
Inference of Conversation Types for
Distributed Multiparty Systems

Luı́sa Lourenço Luı́s Caires

CITI e Departamento de Informática
Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa, Portugal

Abstract

The Conversation Calculus is a model for distributed communication-centric systems based on
the notion of conversation, a generalisation of binary sessions for multi-party interactions over a
single shared communication channel. As sessions are disciplined by session types, conversations
are disciplined by conversation types, an extension of session types for the conversation interaction
model, developed in previous work. Given the fairly rich structure of the underlying type structure,
it may not be immediately clear from the proposed type system how types may be inferred for a
system, given partial annotations. In this paper, we propose a solution to the conversation type
inference problem, proving soundness, completeness and decidability of our algorithm.

1 Introduction

In recent years, there has been an increasing interest in the study and analysis of multiparty service-
based system. Several process calculi were designed to model and reason about these systems, namely
[5] (based on previous work [4]), and [1]. On top of such models, type systems have been proposed for
studying the local and global behavioural correctness of participants in a service-based system. Although
type inference for session types has been considered in several works [6, 7], when considering conversa-
tion types, given the fairly rich structure of the underlying type structure, and the heavy dependence on
a behavioural merge relation, it may not be immediately clear how types may be inferred for a system,
given partial annotations.

In this work we present a type inference algorithm for a form of conversation types and show decid-
ability, soundness, and completeness results. Our solution uses standard techniques based on constraint
solving (unification). The most challenging aspects of our proposal is the formulation of the particu-
lar constraint language used and its combination with the type rules, which has benefited from a direct
representation of sequential composition at the level of types.

In section 2 we make a brief introduction to the CC followed by a small example using our language.
Section 3, presents our type inference algorithm, an example of its execution, and the correctness re-
sults we have obtained. We discuss in section 4 how we can accommodate (iso)recursive types in our
type inference algorithm and show that our correctness results are preserved. Finally, we outline some
concluding remarks and future work in section 5.

2 Conversation Calculus

The Conversation Calculus (CC) was first introduced in [8] and later refined in [1] and consists in an
extension of the π-calculus to allow multiparty conversations (interactions between two or more partners)
through a conversation access operator n◂ [P] (P is a process in the context of the conversation n) and
context-sensitive communication operators, ld!(n) and ld?(n) for output and input, respectively, in either
the current conversation context (↓) or the enclosing conversation context (↑). The syntax is presented in

1

Inference of Conversation Types for Distributed Multiparty Systems Lourenço and Caires

P, Q ∶ ∶= 0 | P | Q | (νn)P | rec X.P
| X | n ◂[P] | ∑i∈I αi.Pi

d ∶ ∶= ↑ ∣ ↓
α ∶ ∶= ld!(n) | ld?(n) | this(x)

Figure 1: Conversation Calculus Syntax

Figure 2: Weather Forecast Message Sequence Chart

Figure 1. We have been developing a concrete distributed language based on CC, which has motivated
this work, in this paper we will use sometimes the syntax of our language rather than the formal calculus.

We illustrate our language’s syntax through a simple services’ use case scenario: a weather forecast
service and its client. Upon invocation, the service awaits for the client’s location through label location.
Then, from the received location, it will ask the nearest weather station to join the on-going conversation
(established by the client when invoking the service via invoke) and request the desired weather report.
The weather station service will, in turn, generate a weather report and send it directly to the client via
label report. Notice that the weather station service is capable to communicate directly to the client
because it was invoked through the join primitive by one of the participants of the conversation, thus
is able to join the invoker’s conversation instead of creating a new conversation with him. So we have
a conversation involving three participants in which one of them dynamically joins. Figure 2 describes
the message sequence of our example while Figure 3 shows the code on each participant’s site. The
message sequence gives a global view of the protocol that every conversation generated by invoking this
particular service must comply to (a choreography). Thus, each participant of the conversation must
comply with its part of the protocol. Conversation types have been introduced with the aim of statically
enforcing correctness of global protocol compliance, given types describing the behaviour of the several
participants and of the whole system, for example, n ∶ [s](B) states that site n has a service s whose
behaviour is described by behavioural type B.

