆ `rS v : τs, then ∆ `r′S v : τs

Proof: By inspection of typing rules for values.
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Lemma 17 (Weakening)
Let ∆ `rS e : τs, then ∆, ∆′ `rS∪S ′ e : τs

Proof: Induction on the derivation of ∆ `rS e : τs.

We now prove substitution lemma which uses the subtyping substitution lemma to prove
the case for subsumption rule.

Lemma 18 (Substitution Lemma)
If ∆, x : τ′s

′
, ∆′ `rS∪S ′ e : τs and ∆ `r′S v : τ′s

′
then ∆, ∆′{v/x} `rS∪S ′{v/x} e{v/x} : (τs){v/x}.

Proof Induction on the derivation of ∆, x : τ′s
′
, ∆′ `rS∪S ′ e : τs .

Notice that, for any τs, τ′s
′
, if τ′s

′ ∈ LT then v is a label index. Otherwise whenever
τ′s
′ 6∈ LT then we have that x 6∈ fv(τs), x 6∈ fv(∆′), and x 6∈ fv(S ∪ S ′) since only variables

of label types can appear in label indexes or in constraint expressions.

Case (T-TRUE):
∆, x : τ′s

′
, ∆′ `rS∪S ′ true : Bools (1) - hyp.

∆ `r′S v : τ′s
′

(2) - hyp.
∆, x : τ′s

′
, ∆′ `N Bools (3) - by Definition 27 with (1)

∆, ∆′{v/x} `N (Bools){v/x} (4) - by Lemma 12 with (3,2)
∆, ∆′{v/x} `rS∪S ′{v/x} true{v/x} : (Bools){v/x} by (T-TRUE) with (4)

Cases (T-FALSE), (T-NUM), and (T-UNIT):
similar to case (T-TRUE).

Case (T-ID):

• x 6= y = e

– ∆, x : τ′s
′
, ∆1, y : τs, ∆2 `rS∪S ′ y : τs (1) - hyp.

∆ `r′S v : τ′s
′

(2) - hyp.
y{v/x} = y (3) - by Definition 38
∆, ∆1{v/x}, y : (τs){v/x}, ∆2{v/x} `rS∪S ′{v/x} y : (τs){v/x} by (T-ID)

– ∆, y : τs, ∆1, x : τ′s
′
, ∆2 `rS∪S ′ y : τs (5) - hyp.

∆, y : τs, ∆1 `r
′
S v : τ′s

′
(6) - hyp.

y{v/x} = y (7) - by Definition 38
x 6∈ fv(τs) and (τs){v/x} = τs (8) - by (5)
∆, y : τs, ∆1, ∆2{v/x} `rS∪S ′{v/x} y : τs by (T-ID)

• x = y = e
∆, x : τs, ∆′ `rS∪S ′ x : τs (9) - hyp.
∆ `r′S v : τs (10) - hyp.
y{v/x} = v (11) - by Definition 38
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x 6∈ fv(τs) and (τs){v/x} = τs (12) - by (9)
∆, ∆′{v/x} `rS∪S ′{v/x} v : τs

(13) - by Lemma 17 with (10), by Lemma 16 with (10) and (11,12)

Case (T-LAMBDA):

∆, x : τ′s
′
, ∆′ `rS∪S ′ λ(y : τs).e : (Πy : τs.r′′; σq)⊥ (1) - hyp.

∆ `r′S v : τ′s
′

(2) - hyp.
∆, x : τ′s

′
, ∆′, y : τs `r′′S∪S ′ e : σq (3) - inv. (T-LAMBDA) of (1)

∆, ∆′{v/x}, y : (τs){v/x} `r′′S∪S ′{v/x} e{v/x} : (σq){v/x} (5) - by I.H. with (2,3)
∆, ∆′{v/x} `rS∪S ′{v/x} λ(y : (τs){v/x}).e{v/x} : (Πy : (τs){v/x}.r′′; (σq){v/x})⊥

(6) - by rule (T-LAMBDA) with (5), and by Definition 22
∆, ∆′{v/x} `rS∪S ′{v/x} λ(y : (τs){v/x}).e{v/x} : (Πy : (τs){v/x}.r′′{v/x}; (σq){v/x})⊥

(7) - since r′′ is concrete, so x 6∈ fv(r′′)
∆, ∆′{v/x} `rS∪S ′{v/x} λ(y : (τs){v/x}).e{v/x} : ((Πy : τs.r′′; σq)⊥){v/x}

(8) - by Definition 22 with (7)
∆, ∆′{v/x} `rS∪S ′{v/x} (λ(y : τs).e){v/x} : ((Πy : τs.r′′; σq)⊥){v/x}

by Definition 38 with (8)

Case (T-APP):

∆, x : τ′s
′
, ∆′ `rS∪S ′ e1(e2) : σ′q

′
(1) - hyp.

∆ `r′S v : τ′s
′

(2) - hyp
∆, x : τ′s

′
, ∆′ `rS∪S ′ e1 : (Πy : τs.r′; σq)t (3) - inv. (T-APP) of (1)

∆, x : τ′s
′
, ∆′ `rS∪S ′ e2 : τs (4) - inv. (T-APP) of (1)

r ≤ r′ (5) - inv. (T-APP) of (1)
t ≤ q{⊥/y} (6) - inv. (T-APP) of (1)
t ≤ r′ (7) - inv. (T-APP) of (1)
∆, ∆′{v/x} `rS∪S ′{v/x} e1{v/x} : ((Πy : τs.r′; σq)t){v/x} (8) - by I.H. with (3,2)
∆, ∆′{v/x} `rS∪S ′{v/x} e2{v/x} : (τs){v/x} (9) - I.H. with (4,2)
t{v/x} ≤ q{v/x}{⊥/y}

(10) - by Lemma 13 with (6) and by commutativity of substitution
t{v/x} ≤ r′ (11) - by Lemma 13 with (7) and r′{v/x} = r′

• (Sub-case) S ∪ S ′ ∪ {y .
= e2} |= y .

= v ∧ σ′q
′
= σ{v/y}q{v/y} (12) - inv. (T-APP) of (1)

S ∪ S ′{v/x} ∪ {y .
= e2{v/x}} |= y .

= v{v/x} ∧ (σ′q
′
){v/x} = (σ{v/y}q{v/y}){v/x}

(13) - by subst closure of .
= and Definition 22 with (11)

∆, ∆′{v/x} `rS∪S ′{v/x} e1{v/x}(e2{v/x}) : (σ′q
′
){v/x}
(14) - by rule (T-APP) with (8,9,10,11,13)

∆, ∆′{v/x} `rS∪S ′{v/x} (e1(e2)){v/x} : (σ′q
′
){v/x} by Definition 38 with (14)
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• (Sub-case) σ′q
′
= (σq) ↑y (14) - inv. (T-APP) of (1)

(σ′q
′
){v/x} = ((σq) ↑y){v/x} (15) - by Definition 22 with (14)

∆, ∆′{v/x} `rS∪S ′{v/x} e1{v/x}(e2{v/x}) : (σ′q
′
){v/x}
(16) - by rule (T-APP) with (8,9,10,11,15)

∆, ∆′{v/x} `rS∪S ′{v/x} (e1(e2)){v/x} : (σ′q
′
){v/x} by Definition 38 with (16)

Case (T-LET):

∆, x : τ′s
′
, ∆′ `rS∪S ′ let y = e1 in e2 : τs2

2 (1) - hyp.
∆ `r′S v : τ′s

′
(2) - hyp.

∆, x : τ′s
′
, ∆′ `rS∪S ′ e1 : τs1

1 (3) - inv. (T-LET) of (1)
∆, x : τ′s

′
, ∆′, y : τs

1 `rS∪S ′{y .
=e1}

e2 : τs2
2 (4) - inv. (T-LET) of (1)

∆, ∆′{v/x} `rS∪S ′{v/x} e1{v/x} : (τs1
1 ){v/x} (6) - by I.H. with (2,3)

∆, ∆′{v/x}, y : (τs1
1 ){v/x} `rS∪S ′{v/x}{y .

=e1{v/x}} e2{v/x} : (τs2
2 ){v/x}

(7) - by I.H. with (2,4)
(let y = e1 in e2){v/x} = (let y = e1{v/x} in e2{v/x}) (8) - by Definition 38
∆, ∆′{v/x} `rS∪S ′{v/x} let y = e1{v/x} in e2{v/x} : (τs2

2 ){v/x}
(9) - by rule (T-LET) with (6,7), and by (8)

∆, ∆′{v/x} `rS∪S ′{v/x} (let y = e1 in e2){v/x} : (τs2
2 ){v/x} by Definition 38 with (9)

Case (T-IF):

∆, x : τ′s
′
, ∆′ `rS∪S ′ if c then e1 else e2 : τs (1) - hyp

∆ `r′S v : τ′s
′

(2) - hyp
∆, x : τ′s

′
, ∆′ `rS∪S ′ c : Bools (3) - inv. (T-IF) of (1)

∆, x : τ′s
′
, ∆′ `r′S∪S ′∪{c .

=true} e1 : τs (4) - inv. (T-IF) of (1)

∆, x : τ′s
′
, ∆′ `r′S∪S ′∪{c .

=false} e2 : τs (5) - inv. (T-IF) of (1)
r t s ≤ r′ (6) - inv. (T-IF) of (1)
∆, ∆′{v/x} `rS∪S ′{v/x} c{v/x} : Bools{v/x} (7) - by I.H. with (3,2)
∆, ∆′{v/x} `r′S∪S ′{v/x}∪{c{v/x} .

=true} e1{v/x}:(τs){v/x} (8) - by I.H. with (4,2)

∆, ∆′{v/x} `r′S∪S ′{v/x}∪{c{v/x} .
=false} e2{v/x}:(τs){v/x} (9) - by I.H. with (5,2)

r t s{v/x} ≤ r′ (10) - by Lemma 13 with (6)
(if c then e1 else e2){v/x} = (if c{v/x} then e1{v/x} else e2{v/x})

(11) - by Definition 38
∆, ∆′{v/x} `rS∪S ′{v/x} if c{v/x} then e1{v/x} else e2{v/x} : (τs){v/x}

(12) - by rule (T-IF) with (7,8,9,10), and by (11)
∆, ∆′{v/x} `rS∪S ′{v/x} (if c then e1 else e2){v/x} : (τs){v/x} by Definition 38 with (12)

Case (T-FIELD):

∆, x : τ′s
′
, ∆′ `rS∪S ′ e.mi : τsi

i (1) - hyp
∆ `r′S v : τ′s

′
(2) - hyp.

∆, x : τ′s
′
, ∆′ `rS∪S ′ e : Σ[. . .×mi : τsi

i × . . .]s (3) - inv. (T-FIELD) of (1)
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∆, ∆′{v/x} `rS∪S ′{v/x} e{v/x} : (Σ[. . .×mi : τsi
i × . . .]s){v/x} (5) - by I.H. with (2,3)

∆, ∆′{v/x} `rS∪S ′{v/x} e{v/x} : Σ[. . .×mi : (τsi
i ){v/x}× . . .]s{v/x}

(6) - by Definition 22 with (5)
e.mi{v/x} = e{v/x}.mi (7) - by Definition 38
∆, ∆′{v/x} `rS∪S ′{v/x} e{v/x}.mi : (τsi

i ){v/x} (8) - by rule (T-FIELD) from (6,7)
∆, ∆′{v/x} `rS∪S ′{v/x} (e.mi){v/x} : (τsi

i ){v/x} by Definition 38 with (8)

Case (T-RECORD):
∆, x : τ′s

′
, ∆′ `rS∪S ′ [. . . , mi = ei, . . .] : Σ[. . .×mi : τsi

i × . . .]⊥ (1) - hyp
∆ `r′S v : τ′s

′
(2) - hyp

∀i ∆, x : τ′s
′
, ∆′ `rS∪S ′ ei : τsi

i (3) - inv. (T-RECORD) with (1)
∀i ∆, ∆′{v/x} `rS∪S ′{v/x} ei{v/x} : (τsi

i ){v/x} (4) - by I.H. with (3,2)
[. . . , mi = ei, . . .]{v/x} = [. . .×mi = ei{v/x}× . . .] (5) - by Definition 38
∆, ∆′{v/x} `rS∪S ′{v/x} [. . . , mi = ei{v/x}, . . .] : Σ[. . .×mi : (τsi

i ){v/x}× . . .]⊥

(6) - by rule (T-RECORD) with (4) and by (5)
∆, ∆′{v/x} `rS∪S ′{v/x} ([. . . , mi = ei, . . .]){v/x} : (Σ[. . .×mi : τsi

i × . . .]⊥){v/x}
by Definition 38 with (6)

Case (T-REFINERECORD):
∆, x : τ′s

′
, ∆′ `rS∪S ′ e : Σ[. . .×mj:τ

sj
j × . . .×mi : τsi

i × . . .]s (1) - hyp.
∆ `r′S v : τ′s

′
(2) - hyp.

∆, x : τ′s
′
, ∆′ `rS∪S ′ e : Σ[. . .×mj:τ

sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]s

(3) - inv. (T-REFINERECORD) of (1)
S ∪ S ′{y .

= e} |= y.mj
.
= v (4) - inv. (T-REFINERECORD) of (1)

s ≤ si
↓
{m1,...,mi−1}

(5) - inv. (T-REFINERECORD) of (1)

∆, ∆′{v/x} `rS∪S ′{v/x} e{v/x} : (Σ[. . .×mj:τ
sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]s){v/x}

(6) - by I.H. with (3,2)
∆, ∆′{v/x} `rS∪S ′{v/x} e{v/x} : Σ[. . .×mj:τj{v/x}sj{v/x}× . . .×mi : (τi{v/x}si{v/x})[v/mj]× . . .]s{v/x}

(7) - by Definition 22 with (6)
s{v/x} ≤ (si

↓
{m1,...,mi−1}

){v/x} (8) - by Lemma 13 with (7)

s{v/x} ≤ si{v/x}↓{m1,...,mi−1}
(9)

S ∪ S ′{v/x}{y .
= e{v/x}} |= y.mj

.
= v{v/x} (10) - from (4), subst closure of .

=

∆, ∆′{v/x} `rS∪S ′{v/x} e{v/x} : Σ[. . .×mj:τj{v/x}sj{v/x}× . . .×mi : (τi{v/x}si{v/x})× . . .]s{v/x}

(11) - by rule (T-REFINERECORD) with (7,9,10)

∆, ∆′{v/x} `rS∪S ′{v/x} e{v/x} : (Σ[. . .×mj:τ
sj
j × . . .×mi : τsi

i × . . .]s){v/x}
by Definition 22 with (11)

Case (T-UNREFINERECORD):
∆, x : τ′s

′
, ∆′ `rS∪S ′ e : Σ[. . .×mj:τ

sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]s (1) - hyp.

∆ `r′S v : τ′s
′

(2) - hyp.
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∆, x : τ′s
′
, ∆′ `rS∪S ′ e : Σ[. . .×mj:τ

sj
j × . . .×mi : τsi

i × . . .]s

(3) - inv. (T-UNREFINERECORD) of (1)
S ∪ S ′{y .

= e} |= y.mj
.
= v (4) - inv. (T-REFINERECORD) of (1)

∆, ∆′{v/x} `rS∪S ′{v/x} e{v/x} : (Σ[. . .×mj:τ
sj
j × . . .×mi : τsi

i × . . .]s){v/x}
(5) - by I.H. with (3,2)

∆, ∆′{v/x} `rS∪S ′{v/x} e{v/x} : Σ[. . .×mj:τj{v/x}sj{v/x}× . . .×mi : τi{v/x}si{v/x}× . . .]s{v/x}

(6) - Definition 22 with (5)
S ∪ S ′{v/x}{y .

= e{v/x}} |= y.mj
.
= v{v/x} (7) - from (4), subst closure of .

=

∆, ∆′{v/x} `rS∪S ′{v/x} e{v/x} : (Σ[. . .×mj:τ
sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]s){v/x}

by rule (T-UNREFINERECORD) with (6,7)

Case (T-COLLECTION):

∆, x : τ′s
′
, ∆′ `rS∪S ′ {e1, . . . , en} : τ∗s (1) - hyp

∆ `r′S v : τ′s
′

(2) - hyp
∀i ∆, x : τ′s

′
, ∆′ `rS∪S ′ ei : τs (3) - inv. (T-COLLECTION) of (1)

∀i ∆, ∆′{v/x} `rS∪S ′{v/x} ei{v/x}:(τs){v/x} (4) - by I.H. with (3,2)
{e1, . . . , en}{v/x} = {e1{v/x}, . . . , en{v/x}} (5) - by Definition 38
∆, ∆′{v/x} `rS∪S ′{v/x} {e1{v/x}, . . . , en{v/x}} : (τ∗s){v/x}

(6) - by rule (T-COLLECTION) with (4,5)
∆, ∆′{v/x} `rS∪S ′{v/x} ({e1, . . . , en}){v/x} : (τ∗s){v/x} by Definition 38 with (6)

Case (T-CONS):

∆, x : τ′s
′
, ∆′ `rS∪S ′ e1::e2 : τ∗s (1) - hyp

∆ `r′S v : τ′s
′

(2) - hyp
∆, x : τ′s

′
, ∆′ `rS∪S ′ e1 : τs (3) - inv. (T-CONS) of (1)

∆, x : τ′s
′
, ∆′ `rS∪S ′ e2 : τ∗s (4) - inv. (T-CONS) of (1)

∆, ∆′{v/x} `rS∪S ′{v/x} e1{v/x}:(τs){v/x} (5) - by I.H. with (3,2)
∆, ∆′{v/x} `rS∪S ′{v/x} e2{v/x}:(τ∗s){v/x} (6) - by I.H. with (4,2)
(e1::e2){v/x} = (e1{v/x}::e2{v/x}) (7) - by Definition 38
∆, ∆′{v/x} `rS∪S ′{v/x} e1{v/x}::e2{v/x} : (τ∗s){v/x}

(8) - by rule (T-CONS) with (5,6), and by (7)
∆, ∆′{v/x} `rS∪S ′{v/x} (e1::e2){v/x} : (τ∗s){v/x} by Definition 38 with (8)

Case (T-FOREACH):

∆, x : τ′s
′
, ∆′ `rS∪S ′ foreach(e1, e2, y.z.e3) : τs (1) - hyp

∆ `r′S v : τ′s
′

(2) - hyp
∆, x : τ′s

′
, ∆′ `rS∪S ′ e1 : τ′′∗s (3) - inv. (T-FOREACH) of (1)

∆, x : τ′s
′
, ∆′ `rS∪S ′ e2 : τs (4) - inv. (T-FOREACH) of (1)

∆, x : τ′s
′
, ∆′, y : τ′′s, z : τs `r′S∪S ′ e3 : τs (5) - inv. (T-FOREACH) of (1)
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r t s ≤ r′ (6) - inv. (T-FOREACH) of (1)
r t s{v/x} ≤ r′ (7) - by instantiation with (5)
∆, ∆′{v/x} `rS∪S ′{v/x} e1{v/x} : (τ′′∗s){v/x} (11) - by I.H. with (3,2)
∆, ∆′{v/x} `rS∪S ′{v/x} e2{v/x} : (τs){v/x} (12) - by I.H. with (4,2)
∆, ∆′{v/x}, y : (τ′′s){v/x}, z : (τs){v/x} `r′S∪S ′{v/x} e3{v/x} : (τs){v/x}

(13) - by I.H. with (5,2)
(foreach(e1, e2, y.z.e3)){v/x} = foreach(e1{v/x}, e2{v/x}, y.z.e3{v/x})

(14) - by Definition 38
∆, ∆′{v/x} `rS∪S ′{v/x} foreach(e1{v/x}, e2{v/x}, y.z.e3{v/x}) : (τs){v/x}

(15) - by rule (T-FOREACH) with (11,12,13,7), and by (14)
∆, ∆′{v/x} `rS∪S ′{v/x} (foreach(e1, e2, y.z.e3)){v/x} : (τs){v/x}

by Definition 38 with (15)

Case (T-CASE):

∆, x : τ′s
′
, ∆′ `rS∪S ′ case e(. . . , ni · yi ⇒ ei, . . .) : τs (1) - hyp.

∆ `r′S v : τ′s
′

(2) - hyp.
∆, x : τ′s

′
, ∆′ `rS∪S ′ e : {. . . , ni : τsi

i , . . .}s (3) - inv. (T-CASE) of (1)
∀i ∆, x : τ′s

′
, ∆′, yi : τi

si `r′S∪S ′ ei : τs (4) - inv. (T-CASE) of (1)
r t s ≤ r′ (5) - inv. (T-CASE) of (1)
∆, ∆′{v/x} `rS∪S ′{v/x} e{v/x} : ({. . . , ni : τsi

i , . . .}s){v/x} (6) - by I.H. with (2,3)
∀i ∆, ∆′{v/x}, y : (τi

si){v/x} `r′S∪S ′{v/x} ei{v/x} : (τs){v/x} (7) - by I.H. with (2,4)
r t s{v/x} ≤ r′ (8) - by Lemma 13 with (5)
(case e(. . . , ni · yi ⇒ ei, . . .)){v/x} = case e{v/x}(. . . , ni · yi ⇒ ei{v/x}, . . .)

(9) - by Definition 38
∆, ∆′{v/x} `rS∪S ′{v/x} case e{v/x}(. . . , ni · yi ⇒ ei{v/x}, . . .) : (τs){v/x}

(10) - by rule (T-CASE) with (6,7,8), and by (9)
∆, ∆′{v/x} `rS∪S ′{v/x} (case e(. . . , ni · yi ⇒ ei, . . .)){v/x} : (τs){v/x}

by Definition 38 with (10)

Case (T-INJ):

∆, x : τ′s
′
, ∆′ `rS∪S ′ #ni(e) : {. . . , ni : τsi

i , . . .}t (1) - hyp.
∆ `r′S v : τ′s

′
(2) - hyp.

∆, x : τ′s
′
, ∆′ `rS∪S ′ e : τsi

i (3) - inv. (T-INJ) of (1)
∆, ∆′{v/x} `rS∪S ′{v/x} e{v/x} : (τsi

i ){v/x} (4) - by I.H. with (3,2)
∆, ∆′{v/x} `rS∪S ′{v/x} #ni(e{v/x}) : {. . . , ni : (τsi

i ){v/x}, . . .}t (5) - by (T-INJ) with (4)
∆, ∆′{v/x} `rS∪S ′{v/x} (#ni(e)){v/x} : ({. . . , ni : (τsi

i ), . . .}t){v/x}
by Definition 38 and Definition 22 with (5)

Case (T-OR):

∆, x : τ′s
′
, ∆′ `rS∪S ′ c1 ∨ c2 : Bools (1) - hyp

∆ `r′S v : τ′s
′

(2) - hyp
∆, x : τ′s

′
, ∆′ `rS∪S ′ c1 : Bools (3) - inv. (T-OR) with (1)
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∆, x : τ′s
′
, ∆′ `rS∪S ′ c2 : Bools (4) - inv. (T-OR) with (1)

∆, ∆′{v/x} `rS∪S ′{v/x} c1{v/x} : Bools{v/x} (5) - by I.H. with (3,2)
∆, ∆′{v/x} `rS∪S ′{v/x} c2{v/x} : Bools{v/x} (6) - by I.H. with (4,2)
∆, ∆′{v/x} `rS∪S ′{v/x} c1{v/x} ∨ c2{v/x} : Bools{v/x} (7) - by rule (T-OR) with (5,6)
∆, ∆′{v/x} `rS∪S ′{v/x} (c1 ∨ c2){v/x} : Bools{v/x} by Definition 38 with (7)

Case (T-NOT):

∆, x : τ′s
′
, ∆′ `rS∪S ′ ¬c : Bools (1) - hyp

∆ ` v : τ′s
′

(2) - hyp
∆, x : τ′s

′
, ∆′ `rS∪S ′ c : Bools (3) - inv. (T-NOT) with (1)

∆, ∆′{v/x} `rS∪S ′{v/x} c{v/x} : Bools{v/x} (4) - by I.H. with (3,2)
∆, ∆′{v/x} `rS∪S ′{v/x} ¬c{v/x} : Bools{v/x} (5) - by rule (T-NOT) with (4)
∆, ∆′{v/x} `rS∪S ′{v/x} (¬c){v/x} : Bools{v/x} by Definition 38 with (5)

Case (T-EQUAL):

∆, x : τ′s
′
, ∆′ `rS∪S ′ V1 = V2 : Bools (1) - hyp

∆ `r′S v : τ′s
′

(2) - hyp
∆, x : τ′s

′
, ∆′ `rS∪S ′ V1 : τs (3) - inv. (T-EQUAL) with (1)

∆, x : τ′s
′
, ∆′ `rS∪S ′ V2 : τs (4) - inv. (T-EQUAL) with (1)

∆, ∆′{v/x} `rS∪S ′{v/x} V1{v/x} : (τs){v/x} (5) - by I.H. with (3,2)
∆, ∆′{v/x} `rS∪S ′{v/x} V2{v/x} : (τs){v/x} (6) - by I.H. with (4,2)
∆, ∆′{v/x} `rS∪S ′{v/x} V1{v/x} = V2{v/x} : Bools{v/x} (7) - by rule (T-EQUAL) with (5,6)
∆, ∆′{v/x} `rS∪S ′{v/x} (V1 = V2){v/x} : Bools{v/x} by Definition 38 with (7)

Case (T-SUB):

∆, x : τ′s
′
, ∆′ `rS∪S ′ e : τs (1) - hyp.

∆ `r′′S v : τ′s
′

(2) - hyp.
∆, x : τ′s

′
, ∆′ `r′S∪S ′ e : τ′′s

′′
(3) - inv. (T-SUB) of (1)

τ′′s
′′
<: τs (4) - inv. (T-SUB) of (1)

r ≤ r′ (5) - inv. (T-SUB) of (1)
∆, x : τ′s

′
, ∆′ `∅ τs (6) - inv. (T-SUB) of (1)

∆, ∆′{v/x} `r′S∪S ′{v/x} e{v/x} : (τ′′s
′′
){v/x} (7) - by I.H. with (3,2)

∆, ∆′{v/x} `∅ (τs){v/x} (8) - by Lemma 12 with (6,2)
r{v/x} ≤ r′{v/x} (9) - by Lemma 13 with (5)
∆, x : τ′s

′
, ∆′ `∅ τ′′s

′′
(10) - by Definition 29 with (3)

∆, x : τ′s
′
, ∆′ `∅,∅ τ′′s

′′
<: τs (11) - by Definition 39 with (4,6,10)

∆, ∆′{v/x} `∅,∅ (τ′′s
′′
){v/x} <: (τs){v/x} (12) - by Lemma 14 with (11,2)

(τ′′s
′′
){v/x} <: (τs){v/x} (13) - by Definition 39 with (12)

∆, ∆′{v/x} `rS∪S ′{v/x} e{v/x} : (τs){v/x} by rule (T-SUB) with (7,8,9,13)

Case (T-REF):
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∆, x : τ′s
′
, ∆′ `rS∪S ′ refτs e : ref(τs)r (1) - hyp

∆ `r′S v : τ′s
′

(2) - hyp
∆, x : τ′s

′
, ∆′ `rS∪S ′ e : τs (3) - inv. (T-REF) with (1)

r ≤ s (4) - inv. (T-REF) with (1)
∆, ∆′{v/x} `rS∪S ′{v/x} e{v/x}:(τs){v/x} (5) - by I.H. with (3,2)
r{v/x} ≤ s{v/x} (6) - by Lemma 13 with (4)
∆, ∆′{v/x} `rS∪S ′{v/x} refτs e{v/x} : ref((τs){v/x})r{v/x}

(7) - by rule (T-REF) with (5,6)
∆, ∆′{v/x} `rS∪S ′{v/x} (refτs e){v/x} : (ref(τs)r){v/x}

by Definition 38 and Definition 22 with (7)

Case (T-DEREF):
∆, x : τ′s

′
, ∆′ `rS∪S ′ !e : τs (1) - hyp

∆ `r′S v:τ′s
′

(2) - hyp
∆, x : τ′s

′
, ∆′ `rS∪S ′ e : ref(τs)t (3) - inv. (T-DEREF) with (1)

t ≤ s (4) - inv. (T-DEREF) with (1)
∆, ∆′{v/x} `rS∪S ′{v/x} e{v/x} : (ref(τs)t){v/x} (5) - by I.H. with (3,2)
t{v/x} ≤ s{v/x} (6) - by Lemma 13 with (4)
∆, ∆′{v/x} `rS∪S ′{v/x} !e{v/x} : (τs){v/x} (7) - by rule (T-DEREF) with (5,6)
∆, ∆′{v/x} `rS∪S ′{v/x} (!e){v/x} : (τs){v/x} by Definition 38 with (7)

Case (T-ASSIGN):
∆, x : τ′s

′
, ∆′ `rS∪S ′ e1 := e2 : cmd⊥ (1) - hyp

∆ `r′S v : τ′s
′

(2) - hyp
∆, x : τ′s

′
, ∆′ `rS∪S ′ e1 : ref(τs)t (3) - inv. (T-ASSIGN) with (1)

∆, x : τ′s
′
, ∆′ `rS∪S ′ e2 : τs (4) - inv. (T-ASSIGN) with (1)

r t t ≤ s (5) - inv. (T-ASSIGN) with (1)
∆, ∆′{v/x} `rS∪S ′{v/x} e1{v/x} : (ref(τs)t){v/x} (6) - by I.H. with (3,2)
∆, ∆′{v/x} `rS∪S ′{v/x} e2{v/x} : (τs){v/x} (7) - by I.H. with (4,2)
(r t t){v/x} ≤ s{v/x} (8) - Lemma 13 with (5)
r t t{v/x} ≤ s{v/x} (9) - by def. of glb with (8)
∆, ∆′{v/x} `rS∪S ′{v/x} e1{v/x} := e2{v/x} : cmd⊥ (10) - by rule (T-ASSIGN) with (6,7,9)
∆, ∆′{v/x} `rS∪S ′{v/x} (e1 := e2){v/x} : cmd⊥ by Definition 38 with (10)

�

Lemma 19 (Inversion Lemma for Subtyping)

1. If γw <: Σ[m : τ′s′ ]s
′
, then

γw = Σ[m : τs]s such that ∀i τi
si <: τ′i

s′i , and s ≤ s′
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2. If γw <: {m : τ′s′}t′ , then
γw = {m : τs}t such that ∀i τi

si <: τ′i
s′i , and t ≤ t′

3. If γw <: (Πx:τ′s
′
.r′; σq′)t

′
, then

γw = (Πx:τs.r; σq)t such that τ′s
′
<: τs, σq <: σq′ , r′ ≤ r , and t ≤ t′

4. If γw <: ref(τs)t
′
, then

γw = ref(τs)t such that t ≤ t′

Proof: By induction on the relation τs <: τ′s
′
.

Lemma 20 (Inversion Lemma for Typing )

1. If ∆ `pS λ(x:τ′s
′
).e : (Πx:τs.r′; σq)t, then

∆, x:τ′s
′ `r′S e : σq, τs <: τ′s

′
.

2. If ∆ `rS #ni(v) : {. . . , ni : τsi
i , . . .}t, then

∆ `rS v : τi
si .

3. If ∆ `rS [. . . , mi = vi, . . .] : Σ[. . .×mi : τsi
i × . . .]s, then

∆ `rS vi : τi
si [v1/m1] . . . [vi−1/mi−1].

4. If ∆ `rS l : ref(τs)t, then
∆(l) = ref(τs)t

′
such that t′ ≤ t.

Proof By induction on the relation ∆ `rS e : τs, using Lemma 19.

1. ∆ `pS λ(x:τ′s
′
).e : (Πx:τs.r′; σq)t, then

∆, x:τ′s
′ `r′S e : σq, τs <: τ′s

′
.

Case (T-LAMBDA):

∆ `pS λ(x:τs).e:(Πx:τs.r; σq)t (1) - hyp.
∆, x:τs `rS e:σq (2) - inv. of (T-LAMBDA) with (1)
τs <: τs by (S-REFLEX) with (2)
r ≤ r by def. of ≤

Case (T-SUB):

∆ `pS λ(x:τ′s
′
).e : (Πx:τs.r; σq)t (1) - hyp.

∆ `r′S λ(x:τ′s
′
).e : γw (2) - inv. of (T-SUB) with (1)
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γw <: (Πx:τs.r; σq)t (3) - inv. of (T-SUB) with (1)
p ≤ r′ (4) - inv. of (T-SUB) with (1)
γw = (Πx:τ′′s

′′
.r′′′; σ′′q

′′
)t
′′

(5) - by Lem. 19 with (3)
τs <: τ′′s

′′
(6) - by Lem. 19 with (3)

σ′′q
′′
<: σq (7) - by Lem. 19 with (3)

r ≤ r′′′ (8) - by Lem. 19 with (3)
t′′ ≤ t (9) - by Lem. 19 with (3)
∆, x:τ′s

′ `r′′′S e : σ′′q
′′

(10) - by I.H. with (2)
τ′′s

′′
<: τ′s

′
(11) - by I.H. with (2)

τs <: τ′s
′

by (S-TRANS) with (6,11)
∆, x:τ′s

′ `rS e : σq by (T-SUB) with (10,8,7)

2. If ∆ `rS #ni(v) : {. . . , ni : τsi
i , . . .}t, then

∆ `rS v : τi
si .

Case (T-INJ):

∆ `rS #ni(v) as {. . . , ni:τ
si
i , . . .}usi : {. . . , ni:τ

si
i , . . .}usi (1) - hyp.

∆ `rS v : τi
si (2) - inv. of (T-INJ) with (1)

Case (T-SUB):

∆ `rS #n(v) as {. . . , ni : τ′i
s′i , . . .}t′ : {. . . , ni : τsi

i , . . .}t (1) - hyp.
∆ `rS #n(v) as {. . . , ni : τ′i

s′i , . . .}t′ : τs (2) - inv. of (T-SUB) with (1)
τs <: {. . . , ni : τsi

i , . . .}t (3) - inv. of (T-SUB) with (1)
r ≤ r′ (4) - inv. of (T-SUB) with (1)

τs = {m : τ′′s′′}t′′ (5) - by Lem. 19 with (3)
∀i τ′′i

s′′i <: τsi
i (6) - by Lem. 19 with (3)

∆ `rS v : τ′′i
s′′i (7) - by I.H. with (2)

∆ `rS v : τi
si by (T-SUB) with (7,6)

3. If ∆ `rS [. . . , mi = vi, . . .] : Σ[. . .×mi : τsi
i × . . .]s, then

∆ `rS vi : τi
si [v1/m1] . . . [vi−1/mi−1].

Case (T-RECORD):

∆ `rS [. . . , mi = vi, . . .] : Σ[. . .×mi : τsi
i × . . .]t hyp.

∀i ∆ `rS vi : τsi
i (2) - inv. of (T-RECORD) with (1)

∆ `rS vi : τsi
i (3) - by (2)

τsi
i = τsi

i [
v1/m1] . . . [vi−1/vi−1] (4) - since mi−1

1 6∈ fn(τi
si) by (3)

Case (T-SUB):
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∆ `rS [. . . , mi = vi, . . .] : Σ[. . .×mi : τsi
i × . . .]t (1) - hyp.

∆ `r′S [. . . , mi = vi, . . .] : δw (2) - inv. of (T-SUB) with (1)
δw <: Σ[. . .×mi : τsi

i × . . .]t (3) - inv. of (T-SUB) with (1)
r ≤ r′ (4) - inv. of (T-SUB) with (1)
δw = Σ[. . .×mi : τ′i

s′i× . . .]t
′

(5) - by Lem. 19 with (3)
∀i τ′i

s′i <: τsi
i (6) - by Lem. 19 with (3)

t′ ≤ t (7) - by Lem. 19 with (3)
∆ `r′S vi : τ′i

s′i [v1/m1] . . . [vi−1/mi−1] (8) - by I.H. (2,5)
∀i τ′i

s′i [v1/m1] . . . [vi−1/mi−1] <: τsi
i [

v1/m1] . . . [vi−1/mi−1] (10) - by (6) using Definition 23
∆ `rS vi : τsi

i [
v1/m1] . . . [vi−1/mi−1] by (T-SUB) with (8,10,4)

Case (T-REFINERECORD):

∆ `rS [. . . , mi = vi, . . .] : Σ[. . .×mj : τ
sj
j × . . . , mk : τsk

k , . . .]s (1) - hyp.
∆ `rS [. . . , mi = vi, . . .] : Σ[. . .×mj : τ

sj
j × . . . , mk : τsk

k [v/mj], . . .]s

(2) - inv. (T-REFINERECORD) of (1)
S{x .

= [. . . , mi = vi, . . .]} |= x.mj
.
= v (3) - inv. (T-REFINERECORD) of (1)

s ≤ si ↓m1,...,mi−1 (4) - inv. (T-REFINERECORD) of (1)
∆ `rS vi : τk

sk [v/mj][v1/m1] . . . [vi−1/mi−1] (5) - by I.H. (2)
v = vj (8) - by (3)
τk

sk [v/mj][v1/m1] . . . [vi−1/mi−1] <: τk
sk [v1/m1] . . . [vi−1/mi−1] (9) - by (S-REFLEX) with (8)

∆ `rS vi : τk
sk [v1/m1] . . . [vi−1/mi−1] by (T-SUB) with (5,9)

Case (T-UNREFINERECORD):

∆ `rS [. . . , mi = vi, . . .] : Σ[. . .×mj : τ
sj
j × . . . , mk : τsk

k [v/mj], . . .]s (1) - hyp.
∆ `rS [. . . , mi = vi, . . .] : Σ[. . .×mj : τ

sj
j × . . . , mk : τsk

k , . . .]s

(2) - inv. (T-UNREFINERECORD) of (1)
S{x .

= [. . . , mi = vi, . . .]} |= x.mj
.
= v (3) - inv. (T-UNREFINERECORD) of (1)

∆ `rS vi : τk
sk [v1/m1] . . . [vi−1/mi−1] (4) - by I.H. (2)

v = vj (7) - by (3)
τk

sk [v1/m1] . . . [vi−1/mi−1] <: (τk
sk [v/mj])[v1/m1] . . . [vi−1/mi−1] (8) - by (S-REFLEX) with (7)

∆ `rS vi : (τk
sk [v/mj])[v1/m1] . . . [vi−1/mi−1] by (T-SUB) with (4,8)

4. If ∆ `rS l : ref(τs)t, then
∆(l) = ref(τs)t

′
such that t′ ≤ t.

Case (T-LOC):

∆ `rS l : ref(τs)r (1) - hyp.
∆(l) = ref(τs)r by (T-LOC)
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r ≤ r by (s-reflex)

Case (T-SUB):

∆ `rS l : ref(τs)t (1) - hyp.
∆ `r′S l : δw (2) - inv. of (T-SUB) with (1)
δw <: ref(τs)t (3) - inv. of (T-SUB) with (1)
r ≤ r′ (4) - inv. of (T-SUB) with (1)
δw = ref(τs)t

′
(5) - by Lem. 19 with (3)

t′ ≤ t (6) - by Lem. 19 with (3)
∆(l) = ref(τs)t

′′
(7) - by I.H. (2,5)

t′′ ≤ t′ (8) - by I.H. (2,5)
t′′ ≤ t by (8,6)

�

Lemma 21 (Constraint Cut Lemma)
If ∆ `rS∪{t .

=t′} e : τs and S |= t .
= t′ then ∆ `rS e : τs.

Proof: Induction on the derivation of ∆ `rS∪{t .
=t′} e : τs, using deduction closure of |=.

Definition 40 (Store Consistency)
Let ∆ be a typing environment and S a store, we say store S is consistent with respect

to typing environment ∆, denoted as ∆ ` S, if dom(S) ⊆ dom(∆) and ∀l ∈ dom(S) then
∆(l) = ref(τs)t and ∆ `r∅ S(l) : τs.

Theorem 9 (Type Preservation)
Let vars(∆) = ∅, ∆ ` S and ∆ `rS e : τs.

If (S; e) −→ (S′; e′) then there is ∆′ such that ∆′ `rS e′ : τs, ∆′ ` S′, and ∆ ⊆ ∆′.

Proof By induction on the relation ∆ `rS e : τs.

Case (T-APP):
∆ `rS e1(e2) : σ′′q

′′
(1) - hyp

∆ ` S (2) - hyp

• Sub-case (APP-LEFT): (S; e1(e2)) −→ (S′; e′1(e2)) (3) - hyp
(S; e1) −→ (S′; e′1) (4) - inv. (APP-LEFT) of (3)
∆ `rS e1 : (Πx:τs.r′; σq)t (5) - inv. (T-APP) of (1)
∆ `rS e2 : τs (6) - inv. (T-APP) of (1)
(S{x .

= e2} |= x .
= v ∧ σ′′q

′′
= σ{v/x}q{v/x}) ∨ (σ′′q

′′
= (σq) ↑x)

(7) - inv. (T-APP) of (1)
∆ ⊆ ∆′ (8) - I.H. with (2,4,5)
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∆′ ` S′ (9) - I.H. with (2,4,5)
∆′ `rS e′1 : (Πx:τs.r′; σq)t (10) - I.H. with (2,4,5)
∆′ `rS e2 : τs (11) - by Lemma 17 with (6)

∆′ `rS e′1(e2) : σ′′q
′′

by (T-APP) with (10,11,7)

• Sub-case (APP-RIGHT): (S; (λ(x:τ′s
′
).e)(e2))→ (S′; (λ(x:τ′s

′
).e)(e′2)) (3) - hyp

(S; e2) −→ (S′; e′2) (4) - inv. (APP-RIGHT) of (3)
∆ `rS (λ(x : τ′s

′
).e) : (Πx:τs.r′; σq)t (5) - inv. (T-APP) of (1)

∆ `rS e2 : τs (6) - inv. (T-APP) of (1)
(S{x .

= e2} |= x .
= v ∧ σ′′q

′′
= σ{v/x}q{v/x}) ∨ (σ′′q

′′
= (σq) ↑x)

(7) - inv. (T-APP) of (1)
∆ ⊆ ∆′ (8) - I.H. with (2,4,6)
∆′ ` S′ (9) - I.H. with (2,4,6)
∆′ `rS e′2 : τs (10) - I.H. with (2,4,6)
∆′ `rS (λ(x : τ′s

′
).e) : (Πx:τs.r′; σq)t (11) - Lemma 17 with (5)

(S{x .
= e′2} |= x .

= v ∧ σ′′q
′′
= σ{v/x}q{v/x}) ∨ (σ′′q

′′
= (σq) ↑x)

(12) - subst closure of .
= with (7)

∆′ `rS (λ(x : τ′s
′
).e) : (Πx:τs.r′; σq)t (13) - by Lemma 17 with (5)

∆′ `rS (λ(x:τ′s
′
).e)(e′2) : σ′′q

′′
by (T-APP) with (13,11,12)

• Sub-case (APP): (S; (λ(x : τ′s
′
).e)(v)) −→ (S; e{v/x}) (3) - hyp

∆ `rS (λ(x : τ′s
′
).e) : (Πx:τs.r′; σq)t (4) - inv. (T-APP) of (1)

∆ `rS v : τs (5) - inv. (T-APP) of (1)
(S{x .

= e2} |= x .
= v ∧ σ′′q

′′
= σ{v/x}q{v/x}) ∨ (σ′′q

′′
= (σq) ↑x)

(6) - inv. (T-APP) of (1)
r ≤ r′ (7) - inv. (T-APP) of (1)
There are τ′s

′
such that: by Lemma 20 with (4)

τs <: τ′s
′

(8) - by Lemma 20 with (4)
∆, x : τ′s

′ `r′S e : σq (10) - by Lemma 20 with (4)
∆ `rS v : τ′s

′
(12) - by rule (T-SUB) with (5,8)

– (S{x .
= v} |= x .

= v ∧ σ′′q
′′
= σ{v/x}q{v/x}) (13) - by (6)

∆ `r′S e{v/x} : (σq){v/x} (14) - Lemma 18 with (10,12)
∆ `rS e{v/x} : σ′′q

′′

by rule (T-SUB) with (14,7) and by (13) we know v = v so σ′′q
′′
= σ{v/x}q{v/x}

– σ′′q
′′
= (σq) ↑x (16) - by (6)

σq <: (σq) ↑x (17) - Lemma 15(a)
∆, x : τ′s

′ `rS e : (σq) ↑x (19) - by rule (T-SUB) with (10,17,7)
∆ `rS e{v/x} : ((σq) ↑x){v/x} (20) - Lemma 18 with (19,12)
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∆ `rS e{v/x} : (σq) ↑x (21) - x 6∈ fv((σq) ↑x) by Definition 31
∆ `rS e{v/x} : σ′′q

′′
by (21) σ′′q

′′
= (σq) ↑x

Case (T-RECORD):
(S; [. . . , mi = e, . . .]) −→ (S′; [. . . , mi = e′, . . .]) (1) - hyp
∆ `rS [. . . , mi = e, . . .] : Σ[. . .×mi : τsi

i × . . .]t (2) - hyp
∆ ` S (3) -hyp
(S; e) −→ (S′; e′) (4) - inv. (RECORD) of (1)
∀i ∆ `rS ei : τsi

i (5) - inv. (T-RECORD) of (2)
∆ `rS e : τsi

i (6) - by (5)
∆ ⊆ ∆′ (7) - I.H. with (3,4,6)
∆′ ` S′ (8) - I.H. with (3,4,6)
∆′ `rS e′ : τsi

i (9) - I.H. with (3,4,6)
∀i ∆′ `rS ei : τsi

i (10) - Lemma 17 with (5)
∆′ `rS [. . . , mi = e′, . . .] : Σ[. . .×mi:τ

si
i × . . .]t by rule (T-RECORD) with (9,10)

Case (T-FIELD):
∆ `rS e.mi : τsi

i (1) - hyp
∆ ` S (2) - hyp

• Sub-case (FIELD-LEFT): (S; e.mi) −→ (S′; e′.mi) (4) - hyp
(S; e) −→ (S′; e′) (5) - inv. (FIELD-LEFT) of (4)
∆ `rS e : Σ[. . .×mi:τ

si
i × . . .]s (6) - inv. (T-FIELD) of (1)

∆ ⊆ ∆′ (7) - I.H. with (2,5,6)
∆′ ` S′ (8) - I.H. with (2,5,6)
∆′ `rS e′ : Σ[. . .×mi:τ

si
i × . . .]s (9) - I.H. with (2,5,6)

∆′ `rS e′.mi : τsi
i by rule (T-FIELD) with (9)

• Sub-case (FIELD-RIGHT): (S; [m1 = v1, . . . , mn = vn].mi) −→ (S; vi) (4) - hyp
∆ `rS [m1 = v1, . . . , mn = vn] : Σ[. . .×mi:τ

si
i × . . .]s (5) - inv. (T-FIELD) of (1)

∆ `rS vi : τi
si [v1/m1] . . . [vi−1/mi−1] (6) - by Lemma 20 with (4)

τi
si [v1/m1] . . . [vi−1/mi−1] = τi

si (7) - since fn(τi
si) = ∅ by (1)

∆ `rS vi : τi
si by (6,7)

Case (T-REFINERECORD):
(S; e) −→ (S′; e′) (1) - hyp
∆ `rS e : Σ[. . .×mj:τ

sj
j × . . .×mi : τsi

i × . . .]t (2) - hyp
∆ ` S (3) - hyp
∆ `rS e : Σ[. . .×mj:τ

sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]t (4) - inv. (T-REFINERECORD) of (2)

S{x .
= e} |= x.mj

.
= v (5) - inv. (T-REFINERECORD) of (2)
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s ≤ si
↓
{m1,...,mi−1}

(6) - inv. (T-REFINERECORD) of (2)
∆ ⊆ ∆′ (7) - I.H. with (1,3,4)
∆′ ` S′ (8) - I.H. with (1,3,4)
∆′ `rS e′ : Σ[. . .×mj:τ

sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]t (9) - I.H. with (1,3,4)

S{x .
= e′} |= x.mj

.
= v (10) - by (1) since reduction preserves .