3 Type Inference

In this section, we will present our type inference algorithm for conversation types and the results ob-
tained, namely we show that it is sound, complete and decidable. Our conversation type system, based
on the system of [1], uses judgments of the form Γ ⊢ P ∶ T where Γ is a set of type declarations, P is the
program to be typed and T is a type. In general Γ contains types for remote services, declared in pro-
gram P using the remoteType primitive, and a declaration of the form this ∶ B that describes the current
conversation’s behaviour B. We show the typing rules for the communication centric fragment of our
language in Figure 4. We briefly explain some of the key typing rules. In rule (INVOKE), to typecheck a
service invocation we must verify if the body of the invocation has a dual behaviour with the invoked
service’s behaviour. Then the service invocation is well-typed under the conversation that has the invo-
cation’s upper behaviour localised, loc(↑ B), i.e. all the message types in the invocation’s behaviour that
have a up direction correspond to the behaviour of a conversation that invokes the service. In rule (SEND),

2

Inference of Conversation Types for Distributed Multiparty Systems Lourenço and Caires

remoteType WeatherStation: [weatherReport](getReport?(String);report!(String))
site WeatherSite {

def forecastWeather as {
val loc = receive(location);
join weatherReport in

http://localhost:8000/WeatherStation as { send(getReport); }
}

};;

site WeatherStation {
def weatherReport as {

receive(getReport);
send(report, generatedReport);

}
};;

invoke forecastWeather in http://localhost:8000/WeatherSite as {
send(location, my location);
val my weather report = receive(report);
println my weather report

};;

Figure 3: Code for WeatherSite, WeatherStation, and Client.

we say a send typechecks under the conversation with message type l!(β) if the value sent has type β .
The type inference algorithm takes as input a program P, a set of remote types declarations (in a

typing environment Γ), an initially empty set of constraints on types R, and an initially empty set of
apartness restrictions A. The algorithm outputs the type of program P, the typing environment Γ

′ where
we can typecheck program P, and a set of constraints R′ that respects the set of apartness restrictions A′

typecheck(P, Γ, R, A) = (T, Γ
′, R′, A′)

The algorithm consists of the following steps. First, it transverses the abstract syntax tree, applying
typing rules backward if possible. Whenever a type needs to be inferred, a constraint is generated and
added to the set R. Finally, the system of equations, represented by all constraints of R is manipulated
by applying transformation rules until the system is either in solved form, or type inference fails. Dur-
ing constraint solving, matching labels may need to be synchronised (for e.g., when we have a merge
constraint on two dual labels). To ensure linearised usage, we have introduced a new kind of constraint
(checked on each transformation step) to state that a label cannot occur in a given type. We denote this
as an apartness restriction l#B (added to the apartness set A), with l being the label that can not occur in
type B. As expected, if at any moment a step can not be executed the algorithm aborts since the program
must be ill-typed.

The unification algorithm receives as input a constraint set R whose constraints represent a system
of equations, and a set of apartness restrictions A. After solving all the constraints in R, the algorithm
outputs a set of constraints R′ (in particular, a substitution) respecting the set of apartness restrictions A′

solve(R, A) = (R′, A′)

The constraints generated by the type inference algorithm have the form < E,E ′ > according to the
syntax presented in Figure 5b. We have standard constraints like < x,T >, stating that a type variable x

3

Inference of Conversation Types for Distributed Multiparty Systems Lourenço and Caires

Γ, this ∶ B1 ⊢ P1 . . . Γ, this ∶ Bn ⊢ Pn (PAR)
Γ, this ∶ B1& . . .&Bn ⊢ P1|| . . .|| Pn

Γ, this ∶ B1 ⊢ P1 Γ, this ∶ B2 ⊢ P2 (SEQ)
Γ, this ∶ B1;B2 ⊢ P1;P2

Γ, this ∶ B, n ∶ [s](B1) ⊢ P
(JOIN)

Γ, this ∶ B1&B, n ∶ [s](B1) ⊢ join s in n as { P }
(RECV)

Γ, this ∶ l?(β) ⊢ receive(l):β

Γ, this ∶ B ⊢ P
(DEF)

Γ, this ∶ [s](↓ B); loc(↑ B) ⊢ def s as { P }
Γ ⊢ E ∶ β

(SEND)
Γ, this ∶ l!(β) ⊢ send(l,E)

Γ, this ∶ B, n ∶ [s](B1) ⊢ P B1 = ↓ B
(INVOKE)

Γ, this ∶ loc(↑ B), n ∶ [s](B1) ⊢ invoke s in n as { P }
Γ, this ∶ B ⊢ P

(SITE)
Γ, n ∶ B ⊢ site n {P}

Γ, this ∶ B1 ⊢ E ∶ β Γ, this ∶ B2, x ∶ β ⊢ P
(LET)

Γ, this ∶ B1;B2 ⊢ let x = E in { P }

Γ, this ∶ B1 ⊢ P1 . . . Γ, this ∶ Bn ⊢ Pn (SELECT)
Γ, this ∶&{l1 ∶ B1; . . . ; ln ∶ Bn} ⊢ select { l1: P1; . . .; ln: Pn}

i f li = l j then Bi = B j i, j ∈ {1, . . . , n} m <= n (SWITCH)
Γ ⊢ E1 ∶ Bool . . . Γ ⊢ En ∶ Bool Γ, this ∶ B1 ⊢ P1 . . . Γ, this ∶ Bn ⊢ Pn Γ, this ∶ Bd ⊢ Pd

Γ, this ∶ ⊕{l1 ∶ B1; . . . ; lm ∶ Bm} ⊢ switch { case (E1)do l1: P1;. . .; case (En)do ln: Pn; default do li: Pd}

Figure 4: Some Typing Rules of our Type System.

has type T (either behavioural type B or a basic type β). In the unification algorithm, these are treated
using the standard transformation rules for variable elimination and type equality [3], a solvable system
terminates in a system in solved form, that corresponds to a substitution.

A distinguishing aspect of our constraint structure is a merge constraint on types of the form <
x,&(B,B′) >, that constrains type variable x to be a “composition” of behavioural types B and B′ (this op-
eration is defined by a merge relation, see [1]). Merge constraints are necessary to approximate the type
of a parallel composition, rule (PAR) in Figure 4, (where synchronisation can happen) or when we invoke
a service via the join primitive, rule (JOIN) in Figure 4, (since we merge the behaviours of the invoked
service with the client’s). Thus we need to be able to represent the merge of all behaviour in the com-
position such that casual ordering is kept and interleaves are avoided unless there is a synchronisation:
this way, the most general (less serialised) behaviour is computed. Merge constraints are solved using a
set of transformation rules that represent the merge relation on behavioural types. We now present the
transformation rules.

Definition 3.1 (Non Interference). We say two behavioural types, Bi and B j, do not interfere with each
other, denoted as Bi#B j, if Bi has no label that can synchronise with some label in B j, and conversely.

4

Inference of Conversation Types for Distributed Multiparty Systems Lourenço and Caires

C ∶ ∶= [s](B)
B ∶ ∶= B1 ∣ B2 ∣ 0 ∣ B1;B2 ∣ M

∣ rec X .B ∣ X
∣ ⊕{l1 ∶ B1; . . . ; ln ∶ Bn}
∣ &{l1 ∶ B1; . . . ; ln ∶ Bn}

M ∶ ∶= l pd(β)
β ∶ ∶= Int ∣ Bool ∣ String ∣ Array(β)