=, so e .
= e′

∆′ `rS e′ : Σ[. . .×mj:τ
sj
j × . . .×mi : τsi

i × . . .]t by rule (T-REFINERECORD) with (6,9,10)

Case (T-UNREFINERECORD):

(S; e) −→ (S′; e′) (1) - hyp
∆ `rS e : Σ[. . .×mj:τ

sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]t (2) - hyp

∆ ` S (3) - hyp
∆ `rS e : Σ[. . .×mj:τ

sj
j × . . .×mi : τsi

i × . . .]t (4) - inv. (T-UNREFINERECORD) of (2)
S{x .

= e} |= x.mj
.
= v (5) - inv. (T-UNREFINERECORD) of (2)

∆ ⊆ ∆′ (6) - I.H. with (1,3,4)
∆′ ` S′ (7) - I.H. with (1,3,4)
∆′ `rS e′ : Σ[. . .×mj:τ

sj
j × . . .×mi : τsi

i × . . .]t (8) - I.H. with (1,3,4)
S{x .

= e′} |= x.mj
.
= v (9) - by (1) since reduction perserves .

=, so e .
= e′

∆′ `rS e′ : Σ[. . .×mj:τ
sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]t

by rule (T-UNREFINERECORD) with (8,9)

Case (T-COLLECTION):

(S; {. . . , e, . . .}) −→ (S′; {. . . , e′, . . .}) (1) - hyp
∆ `rS {. . . , e, . . .} : τ∗s (2) - hyp
∆ ` S (3) - hyp
(S; e) −→ (S′; e′) (4) - inv. (list) of (1)
∀i ∆ `rS ei : τs (5) - inv. (T-COLLECTION) of (2)
∆ `rS e : τs (6) - by (5)
∆ ⊆ ∆′ (7) - I.H. with (3,4,6)
∆′ ` S′ (8) - I.H. with (3,4,6)
∆′ `rS e′ : τs (9) - I.H. with (3,4,6)
∀i ∆′ `rS ei : τs (11) - Lemma 17 with (5)
∆′ `rS {. . . , e′, . . .} : τ∗s by rule (T-COLLECTION) with (9,11)

Case (T-CONS):

∆ `rS e1::e2 : τ∗s (1) - hyp
∆ ` S (2) - hyp

• Sub-case (CONS-LEFT): (S; e1::e2) −→ (S′; e′1::e2) (3) - hyp
(S; e1) −→ (S′; e′1) (4) - inv. (CONS-LEFT) of (3)
∆ `rS e1 : τs (5) - inv. (T-CONS) of (1)
∆ `rS e2 : τ∗s (6) - inv. (T-CONS) of (1)
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∆ ⊆ ∆′ (7) - I.H. with (2,4,5)
∆′ ` S′ (8) - I.H. with (2,4,5)
∆′ `rS e′1 : τs (9) - I.H. with (2,4,5)
∆′ `rS e2 : τ∗s (10) - Lemma 17 with (6)
∆′ `rS e′1::e2 : τ∗s by rule (T-CONS) with (9,10)

• Sub-case (CONS-RIGHT): (S; v::e2) −→ (S′; v::e′2) (3) - hyp
(S; e2) −→ (S′; e′2) (4) - inv. (CONS-RIGHT) of (3)
∆ `rS v : τs (5) - inv. (T-CONS) of (1)
∆ `rS e2 : τ∗s (6) - inv. (T-CONS) of (1)
∆ ⊆ ∆′ (7) - I.H. with (2,4,6)
∆′ ` S′ (8) - I.H. with (2,4,6)
∆′ `rS e′2 : τ∗s (9) - I.H. with (2,4,6)
∆′ `rS v : τs (10) - Lemma 17 with (5)
∆′ `rS v::e′2 : τ∗s by rule (T-CONS) with (9,10)

• Sub-case (CONS): (S; v::{v1, . . . , vn}) −→ (S; {v, v1, . . . , vn})
(3) - hyp

∆ `rS v : τs (4) - inv. (T-CONS) of (1)
∆ `rS {v1, . . . , vn} : τ∗s (5) - inv. (T-CONS) of (1)
∀i ∆ `rS vi : τs (6) - inv. (T-COLLECTION) of (5)
∆ `rS {v, v1, . . . , vn} : τ∗s by rule (T-COLLECTION) with (4,6)

Case (T-FOREACH):
∆ `rS foreach(e1, e2, x.y.e3)) : τ′s (1) - hyp
∆ ` S (2) - hyp

• Sub-case (FOREACH-LEFT): (S; foreach(e1, e2, x.y.e3)) −→
(S′; foreach(e′1, e2, x.y.e3)) (3) - hyp

(S; e1) −→ (S′; e′1) (4) - inv. (FOREACH-LEFT) of (3)
∆ `rS e1 : τ∗s (5) - inv. (T-FOREACH) of (1)
∆ `rS e2 : τ′s (6) - inv. (T-FOREACH) of (1)
∆, x : τs, y : τ′s `r′S e3 : τ′s (7) - inv. (T-FOREACH) of (1)
r t s ≤ r′ (8) - inv. (T-FOREACH) of (1)
∆ ⊆ ∆′ (9) - I.H. with (2,4,5)
∆′ ` S′ (10) - I.H. with (2,4,5)
∆′ `rS e′1 : τ∗s (11) - I.H. with (2,4,5)
∆′ `rS e2 : τ′s (12) - Lemma 17 with (6)
∆′, x : τs, y : τ′s `r′S e3 : τ′s (13) - Lemma 17 with (7)
∆′ `rS foreach(e′1, e2, x.y.e3)) : τ′s by rule (T-FOREACH) with (11,12,13)
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• Sub-case (FOREACH-RIGHT): (S; foreach(v, e2, x.y.e3))) −→
(S′; foreach(v, e′2, x.y.e3))) (3) - hyp

(S; e2) −→ (S′; e′2) (4) - inv. (FOREACH-RIGHT) of (3)
∆ `rS v : τ∗s (5) - inv. (T-FOREACH) of (1)
∆ `rS e2 : τ′s (6) - inv. (T-FOREACH) of (1)
∆, x : τs, y : τ′s `rS e3 : τ′s (7) - inv. (T-FOREACH) of (1)
r t s ≤ r′ (8) - inv. (T-FOREACH) of (1)
∆ ⊆ ∆′ (9) - I.H. with (2,4,6)
∆′ ` S′ (10) - I.H. with (2,4,6)
∆′ `rS e′2 : τ′s (11) - I.H. with (2,4,6)
∆′ `rS v : τ∗s (12) - Lemma 17 with (5)
∆′, x : τs, y : τ′s `r′S e3 : τ′s (13) - Lemma 17 with (7)
∆′ `rS foreach(v, e′2, x.y.e3) : τ′s by rule (T-FOREACH) with (11,12,13)

• Sub-case (FOREACH): (S; foreach(l, v, x.y.e3)) −→
(S′; foreach(hs, e3{h/x}{v/y}, x.y.e3)) (3) - hyp

u = h::hs (4) - inv. (FOREACH) of (3)
∆ `rS u : τ∗s (5) - inv. (T-FOREACH) of (1)
∆ `rS v : τ′s (6) - inv. (T-FOREACH) of (1)
∆, x : τs, y : τ′s `rS e3 : τ′s (7) - inv. (T-FOREACH) of (1)
r t s ≤ r′ (8) - inv. (T-FOREACH) of (1)
∆ `rS h : τs (9) - inv. (T-CONS) of (5)
∆ `rS hs : τ∗s (10) - inv. (T-CONS) of (5)
∆ `r′S e3{h/x}{v/y} : (τ′s){h/x}{v/y} (11) - Lemma 18 with (6,7,9)
r t s{h/x}{v/y} ≤ r′ (12) - by instantiation with (8)
∆ `rS foreach(hs, e3{h/x}{v/y}, x.y.e3) : (τ′s){h/x}{v/y}

by rule (T-FOREACH) with (7,10,11,12)
∆ `r′S foreach(hs, e3{h/x}{v/y}, x.y.e3) : τ′s x, y 6∈ fv(τ′s) by (1,6) and by Definition 27

• Sub-case (FOREACH-BASE): (S; foreach({}, v, x.y.e3)) −→ (S; v) (3) - hyp
∆ `rS {} : τ∗s (4) - inv. (T-FOREACH) of (1)
∆ `rS v : τ′s (5) - inv. (T-FOREACH) of (1)
∆, x : τs, y : τ′s `r′S e3 : τ′s (6) - inv. (T-FOREACH) of (1)
∆ `rS v : τ′s by (5)

Case (T-LET)
∆ `rS let x = e1 in e2 : τs (1) - hyp
∆ ` S (2) - hyp

• Sub-case (LET-LEFT): (S; let x = e1 in e2) −→ (S′; let x = e′1 in e2) (3) - hyp
(S; e1) −→ (S′; e′1) (4) - inv. (LET-LEFT) of (3)
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∆ `rS e1 : τ′s
′

(5) - inv. (T-LET) of (1)
∆, x : τ′s

′ `rS{x .
=e1}

e2 : τs (6) - inv. (T-LET) of (1)
∆ ⊆ ∆′ (7) - I.H. with (2,4,5)
∆′ ` S′ (8) - I.H. with (2,4,5)
∆′ `rS e′1 : τ′s

′
(9) - I.H. with (2,4,5)

∆′, x : τ′s
′ `rS{x .

=e1}
e2 : τs (10) - Lemma 17 with (6)

∆′, x : τ′s
′ `rS{x .

=e′1}
e2 : τs (11) - by (4) since reduction preserves .

=, so e1
.
= e′1

∆′ `rS let x = e′1 in e2 : τs by rule (T-LET) with (9) and (11)

• Sub-case (LET-RIGHT): (S; let x = v in e2) −→ (S; e2{v/x}) (3) - hyp
∆ `rS v : τ′s

′
(4) - inv. (T-LET) of (1)

∆, x : τ′s
′ `rS{x .

=v} e2 : τs (5) - inv. (T-LET) of (1)
∆ `rS{x .

=v}{v/x} e2{v/x} : (τs){v/x} (6) - Lemma 18 from (5,4)
∆ `rS e2{v/x} : τs S |= v .

= v from (6), and x 6∈ fv(τs) by (1)

Case (T-IF):
∆ `rS if c then e1 else e2 : τs (1) - hyp
∆ ` S (2) - hyp
∆ `rS c : Bools (3) - inv. (T-IF) of (1)
∆ `r′S∪{c .

=true} e1 : τs (4) - inv. (T-IF) of (1)

∆ `r′S∪{c .
=false} e2 : τs (5) - inv. (T-IF) of (1)

r t s ≤ r′ (6) - inv. (T-IF) of (1)
r ≤ r t s ≤ r′ (7) - by def. of t

• Sub-case (IF-TRUE): (S; if c then e1 else e2) −→ (S; e1)

CJcK = true (8) - inv. (IF-TRUE) of (3)
∆ `rS∪{c .

=true} e1 : τs (9) - by rule (T-SUB) with (4,7)
S |= true

.
= true (10) - by (9,8)

∆ `rS e1 : τs by Lemma 21 with (9,10)

• Sub-case (IF-FALSE): (S; if c then e1 else e2) −→ (S; e2)

CJcK = false (8) - inv. (IF-TRUE) of (3)
∆ `rS∪{c .

=false} e2 : τs (9) - by rule (T-SUB) with (5,7)
S |= false

.
= false (10) - by (9,8)

∆ `rS e2 : τs by Lemma 21 with (9,10)

Case (T-CASE):
∆ `rS case e(. . . , ni · xi ⇒ ei, . . .) : τs (1) - hyp
∆ ` S (2) - hyp
∆ `rS e : {. . . , ni : τsi

i , . . .}s (3) - inv. (T-CASE) of (1)
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∀i ∆, xi:τ
si
i `r

′
S ei : τs (4) - inv. (T-CASE) of (1)

r t s ≤ r′ (5) - inv. (T-CASE) of (1)

• Sub-case (CASE-LEFT): (S; case e(. . . , ni · xi ⇒ ei, . . .)) −→
(S′; case e′(. . . , ni · xi ⇒ ei, . . .)) (6) - hyp

(S; e) −→ (S′; e′) (7) - inv. of (CASE-LEFT) with (6)
∆ `rS e′ : {. . . , ni : τsi

i , . . .}s (8) - by I.H. with (2,3,7)
∆ `rS case e′(. . . , ni · xi ⇒ ei, . . .) : τs by rule (T-CASE) with (8,4)

• Sub-case (CASE-RIGHT): (S; case #ni(v)(. . . , ni · xi ⇒ ei, . . .)) −→ (S′; ei{v/xi})
∆, xi:τ

si
i `r

′
S ei : τs (9) - by (4)

∆ `rS v : τi
si (10) - by Lemma 20 with (3) with e = #n(v)

∆ `r′S ei{v/xi} : (τs){v/x} (13) - by Lemma 18 with (9,12)
r ≤ r′ (14) - by def. of glb with (5)
∆ `rS ei{v/xi} : τs by (T-SUB) with (13,14) and since xi 6∈ fv(τs) by (1)

Case (T-VARIANT):
∆ `rS #ni(e) : {. . . , ni:τ

si
i , . . .}s (1) - hyp

(S; e) −→ (S′; e′) (2) - hyp
∆ ` S (3) - hyp
∆ `rS e : τsi

i (4) - inv. (T-VARIANT) of (1)
∆ ⊆ ∆′ (5) - I.H. with (2,3,4)
∆′ ` S′ (6) - I.H. with (2,3,4)
∆′ `rS e′ : τsi

i (7) - I.H. with (2,3,4)
∆ `rS #ni(e′) : {. . . , ni:τ

si
i , . . .}s by rule (T-VARIANT) with (7)

Case (T-SUB):
∆ `r′S e : τ′s

′
(1) - hyp

(S; e) −→ (S′; e′) (2) - hyp
∆ ` S (3) - hyp
∆ `rS e : τs (4) - inv. (T-SUB) of (1)
∆ `∅ τ′s

′
(5) - inv. (T-SUB) of (1)

τs <: τ′s
′

and r′ ≤ r (6) - inv. (T-SUB) of (1)
∆ ⊆ ∆′ (7) - I.H. with (2,3,4)
∆′ ` S′ (8) - I.H. with (2,3,4)
∆′ `rS e′ : τs (9) - I.H. with (2,3,4)
∆′ `r′S e′ : τ′s

′
by rule (T-SUB) with (9,6)

Case (T-REF):
∆ `rS refτs e : ref(τs)r (1) - hyp
∆ ` S (2) - hyp
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• Sub-case (REF-LEFT): (S; refτs e) −→ (S′; refτs e′) (3) - hyp
(S; e) −→ (S′; e′) (4) - inv. (REF-LEFT) of (3)
∆ `rS e : τs (5) - inv. (T-REF) of (1)
∆ ⊆ ∆′ (6) - I.H. with (2,4,5)
∆′ ` S′ (7) - I.H. with (2,4,5)
∆′ `rS e′ : τs (8) - I.H. with (2,4,5)
∆′ `rS refτs e′ : ref(τs)r by rule (T-REF) with (8)

• Sub-case (REF-RIGHT): (S; refτs v) −→ (S ∪ {l 7→ v}; l) (3) - hyp
l 6∈ dom(S) ∪ f n(e) (4) - inv. (REF-RIGHT) of (3)
∆ `rS v : τs (5) - inv. (T-REF) of (1)
∆, l : ref(τs)r `rS l : ref(τs)r (6) - by (T-LOC)
∆, l : ref(τs)r ` S ∪ {l 7→ v} (7) - by Definition 40 with (5,6)

Case (T-DEREF):
∆ `rS !e : τs (1) - hyp
∆ ` S (2) - hyp

• Sub-case (DEREF-LEFT): (S; !e) −→ (S′; !e′) (3) - hyp
(S; e) −→ (S′; e′) (4) - inv. (DEREF-LEFT) of (3)
∆ `rS e : ref(τs)s

′
(5) - inv. (T-DEREF) of (1)

∆ ⊆ ∆′ (6) - I.H. with (2,4,5)
∆′ ` S′ (7) - I.H. with (2,4,5)
∆′ `rS e′ : ref(τs)s

′
(8) - I.H. with (2,4,5)

∆′ `rS !e′ : τs by rule (T-DEREF) with (8)

• Sub-case (DEREF): (S; !l) −→ (S; v) (3) - hyp
S(l) = v (4) - inv. (DEREF) of (3)
∆ `rS l : ref(τs)s

′
(5) - inv. (T-DEREF) of (1)

∆(l) = ref(τs)s
′′

(6) - by Lemma 20 with (5)
s′′ ≤ s′ (7) - by Lemma 20 with (5)
∆ ` S (8) - by Definition 40 with (4,6)
∆ `rS v : τs by (4,6,8)

Case (T-ASSIGN):
∆ `rS e1 := e2 : cmd⊥ (1) - hyp
∆ ` S (2) - hyp

• Sub-case (ASSIGN-LEFT): (S; e1 := e2) −→ (S′; e′1 := e2) (3) - hyp
(S; e1) −→ (S′; e′1) (4) - inv. (ASSIGN-LEFT) of (3)
∆ `rS e1 : ref(τs)s

′
(5) - inv. (T-ASSIGN) of (1)
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∆ `rS e2 : τs (6) - inv. (T-ASSIGN) of (1)
∆ ⊆ ∆′ (7) - I.H. with (2,4,5)
∆′ ` S′ (8) - I.H. with (2,4,5)
∆′ `rS e′1 : ref(τs)s

′
(9) - I.H. with (2,4,5)

∆′ `rS e2 : τs (10) - by Lemma 17 with (6)
∆′ `rS e′1 := e2 : cmd⊥ by (T-ASSIGN) with (9,10)

• Sub-case (ASSIGN-RIGHT): (S; l := e2) −→ (S′; l := e′2) (3) - hyp
(S; e2) −→ (S′; e′2) (4) - inv. (ASSIGN-RIGHT) of (3)
∆ `rS l : ref(τs)s

′
(5) - inv. (T-ASSIGN) of (1)

∆ `rS e2 : τs (6) - inv. (T-ASSIGN) of (1)
∆ ⊆ ∆′ (7) - I.H. with (2,4,6)
∆′ ` S′ (8) - I.H. with (2,4,6)
∆′ `rS e′2 : τs (9) - I.H. with (2,4,6
∆′ `rS l : ref(τs)s

′
(10) - by Lemma 17 with (5)

∆′ `rS l := e′2 : cmd⊥ by (T-ASSIGN) with (9,10)

• Sub-case (ASSIGN): (S; l := v) −→ (S[l 7→ v]; ()) (3) - hyp
l ∈ dom(S) (4) - inv. (ASSIGN) of (3)
∆ `rS l : ref(τs)s

′
(5) - inv. (T-ASSIGN) of (1)

∆ `rS v : τs (6) - inv. (T-ASSIGN) of (1)
∆(l) = ref(τs)s

′′
(7) - by Lemma 20 with (5)

s′′ ≤ s′ (8) - by Lemma 20 with (5)
∆ ` S[l 7→ v] by (5,6,7)
∆ `rS () : cmd⊥ by (T-UNIT)

�

Lemma 22 (Canonical Forms Lemma)

1. If ∆ `rS v : (Πx:τs.r; σq)t, then ∃x,s′,e v = λ(x : τs′).e.

2. If ∆ `rS v : bools, then v = true or v = false.

3. If ∆ `rS v : cmds, then v = ().

4. If ∆ `rS v : ref(τs)t, then v = l.

5. If ∆ `rS v : Σ[m:τs]t, then v = [m = v′].

6. If ∆ `rS v : {. . . , ni : τi
si , . . .}t, then v = #nj(u) for some j.

7. If ∆ `rS v : τ∗s, then v = v′.

Proof: By induction on the derivation of ∆ `rS v : τs.
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Theorem 10 (Progress)
Let ∆ `rS e : τs, and ∆ ` S, then e is either a value or (S; e) −→ (S′; e′).

Proof By induction on the derivation of ∆ `rS e : τs .

Cases (T-TRUE), (T-FALSE), (T-UNIT), (T-LAMBDA), (T-LOC), (T-INJ)

For any of these cases, the expression is a value.

Case (T-OR), (T-NOT), (T-EQUAL)

In these cases we have a conditional expression that is evaluated through an inter-
pretation function C. Since C is a total function, then we know the evaluation of these
expressions terminates with a boolean value.

Case (T-FIELD):

∆ `rS e.mi : τsi
i (1) - hyp

∆ ` S (2) - hyp
∆ `rS e : Σ[. . .×mi:τsi× . . .]s

′
(3) - inv. (T-FIELD) of (1)

• (S; e) −→ (S′; e′) (5) - by I.H. with (3,2)
(S; e.mi) −→ (S′; e′.mi) by rule (FIELD-LEFT) with (5)

• e is a value (6) - by I.H. with (3,2)
e = [m : v] (7) - Lemma 22 with (3,6)
(S; e.mi) −→ (S; vi) by rule (FIELD-RIGHT) with (7)

Case (T-LET):

∆ `rS let x = e1 in e2 : τ′s
′

(1) - hyp
∆ ` S (2) - hyp
∆ `rS e1 : τs (3) - inv. (T-LET) of (1)
∆, x : τs `rS{x .

=e1}
e2 : τ′s

′
inv. (T-LET) of (1)

• (S; e1) −→ (S′; e′1) (4) - by I.H. with (3),(2)
(S; let x = e1 in e2) −→ (S′; let x = e′1 in e2) (6) - by rule (LET-LEFT) with (4)

• e1 = v (5) - by I.H. with (3,2)
(S; let x = e1 in e2) −→ (S; e2{v/x}) by rule (LET-RIGHT) with (5)

Case (T-CASE):

∆ `rS case e(. . . , ni · xi ⇒ ei, . . .) : τs (1) - hyp
∆ ` S (2) - hyp
∆ `rS e : {. . . , ni : τsi

i , . . .}s (3) - inv. (T-CASE) of (1)
∀i ∆, xi:τ

si
i `r

′
S ei : τs (4) - inv. (T-CASE) of (1)

r t s ≤ r′ inv. (T-CASE) of (1)
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• (S; e) −→ (S′; e′) (5) - by I.H. with (3,2)
(S; case e(. . . , ni · xi ⇒ ei, . . .)) −→ (S′; case e′(. . . , ni · xi ⇒ ei, . . .))