∣ β
BÐ→ β

′ ∣ Re f (β) ∣ Unit
p ∶ ∶= ! ∣ ? ∣ τ

d ∶ ∶= ↑ ∣ ↓
(a) Syntax of Types

E ∶ ∶= B ∣ β ∣ &(E,E ′) ∣ x
(b) Syntax of constraints on types

Figure 5: Syntax of Types and Constraints

Definition 3.2 (Transformations Rules). Let R denote a system of equations, t a term, A an apartness
constraint set, and T a type. We define the transformations rules, RÔ⇒A R′ (if R does not violate any
apartness constraint in A, then we can transform to a system R′ that also complies with A), as follows:

Trivial:
{< t,t′ >}∪RÔ⇒A

triv R

where t ≡ t′

Variable Elimination:

{< x,T >}∪RÔ⇒A
elem {< x,T >}∪R[T /x]

such that x ∉Var(T)

Merge Trivial:
{< x,&(B) >}∪RÔ⇒A

merge trivial {< x,B >}∪R

Merge Inact:
{< x,&(B1, . . . ,Bi−1,0,Bi+1, . . . ,Bn) >}∪RÔ⇒A

merge inact

{< x,&(B1, . . . ,Bi−1,Bi+1, . . . ,Bn) >}∪R

Merge Parallel:
{< x,&(B, . . . ,B1∣B2, . . . ,B′) >}∪RÔ⇒A

merge par

{< x,&(B, . . . ,B1,B2, . . . ,B) >}∪R

Merge Sync:

{< x,&(B1, . . . ,Bi; l pd
1 ;B′i, . . . , B j; l pd

2 ;B′j, . . . ,Bn) >}∪RÔ⇒A
merge sync

5

Inference of Conversation Types for Distributed Multiparty Systems Lourenço and Caires

{< x,(Bi ∣ B j); lτd ;y >}∪{< y,&(B1, . . . ,B′i, . . . ,B
′
j, . . . ,Bn) >}∪σ(R)

where p1 is the opposite polarity of p2, A = A∪{l#y}, and Bi#B j and for all Bk, Bi#Bk and B j#Bk with
k ∈ {1, . . . ,n} and k /= i /= j, and σ = [(Bi ∣ B j);lτd ;y/x].

Merge Choice Sync:

{< x,&(B1, . . . ,Bi;C;B′i, . . . , B j;D;B′j, . . . ,Bn) >}∪RÔ⇒A
merge sync2

{< x,(Bi ∣ B j);⊕{l1 ∶ y1, . . . , ln ∶ yn};y >}∪
{< y,&(B1, . . . ,B′i, . . . ,B

′
j, . . . ,Bn) >}∪

{< y1,&(Bc1,B′c1) >}∪ . . .∪{< yn,&(Bcn,B′cn) >}∪σ(R)
where C =&{l1 ∶ Bc1, . . . , ln ∶ Bcn} and D =⊕{l1 ∶ B′c1, . . . , ln ∶ B′cn}, and Bi#B j and for all Bk, Bi#Bk and
B j#Bk with k ∈ {1, . . . ,n} and k /= i /= j, and σ = [(Bi ∣ B j);⊕{l1∶y1,...,ln∶yn};y/x].

We will now explain one of the rules that represent our merge relation, namely the Merge Sync
rule. This rule is applied when a synchronisation is possible between the types the terms represent. Its
application ensures that when we synchronise a label then the preceding type on each side, Bi and B j,
must not interfere with each other, Bi#B j and thus can be safely composed into a parallel composition
of types, Bi∣B j. A new equation is generated to merge the remaining types of the merge along with the
remainder of both sides’ types, B′i and B′j. Since labels must be used linearly, we impose an apartness
restriction, l#y, stating that the synchronised label, l, can not occur in the new equation, y. Lastly, we
eliminate the solved variable x in the remaining constraints in R by applying the substitution σ to R.

The unification algorithm is confluent. This implies that our type inference algorithm is deterministic
since the application of typing rules is syntax driven, and also due to the non-interference conditions on
the merge relation mentioned above. The solution returned is represented as a mapping on variables to
types, i.e. as a substitution for the variables of the system. The type inference algorithm then succeeds
if such a solution exists. Furthermore, our algorithm always determines the most general type since we
serialise the composition of two types only when there is a synchronisation between them, thus keeping
them as general as possible by composing into a parallel composition of types.