(6) - by rule (CASE-LEFT) with (5)
• e = #nj(v) (7) - by I.H. with (3,2)

(S; case #nj(v)(. . . , ni · xi ⇒ ei, . . .)) −→ (S; ej{v/xj})
by rule (CASE-RIGHT) with (7)

Case (T-APP):

∆ `rS e1(e2) : σ′′q
′′

(1) - hyp
∆ ` S (2) - hyp
∆ `rS e1 : (Πx:τs.r; σq)t (3) - inv. (T-APP) of (1)
∆ `rS e2 : τs (4) - inv. (T-APP) of (1)

• (S; e1) −→ (S′; e′1) (5) - by I.H. with (3,2)
(S; e1(e2)) −→ (S′; e′1(e2)) by (APP-LEFT) with (5)

• e1 is a value (6) - by I.H. with (3,2)
e1 = λ(x : τs′).e (7) - Lemma 22 with (3,6)

– (S; e2) −→ (S′; e′2) (8) - by I.H. with (4,2)
(S; e1(e2)) −→ (S′; e1(e′2)) by rule (APP-RIGHT) with (8,7)

– e2 = v (9) - by I.H. with (4,2)
(S; (λ(x : τs′).e)(e2)) −→ (S; e{v/x})

by rule (APP) with (9,7)

Case (T-SUB):

∆ `r′S e : τs′ (1) - hyp
∆ ` S (2) - hyp
∆ `rS e : τs (3) - inv. (T-SUB) with (1)
τs <: τs′ inv. (T-SUB) with (1)
r′ ≤ r inv. (T-SUB) with (1)
(S; e) −→ (S′; e′) or e is a value by I.H. with (3,2)

Case (T-IF):

∆ `rS if c then e1 else e2 : τs (1) - hyp
∆ ` S (2) - hyp
∆ `rS c : Bools inv. (T-IF) of (1)
∆ `r′S∪{c .

=true} e1 : τs inv. (T-IF) of (1)

∆ `r′S∪{c .
=false} e2 : τs inv. (T-IF) of (1)

r t s ≤ r′ inv. (T-IF) of (1)
C is a total function (3) - by def.
CJcK is either true or false (4) - by def. and (3)
(S; if c then e1 else e2) −→ (S; e1) by rule (IF-TRUE), (4) with CJcK = true
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(S; if c then e1 else e2) −→ (S; e2) by rule (IF-FALSE), (4) with CJcK = false

Case (T-CONS):
∆ `rS e1::e2 : τ∗s (1) - hyp
∆ ` S (2) - hyp
∆ `rS e1 : τs (3) - inv. (T-CONS) of (1)
∆ `rS e2 : τ∗s (4) - inv. (T-CONS) of (1)

• (S; e1) −→ (S′; e′1) (5) - by I.H. with (3,2)
(S; e1::e2) −→ (S; e′1::e2) by (CONS-LEFT) with (5)

• e1 is a value (6) - by I.H. with (3,2)

– (S; e2) −→ (S′; e′2) (7) - by I.H. with (4,2)
(S; e1::e2) −→ (S; e1::e′2) by rule (CONS-RIGHT) with (6,7)

– e2 is a value (8) - by I.H. with (4,2)
e2 = {v1, . . . , vn} (9) - Lemma 22 with (4,8)
(S; e1::{v1, . . . , vn}) −→ (S; {e1, v1, . . . , vn}) by rule (CONS) with (9,6)

Case (T-RECORD):
∆ `rS [. . . , mi=ei, . . .] : Σ[. . .×mi:τ

si
i × . . .]s (1) - hyp

∆ ` S (2) - hyp
∆ `rS ei : τsi

i (3) - inv. (T-RECORD) of (1)

• (S; ei) −→ (S′; e′i) (4) - by I.H. with (3,2)
(S; [. . . , mi=ei, . . .]) −→ (S′; [. . . , mi=e′i, . . .]) by rule (RECORD) with (4)
• ∀i ei is a value (5) - by I.H. with (3,2)
[. . . , mi=ei, . . .] is value by (5)

Case (T-COLLECTION):
∆ `rS {e1, . . . , en} : τ∗s (1) - hyp
∆ ` S (2) - hyp
∆ `rS ei : τs (3) - inv. (T-COLLECTION) of (1)

• (S; ei) −→ (S′; e′i) (4) - by I.H. with (3),(2)
(S; {. . . , ei, . . .}) −→ (S′; {. . . , e′i, . . .}) by rule (COLLECTION) with (4)
• ∀i ei is a value (5) - by I.H. with (3,2)
{e1, . . . , en} is value by (5)

Case (T-REFINERECORD):
∆ `rS e : Σ[. . .×mj:τ

sj
j × . . .×mi : τsi

i × . . .]s (1) - hyp
∆ ` S (2) - hyp
∆ `rS e : Σ[. . .×mj:τ

sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]s (3) - inv. (T-REFINERECORD) of (1)

(S; e) −→ (S′; e′) or e is a value (4) - by I.H. with (3,2)
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Case (T-UNREFINERECORD):
∆ `rS e : Σ[. . .×mj:τ

sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]s (1) - hyp

∆ ` S (2) - hyp
∆ `rS e : Σ[. . .×mj:τ

sj
j × . . .×mi : τsi

i × . . .]s (3) - inv. (T-UNREFINERECORD) of (1)
(S; e) −→ (S′; e′) or e is a value (4) - by I.H. with (3,2)

Case (T-FOREACH):
∆ `rS foreach(e1, e2, x.y.e3) : τ′s (1) - hyp
∆ ` S (2) - hyp
∆ `rS e1 : τ∗s (3) - inv. (T-FOREACH) of (1)
∆ `rS e2 : τ′s (4) - inv. (T-FOREACH) of (1)
∆, x : τs, y : τ′s `r′S e3 : τ′s inv. (T-FOREACH) of (1)
r t s ≤ r′ inv. (T-FOREACH) of (1)

• (S; e1) −→ (S′; e′1) (5) - by I.H. with (3,2)
(S; foreach(e1, e2, x.y.e3)) −→ (S; foreach(e′1, e2, x.y.e3))

by rule (FOREACH-LEFT) with (5)
• e1 is a value (6) - by I.H. with (3,2)

e1 = {v1, . . . , vn} (7) - Lemma 22 with (3,6)

– (S; e2) −→ (S′; e′2) (8) - by I.H. with (4,2)
(S; foreach(e1, e2, x.y.e3)) −→ (S; foreach(e1, e′2, x.y.e3))

by rule (FOREACH-RIGHT) with (6,8)
– e2 is a value (9) - by I.H. with (4,2)
(S; foreach({v1, . . . , vn}, e2, x.y.e3)) −→

(S; foreach({v2, . . . , vn}, e3{x/v1}{y/e2}, x.y.e3)) by rule (FOREACH) if n ≥ 1
(S; foreach({}, e2, x.y.e3)) −→ (S; e2) by rule (FOREACH-BASE) if n = 0

Case (T-REF):
∆ `rS refτs e : ref(τs)t (1) - hyp
∆ ` S (2) - hyp
∆ `rS e : τs (3) - inv. (T-REF) of (1)

• (S; e) −→ (S′; e′) (4) - by I.H. with (3,2)
(S; refτs e) −→ (S′; refτs e′) by rule (REF-LEFT) with (4)

• e is a value (5) - by I.H. with (3,2)
(S; refτs e) −→ (S ∪ {l 7→ e}; l) by rule (REF-RIGHT) with (5)

Case (T-DEREF):
∆ `rS !e : τs (1) - hyp
∆ ` S (2) - hyp
∆ `rS e : ref(τs)s

′
(3) - inv. (T-DEREF) of (1)
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• (S; e) −→ (S′; e′) (4) - by I.H. with (3,2)
(S; !e) −→ (S′; !e′) by rule (DEREF-LEFT) with (4)

• e is a value (5) - by I.H. with (3,2)
e = l (6) - Lemma 22 with (3)
S(l) = v such that ∆ ` v : τs (7) - by Definition 40 with (2,3,6)
(S; !l) −→ (S; v) by rule (DEREF) with (7)

Case (T-ASSIGN):
∆ `rS e1 := e2 : cmd⊥ (1) - hyp
∆ ` S (2) - hyp
∆ `rS e1 : ref(τs)s

′
(3) - inv. (T-ASSIGN) of (1)

∆ `rS e2 : τs (4) - inv. (T-ASSIGN) of (1)

• (S; e1) −→ (S′; e′1) (5) - by I.H. with (3,2)
(S; e1 := e2) −→ (S′; e′1 := e2) by rule (ASSIGN-LEFT) with (5)

• e1 is a value (6) - by I.H. with (3),(2)
e1 = l (7) - Lemma 22 with (3)

– (S; e2) −→ (S′; e′2) (8) - by I.H. with (4,2)
(S; l := e2) −→ (S′; l := e′2) by rule (ASSIGN-RIGHT) with (6,8)

– e2 is a value (9) - by I.H. with (4,2)
(S; l := v) −→ (S[l 7→ v]; ()) by rule (ASSIGN)

�

C.2 Noninterference

We have shown the proof of our main result, noninterference, in Chapter 4 but deferred
the proofs of the main lemmas used to prove it. We shall now show their proofs, as well as
of other auxiliary lemmas.
LetM∆,s = {(l, l) | ∆(l) = ref(τs′)t ∧ t ≤ s}.

Lemma 23 (Reflexivity Lemma)
Let ∆ `rS e : τs′ , then ∆; ∆ `rS ,S e ∼=s e : τs′ withM∆,s.

Lemma 24
Let ∆1; ∆2 `rS1,S2

e1
∼=s e2 : τs′ , then ∆i `rSi

ei : τs′ .

Lemma 25 (Weakening)
Let ∆1; ∆2 `rS1,S2

e ∼=s e′ : τs′ , then ∆1, ∆′1; ∆2, ∆′2 `rS1∪S1,S2∪S2
e ∼=s e′ : τs′

Proof: Induction on the derivation of ∆1; ∆2 `rS1,S2
e ∼=s e′ : τs′ .

Lemma 26
Let v1, v2 be values, and τs′ ∈ LT .
If ∆1; ∆2 `rS1,S2

v1
∼=s v2 : τs′ , then v1 = v2.
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Proof By induction on the derivation of ∆1; ∆2 `rS1,S2
v1
∼=s v2 : τs′ .

Case (E-VALOPAQUE):
Not applicable since if τs′ ∈ LT then s′ ≤ s (since s′ = ⊥), but for this case we would need
s′ 6≤ s.

Case (E-VAL):
∆1; ∆2 `rS1,S2

v1
∼=s v2 : τs′ (1) - hyp

τs′ ∈ LT (2) - hyp
v1 = v2 (3) - by inv. of (E-VAL) with (1)
v1 = v2 by (3)

Case (E-LAMBDA):
Since (Πx:τs′ .r′; σq)t 6∈ LT , this case is not applicable.

Case (E-RECORD):
∆1; ∆2 `rS1,S2

[m=v] ∼=s [m=v′] : Σ[mi:τ′s
′ ]s
′

(1) - hyp
Σ[mi:τ′s

′ ]s
′ ∈ LT (2) - hyp

∀i ∆1; ∆2 `rS1,S2
vi
∼=s v′i : τsi

i (3) - inv. of (E-RECORD) with (1)
τsi

i ∈ LT (4) - by def. of LT with (2)
vi = v′i (5) - by I.H. with (3,4)
[m=v] = [m=v′] by (5)

Case (E-REFINERECORD):
∆1; ∆2 `rS1,S2

v ∼=s v′ : Σ[. . .×mj : τ
sj
j × . . .×mi : τsi

i × . . .]s
′

(1) - hyp
Σ[. . .×mj : τ

sj
j × . . .×mi : τsi

i × . . .]s
′ ∈ LT (2) - hyp

∆1; ∆2 `rS1,S2
v ∼=s v′ : Σ[. . .×mj : τ

sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]s

′

(3) - inv. of (E-REFINERECORD) with (1)
Σ[. . .×mj : τ

sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]s

′ ∈ LT
(6) - by (2) since si = ⊥ by def. of LT , so (τsi

i )[
v/mj] = τsi

i

v = v′ (5) - by I.H. with (3,6)

Case (E-UNREFINERECORD):
∆1; ∆2 `rS1,S2

v ∼=s v′ : Σ[. . .×mj : τ
sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]s

′
(1) - hyp

Σ[. . .×mj : τ
sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]s

′ ∈ LT (2) - hyp
∆1; ∆2 `rS1,S2

v ∼=s v′ : Σ[. . .×mj : τ
sj
j × . . .×mi : τsi

i × . . .]s
′

(3) - inv. of (E-UNREFINERECORD) with (1)
Σ[. . .×mj : τ

sj
j × . . .×mi : τsi

i × . . .]s
′ ∈ LT

(6) - by (2) since si = ⊥ by def. of LT , so (τsi
i )[

v/mj] = τsi
i

v = v′ (5) - by I.H. with (3,6)
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Case (E-SUB):
∆1; ∆2 `rS1,S2

v ∼=s v′ : τs′ (1) - hyp
τs′ ∈ LT (2) - hyp
∆1; ∆2 `r

′
S1,S2

v ∼=s v′ : τs′′ (3) - by inv. of (E-SUB) with (1)
τs′′ <: τs′ (4) - by inv. of (E-SUB) with (1)
τs′′ ∈ LT (5) - by (2,4)
v = v′ (6) - by I.H. with (3,5)

Case (E-COLLECTION):
∆1; ∆2 `rS1,S2

{v1, . . . , vn} ∼=s {v′1, . . . , v′n} : τ∗s
′

(1) - hyp
τ∗s

′ ∈ LT (2) - hyp
∀i ∆1; ∆2 `rS1,S2

vi
∼=s v′i : τs′ (3) - by inv. of (E-COLLECTION) with (1)

τs′ ∈ LT (4) - by def. of LT with (2)
vi = v′i (5) - by I.H. with (3,4)
{v1, . . . , vn} = {v′1, . . . , v′n} by (5)

�

Lemma 27 states whenever a well-typed expression e, whose store S is equivalent to a
store S0, reduces, the resulting store S′ is equivalent to the stores equivalent to the one
under which the expression reduced, S0, given that the computational security level r is
not less or equal than the observational security level s. This auxiliary lemma is used to
prove our main result, the nonitnerference theorem.

Lemma 27
Let ∆ `rS e:τs′ , ∆0; ∆ `M S0 =s S, and r 6≤ s.
If (S, e) −→ (S′, e′), then there is ∆′,M′ such that ∆ ⊆ ∆′,M⊆M′, and ∆0; ∆′ `M′ S0 =s

S′.

Proof By induction on the derivation of ∆ `rS e:τs′ .

Case (T-SUB):
∆ `rS e : τs′ (1) - hyp
(S; e) −→ (S′; e′) (2) - hyp
∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
∆ `r′S e : τs′′ (5) - inv. (T-SUB) of (1)
τs′′ <: τs′ and r ≤ r′ (6) - inv. (T-SUB) of (1)

To show r′ 6≤ s, assume for contradiction r′ ≤ s (7)
r ≤ s (8) - by (6,7), which contradicts (4)
r′ 6≤ s (9) - by (8)
∆ ⊆ ∆′ andM⊆M′ by I.H. with (2,3,5,9)

200



C.2. NONINTERFERENCE

∆0; ∆′ `M′ S0 =s S′ by I.H. with (2,3,5,9)

Case (T-REF):

• Sub-case (REF-LEFT):

(S; refτs e) −→ (S′; refτs e′) (1) - hyp
∆ `rS refτs e : ref(τs′)r (2) - hyp
∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
(S; e) −→ (S′; e′) (5) - inv. (REF-LEFT) of (2)
∆ `rS e : τs′ (6) - inv. (T-REF) of (1)
∆ ⊆ ∆′ andM⊆M′ by I.H. with (2,3,5,6)
∆0; ∆′ `M′ S0 =s S′ by I.H. with (2,3,5,6)

• Sub-case (REF-RIGHT):

(S; refτs′ v) −→ (S ∪ {l 7→ v}; l) (1) - hyp
∆ `rS refτs′ v : ref(τs′)r (2) - hyp
∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
∆0; ∆, l : ref(τs′)r `M′ S0 =s S′

by Definition 36 with (2,4) and l 6∈ M2 by (3), where S′ = S ∪ {l 7→ v} and
M′ =M

Case (T-DEREF):

• Sub-case (DEREF-LEFT):

(S; !e) −→ (S′; !e′) (1) - hyp
∆ `rS !e : τs′ (2) - hyp
∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
(S; e) −→ (S′; e′) (5) - inv. (DEREF-LEFT) of (1)
∆ `rS e : ref(τs′)t (6) - inv. (T-DEREF) of (2)
∆ ⊆ ∆′ andM⊆M′ by I.H. with (5,6,4,3)
∆0; ∆′ `M′ S0 =s S′ by I.H. with (5,6,4,3)

• Sub-case (DEREF):

(S; !l) −→ (S; v) (1) - hyp
∆ `rS !e : τs′ (2) - hyp
∆0; ∆ `M S0 =s S (3) - hyp
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r 6≤ s (4) - hyp
∆0; ∆ `M S0 =s S by hypothesis (3)

Case (T-ASSIGN):

• Sub-case (ASSIGN-LEFT):

(S; e1 := e2) −→ (S′; e′1 := e2) (1) - hyp
∆ `rS e1 := e2 : cmds

′
(2) - hyp

∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
(S; e1) −→ (S′; e′1) (5) - inv. (ASSIGN-LEFT) of (1)
∆ `rS e1 : ref(τs′′)t (6) - inv. (T-ASSIGN) of (2)
∆ ⊆ ∆′ andM⊆M′ by I.H. with (5,6,4,3)
∆0; ∆′ `M′ S0 =s S′ by I.H. with (5,6,4,3)

• Sub-case (ASSIGN-RIGHT):

(S; l := e2) −→ (S′; l := e′2) (1) - hyp
∆ `rS l := e2 : cmds

′
(2) - hyp

∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
(S; e2) −→ (S′; e′2) (5) - inv. (ASSIGN-RIGHT) of (1)
∆ `rS e2 : τs′′ (6) - inv. (T-ASSIGN) of (2)
∆ ⊆ ∆′ andM⊆M′ by I.H. with (5,6,4,3)
∆0; ∆′ `M′ S0 =s S′ by I.H. with (5,6,4,3)

• Sub-case (ASSIGN):

(S; l := v) −→ (S[l 7→ v]; ()) (1) - hyp
∆ `rS l := v : cmds

′
(2) - hyp

∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
l ∈ dom(S) (6) - inv. (ASSIGN) of (1)
∆ `rS l : ref(τs′′)t (7) - inv. (T-ASSIGN) of (2)
∆ `rS v : τs′′ (8) - inv. (T-ASSIGN) of (2)
r t t ≤ s′′ (9) - inv. (T-ASSIGN) of (2)
∆(l) = ref(τs′′)t

′
by Lemma 20 with (7)

t′ ≤ t by Lemma 20 with (7)
By (6) we either have:

– l ∈ M2

∃l0 (l0, l) ∈ M and t′ ≤ s by Definition 36, first case, with (3)
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∆0; ∆ `M S0(l0) ∼=s S(l) : τs′′ (10)
r ≤ s′′ (11) - by (9)
To show s′′ 6≤ s, assume for contradiction s′′ ≤ s (12)
r ≤ s (13) - by (11,12), which contradicts (4)
s′′ 6≤ s (14) - by (13)
∆0 `rS S0(l0) : τs′′ (15) - by Definition 35 with (10)
∆0; ∆ `M S0(l0) ∼=s S[l 7→ v](l) : τs′′ (16) - by (E-VALOPAQUE) with (8,14,15)
∆0; ∆ `M S0 =s S[l 7→ v] by Definition 36 with (16)

– l 6∈ M2

t′ 6≤ s by Definition 36, second case, with (3)
∆ `rS v : τs′′ (17) - by (8)
∆0; ∆ `M S0 =s S[l 7→ v] by Definition 35 with (17)

Case (T-INJ):
(S; #ni(e)) −→ (S′; #ni(e′)) (1) - hyp
∆ `rS #ni(e) : τs′ (2) - hyp
∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
(S; e) −→ (S′; e′) (5) - inv. (VARIANT) of (1)
∆ `rS e : τsi

i (6) - inv. (T-INJ) of (2)
∆ ⊆ ∆′ andM⊆M′ by I.H. with (5,6,4,3)
∆0; ∆′ `M′ S0 =s S′ by I.H. with (5,6,4,3)

Case (T-CASE):

• Sub-case (CASE-LEFT):
(S; case e(. . . , ni · xi ⇒ ei, . . .)) −→ (S′; case e′(. . . , ni · xi ⇒ ei, . . .)) (1) - hyp
∆ `rS case e(. . . , ni · xi ⇒ ei, . . .) : τs′ (2) - hyp
∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
(S; e) −→ (S′; e′) (5) - inv. (CASE-LEFT) of (1)
∆ `rS e : {. . . , ni : τsi

i , . . .}t (6) - inv. (T-CASE) of (2)
∆ ⊆ ∆′ andM⊆M′ by I.H. with (5,6,4,3)
∆0; ∆′ `M′ S0 =s S′ by I.H. with (5,6,4,3)

• Sub-case (CASE-RIGHT):
(S; case #ni(v)(. . . , ni · xi ⇒ ei, . . .)) −→ (S; ei{v/xi}) (1) - hyp
∆ `rS case #mi(v)(. . . , mi · xi ⇒ ei, . . .) : τs′ (2) - hyp
∆0; ∆ `M S0 =s S (3) - hyp
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r 6≤ s (4) - hyp
∆0; ∆ `M S0 =s S by hypothesis (3)

Case (T-FIELD):

• Sub-case (FIELD-LEFT):
(S; e.mi) −→ (S′; e′.mi) (1) - hyp
∆ `rS e.mi : τsi

i (2) - hyp
∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
(S; e) −→ (S′; e′) (5) - inv. (FIELD-LEFT) of (1)
∆ `rS e : Σ[. . .×mi:τ

si
i × . . .]s

′
(6) - inv. (T-FIELD) of (2)

∆ ⊆ ∆′ andM⊆M′ by I.H. with (5,6,4,3)
∆0; ∆′ `M′ S0 =s S′ by I.H. with (5,6,4,3)

• Sub-case (FIELD-RIGHT):
(S; [m1 = v1, . . . , mn = vn].mi) −→ (S; vi) (1) - hyp
∆ `rS [m1 = v1, . . . , mn = vn].mi : τsi

i (2) - hyp
∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
∆0; ∆ `M S0 =s S by hypothesis (3)

Case (T-RECORD):
(S; [. . . , mi = e, . . .]) −→ (S′; [. . . , mi = e′, . . .]) (1) - hyp
∆ `rS [. . . , mi = e, . . .] : Σ[. . .×mi : τsi

i × . . .]t (2) - hyp
∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
(S; e) −→ (S′; e′) (5) - inv. (RECORD) of (1)
∀i ∆ `rS ei : τsi

i (6) - inv. (T-RECORD) of (2)
∆ `rS e : τsi

i (7) - by (6)
∆ ⊆ ∆′ andM⊆M′ by I.H. with (5,7,4,3)
∆0; ∆′ `M′ S0 =s S′ by I.H. with (5,7,4,3)

Case (T-REFINERECORD):
(S; e) −→ (S′; e′) (1) - hyp
∆ `rS e : Σ[. . .×mj:τ

sj
j × . . .×mi : τsi

i × . . .]t (2) - hyp
∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
∆ `rS e : Σ[. . .×mj:τ

sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]t (5) - inv. (T-REFINERECORD) of (2)

∆ ⊆ ∆′ andM⊆M′ by I.H. with (5,1,4,3)
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∆0; ∆′ `M′ S0 =s S′ by I.H. with (5,1,4,3)

Case (T-UNREFINERECORD):

(S; e) −→ (S′; e′) (1) - hyp
∆ `rS e : Σ[. . .×mj:τ

sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]t (2) - hyp

∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
∆ `rS e : Σ[. . .×mj:τ

sj
j × . . .×mi : τsi

i × . . .]t (5) - inv. (T-UNREFINERECORD) of (2)
∆ ⊆ ∆′ andM⊆M′ by I.H. with (5,1,4,3)
∆0; ∆′ `M′ S0 =s S′ by I.H. with (5,1,4,3)

Case (T-COLLECTION):

(S; {. . . , e, . . .}) −→ (S′; {. . . , e′, . . .}) (1) - hyp
∆ `rS {. . . , e, . . .} : τ∗s

′
(2) - hyp

∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
(S; e) −→ (S′; e′) (5) - inv. (COLLECTION) of (1)
∀i ∆ `rS ei : τs′ (6) - inv. (T-COLLECTION) of (2)
∆ `rS e : τs′ (7) - by (6)
∆ ⊆ ∆′ andM⊆M′ by I.H. with (5,7,4,3)
∆0; ∆′ `M S0 =s S′ by I.H. with (5,7,4,3)

Case (T-LET):

• Sub-case (LET-LEFT):

(S; let x = e1 in e2) −→ (S′; let x = e′1 in e2) (1) - hyp
∆ `rS let x = e1 in e2 : τs′ (2) - hyp
∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
(S; e1) −→ (S′; e′1) (5) - inv. (LET-LEFT) of (3)
∆ `rS e1 : τ′s

′′
(6) - inv. (T-LET) of (1)

∆ ⊆ ∆′ andM⊆M′ by I.H. with (5,6,4,3)
∆0; ∆′ `M′ S0 =s S′ by I.H. with (5,6,4,3)

• Sub-case (LET-RIGHT):

(S; let x = v in e2) −→ (S; e2{v/x}) (1) - hyp
∆ `rS let x = e1 in e2 : τs′ (2) - hyp
∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
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∆0; ∆ `M S0 =s S by hypothesis (3)

Case (T-APP):

• Sub-case (APP-LEFT):

(S; e1(e2)) −→ (S′; e′1(e2)) (1) - hyp
∆ `rS e1(e2) : σ′t

′
(2) - hyp

∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
(S; e1) −→ (S′; e′1) (5) - inv. (APP-LEFT) of (1)
∆ `rS e1 : (Πx:τ′s

′
.r′; σq)t (6) - inv. (T-APP) of (2)

∆ ⊆ ∆′ andM⊆M′ by I.H. with (5,6,4,3)
∆0; ∆′ `M′ S0 =s S′ by I.H. with (5,6,4,3)

• Sub-case (APP-RIGHT):

(S; (λ(x : τ′s
′
).e)(e2)) −→ (S′; (λ(x : τ′s

′
).e)(e′2)) (1) - hyp

∆ `rS λ(x : τ′s
′
).e)(e2) : σ′t

′
(2) - hyp

∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
(S; e2) −→ (S′; e′2) (5) - inv. (APP-RIGHT) of (1)
∆ `rS e2 : τ′s

′
(6) - inv. (T-APP) of (2)

∆ ⊆ ∆′ andM⊆M′ by I.H. with (5,6,4,3)
∆0; ∆′ `M′ S0 =s S′ by I.H. with (5,6,4,3)

• Sub-case (APP):

(S; (λ(x : τ′s
′
).e)(v)) −→ (S; e{v/x}) (1) - hyp

∆ `rS (λ(x : τ′s
′
).e)(v) : σ′t

′
(2) - hyp

∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
∆0; ∆ `M S0 =s S by hypothesis (3)

Case (T-IF):

• Sub-case (IF-TRUE):

(S; if c then e1 else e2) −→ (S; e1) (1) - hyp
∆ `r′S if c then e1 else e2 : τs′ (2) - hyp
∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
r t s′ ≤ r′ (5) - inv. of (T-IF) with (2)
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∆ `r′S∪{c .
=true} e1 : τs′ (6) - inv. of (T-IF) with (2)

r ≤ r′ (7) - by def. of glb with (5)
To show r′ 6≤ s, assume for contradiction r′ ≤ s (8)
r ≤ s (9) - by (7,8), which contradicts (4)
r′ 6≤ s by (9)
∆0; ∆ `M S0 =s S by hypothesis (3)

• Sub-case (IF-FALSE):

(S; if c then e1 else e2) −→ (S; e2) (1) - hyp
∆ `r′S if c then e1 else e2 : τs′ (2) - hyp
∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
r t s′ ≤ r′ (5) - inv. of (T-IF) with (2)
∆ `r′S∪{c .

=false} e2 : τs′ (6) - inv. of (T-IF) with (2)
r ≤ r′ (7) - by def. of glb with (5)
To show r′ 6≤ s, assume for contradiction r′ ≤ s (8)
r ≤ s (9) - by (7,8), which contradicts (4)
r′ 6≤ s by (9)
∆0; ∆ `M S0 =s S by hypothesis (3)

Case (T-CONS):

• Sub-case (CONS-LEFT):

(S; e1::e2) −→ (S′; e′1::e2) (1) - hyp
∆ `rS e1::e2 : τ∗s

′
(2) - hyp

∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
(S; e1) −→ (S′; e′1) (5) - inv. (CONS-LEFT) of (1)
∆ `rS e1 : τs′ (6) - inv. (T-CONS) of (2)
∆ ⊆ ∆′ andM⊆M′ by I.H. with (5,6,4,3)
∆0; ∆′ `M′ S0 =s S′ by I.H. with (5,6,4,3)

• Sub-case (CONS-RIGHT):

(S; v::e2) −→ (S′; v::e′2) (1) - hyp
∆ `rS e1::e2 : τ∗s

′
(2) - hyp

∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
(S; e2) −→ (S′; e′2) (5) - inv. (CONS-RIGHT) of (1)
∆ `rS e2 : τ∗s

′
(6) - inv. (T-CONS) of (2)
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∆ ⊆ ∆′ andM⊆M′ by I.H. with (5,6,4,3)
∆0; ∆′ `M′ S0 =s S′ by I.H. with (5,6,4,3)

• Sub-case (CONS):

(S; v::{v1, . . . , vn}) −→ (S; {v, v1, . . . , vn}) (1) - hyp
∆ `rS e1::e2 : τ∗s

′
(2) - hyp

∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
∆0; ∆ `M S0 =s S by hypothesis (3)

Case (T-FOREACH):

• Sub-case (FOREACH-LEFT):

(S; foreach(e1, e2, x.y.e3)) −→ (S′; foreach(e′1, e2, x.y.e3)) (1) - hyp
∆ `rS foreach(e1, e2, x.y.e3)) : τ′s

′
(2) - hyp

∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
(S; e1) −→ (S′; e′1) (5) - inv. (FOREACH-LEFT) of (1)
∆ `rS e1 : τ∗s

′
(6) - inv. (T-FOREACH) of (2)

∆ ⊆ ∆′ andM⊆M′ by I.H. with (5,6,4,3)
∆0; ∆′ `M′ S0 =s S′ by I.H. with (5,6,4,3)

• Sub-case (FOREACH-RIGHT):

(S; foreach(v, e2, x.y.e3))) −→ (S′; foreach(v, e′2, x.y.e3))) (1) - hyp
∆ `rS foreach(e1, e2, x.y.e3)) : τ′s

′
(2) - hyp

∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
(S; e2) −→ (S′; e′2) (5) - inv. (FOREACH-RIGHT) of (1)
∆ `rS e2 : τ′s

′
(6) - inv. (T-FOREACH) of (2)

∆ ⊆ ∆′ andM⊆M′ by I.H. with (5,6,4,3)
∆0; ∆′ `M′ S0 =s S′ by I.H. with (5,6,4,3)

• Sub-case (FOREACH):

(S; foreach(l, v, x.y.e3)) −→ (S; foreach(hs, e3{h/x}{v/y}, x.y.e3)) (1) - hyp
∆ `rS foreach(e1, e2, x.y.e3)) : τ′s

′
(2) - hyp

∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
∆0; ∆ `M S0 =s S by hypothesis (3)
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• Sub-case (FOREACH-BASE):

(S; foreach({}, v, x.y.e3)) −→ (S; v) (1) - hyp
∆ `rS foreach(e1, e2, x.y.e3)) : τ′s

′
(2) - hyp

∆0; ∆ `M S0 =s S (3) - hyp
r 6≤ s (4) - hyp
∆0; ∆ `M S0 =s S by hypothesis (3)

�

Lemma 28 (Computational Context Irrelevance Lemma)
Let ∆1; ∆2 `rS1,S2

v1
∼=s v2 : τs′ , then ∆1; ∆2 `r

′
S1,S2

v1
∼=s v2 : τs′

Proof: By induction on expression equivalence using Lemma 16 for the cases (E-VALOPAQUE)
and (E-VAL).

Lemma 29 (Substitution Lemma for Expression Equivalence)
If ∆1, x:τ′s

′
, ∆′1; ∆2, x:τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e ∼=s e′:τs′′ , and ∆1; ∆2 `r
′
S1,S2

v1
∼=s v2 : τ′s

′
.

Then ∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e{v1/x} ∼=s e′{v2/x}:(τs′′){v1/x}.

Proof By induction on the definition of ∆ `rS1,S2
e ∼=s e′ : τs′ .

Notice that if τ′s
′ ∈ LT then v1, v2 are label indexes and equal, v1 = v2 by Lemma 26.

Otherwise whenever τ′s
′ 6∈ LT we have x 6∈ fv(τs′′), x 6∈ fv(∆′i), and x 6∈ fv(Si ∪ S ′i ),

since only variables of label type can appear in label indexes or in constraint expressions.
Therefore, for any σt ∈ LT we have σt{v1/x} = σt{v2/x}, otherwise if σt 6∈ LT then
σt = σt{vi/x}.

Case (E-ID):

• x 6= y = e = e′

– ∆1, x : τs′ , ∆′′1 , y : τs′′ , ∆′1; ∆2, x : τs′ , ∆′′2 , y : τs′′ , ∆′2 `rS1∪S ′1,S2∪S ′2
y ∼=s y : τs′′

(1) - hyp
∆1; ∆2 `r

′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

y{vi/x} = y (3) - by Definition 38
∆1, ∆′′1{v1/x}, y : (τs′′){v1/x}, ∆′1{v1/x};
∆2, ∆′′2{v2/x}, y : (τs′′){v2/x}, ∆′2{v2/x};`rS1∪S ′1{v1/x},S2∪S ′2{v2/x} y ∼=s y : (τs′′){v1/x}

by (E-ID)
– ∆1, y : τs′′ , ∆′′1 , x : τs′ , ∆′1; ∆2, y : τs′′ , ∆′′2 , x : τs′ , ∆′2 `rS1∪S ′1,S2∪S ′2

y ∼=s y : τs′′

(5) - hyp
∆1, y : (τs′′), ∆′′1 , ∆′1{v1/x};
∆2, y : (τs′′), ∆′′2 , ∆′2{v2/x};`rS1∪S ′1{v1/x},S2∪S ′2{v2/x} y ∼=s y : (τs′′){v1/x}

by (E-ID), as above
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• x = y = e = e′

∆1, x : τs′ , ∆′1; ∆2, x : τs′ , ∆′2 `rS1∪S ′1,S2∪S ′2
x ∼=s x : τs′′

∆1; ∆2 `r
′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

y{vi/x} = vi (3) - by Definition 38
x 6∈ fv(τs′) and (τs′){vi/x} = τs′ (4) - by (1)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} v1

∼=s v2 : τs′

by Lemma 25 with (2), by Lemma 28 with (2) and (3,4)

Case (E-VAL):

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS∪S ′ u ∼=s u : τs′ (1) - hyp.

∆1; ∆2 `r
′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

u{vi/x} = u (3) - by Definition 38
∆i, x : τ′s

′
, ∆′i `rSi

u : τs′ (4) - by inv. of (E-VAL) with (1)
∆i, ∆′i `r

′
Si

vi : τ′s
′

(5) - by Lemma 24 of (2)
∆i, ∆′i{vi/x} `rSi{vi/x} u{v1/x} : (τs′){v1/x} (6) - by Lemma 18 with (4,5)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} u ∼=s u : (τs′){v1/x}

by (E-VAL) with (6)

Case (E-VALOPAQUE):

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS∪S ′ u1

∼=s u2 : τs′ (1) - hyp.
∆1; ∆2 `r

′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

∆i, x : τ′s
′
, ∆′i `rSi

ui : τs′ (4) - by inv. of (E-VALOPAQUE) with (1)
s′ 6≤ s (5) - by inv. of (E-VALOPAQUE) with (1)
∆i, ∆′i `r

′
Si

vi : τ′s
′

(6) - by Lemma 24 of (2)
∆i, ∆′i{vi/x} `rSi{vi/x} ui{v1/x} : (τs′){v1/x} (7) - by Lemma 18 with (4,6)
s′{vi/x} 6≤ s (8) - by instantiation
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} u1{v1/x} ∼=s u2{v2/x} : (τs′){v1/x}

by (E-VALOPAQUE) with (7,8)

Case (E-LOC):

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS∪S ′ l1 ∼=s l2 : ref(τs′′)t (1) - hyp.

∆1; ∆2 `r
′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

li{vi/x} = li (3) - by Definition 38
∆i, x : τ′s

′
∆′i(l1) = ref(τs′′)t (4) - by inv. of (E-LOC) with (1)

t ≤ s (5) - by inv. of (E-LOC) with (1)
∆i, ∆′i{v1/x}(l1) = (ref(τs′′)t){v1/x} (7) - by Definition 22 with (4,6)
t{v1/x} ≤ s (8) - by instantiation with (5)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} l1 ∼=s l2 : (ref(τs′′)t){v1/x}

by (E-LOC) with (7,8)
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Case (E-LOCOPAQUE):

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS∪S ′ l1 ∼=s l2 : ref(τs′′)t (1) - hyp.

∆1; ∆2 `r
′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

li{vi/x} = li (3) - by Definition 38
∆i, x : τ′s

′
∆′i(l1) = ref(τs′′)t (4) - by inv. of (E-LOCOPAQUE) with (1)

t 6≤ s (5) - by inv. of (E-LOC) with (1)
∆i, ∆′i{v1/x}(l1) = (ref(τs′′)t){v1/x} (7) - by Definition 22 with (4,6)
t{v1/x} 6≤ s (8) - by instantiation with (5)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} l1 ∼=s l2 : (ref(τs′′)t){v1/x}

by (E-LOCOPAQUE) with (7,8)

Case (E-EXPROPAQUE):

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS∪S ′ e1

∼=s e2 : τs′ (1) - hyp.
∆1; ∆2 `r

′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

∆i, x : τ′s
′
, ∆′i `rSi

ei : τs′ (4) - by inv. of (E-EXPROPAQUE) with (1)
s′ 6≤ s (5) - by inv. of (E-EXPROPAQUE) with (1)
r 6≤ s (6) - by inv. of (E-EXPROPAQUE) with (1)
∆i, ∆′i `r

′
Si

vi : τ′s
′

(7) - by Lemma 24 of (2)
∆i, ∆′i{vi/x} `rSi{vi/x} ei{v1/x} : (τs′){v1/x} (8) - by Lemma 18 with (4,7)
s′{vi/x} 6≤ s (9) - by instantiation
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e1{v1/x} ∼=s e2{v2/x} : (τs′){v1/x}

by (E-EXPROPAQUE) with (8,9,6)

Case (E-LAMBDA):

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2

`rS1∪S ′1,S2∪S ′2
λ(y : τs′′).e ∼=s λ(y : τs′′).e′ : (Πy : τs′′ .r′′; σq)⊥ (1) - hyp.

∆1; ∆2 `r
′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

∆1, x : τ′s
′
, ∆′1, y : τs′′ ; ∆2, x : τ′s

′
, ∆′2, y : τs′′ `r′′S1∪S ′1,S2∪S ′2

e ∼=s e′ : σq

(3) - inv. (E-LAMBDA) of (1)
∆1, ∆′1{v1/x}, y : (τs′′){v1/x}; ∆2, ∆′2{v2/x}, y : (τs′′){v2/x}
`r′′S1∪S ′1{v1/x},S2∪S ′2{v2/x} e{v1/x} ∼=s e′{v2/x} : (σq){v1/x} (5) - by I.H. with (2,3)

∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}
λ(y : (τs′′){v1/x}).e{v1/x} ∼=s λ(y : (τs′′){v2/x}).e′{v2/x} :

(Πy : (τs′′){v1/x}.r′′; (σq){v1/x})⊥

(6) - by rule (E-LAMBDA) with (5), and by Definition 22
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}

λ(y : (τs′′){v1/x}).e{v1/x} ∼=s λ(y : (τs′′){v2/x}).e′{v2/x} :
(Πy : (τs′′){v1/x}.r′′{v1/x}; (σq){v1/x})⊥

(7) - since r′′ is concrete, so x 6∈ fv(r′′)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}
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λ(y : (τs′′){v1/x}).e{v1/x} ∼=s λ(y : (τs′′){v2/x}).e′{v2/x} : ((Πy : τs′′ .r′′; σq)⊥){v1/x}
(8) - by Definition 22 with (7)

∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}
(λ(y : τs′′).e){v1/x} ∼=s (λ(y : τs′′).e′){v2/x} : ((Πy : τs′′ .r′′; σq)⊥){v1/x}

by Definition 38 with (8)

Case (E-APP):

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e1(e2) ∼=s e′1(e
′
2) : σ′q

′
(1) - hyp.

∆1; ∆2 `r
′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e1
∼=s e′1 : (Πy : τs′′ .r′′; σq)t

(3) - inv. (E-APP) of (1)
∆1, x : τ′s

′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e2 ∼=s e′2 : τs′′ (4) - inv. (E-APP) of (1)
r ≤ r′′ (5) - inv. (E-APP) of (1)
t ≤ q (6) - inv. (E-APP) of (1)
t ≤ r′′ (7) - inv. (E-APP) of (1)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}

e1{v1/x} ∼=s e′1{v2/x} : ((Πy : τs′′ .r′′; σq)t){v1/x} (8) - by I.H. with (3,2)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}

e1{v1/x} ∼=s e′1{v2/x} : (Πy : (τs′′){v1/x}.r′′{v1/x}; (σq){v1/x})t{v1/x}

(9) - by Definition 22 with (8)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e2{v1/x} ∼=s e′2{v2/x} : (τs′′){v1/x}

(9) - I.H. with (4,2)
t{v1/x} ≤ q{v1/x} (10) - by Lemma 13 with (6) and by commutativity of substitution
t{v1/x} ≤ r′′ (11) - by Lemma 13 with (7) and r′′{v1/x} = r′′

• (Sub-case) S1 ∪ S ′1 ∪ {y
.
= e2} |= y .

= v ∧ S2 ∪ S ′2 ∪ {y
.
= e′2} |= y .

= v ∧
σ′q

′
= σ{v/y}q{v/y} (12) - inv. (E-APP) of (1)

S1 ∪ S ′1{v1/x} ∪ {y .
= e2{v1/x}} |= y .

= v{v1/x} ∧
S2 ∪ S ′2{v2/x} ∪ {y .

= e′2{v2/x}} |= y .
= v{v2/x} ∧

(σ′q
′
){v1/x} = (σ{v/y}q{v/y}){v1/x}

(13) - by subst closure of .
= and Definition 22 with (11)

(σ{v/y}q{v/y}){v1/x} = σ{v1/x}{v{v1/x}/y}q{v{v1/x}/y} (14)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}

e1{v1/x}(e2{v1/x}) ∼=s e′1{v2/x}(e′2{v2/x}) : (σ′q
′
){v1/x}

(14) - by rule (E-APP) with (8,9,10,11,13,14)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}

(e1(e2)){v1/x} ∼=s (e′1(e
′
2)){v2/x} : (σ′q

′
){v1/x} by Definition 38 with (14)

• (Sub-case) σ′q
′
= (σq) ↑y (14) - inv. (E-APP) of (1)

(σ′q
′
){v1/x} = ((σq) ↑y){v1/x} (15) - by Definition 22 with (14)
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((σq) ↑y){v1/x} = σ{v1/x}q{v1/x} ↑y (16) - by
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}

e1{v1/x}(e2{v1/x}) ∼=s e′1{v2/x}(e′2{v2/x}) : (σ′q
′
){v1/x}

(17) - by rule (E-APP) with (8,9,10,11,16)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}

(e1(e2)){v1/x} ∼=s (e′1(e
′
2)){v2/x} : (σ′q

′
){v1/x}

by Definition 38 with (17)

Case (E-IF):

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

if c then e1 else e2 ∼=s if c′ then e′1 else e′2 : τs′′ (1) - hyp
∆1; ∆2 `r

′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

c ∼=s c′ : Bools
′′

(3) - inv. (E-IF) of (1)

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `r

′

S1∪S ′1∪{c
.
=true},S2∪S ′2∪{c′

.
=true} e1

∼=s e′1 : τs′′

(4) - inv. (E-IF) of (1)
∆1, x : τ′s

′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `r

′

S1∪S ′1∪{c
.
=false},S2∪S ′2∪{c′

.
=false} e2 ∼=s e′2 : τs′′

(5) - inv. (E-IF) of (1)
r t s′′ ≤ r′ (6) - inv. (E-IF) of (1)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} c{v1/x} ∼=s c′{v2/x} : Bools

′′{v1/x}

(7) - by I.H. with (3,2)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `r′S1∪S ′1{v1/x}∪{c{v1/x} .

=true},S2∪S ′2{v2/x}∪{c′{v2/x} .
=true}

e1{v1/x} ∼=s e′1{v2/x} : (τs′′){v1/x} (8) - by I.H. with (4,2)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `r′S1∪S ′1{v1/x}∪{c{v1/x} .

=false},S2∪S ′2{v2/x}∪{c′{v2/x} .
=false}

e2{v1/x} ∼=s e′2{v2/x} : (τs′′){v1/x} (9) - by I.H. with (5,2)
r t s′′{v1/x} ≤ r′ (10) - by Lemma 13 with (6)
(if c then e1 else e2){vi/x} = (if c{vi/x} then e1{vi/x} else e2{vi/x})

(11) - by Definition 38
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}

if c{v1/x} then e1{v1/x} else e2{v1/x} ∼=s if c′{v2/x} then e′1{v2/x} else e′2{v2/x} :
(τs′′){v1/x} (12) - by rule (E-IF) with (7,8,9,10), and by (11)

∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}
(if c then e1 else e2){v1/x} ∼=s (if c′ then e′1 else e′2){v2/x} : (τs′′){v1/x}

by Definition 38 with (12)

Case (E-LET):

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

let y = e1 in e2 ∼=s let y = e′1 in e′2 : τs2
2 (1) - hyp.

∆1; ∆2 `r
′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e1
∼=s e′1 : τs1

1 (3) - inv. (E-LET) of (1)
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∆1, x : τ′s
′
, ∆′1, y : τs1

1 ; ∆2, x : τ′s
′
, ∆′2, y : τs1

1 `rS1∪S ′1{y
.
=e1},S2∪S ′2{y

.
=e′1}

e2 ∼=s e′2 : τs2
2

(4) - inv. (E-LET) of (1)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e1{v1/x} ∼=s e′1{v2/x} : (τs1

1 ){v1/x}
(5) - by I.H. with (2,3)

∆1, ∆′1{v1/x}, y : (τs1
1 ){v1/x}; ∆2, ∆′2{v2/x}, y : (τs1

1 ){v2/x}
`rS1∪S ′1{v1/x}{y .

=e1{v1/x}},S2∪S ′2{v2/x}{y .
=e′1{v2/x}} e2{v1/x} ∼=s e′2{v2/x} : (τs2

2 ){v1/x}
(7) - by I.H. with (2,4)

(let y = e1 in e2){vi/x} = (let y = e1{vi/x} in e2{vi/x}) (8) - by Definition 38
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}

let y = e1{v1/x} in e2{v1/x} ∼=s let y = e′1{v2/x} in e′2{v2/x} : (τs2
2 ){v1/x}

(9) - by rule (E-LET) with (5,7), and by (8)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}

(let y = e1 in e2){v1/x} ∼=s (let y = e′1 in e′2){v2/x} : (τs2
2 ){v1/x}

by Definition 38 with (9)

Case (E-FIELD):

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e.mi
∼=s e′.mi : τsi

i (1) - hyp

∆1; ∆2 `r
′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e ∼=s e′ : Σ[. . .×mi : τsi
i × . . .]t

(3) - inv. (E-FIELD) of (1)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e{v1/x} ∼=s e′{v2/x} :

(Σ[. . .×mi : τsi
i × . . .]t){v1/x} (5) - by I.H. with (2,3)

∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e{v1/x} ∼=s e′{v2/x} :

Σ[. . .×mi : (τsi
i ){v1/x}× . . .]t{v1/x} (6) - by Definition 22 with (5)

e.mi{v1/x} = e{v1/x}.mi and e′.mi{v2/x} = e′{v2/x}.mi (7) - by Definition 38
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e{v1/x}.mi

∼=s e′{v2/x}.mi : (τsi
i ){v1/x}

(8) - by rule (E-FIELD) from (6,7)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} (e.mi){v1/x} ∼=s (e′.mi){v2/x} : (τsi

i ){v1/x}
by Definition 38 with (8)

Case (E-RECORD):

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

[. . . , mi = ei, . . .] ∼=s [. . . , mi = e′i, . . .] : Σ[. . .×mi : τsi
i × . . .]⊥ (1) - hyp

∆1; ∆2 `r
′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

∀i ∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

ei
∼=s e′i : τsi

i (3) - inv. (E-RECORD) with (1)
∀i ∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} ei{v1/x} ∼=s e′i{v2/x} : (τsi

i ){v1/x}
(4) - by I.H. with (3,2)

[. . . , mi = ei, . . .]{v1/x} = [. . .×mi = ei{v1/x}× . . .] (5) - by Definition 38
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}

[. . . , mi = ei{v1/x}, . . .] ∼=s [. . . , mi = e′i{v2/x}, . . .] : Σ[. . .×mi : (τsi
i ){v1/x}× . . .]⊥
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(6) - by rule (E-RECORD) with (4) and by (5)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}
([. . . , mi = ei, . . .]){v1/x} ∼=s ([. . . , mi = ei, . . .]){v2/x} : (Σ[. . .×mi : τsi

i × . . .]⊥){v1/x}
by Definition 38 with (6)

Case (E-REFINERECORD):

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e ∼=s e′ : Σ[. . .×mj:τ
sj
j × . . .×mi : τsi

i × . . .]s
′′

(1) - hyp.
∆1; ∆2 `r

′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e ∼=s e′ :

Σ[. . .×mj:τ
sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]s

′′
(3) - inv. (E-REFINERECORD) of (1)

S1 ∪ S ′1{y
.
= e} |= y.mj

.
= v (4) - inv. (E-REFINERECORD) of (1)

S2 ∪ S ′2{y
.
= e′} |= y.mj

.
= v (5) - inv. (E-REFINERECORD) of (1)

s′′ ≤ si
↓
{m1,...,mi−1}

(6) - inv. (E-REFINERECORD) of (1)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e{v1/x} ∼=s e′{v2/x} :

(Σ[. . .×mj:τ
sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]s

′′
){v1/x} (6) - by I.H. with (3,2)

∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e{v1/x} ∼=s e′{v2/x} :

Σ[. . .×mj:τj{v1/x}sj{v1/x}× . . .×mi : (τi{v1/x}si{v1/x})[v{v1/x}/mj]× . . .]s
′′{v1/x}

(7) - by Definition 22 with (6)
s′′{v1/x} ≤ (si

↓
{m1,...,mi−1}

){v1/x} (8) - by Lemma 13 with (7)

s′′{v1/x} ≤ si{v1/x}↓{m1,...,mi−1}
(9)

S1 ∪ S ′1{v1/x}{y .
= e{v1/x}} |= y.mj

.
= v{v1/x} (10) - from (4), subst closure of .

=

S2 ∪ S ′2{v2/x}{y .
= e′{v2/x}} |= y.mj

.
= v{v2/x} (11) - from (5), subst closure of .

=

v{v1/x} = v{v2/x} (12) - by nota (*)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e{v1/x} ∼=s e′{v2/x} :

Σ[. . .×mj:τj{v1/x}sj{v1/x}× . . .×mi : (τi{v1/x}si{v1/x})× . . .]s
′′{v1/x}

(12) - by rule (E-REFINERECORD) with (7,9,10,11)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e{v1/x} ∼=s e′{v2/x} :

(Σ[. . .×mj:τ
sj
j × . . .×mi : τsi

i × . . .]s
′′
){v1/x} by Definition 22 with (12)

Case (E-UNREFINERECORD):

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e ∼=s e′ : Σ[. . .×mj:τ
sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]s

′′

(1) - hyp.
∆1; ∆2 `r

′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e ∼=s e′ : Σ[. . .×mj:τ
sj
j × . . .×mi : τsi

i × . . .]s
′′

(3) - inv. (E-UNREFINERECORD) of (1)
S1 ∪ S ′1{y

.
= e} |= y.mj

.
= v (4) - inv. (E-UNREFINERECORD) of (1)

S2 ∪ S ′2{y
.
= e′} |= y.mj

.
= v (5) - inv. (E-UNREFINERECORD) of (1)

∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e{v1/x} ∼=s e′{v2/x} :

(Σ[. . .×mj:τ
sj
j × . . .×mi : τsi

i × . . .]s
′′
){v1/x} (6) - by I.H. with (3,2)
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∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e{v1/x} ∼=s e′{v2/x} :

Σ[. . .×mj:τj{v1/x}sj{v1/x}× . . .×mi : τi{v1/x}si{v1/x}× . . .]s
′′{v1/x}

(7) - by Definition 22 with (6)
S1 ∪ S ′1{v1/x}{y .

= e{v1/x}} |= y.mj
.
= v{v1/x} (10) - from (4), subst closure of .

=

S2 ∪ S ′2{v2/x}{y .
= e′{v2/x}} |= y.mj

.
= v{v2/x} (11) - from (5), subst closure of .

=

v{v1/x} = v{v2/x} (12) - by nota (*)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e{v1/x} ∼=s e′{v2/x} :

Σ[. . .×mj:τj{v1/x}sj{v1/x}× . . .×mi : (τi{v1/x}si{v1/x})[v{v1/x}/mj]× . . .]s
′′{v1/x}

(12) - by rule (E-UNREFINERECORD) with (7,10,11)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e{v1/x} ∼=s e′{v2/x} :

(Σ[. . .×mj:τ
sj
j × . . .×mi : (τsi

i )[
v{v1/x}/mj]× . . .]s

′′
){v1/x}

by Definition 22 with (12)

Case (E-SUB):

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e ∼=s e′ : τt (1) - hyp.

∆1; ∆2 `r
′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `r

′

S1∪S ′1,S2∪S ′2
e ∼=s e′ : τ′′t

′
(3) - inv. (E-SUB) of (1)

τ′′t
′
<: τt (4) - inv. (E-SUB) of (1)

r ≤ r′ (5) - inv. (E-SUB) of (1)
∆1, x : τ′s

′
, ∆′1 `∅ τs (6) - inv. (E-SUB) of (1)

∆2, x : τ′s
′
, ∆′2 `∅ τs (7) - inv. (E-SUB) of (1)

∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `r′S1∪S ′1{v1/x},S2∪S ′2{v2/x} e{v1/x} ∼=s e′{v2/x} : (τ′′t
′
){v1/x}

(8) - by I.H. with (3,2)
∆1, ∆′1{v1/x} `∅ (τs){v/x} (9) - by Lemma 12 with (6,2)
∆2, ∆′2{v2/x} `∅ (τs){v/x} (10) - by Lemma 12 with (7,2)
r{v1/x} ≤ r′{v1/x} (11) - by Lemma 13 with (5)
∆1, x : τ′s

′
, ∆′1 `∅ τ′′t

′
(12) - by Lemma 24 and Definition 29 with (3)

∆2, x : τ′s
′
, ∆′2 `∅ τ′′t

′
(13) - by Lemma 24 and Definition 29 with (3)

∆1, x : τ′s
′
, ∆′1 `∅,∅ τ′′t

′
<: τt (14) - by Definition 39 with (4,6,12)

∆2, x : τ′s
′
, ∆′2 `∅,∅ τ′′t

′
<: τt (15) - by Definition 39 with (4,6,13)

∆1, ∆′1{v1/x} `∅,∅ (τ′′t
′
){v1/x} <: (τs){v1/x} (16) - by Lemma 14 with (14,2)

(τ′′t
′
){v1/x} <: (τt){v1/x} (17) - by Definition 39 with (16)

∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e{v1/x} ∼=s e′{v2/x} : (τt){v1/x}
by rule (E-SUB) with (7,9,11,14,15,17)

Case (E-COLLECTION):

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

{e1, . . . , en} ∼=s {e′1, . . . , e′n} : τ∗s
′′

(1) - hyp

∆1; ∆2 `r
′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

∀i ∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

ei
∼=s e′i : τs′′

(3) - inv. (E-COLLECTION) of (1)
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∀i ∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} ei{v1/x} ∼=s e′i{v2/x} : (τs′′){v1/x}
(4) - by I.H. with (3,2)

{e1, . . . , en}{vi/x} = {e1{vi/x}, . . . , en{vi/x}} (5) - by Definition 38
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}

{e1{v1/x}, . . . , en{v1/x}} ∼=s {e′1{v2/x}, . . . , e′n{v2/x}} : (τ∗s
′′
){v1/x}

(6) - by rule (E-COLLECTION) with (4,5)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}
({e1, . . . , en}){v1/x} ∼=s ({e′1, . . . , e′n}){v2/x} : (τ∗s

′′
){v1/x} by Definition 38 with (6)

Case (E-CONS):

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e1::e2 ∼=s e′1::e′2 : τ∗s
′′

(1) - hyp

∆1; ∆2 `r
′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e1
∼=s e′1 : τs′′ (3) - inv. (E-CONS) of (1)

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e2 ∼=s e′2 : τ∗s
′′

(4) - inv. (E-CONS) of (1)

∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e1{v1/x} ∼=s e′1{v2/x} : (τs′′){v1/x}
(5) - by I.H. with (3,2)

∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e2{v1/x} ∼=s e′2{v2/x} : (τ∗s
′′
){v1/x}

(6) - by I.H. with (4,2)
(e1::e2){vi/x} = (e1{vi/x}::e2{vi/x}) (7) - by Definition 38
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}

e1{v1/x}::e2{v1/x} ∼=s e′1{v2/x}::e′2{v2/x} : (τ∗s
′′
){v1/x}

(8) - by rule (E-CONS) with (5,6), and by (7)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} (e1::e2){v1/x} ∼=s (e′1::e′2){v2/x} : (τ∗s

′′
){v1/x}

by Definition 38 with (8)

Case (E-FOREACH):

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

foreach(e1, e2, y.z.e3) ∼=s foreach(e′1, e′2, y.z.e′3) : τs′′ (1) - hyp
∆1; ∆2 `r

′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e1
∼=s e′1 : τ′′∗s

′′
(3) - inv. (E-FOREACH) of (1)

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e2 ∼=s e′2 : τs′′ (4) - inv. (E-FOREACH) of (1)

∆1, x : τ′s
′
, ∆′1, y : τ′′s

′′
, z : τs′′ ; ∆2, x : τ′s

′
, ∆′2, y : τ′′s

′′
, z : τs′′ `r′S1∪S ′1,S2∪S ′2

e3 ∼=s e′3 : τs′′

(5) - inv. (E-FOREACH) of (1)
r t s′′ ≤ r′ (6) - inv. (E-FOREACH) of (1)
r t s′′{v1/x} ≤ r′ (7) - by instantiation with (5)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e1{v1/x} ∼=s e′1{v2/x} : (τ′′∗s

′′
){v1/x}

(11) - by I.H. with (3,2)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e2{v1/x} ∼=s e′2{v2/x} : (τs′′){v1/x}

(12) - by I.H. with (4,2)
∆1, ∆′1{v1/x}, y : (τ′′s

′′
){v1/x}, z : (τs′′){v1/x}; ∆2, ∆′2{v2/x}, y : (τ′′s

′′
){v2/x}, z : (τs′′){v2/x}
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`r′S1∪S ′1{v1/x},S2∪S ′2{v2/x} e3{v1/x} ∼=s e′2{v2/x} : (τs′′){v1/x} (13) - by I.H. with (5,2)
(foreach(e1, e2, y.z.e3)){vi/x} = foreach(e1{vi/x}, e2{vi/x}, y.z.e3{vi/x})

(14) - by Definition 38
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}

foreach(e1{v1/x}, e2{v1/x}, y.z.e3{v1/x}) ∼=s foreach(e′1{v2/x}, e′2{v2/x}, y.z.e′3{v2/x}) :
(τs′′){v1/x} (15) - by rule (E-FOREACH) with (11,12,13,7), and by (14)

∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}
(foreach(e1, e2, y.z.e3)){v1/x} ∼=s (foreach(e′1, e′2, y.z.e′3)){v2/x} : (τs′′){v1/x}

by Definition 38 with (15)

Case (E-CASE):

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

case e(. . . , ni · yi ⇒ ei, . . .) ∼=s case e′(. . . , ni · yi ⇒ e′i, . . .) : τs′′ (1) - hyp.
∆1; ∆2 `r

′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e ∼=s e′ : {. . . , ni : τsi
i , . . .}s′′

(3) - inv. (E-CASE) of (1)
∀i ∆1, x : τ′s

′
, ∆′1, yi : τi

si ; ∆2, x : τ′s
′
, ∆′2, yi : τi

si `r′S1∪S ′1,S2∪S ′2
ei
∼=s e′i : τs′′

(4) - inv. (E-CASE) of (1)
r t s′′ ≤ r′ (5) - inv. (E-CASE) of (1)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e{v1/x} ∼=s e′{v2/x} :

({. . . , ni : τsi
i , . . .}s′′){v1/x} (6) - by I.H. with (2,3)

∀i ∆1, ∆′1{v1/x}, y : (τi
si){v1/x}; ∆2, ∆′2{v2/x}, y : (τi

si){v2/x} `r′S1∪S ′1{v1/x},S2∪S ′2{v2/x}
ei{v1/x} ∼=s e′i{v2/x} : (τs′′){v1/x} (7) - by I.H. with (2,4)

r t s′′{v1/x} ≤ r′ (8) - by instantiation with (5)
(case e(. . . , ni · yi ⇒ ei, . . .)){vi/x} = case e{vi/x}(. . . , ni · yi ⇒ ei{vi/x}, . . .)

(9) - by Definition 38
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}

case e{v1/x}(. . . , ni · yi ⇒ ei{v1/x}, . . .) ∼=s case e′{v2/x}(. . . , ni · yi ⇒ ei{v2/x}, . . .) :
(τs′′){v1/x} (10) - by rule (E-CASE) with (6,7,8), and by (9)

∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}
(case e(. . . , ni · yi ⇒ ei, . . .)){v1/x} ∼=s (case e′(. . . , ni · yi ⇒ ei, . . .)){v2/x} :

(τs′′){v1/x} by Definition 38 with (10)

Case (E-INJ):

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

#ni(e) ∼=s #ni(e′) : {. . . , ni : τsi
i , . . .}t

(1) - hyp.
∆1; ∆2 `r

′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e ∼=s e′ : τsi
i (3) - inv. (E-INJ) of (1)

∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e{v1/x} ∼=s e′{v2/x} : (τsi
i ){v1/x} (4) -

by I.H. with (3,2)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} #ni(e{v1/x}) ∼=s #ni(e′{v2/x}) :
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{. . . , ni : (τsi
i ){v1/x}, . . .}t (5) - by (E-INJ) with (4)

∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} #ni(e){v1/x} ∼=s #ni(e′){v2/x} :
({. . . , ni : (τsi

i ), . . .}t){v/x} by Definition 38 and Definition 22 with (5)

Case (E-OR):
∆1, x : τ′s

′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

c1 ∨ c2 ∼=s c′1 ∨ c′2 : Bools
′′

(1) - hyp

∆1; ∆2 `r
′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

c1
∼=s c′1 : Bools

′′
(3) - inv. (E-OR) with (1)

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

c2 ∼=s c′2 : Bools
′′

(4) - inv. (E-OR) with (1)

∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} c1{v1/x} ∼=s c′1{v2/x} : Bools
′′{v1/x}

(5) - by I.H. with (3,2)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} c2{v1/x} ∼=s c′2{v2/x} : Bools

′′{v1/x}

(6) - by I.H. with (4,2)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}
c1{v1/x} ∨ c2{v1/x} ∼=s c′1{v2/x} ∨ c′2{v2/x} : Bools

′′{v1/x} (7) - by rule (E-OR) with (5,6)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}

(c1 ∨ c2){v1/x} ∼=s (c′1 ∨ c′2){v2/x} : Bools
′′{v1/x} by Definition 38 with (7)

Case (E-NOT):
∆1, x : τ′s

′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

¬c ∼=s ¬c′ : Bools
′′

(1) - hyp

∆1; ∆2 `r
′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

c ∼=s c′ : Bools
′′

(3) - inv. (E-NOT) with (1)

∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} c{v1/x} ∼=s c′{v2/x} : Bools
′′{v1/x}

(4) - by I.H. with (3,2)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} ¬c{v1/x} ∼=s ¬c′{v2/x} : Bools

′′{v1/x}

(5) - by rule (T-NOT) with (4)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} (¬c){v1/x} ∼=s (¬c′){v2/x} : Bools

′′{v1/x}

by Definition 38 with (5)

Case (E-EQUAL):
∆1, x : τ′s

′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

V1 = V2 ∼=s V ′1 = V ′2 :: Bools
′′

(1) - hyp

∆1; ∆2 `r
′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

V1
∼=s V ′1 :: τs′′ (3) - inv. (E-EQUAL) with (1)

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

V2 ∼=s V ′2 :: τs′′ (4) - inv. (E-EQUAL) with (1)

∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} V1{v1/x} ∼=s V ′1{v2/x} : (τs′′){v1/x}
(5) - by I.H. with (3,2)

∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} V2{v1/x} ∼=s V ′2{v2/x} : (τs′′){v1/x}
(6) - by I.H. with (4,2)

∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}
V1{v1/x} = V2{v1/x} ∼=s V ′1{v2/x} = V ′2{v2/x} : Bools

′′{v1/x}
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(7) - by rule (E-EQUAL) with (5,6)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}

(V1 = V2){v1/x} ∼=s (V ′1 = V ′2){v2/x} : Bools
′′{v1/x} by Definition 38 with (7)

Case (E-REF):

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

refτs′′ e ∼=s refτs′′ e′ : ref(τs′′)r (1) - hyp

∆1; ∆2 `r
′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e ∼=s e′ : τs′′ (3) - inv. (E-REF) with (1)
r ≤ s′′ (4) - inv. (E-REF) with (1)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e{v1/x} ∼=s e′{v2/x} : (τs′′){v1/x}

(5) - by I.H. with (3,2)
r{v1/x} ≤ s′′{v1/x} (6) - by Lemma 13 with (4)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}
refτs′′ e{v1/x} ∼=s refτs′′ e′{v2/x} : ref((τs′′){v1/x})r{v1/x} (7) - by rule (E-REF) with (5,6)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}

refτs′′ e{v1/x} ∼=s refτs′′ e′{v2/x} : (ref(τs′′)r){v1/x}
by Definition 38 and Definition 22 with (7)

Case (E-DEREF):

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

!e ∼=s !e′ : τs′′ (1) - hyp

∆1; ∆2 `r
′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e ∼=s e′ : ref(τs′′)t

(3) - inv. (E-DEREF) with (1)
t ≤ s′′ (4) - inv. (E-DEREF) with (1)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e{v1/x} ∼=s e′{v2/x} : (ref(τs′′)t){v1/x}

(5) - by I.H. with (3,2)
t{v1/x} ≤ s′′{v1/x} (6) - by Lemma 13 with (4)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}!e{v1/x} ∼=s !e′{v2/x} : (τs′′){v1/x}

(7) - by rule (E-DEREF) with (5,6)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} (!e){v1/x} ∼=s (!e′){v2/x} : (τs′′){v1/x}

by Definition 38 with (7)

Case (E-ASSIGN):

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e1 := e2 ∼=s e′1 := e′2 : cmd⊥ (1) - hyp

∆1; ∆2 `r
′
S1,S2

v1
∼=s v2 : τ′s

′
(2) - hyp

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e1
∼=s e′1 : ref(τs′′)t

(3) - inv. (E-ASSIGN) with (1)
∆1, x : τ′s

′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1∪S ′1,S2∪S ′2

e2 ∼=s e′2 : τs′′ (4) - inv. (E-ASSIGN) with (1)
r t t ≤ s′′ (5) - inv. (E-ASSIGN) with (1)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e1{v1/x} ∼=s e′1{v2/x} : (ref(τs′′)t){v1/x}
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(6) - by I.H. with (3,2)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x} e2{v1/x} ∼=s e′2{v2/x} : (τs′′){v1/x}

(7) - by I.H. with (4,2)
(r t t){v1/x} ≤ s′′{v1/x} (8) - Lemma 13 with (5)
r t t{v1/x} ≤ s′′{v1/x} (9) - by def. of glb with (8)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}

e1{v1/x} := e2{v1/x} ∼=s e′1{v2/x} := e′2{v2/x} : cmd⊥

(10) - by rule (E-ASSIGN) with (6,7,9)
∆1, ∆′1{v1/x}; ∆2, ∆′2{v2/x} `rS1∪S ′1{v1/x},S2∪S ′2{v2/x}

(e1 := e2){v1/x} ∼=s (e1 := e2){v2/x} : cmd⊥ by Definition 38 with (10)

�

Lemma 30 (Inversion Lemma for Expression Equivalence)

1. If ∆1; ∆2 `pS1,S2
λ(x:τ′′s

′′
).e ∼=s λ(x:τ′′s

′′
).e′ : (Πx:τ′s

′
.r′; σq)t, then

∆1, x:τ′′s
′′
; ∆2, x:τ′′s

′′ `r′S1,S2
e ∼=s e′ : σq, and τ′s

′
<: τ′′s

′′
.

2. If ∆1; ∆2 `pS1,S2
#ni(v) ∼=s #ni(v′) : {. . . , ni : τsi

i , . . .}t, then
∆1; ∆2 `pS1,S2

v ∼=s v′ : τi
si .

3. If ∆1; ∆2 `pS1,S2
[. . . , mi = vi, . . .] ∼=s [. . . , mi = v′i, . . .] : Σ[. . .×mi : τsi

i × . . .]t, then
∆1; ∆2 `pS1,S2

vi
∼=s v′i : τi

si [v1/m1] . . . [vi−1/mi−1].

4. If ∆1; ∆2 `rS1,S2
l1 ∼=s l2 : ref(τs′)t, then either

a) (l1, l2) ∈ M and ∆1(l1) = ∆2(l2) = ref(τs′)t
′
, where t′ ≤ t and t′ ≤ s

b) li 6∈ Mi and ∆i(li) = ref(τs′)t
′
, where t′ ≤ t and t′ 6≤ s

Proof By induction on the relation ∆ `rS e : τs, using Lemma 19.

1. ∆1; ∆2 `pS1,S2
λ(x:τ′′s

′′
).e ∼=s λ(x:τ′′s

′′
).e′ : (Πx:τ′s

′
.r′; σq)t, then

∆1, x:τ′′s
′′
; ∆2, x:τ′′s

′′ `r′S1,S2
e ∼=s e′ : σq, and τ′s

′
<: τ′′s

′′
.

Case (E-VALOPAQUE):

∆1; ∆2 `pS1,S2
λ(x:τ′s

′
).e ∼=s λ(x:τ′s

′
).e′ : (Πx:τ′s

′
.r; σq)t (1) - hyp.

∆1 `pS1
λ(x:τ′s

′
).e : (Πx:τ′s

′
.r; σq)t (2) - inv. (E-VALOPAQUE) of (1)

∆2 `pS2
λ(x:τ′s

′
).e′ : (Πx:τ′s

′
.r; σq)t (3) - inv. (E-VALOPAQUE) of (1)

t 6≤ s (4) - inv. (E-VALOPAQUE) of (1)
∆1, x : τ′s

′ `rS1
e : σq (4) - inv. (T-LAMBDA) of (2)

∆2, x : τ′s
′ `rS2

e′ : σq (5) - inv. (T-LAMBDA) of (3)
t ≤ r (6) - by Definition 27 with (4,5)
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t ≤ q{⊥/x} (7) - by Definition 27 with (4,5)
To show q 6≤ s, assume for contradiction q ≤ s (8)
t ≤ s (9) - by (7), which contradicts (4)
q 6≤ s (10) - by (9)
To show r 6≤ s, assume for contradiction r ≤ s (11)
t ≤ s (12) - by (6,11), which contradicts (4)
r 6≤ s (13) - by (12)
∆1, x : τ′s

′
; ∆2, x : τ′s

′ `rS1,S2
e ∼=s e′ : σq by (E-EXPROPAQUE) with (4,5,10,13)

τ′s
′
<: τ′s

′
by (S-REFLEX) with (2)

Case (E-LAMBDA):

∆1; ∆2 `pS1,S2
λ(x:τ′s

′
).e ∼=s λ(x:τ′s

′
).e′ : (Πx:τ′s

′
.r; σq)t (1) - hyp.

∆1, x : τ′s
′
, ∆′1; ∆2, x : τ′s

′
, ∆′2 `rS1,S2

e ∼=s : σq (2) - inv. of (E-LAMBDA) with (1)
τ′s
′
<: τ′s

′
by (S-REFLEX) with (2)

Case (T-SUB):

∆1; ∆2 `pS1,S2
λ(x:τ′′s

′′
).e ∼=s λ(x:τ′′s

′′
).e′ : (Πx:τ′s

′
.r; σq)t (1) - hyp.

∆1; ∆2 `r
′
S1,S2

λ(x:τ′′s
′′
).e ∼=s λ(x:τ′′s

′′
).e′ : γw (2) - inv. of (E-SUB) with (1)

γw <: (Πx:τ′s
′
.r; σq)t (3) - inv. of (E-SUB) with (1)

p ≤ r′ (4) - inv. of (E-SUB) with (1)
γw = (Πx:τ′′′s

′′′
.r′′′; σ′′q

′′
)t
′′

(5) - by Lemma 19 with (3)
τ′s
′
<: τ′′′s

′′′
(6) - by Lemma 19 with (3)

σ′′q
′′
<: σq (7) - by Lemma 19 with (3)

r ≤ r′′′ (8) - by Lemma 19 with (3)
t′′ ≤ t (9) - by Lemma 19 with (3)
∆1, x : τ′′s

′′
, ∆′1; ∆2, x : τ′′s

′′
, ∆′2 `r

′′′
S1,S2

e ∼=s e′ : σ′′q
′′

(10) - by I.H. with (2)
τ′′′s

′′′
<: τ′′s

′′
(11) - by I.H. with (2)

τ′s
′
<: τ′′s

′′
by (S-TRANS) with (6,11)

∆1, x:τ′′s
′′
, ∆′1; ∆2, x:τ′′s

′′
, ∆′2 `rS1,S2

e ∼=s e′ : σq by (E-SUB) with (10,8,7)

2. If ∆ `rS #mi(v) : {. . . , mi : τsi
i , . . .}t, then

∆ `rS v : τ′i
s′i and τ′i

s′i <: τsi
i .

Case (T-INJ):

∆ `rS #mi(v) as {. . . , mi:τ
si
i , . . .}usi : {. . . , mi:τ

si
i , . . .}usi (1) - hyp.

∆ `rS v : τi
si (2) - inv. of (T-INJ) with (1)

τi
si <: τi

si by (S-REFLEX) with (2)

Case (T-SUB):
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∆ `rS #m(v) as {. . . , mi : τ′i
s′i , . . .}t′ : {. . . , mi : τsi

i , . . .}t (1) - hyp.
∆ `r′S #m(v) as {. . . , mi : τ′i

s′i , . . .}t′ : τs (2) - inv. of (T-SUB) with (1)
δw <: {. . . , mi : τsi

i , . . .}t (3) - inv. of (T-SUB) with (1)
r ≤ r′ (4) - inv. of (T-SUB) with (1)

δw = {m : τ′′s′′}t′′ (5) - by Lemma 19 with (3)
∀i τ′′i

s′′i <: τsi
i (6) - by Lemma 19 with (3)

∆ `rS v : τ′i
s′i by I.H. with (2)

τ′i
s′i <: τ′′i

s′′i (7) - by I.H. with (2)
τ′i

s′i <: τsi
i by (S-TRANS) with (7,6)

3. If ∆1; ∆2 `pS1,S2
[. . . , mi = vi, . . .] ∼=s [. . . , mi = v′i, . . .] : Σ[. . .×mi : τsi

i × . . .]t, then
∆1; ∆2 `pS1,S2

vi
∼=s v′i : τi

si [v1/m1] . . . [vi−1/mi−1].

Case (E-VALOPAQUE):

∆1; ∆2 `rS1,S2
[. . . , mi = vi, . . .] ∼=s [. . . , mi = v′i, . . .] : Σ[. . .×mi : τsi

i × . . .]t (1) - hyp.
∆1 `rS1

[. . . , mi = vi, . . .] : Σ[. . .×mi : τsi
i × . . .]t (2) - inv. of (E-VALOPAQUE) with (1)

∆2 `rS2
[. . . , mi = v′i, . . .] : Σ[. . .×mi : τsi

i × . . .]t (3) - inv. of (E-VALOPAQUE) with (1)
t 6≤ s (4) - inv. of (E-VALOPAQUE) with (1)
∆1 `rS1

vi : τsi
i (5) - inv. of (E-RECORD) with (3)

∆2 `rS2
v′i : τsi

i (6) - inv. of (E-RECORD) with (4)
t ≤ usi

↓
{m1,...,mi−1}

(7) - by Definition 27 with (3,4)

mi ∈ fn(τ
sj
j ) =⇒ τsi

i ∈ LT =⇒ si = ⊥ =⇒ t = ⊥
(8) - by (7) and Definition 20, which contradicts (4) so t 6= ⊥

τsi
i = τsi

i [
v1/m1] . . . [vi−1/vi−1] (9) - since mi−1

1 6∈ fn(τi
si) by (8)

To show si 6≤ s, assume for contradiction si ≤ s (10)
t ≤ s (11) - by (7), which contradicts (4)
si 6≤ s (12) - by (11)
∆1; ∆2 `rS1,S2

vi
∼=s v′i : τsi

i [
v1/m1] . . . [vi−1/vi−1] by (E-VALOPAQUE) with (5,6,9,12)

Case (E-RECORD):

∆1; ∆2 `rS1,S2
[. . . , mi = vi, . . .] ∼=s [. . . , mi = v′i, . . .] : Σ[. . .×mi : τsi

i × . . .]t (1) - hyp.
∀i ∆1; ∆2 `rS1,S2

vi
∼=s v′i : τsi

i (2) - inv. of (E-RECORD) with (1)
∆1; ∆2 `rS1,S2

vi
∼=s v′i : τsi

i (3) - by (2)
τsi

i = τsi
i [

v1/m1] . . . [vi−1/vi−1] (4) - since mi−1
1 6∈ fn(τi

si) by (3)

Case (E-SUB):

∆1; ∆2 `rS1,S2
[. . . , mi = vi, . . .] ∼=s [. . . , mi = v′i, . . .] : Σ[. . .×mi : τsi

i × . . .]t (1) - hyp.
∆1; ∆2 `r

′
S1,S2

[. . . , mi = vi, . . .] ∼=s [. . . , mi = v′i, . . .] : δw (2) - inv. of (E-SUB) with (1)
δw <: Σ[. . .×mi : τsi

i × . . .]t (3) - inv. of (E-SUB) with (1)
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r ≤ r′ (4) - inv. of (E-SUB) with (1)
δw = Σ[. . .×mi : τ′i

s′i× . . .]t
′

(5) - by Lemma 19 with (3)
∀i τ′i

s′i <: τsi
i (6) - by Lemma 19 with (3)

t′ ≤ t (7) - by Lemma 19 with (3)
∆1; ∆2 `r

′
S1,S2

vi
∼=s v′i : τ′i

s′i [v1/m1] . . . [vi−1/mi−1] (8) - by I.H. (2,5)

∀i τ′i
s′i [v1/m1] . . . [vi−1/mi−1] <: τsi

i [
v1/m1] . . . [vi−1/mi−1] (10) - by (6) using Definition 23

∆1; ∆2 `rS1,S2
vi
∼=s v′i : τsi

i [
v1/m1] . . . [vi−1/mi−1] by (E-SUB) with (8,10,4)

Case (E-REFINERECORD):

∆1; ∆2 `rS1,S2
[. . . , mi = vi, . . .] ∼=s [. . . , mi = v′i, . . .] : Σ[. . .×mj : τ

sj
j × . . . , mk :

τsk
k , . . .]t (1) - hyp.

∆1; ∆2 `rS1,S2
[. . . , mi = vi, . . .] ∼=s [. . . , mi = v′i, . . .] : Σ[. . .×mj : τ

sj
j × . . . , mk :

τsk
k [v/mj], . . .]t

(2) - inv. (E-REFINERECORD) of (1)
S1{x

.
= [. . . , mi = vi, . . .]} |= x.mj

.
= v (3) - inv. (E-REFINERECORD) of (1)

S2{x
.
= [. . . , mi = v′i, . . .]} |= x.mj

.
= v (4) - inv. (E-REFINERECORD) of (1)

t ≤ si ↓m1,...,mi−1 (5) - inv. (E-REFINERECORD) of (1)
∆1; ∆2 `rS1,S2

vi
∼=s v′i : τk

sk [v/mj][v1/m1] . . . [vi−1/mi−1] (6) - by I.H. (2)
v = vj (8) - by (3)
τk

sk [v/mj][v1/m1] . . . [vi−1/mi−1] <: τk
sk [v1/m1] . . . [vi−1/mi−1] (9) - by (S-REFLEX) with (8)

∆1; ∆2 `rS1,S2
vi
∼=s v′i : τk

sk [v1/m1] . . . [vi−1/mi−1] by (E-SUB) with (6,9)

Case (E-UNREFINERECORD):

∆1; ∆2 `rS1,S2
[. . . , mi = vi, . . .] ∼=s [. . . , mi = v′i, . . .] : Σ[. . .×mj : τ

sj
j × . . . , mk :

τsk
k [v/mj], . . .]t (1) - hyp.

∆1; ∆2 `rS1,S2
[. . . , mi = vi, . . .] ∼=s [. . . , mi = v′i, . . .] : Σ[. . .×mj : τ

sj
j × . . . , mk :

τsk
k , . . .]t

(2) - inv. (E-UNREFINERECORD) of (1)
S1{x

.
= [. . . , mi = vi, . . .]} |= x.mj

.
= v (3) - inv. (E-UNREFINERECORD) of (1)

S2{x
.
= [. . . , mi = v′i, . . .]} |= x.mj

.
= v (4) - inv. (E-UNREFINERECORD) of (1)

∆1; ∆2 `rS1,S2
vi
∼=s v′i : τk

sk [v1/m1] . . . [vi−1/mi−1] (5) - by I.H. (2)
v = vj (7) - by (3)
τk

sk [v1/m1] . . . [vi−1/mi−1] <: (τk
sk [v/mj])[v1/m1] . . . [vi−1/mi−1] (8) - by (S-REFLEX) with (7)

∆1; ∆2 `rS1,S2
vi
∼=s v′i : (τk

sk [v/mj])[v1/m1] . . . [vi−1/mi−1] by (E-SUB) with (5,8)

4. If ∆1; ∆2 `rS1,S2
l1 ∼=s l2 : ref(τs′)t, then either

a) (l1, l2) ∈ M and ∆1(l1) = ∆2(l2) = ref(τs′)t
′
, where t′ ≤ t and t′ ≤ s
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b) li 6∈ Mi and ∆i(li) = ref(τs′)t
′
, where t′ ≤ t and t′ 6≤ s

Case (E-LOC):

∆1; ∆2 `rS1,S2
l1 ∼=s l2 : ref(τs′)t (1) - hyp.

(l1, l2) ∈ M by inv. (E-LOC) of (1)
∆1(l1) = ∆2(l2) = ref(τs′)t by inv. (E-LOC) of (1)
t ≤ s by inv. (E-LOC) of (1)
t ≤ t by (S-REFLEX)
So we establish condition a)

Case (E-LOCOPAQUE):

∆1; ∆2 `rS1,S2
l1 ∼=s l2 : ref(τs′)t (1) - hyp.

li 6∈ Mi by inv. (E-LOCOPAQUE) of (1)
∆1(l1) = ∆2(l2) = ref(τs′)t by inv. (E-LOCOPAQUE) of (1)
t 6≤ s by inv. (E-LOCOPAQUE) of (1)
t ≤ t by (S-REFLEX)
So we establish condition b)

Case (E-SUB):

∆1; ∆2 `rS1,S2
l1 ∼=s l2 : ref(τs′)t (1) - hyp.

∆1; ∆2 `r
′
S1,S2

l1 ∼=s l2 : δw (2) - inv. of (T-SUB) with (1)
δw <: ref(τs′)t (3) - inv. of (T-SUB) with (1)
r ≤ r′ (4) - inv. of (T-SUB) with (1)

δw = ref(τs′)t
′

(5) - by Lemma 19 with (3)
t′ ≤ t (6) - by Lemma 19 with (3)
Then by I.H. with (2), we have either:

i. (l1, l2) ∈ M
∆1(l1) = ∆2(l2) = ref(τs′)t

′′

t′′ ≤ t′ (7)
t′′ ≤ s

t′′ ≤ t by (6,7)

ii. li 6∈ Mi

∆i(li) = ref(τs′)t
′′

t′′ ≤ t′ (7)
t′′ 6≤ s

t′′ ≤ t by (6,7)

�
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Lemma 31 (Constraint Cut Lemma)
Let S ,S ′ be constraint sets, and e, e′, t1, t′1, t2, t′2 expressions.
If ∆1; ∆2 `rS∪{t1

.
=t′1},S ′∪{t2

.
=t′2}

e ∼=s e′:τs′ , S |= t1
.
=t′1 and S ′ |= t2

.
= t′2.

Then ∆1; ∆2 `rS ,S ′ e ∼=s e′:τs′ .
Proof: By induction on the statement ∆1; ∆2 `rS∪{t1

.
=t′1},S ′∪{t2

.
=t′2}

e ∼=s e′:τs′ , using deduc-
tion closure of |=.

Lemma 32
Let c1, c2 be logical condition expressions such that ∆1, ∆2 `rS1,S2

c1
∼=s c2 : Boolt, then

∆1, ∆2 `rS1,S2
CJc1K ∼=s CJc2K : Boolt.

Theorem 11 (Noninterference Theorem)
Let ∆1; ∆2 `M S1 =s S2, and ∆1; ∆2 `S1,S2 e1

∼=s e2 : τs′ . Then one of the following cases
must hold:

1. e1, e2 are values
2. (S1; e1) −→ (S′1; e′1) and (S2; e2) −→ (S′2; e′2), and there is ∆′1, ∆′2 such that ∆i ⊆ ∆′i,

there isM′ such thatM ⊆ M′, ∆′1; ∆′2 `M′ S′1 =s S′2, and and ∆′1; ∆′2 `S1,S2 e′1 ∼=s

e′2 : τs′ .
3. (S1; e1) −→ (S′1; e′1), and there is ∆′1 such that ∆1 ⊆ ∆′1, there is M′ such that
M⊆M′, ∆′1; ∆2 `M′ S′1 =s S2, and and ∆′1; ∆2 `S1,S2 e′1 ∼=s e2 : τs′ .

4. (S2; e2) −→ (S′2; e′2), and there is ∆′2 such that ∆2 ⊆ ∆′2, there is M′ such that
M⊆M′, ∆1; ∆′2 `M′ S1 =s S′2, and and ∆1; ∆′2 `S1,S2 e1

∼=s e′2 : τs′ .

Proof By induction on the relation ∆1; ∆2 `S1,S2 e1
∼=s e2 : τs′ .

Case (E-VALOPAQUE):
∆1; ∆2 `rS∪S ′ u1

∼=s u2 : τs′ (1) - hyp.
∆1; ∆2 `M S1 =s S2 (2) - hyp.
u1, u2 are values by (1)

Case (E-VAL):
∆1; ∆2 `rS∪S ′ u1

∼=s u2 : τs′ (1) - hyp.
∆1; ∆2 `M S1 =s S2 (2) - hyp.
u1, u2 are values by (1)

Case (E-LOC):
∆1; ∆2 `rS∪S ′ l1 ∼=s l2 : ref(τs′)t (1) - hyp.
∆1; ∆2 `M S1 =s S2 (2) - hyp.
l1, l2 are values by (1)

Case (E-LOCOPAQUE):
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∆1; ∆2 `rS∪S ′ l1 ∼=s l2 : ref(τs′)t (1) - hyp.
∆1; ∆2 `M S1 =s S2 (2) - hyp.
l1, l2 are values by (1)

Case (E-EXPROPAQUE):
∆1; ∆2 `rS∪S ′ e1

∼=s e2 : τs′ (1) - hyp.
∆1; ∆2 `M S1 =s S2 (2) - hyp.
∆i `rSi

ei : τs′ (3) - by inv. of (E-EXPROPAQUE) with (1)
s′ 6≤ s (4) - by inv. of (E-EXPROPAQUE) with (1)
r 6≤ s (5) - by inv. of (E-EXPROPAQUE) with (1)

• e1, e2 are values then we establish case 1 of the theorem.

Otherwise, either e1 or e2 reduces.

• (S1; e1) −→ (S′1; e′1) (6)
∆1 ⊆ ∆′1 (7) - by Lemma 27 with (3,5,6)
M⊆M′ (8) - by Lemma 27 with (3,5,6)
∆′1; ∆2 `M′ S′1 =s S2 (9) - by Lemma 27 with (3,5,6)
∆′1 `rS1

e′1 : τs′ (10) - by Theorem 9 with (3,6)
∆′1; ∆2 `S1,S2 e′1 ∼=s e2 : τs′ by (E-EXPROPAQUE) with (3,10,4,5)
We establish case 3 of the theorem.

• (S2; e2) −→ (S′2; e′2)
Same as previous case, using the symmetric version of Lemma 27.
We establish case 4 of the theorem.

Case (E-IF):
∆1; ∆2 `rS1,S2

if c then e1 else e2 ∼=s if c′ then e′1 else e′2 : τs′ (1) - hyp.
∆1; ∆2 `M S1 =s S2 (2) - hyp.
∆1; ∆2 `rS1,S2

c ∼=s c′ : Bools
′

(3) - inv. (E-IF) of (1)
∆1; ∆2 `r

′

S1∪{c
.
=true},S2∪{c′

.
=true} e1

∼=s e′1 : τs′ (4) - inv. (E-IF) of (1)

∆1; ∆2 `r
′

S1∪{c
.
=false},S2∪{c′

.
=false} e2 ∼=s e′2 : τs′ (5) - inv. (E-IF) of (1)

r t s′ ≤ r′ (6) - inv. (E-IF) of (1)

Let b1 = CJcK and b2 = CJc′K.
We do case analysis of the possible values of b1 and b2.

• Case b1 = b2 = true (7)
(S1; if c then e1 else e2) −→ (S1; e1) (8) - by (7)
(S2; if c′ then e′1 else e′2) −→ (S2; e′1) (9) - by (7)
∆1; ∆2 `r

′
S1,S2

e1
∼=s e′1 : τs′ (10) - since Si |= c .

= true with (7) and by Lemma 31
∆1; ∆2 `rS1,S2

e1
∼=s e′1 : τs′ (11) - by (E-SUB) with (10,6)

227



APPENDIX C. PROOFS

So we establish case 2 of the theorem with S′i = Si andM′ =M.

• Case b1 = b2 = false

As above.

• Case b1 = true and b2 = false (12)
(S1; if c then e1 else e2) −→ (S1; e1) (13) - by (12)
(S2; if c′ then e′1 else e′2) −→ (S2; e′2) (14) - by (12)
s′ 6≤ s (15) - by Lemma 32 with (3) and (E-VALOPAQUE) with (12)
∆1 `r

′

S1∪{c
.
=true} e1 : τs′ (16) - by Lemma 24 with (4)

∆2 `r
′

S2∪{c′
.
=false} e′2 : τs′ (17) - by Lemma 24 with (5)

∆1 `r
′
S1

e1 : τs′ (18) - since S1 |= c .
= true with (12) and by Lemma 21 with (16)

∆2 `r
′
S2

e′2 : τs′ (19) - since S2 |= c′ .
= false with (12) and by Lemma 21 with (17)

To show r′ 6≤ s, assume for contradiction r′ ≤ s (20)
s′ ≤ r′ (21) - by (6)
s′ ≤ s (22) - by (21,20), which contradicts (15)
r′ 6≤ s (23) - by (22)
∆1; ∆2 `r

′
S1,S2

e1
∼=s e′2 : τs′ (24) - by (E-EXPROPAQUE) with (18,19,15,23)

∆1; ∆2 `rS1,S2
e1
∼=s e′2 : τs′ by (E-SUB) with (24,6)

So we establish case 2 of the theorem with S′i = Si andM′ =M.

• Case b1 = false and b2 = true

As above.

Case (E-CASE):
∆1; ∆2 `rS1,S2

case e(. . . , ni · xi ⇒ ei, . . .) ∼=s case e′(. . . , ni · xi ⇒ e′i, . . .) : τs′ (1) - hyp.
∆1; ∆2 `M S1 =s S2 (2) - hyp.
∆1; ∆2 `rS1,S2

e ∼=s e′ : {. . . , ni : τsi
i , . . .}s′ (3) - inv. (E-CASE) of (1)

∀i ∆1, xi:τ
si
i ; ∆2, xi:τ

si
i `r

′
S1,S2

ei
∼=s e′i : τs′ (4) - inv. (E-CASE) of (1)

r t s′ ≤ r′ (5) - inv. (E-CASE) of (1)
By I.H. with (3) we have one of the following cases:

• Case e = #ni(u1) = v1 and e′ = #nj(u2) = v2, both values

∆1; ∆2 `rS1,S2
v1
∼=s v2 : {. . . , ni : τsi

i , . . .}s′ (5)
We do case analysis of the possible values of v1 and v2.

– Case v1 = v2, so i = j and u1 = u2 (7)
∆1; ∆2 `rS1,S2

u1
∼=s u2 : τi

si (6) - by Lemma 30 with (5)
∆1; ∆2 `r

′
S1,S2

ei{u1/xi} ∼=s e′i{u2/xi} : τs′
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(8) - by Lemma 29 with (4,6) and since xi 6∈ fv(τs′) by (1)
∆1; ∆2 `rS1,S2

ei{u1/xi} ∼=s e′i{u2/xi} : τs′ by (E-SUB) with (8,5)
(S1; case e(. . . , ni · xi ⇒ ei, . . .) −→ (S1; ei{u1/xi})
(S2; case e′(. . . , ni · xi ⇒ e′i, . . .) −→ (S2; e′i{u2/xi})
Which establishes case 2 of the theorem with S′i = Si andM′ =M.

– Case v1 6= v2, so i 6= j (9)
∀i ∆1, xi:τ

si
i `r

′
S1

ei : τs′ (10) - by Lemma 24 with (4)
∀i ∆2, xi:τ

si
i `r

′
S2

e′i : τs′ (11) - by Lemma 24 with (4)
∆1, xi:τ

si
i `r

′
S1

ei : τs′ (12) - by (10)
∆2, xj:τ

sj
j `r

′
S2

e′j : τs′ (13) - by (11)
∆1 `rS1

v1 : {. . . , ni : τsi
i , . . .}s′ (14) - by Lemma 24 with (5)

∆2 `rS2
v2 : {. . . , ni : τsi

i , . . .}s′ (15) - by Lemma 24 with (5)
∆1 `rS1

u1 : τi
si (16) - by Lemma 20 with (14)

∆2 `rS2
u2 : τj

sj (17) - by Lemma 20 with (15)
∆1 `r

′
S1

ei{u1/xi} : τs′

(18) - by Lemma 18 with (12,16) and since xi 6∈ fv(τs′) by (1)
∆2 `r

′
S2

e′j{u2/xj} : τs′

(19) - by Lemma 18 with (13,17) and since xj 6∈ fv(τs′) by (1)
s′ 6≤ s (20) - by (E-VALOPAQUE) with (9,5)
∆1; ∆2 `rS1,S2

ei{u1/xi} ∼=s e′j{u2/xj} : τs′

by (E-EXPROPAQUE) with (18,19,20) and (E-SUB) with (8,5)
(S1; case e(. . . , ni · xi ⇒ ei, . . .) −→ (S1; ei{u1/xi})
(S2; case e′(. . . , ni · xi ⇒ e′i, . . .) −→ (S2; e′j{u2/xj})
Which establishes case 2 of the theorem with S′i = Si andM′ =M.

• Other cases by I.H.

Case (E-LET):
∆1; ∆2 `rS1,S2

let x = e1 in e2 ∼=s let x = e′1 in e′2 : τ′s2 (1) - hyp.
∆1; ∆2 `M S1 =s S2 (2) - hyp.
∆1; ∆2 `rS1,S2

e1
∼=s e′1 : τs1 (3) - by inv. (E-LET) of (1)

∆1, x : τs1 ; ∆2, x : τs1 `rS1{x
.
=e1},S2{x

.
=e′1}

e2 ∼=s e′2 : τ′s2 (4) - by inv. (E-LET) of (1)

By I.H. with (3) we have one of the following cases:

• Case e1 = v1 and e′1 = v′1, both values

∆1; ∆2 `rS1,S2
v1
∼=s v′1 : τs1 (5)

∆1; ∆2 `rS1{v1
.
=e1},S2{v′1

.
=e′1}

e2{v1/x} ∼=s e′2{v′1/x} : τ′s2

(6) - by Lemma 29 with (4,5) and since x 6∈ fv(τ′s2) by (1)
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∆1; ∆2 `rS1,S2
e2{v1/x} ∼=s e′2{v′1/x} : τ′s2 (7) - by Lemma 31 with (6,5)

(S1; let x = v1 in e2) −→ (S1, e2{v1/x})
(S2; let x = v′1 in e′2) −→ (S2, e′2{v′1/x})
Which establishes case 2 of the theorem with S′i = Si andM′ =M.

• Case (S1; e1) −→ (S′1; e′′1 )
∆1 ⊆ ∆′1 (9)
M⊆M′ (10)
∆′1; ∆2 `M′ S′1 =s S2 (11)
∆′1; ∆2 `S1,S2 e′′1 ∼=s e′1 : τs′ (12)
(S1; let x = e1 in e2) −→ (S′1; let x = e′′1 in e2)

∆1, x : τs1 ; ∆2, x : τs1 `rS1{x
.
=e′′1 },S2{x

.
=e′1}

e2 ∼=s e′2 : τ′s2

(13) - since reduction preserves .
=, so e1

.
= e′′1

∆1; ∆2 `rS1,S2
let x = e′′1 in e2 ∼=s let x = e′1 in e′2 : τ′s2 by (E-LET) with (13,4)

Which establishes case 3 of the theorem.

• Cases 2 and 4 are similar to case 3.

Case (E-APP):
∆1; ∆2 `rS1,S2

e1(e2) ∼=s e′1(e
′
2) : σ′q

′
(1) - hyp.

∆1; ∆2 `M S1 =s S2 (2) - hyp.
∆1; ∆2 `rS1,S2

e1
∼=s e′1 : (Πx:τs′ .r′; σq)t (3) - by inv. (E-APP) of (1)

∆1; ∆2 `rS1,S2
e2 ∼=s e′2 : τs′ (4) - by inv. (E-APP) of (1)

r ≤ r′ (5) - by inv. (E-APP) of (1)
t ≤ q{⊥/x} (6) - by inv. (E-APP) of (1)
t ≤ r′ (7) - by inv. (E-APP) of (1)
(S1{x

.
= e2} |= x .

= v ∧ S2{x
.
= e′2} |= x .

= v ∧ σ′q
′
= σ{v/x}q{v/x})

(8) - by inv. (E-APP) of (1)
(σ′q

′
= (σq) ↑x) (9) - by inv. (E-APP) of (1)

By I.H. with (3) we have one of the following cases:

• e1 = λ(x:τ′′s
′′
).e = v1 and e′1 = λ(x:τ′′s

′′
).e′ = v′1, so

∆1; ∆2 `rS1,S2
v1
∼=s v′1 : (Πx:τs′ .r′; σq)t (10)

∆1, x : τ′′s
′′
; ∆2, x : τ′′s

′′ `r′S1,S2
e ∼=s e′ : σq (11) - by Lemma 30 with (10)

τ′s
′
<: τ′′s

′′
(12) - by Lemma 30 with (10)

By I.H. with (4) we have one of the following cases:

– e2 = v2 and e′2 = v′2, both values, so ∆1; ∆2 `rS1,S2
v2 ∼=s v′2 : τ′s

′
(13)

∆1; ∆2 `rS1,S2
v2 ∼=s v′2 : τ′′s

′′
(14) - by (E-SUB) with (13,12)
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∗ Case hypothesis (8)
∆1; ∆2 `r

′
S1,S2

e{v2/x} ∼=s e′{v′2/x} : (σq){v2/x}
(15) - by Lemma 29 with (11,14)

∗ Case hypothesis (9)
σq <: (σq) ↑x (16) - Lem. 15(a)
∆1, x : τ′′s

′′
; ∆2, x : τ′′s

′′ `r′S1,S2
e ∼=s e′ : (σq) ↑x(17) - by (E-SUB) with (11,15)

∆1; ∆2 `r
′
S1,S2

e{v2/x} ∼=s e′{v′2/x} : (σq) ↑x by (18) - Lemma 29 with (17,14)

∆1; ∆2 `rS1,S2
e{v2/x} ∼=s e′{v′2/x} : σ′q

′
by (8,9,15,18) and (E-SUB) with (5)

(S1; λ(x:τ′′s
′′
).e(v2)) −→ (S1, e{v2/x})

(S2; λ(x:τ′′s
′′
).e′(v′2)) −→ (S2, e′{v′2/x})

Which establishes case 2 of the theorem.

– Other cases by I.H.

• Other cases by I.H.

Case (E-FIELD):
∆1; ∆2 `rS1,S2

e1.mi
∼=s e2.mi : τsi

i (1) - hyp.
∆1; ∆2 `M S1 =s S2 (2) - hyp.
∆1; ∆2 `rS1,S2

e1
∼=s e2 : Σ[. . .×mi : τsi

i × . . .]s
′

(3) - by inv. (E-FIELD) of (1)

By I.H. with (3) we have one of the following cases:

• e1 = [. . . , mi = vi, . . .] = v1 and e2 = [. . . , mi = v′i, . . .] = v2, so
∆1; ∆2 `rS1,S2

v1
∼=s v2 : Σ[. . .×mi : τsi

i × . . .]s
′

(4)
∆1; ∆2 `rS1,S2

vi
∼=s v′i : τi

si [v1/m1] . . . [vi−1/mi−1] (5) - by Lemma 30 with (4)
∆1; ∆2 `rS1,S2

vi
∼=s v′i : τi

si (6) - since fn(τi
si) = ∅ by (1)

(S1; v1.mi) −→ (S1; vi)

(S2; v2.mi) −→ (S2; v′i)
Which establishes case 2 of the theorem.

• Other cases by I.H.

Case (E-REF):
∆1; ∆2 `rS1,S2

refτs′ e ∼=s refτs′ e′ : ref(τs′)r (1) - hyp.
∆1; ∆2 `M S1 =s S2 (2) - hyp.
∆1; ∆2 `rS1,S2

e ∼=s e′ : τs′ (3) - by inv. (E-REF)
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r ≤ s′ (4) - by inv. (E-REF)
By I.H. with (3) we have one of the following cases:

• e = v and e′ = v′, so
∆1; ∆2 `rS1,S2

v ∼=s v′ : τs′ (5)
(S1; refτs′ v) −→ (S1 ∪ {l 7→ v}; l) (6)
(S2; refτs′ v′) −→ (S2 ∪ {l′ 7→ v′}; l′) (7)

– r ≤ s (8)
M′ =M∪{(l, l′)}
∆1, l : ref(τs′)r; ∆2, l′ : ref(τs′)r `M′ S1 ∪ {l 7→ v} =s S2 ∪ {l′ 7→ v′}

(9) - by Definition 36 with (5)
∆1(l) = ref(τs′)r (10) - by (9)
∆2(l′) = ref(τs′)r (11) - by (9)
(l, l′) ∈ M′ (12) - by (9)
∆1, l : ref(τs′)r; ∆2, l′ : ref(τs′)r `rS1,S2

l ∼=s l′ : ref(τs′)r

by (E-LOC) with (10,11,12,8)

– r 6≤ s (13)
∆1 `rS1

v : τs′ (14) - by Lemma 24 with (5)
∆2 `rS2

v′ : τs′ (15) - by Lemma 24 with (5)
∆1, l : ref(τs′)r; ∆2, l′ : ref(τs′)r `M S1 ∪ {l 7→ v} =s S2 ∪ {l′ 7→ v′}

(16) - by Definition 36 with (13,14,15)
∆1(l) = ref(τs′)r (17) - by (16)
∆2(l′) = ref(τs′)r (18) - by (16), so l 6∈ M1, l′ 6∈ M2

∆1, l : ref(τs′)r; ∆2, l′ : ref(τs′)r `rS1,S2
l ∼=s l′ : ref(τs′)r

by (E-LOCOPAQUE) with (13,17,18)

Which establishes case 2 of the theorem.

• Other cases by I.H.

Case (E-DEREF):
∆1; ∆2 `rS1,S2

!e ∼=s !e′ : τs′ (1) - hyp.
∆1; ∆2 `M S1 =s S2 (2) - hyp.
∆1; ∆2 `rS1,S2

e ∼=s e′ : ref(τs′)t (3) - by inv. (E-DEREF)
t ≤ s′ (4) - by inv. (E-DEREF)

By I.H. with (3) we have one of the following cases:

• e = l1 and e′ = l2, so
∆1; ∆2 `rS1,S2

l1 ∼=s l2 : ref(τs′)t (5)
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(S1; !l1) −→ (S1; v) (6)
(S2; !l2) −→ (S2; v′) (7)

By Lemma 30 with (5), we have one of the following:

– (l1, l2) ∈ M (8)
∆1(l1) = ∆2(l2) = ref(τs′)t

′
(9)

t′ ≤ t (10)
t′ ≤ s (11)
∆1; ∆2 `M v ∼=s v′ : τs′ (12) - by (1,9)

– li 6∈ M (13)
∆i(li) = ref(τs′)t

′
(14)

t′ ≤ t (15)
t′ 6≤ s (16)
To show s′ 6≤ s, assume for contradiction s′ ≤ s (17)
t ≤ s (18) - by (4,17)
t′ ≤ s (19) - by (18,15), which contradicts (16)
s′ 6≤ s (20) - by (19)
∆1 `rS1

l1 : ref(τs′)t (21) - by Lemma 24 with (3)
∆2 `rS2

l2 : ref(τs′)t (22) - by Lemma 24 with (3)
∆1 `rS1

v : τs′ (23) - by Definition 40 with (21,6)
∆2 `rS2

v′ : τs′ (24) - by Definition 40 with (22,7)
∆1; ∆2 `M v ∼=s v′ : τs′ by (E-VALOPAQUE) with (23,24,20)

Which establishes case 2 of the theorem.

• Other cases by I.H.

Case (E-ASSIGN):
∆1; ∆2 `rS1,S2

e1 := e2 ∼=s e′1 := e′2 : cmds
′′

(1) - hyp.
∆1; ∆2 `M S1 =s S2 (2) - hyp.
∆1; ∆2 `rS1,S2

e1
∼=s e′1 : ref(τs′)t (3) - by inv. (E-ASSIGN)

∆1; ∆2 `rS1,S2
e2 ∼=s e′2 : τs′ (4) - by inv. (E-ASSIGN)

r t t ≤ s′ (5) - by inv. (E-ASSIGN)
By I.H. with (3) we have one of the following cases:

• e1 = l1 and e′1 = l2, so
∆1; ∆2 `rS1,S2

l1 ∼=s l2 : ref(τs′)t (6)
By I.H. with (4) we have one of the following cases:

– e2 = v and e′2 = v′, so
∆1; ∆2 `rS1,S2

v ∼=s v′ : τs′ (7)
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(S1; l1 := v) −→ (S1[l1 7→ v]; ()) (8)
(S2; l2 := v′) −→ (S2[l2 7→ v′]; ()) (9)
By Lemma 30 with (6), we have one of the following:

a). (l1, l2) ∈ M (10)
∆1(l1) = ∆2(l2) = ref(τs′)t

′
(9)

t′ ≤ t (11)
t′ ≤ s (12)
∆1; ∆2 `M S1[l1 7→ v] =s S2[l2 7→ v′] by Definition 36 with (7,12)
∆ `rS () : cmds

′′
(14) - by (T-UNIT)

∆1; ∆2 `rS1,S2
() ∼=s () : cmds

′′
by (E-VAL) with (14)

b). li 6∈ Mi (15)
∆i(li) = ref(τs′)t

′
(16)

t′ ≤ t (17)
t′ 6≤ s (18)
∆ `rS () : cmds

′′
(19) - by (T-UNIT)

∆1; ∆2 `rS1,S2
() ∼=s () : cmds

′′
by (E-VAL) with (20)

∆1; ∆2 `M S1[l1 7→ v] =s S2[l2 7→ v′] by Definition 36 with (15,16,18)

Which establishes case 2 of the theorem.

– Other cases by I.H.

• Other cases by I.H.

Case (E-RECORD):
∆1; ∆2 `rS1,S2

[. . . , mi = ei, . . .] ∼=s [. . . , mi = e′i, . . .] : Σ[mi:τ′s
′ ]s
′

(1) - hyp.
∆1; ∆2 `M S1 =s S2 (2) - hyp.
∀i ∆1; ∆2 `rS1,S2

ei
∼=s e′i : τsi

i (3) - by inv. (E-RECORD) of (1)
By I.H. with (3) we have one of the following cases:

• (S1; ei) −→ (S′1; e′′i ) (4)
∆1 ⊆ ∆′1 (5)
M⊆M′ (6)
∆′1; ∆2 `M′ S′1 =s S2 (7)
∆′1; ∆2 `S1,S2 e′′i ∼=s e′i : τsi

i (8)
∆1; ∆2 `rS1,S2

[. . . , mi = e′′i , . . .] ∼=s [. . . , mi = e′i, . . .] : Σ[mi:τ′s
′ ]s
′

by (E-RECORD) with (8,3)
Which establishes case 3 of the theorem.

• Cases 2 and 4 are similar to case 3.
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Case (E-UNREFINERECORD):
∆1; ∆2 `rS1,S2

e ∼=s e′ : Σ[. . .×mj : τ
sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]s

′
(1) - hyp.

∆1; ∆2 `M S1 =s S2 (2) - hyp.
∆1; ∆2 `rS1,S2

e ∼=s e′ : Σ[. . .×mj : τ
sj
j × . . .×mi : τsi

i × . . .]s
′

(3) - by inv. (E-UNREFINERECORD) of (1)
S1{x

.
= e} |= x.mj

.
= v (4) - by inv. (E-UNREFINERECORD) of (1)

S2{x
.
= e′} |= x.mj

.
= v (5) - by inv. (E-UNREFINERECORD) of (1)

By I.H. with (3) we have one of the following cases:

• (S1; e) −→ (S′1; e′′) (6)
∆1 ⊆ ∆′1 (7)
M⊆M′ (8)
∆′1; ∆2 `M′ S′1 =s S2 (9)
∆′1; ∆2 `S1,S2 e′′ ∼=s e′ : Σ[. . .×mj : τ

sj
j × . . .×mi : τsi

i × . . .]s
′

(10)
S1{x

.
= e′′} |= x.mj

.
= v (11) - by (4,6) since reduction preserves .

=, so e .
= e′′

∆1; ∆2 `rS1,S2
e′′ ∼=s e′ : Σ[. . .×mj : τ

sj
j × . . .×mi : (τsi

i )[
v/mj]× . . .]s

′

by (E-UNREFINERECORD) with (10,5,11)
Which establishes case 3 of the theorem.

• Cases 2 and 4 are similar to case 3.

Case (E-SUB):
∆1; ∆2 `rS1,S2

e ∼=s e′ : τs′ (1) - hyp.
∆1; ∆2 `M S1 =s S2 (2) - hyp.
∆1; ∆2 `r

′
S1,S2

e ∼=s e′ : τ′s
′′

(3) - by inv. (E-SUB) of (1)
∆i `∅ τ′s

′′
(4) - by inv. (E-SUB) of (1)

τ′s
′′
<: τs′ (5) - by inv. (E-SUB) of (1)

r ≤ r′ (6) - by inv. (E-SUB) of (1)
By I.H. with (3) we have one of the following cases:

• (S1; e) −→ (S′1; e′′) (4)
∆1 ⊆ ∆′1 (5)
M⊆M′ (6)
∆′1; ∆2 `M′ S′1 =s S2 (7)
∆′1; ∆2 `S1,S2 e′′ ∼=s e′ : τ′s

′′
(8)

∆1; ∆2 `rS1,S2
e′′ ∼=s e′ : τs′

by (E-SUB) with (8,4,5,6)
Which establishes case 3 of the theorem.

• Cases 2 and 4 are similar to case 3.
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Theorem 12 (Non-interference)
Let ∆1; ∆2 `rS1,S2

e1
∼=s e2 : τs′ , with ∆1; ∆2 `M S1 =s S2.

If (S1, e1)
m−−→ (S′1, v1), and (S2, e2)

n−−→ (S′2, v2) then there is ∆′i,M′ such that ∆i ⊆ ∆′i,
M⊆M′, ∆′1; ∆′2 `M′ S′1 =s S′2 and ∆′1; ∆′2 `rS1,S2

v1
∼=s v2 : τs′ .

Proof By induction on m + n, using Theorem 11.

Case m + n = 0:
∆1; ∆2 `rS1,S2

v1
∼=s v2 : τs′ (1) - hyp.

∆1; ∆2 `M S1 =s S2 (2) - hyp.
We conclude by the hypothesis with ∆′i = ∆i andM′ =M′.

Case m + n > 0:
∆1; ∆2 `rS1,S2

e1
∼=s e2 : τs′ (1) - hyp.

∆1; ∆2 `M S1 =s S2 (2) - hyp.

By Theorem 11 with (1,2):

• Case (3).
(S1; e1) −→ (S′′1 ; e′′1 ) (3)
∆1 ⊆ ∆′′1 andM⊆M′′ (4)
∆′′1 ; ∆2 `M′′ S′′1 =s S2 (5)
∆′′1 ; ∆2 `S1,S2 e′′1 ∼=s e2 : τs′ (6)

Then we have:
(S′′1 , e′′1 )

m−1−−→ (S′1, v1) (7)
(S2, e2)

n−−→ (S′2, v2) (8)
∆′′1 ⊆ ∆′1 andM′′ ⊆M′ by I.H. with (5,6,7,8)
∆2 ⊆ ∆′2 by I.H. with (5,6,7,8)
∆′1; ∆′2 `M′ S′1 =s S′2 by I.H. with (5,6,7,8)
∆′1; ∆′2 `S1,S2 v1

∼=s v2 : τs′ by I.H. with (5,6,7,8)

• Case (4).
(S2; e2) −→ (S′′2 ; e′′2 ) (3)
∆2 ⊆ ∆′′2 andM⊆M′′ (4)
∆1; ∆′′2 `M′′ S1 =s S′′2 (5)
∆1; ∆′′2 `S1,S2 e1

∼=s e′′2 : τs′ (6)

Then we have:
(S1, e1)

m−−→ (S′1, v1) (7)
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(S′′2 , e′′2 )
n−1−−→ (S′2, v2) (8)

∆′′2 ⊆ ∆′2 andM′′ ⊆M′ by I.H. with (5,6,7,8)
∆1 ⊆ ∆′1 by I.H. with (5,6,7,8)
∆′1; ∆′2 `M′ S′1 =s S′2 by I.H. with (5,6,7,8)
∆′1; ∆′2 `S1,S2 v1

∼=s v2 : τs′ by I.H. with (5,6,7,8)

• Case (2).
(S1; e1) −→ (S′′1 ; e′′1 ) (3)
(S2; e2) −→ (S′′2 ; e′′2 ) (4)
∆1 ⊆ ∆′′1 andM⊆M′′ (5)
∆′′1 ; ∆′′2 `M′′ S′′1 =s S′′2 (6)
∆′′1 ; ∆′′2 `S1,S2 e′′1 ∼=s e′′2 : τs′ (7)

Then we have:
(S′′1 , e′′1 )

m−1−−→ (S′1, v1) (8)
(S′′2 , e′′2 )

n−1−−→ (S′2, v2) (9)
∆′′i ⊆ ∆′i andM′′ ⊆M′ by I.H. with (6,7,8,9)
∆′1; ∆′2 `M′ S′1 =s S′2 by I.H. with (6,7,8,9)
∆′1; ∆′2 `S1,S2 v1

∼=s v2 : τs′ by I.H. with (6,7,8,9)

Corollary 13 (Non-interference)
Let ∆ `rS e : τs′ , with ∆; ∆ `M S1 =s S2, whereM =M∆,s and vars(∆) = ∅.

a). If (S1, e) ∗−−→ (S′1, v1), and (S2, e) ∗−−→ (S′2, v2) then there is ∆′,M′ such that ∆ ⊆ ∆′,
M⊆M′, ∆′; ∆′ `M′ S′1 =s S′2 and ∆′; ∆′ `rS1,S2

v1
∼=s v2 : τs′ .

b). Moreover, if s′ ≤ s and τ is base type then v1 = v2.

Proof a) By using Theorem 12 together with Lemma 23.
b) If s′ ≤ s then ∆′; ∆′ `rS1,S2

v1
∼=s v2 : τs′ must be derived by (E-VAL), hence v1 = v2. �
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