We illustrate the application of our algorithm to the code of the weather forecast service’s site in
Figure 3.

As input we have

P = code of weather forecast’s site as shown in Figure 3
Γ = { WeatherStation:[weatherReport](getReport?(String);report!(String)) }
R = A = ∅

So typecheck(P, Γ, R, A) takes the following steps:

1. Inductively, applies type inference rules;
2. When typechecking the join primitive, a type variable x is created as well as a constraint to rep-

resent the merge of the primitive’s body’s behaviour with the behaviour of the invoked service,
<x, &(getReport!(String), getReport?(String);report!(String))> that is added to R;

3. The constraint is solved upon the typecheck of the site primitive and the algorithm terminates.

The algorithm outputs (Γ ∪ WeatherSite:[weatherForecast](location?(z);B), R, A′) where B is the
type obtained by the unification algorithm (function solve) when solving the constraint on x, and A′ the
resulting apartness set.

In step 3 the unification algorithm is called with the following input:

6

Inference of Conversation Types for Distributed Multiparty Systems Lourenço and Caires

R = { <x, &(getReport!(String), getReport?(String);report!(String))> }
A = ∅

So solve(R, A) takes the following steps:

<x, &(getReport!(String), getReport?(String);report!(String))>Ô⇒A
merge sync

<x, getReportτ(String);y> ∪ <y, &(∅, report!(String))>Ô⇒A′
merge inact

with A′ = { getReport#y}

<x, getReportτ(String);y> ∪ <y, &(report!(String))>Ô⇒A′
merge trivial

<x, getReportτ(String);y> ∪ <y, report!(String)>

We then obtain B = getReportτ(String);report!(String), R = { <x, getReportτ(String);y>, <y, re−
port!(String)> }, and A′ = { getReport#y }.

For a negative case, suppose that we make use of label getReport instead of the label report to
transmit the requested report. This would violate the condition of labels being used linearly because
then, at one point, we would have two receivers for the empty message sent by the forecastWeather
service. This type of errors are detected by the algorithm when solving the constraints. In our example,
the unification algorithm would instead solve variable y with type getReport!(String) which would
violate the apartness restriction getReport#y and therefore the unification algorithm would abort. Thus
typechecked programs always comply with linear usage of labels inside conversations.

We denote a substitution application as the application of a constraint set to a typing environment,
R(Γ), and define it as being the substitution of all occurrences of a type variable in the input environment
with its corresponding type if, and only if, the constraint associated with the type variable is solved in R.

We conclude by presenting the main results for the type inference algorithm which are the decidabil-
ity, soundness and completeness of the algorithm. The first states that if a program P can be typechecked
by the typechecking algorithm, then there is a type derivation for any type instance of the generated
inferred type.

Theorem 3.3 (Soundness of Typechecking Algorithm). Let P be a program, Γ,Γ′ type environments , T
a type, A a set of apartness constraints, and R a constraint set.

Assume typecheck(P,Γ,∅,∅) = (T,Γ′,R, A). Then R(Γ′) ⊢ P ∶ R(T) and there is a substitution θ

such that θ(R(Γ′)) ⊢ P ∶ θ(R(T))

The second results states that no typing is lost; if a program P is typable then the type-checking
algorithm terminates with a typing, of which the given typing is an instance.

Theorem 3.4 (Completeness of Typechecking Algorithm). Let P be a program, Γ a typing context, Γ
′ a

typing context containing only type declarations of remote services, and T a type
Assume Γ ⊢ P ∶ T. Then typecheck(P,Γ′,∅,∅) = (T′,Γ′′,R′,A′) and there is a substitution θ such

that θ(R′(T′)) = T and θ(R′(Γ′′)) = Γ and θ(R′(Γ′)) ⊆ Γ

Decidability follows from the termination proof, which depends essentially on the termination of the
unification algorithm, in turn based on standard well-founded orderings. In particular, we define a pair
< m,n > such that n is the number of variables unsolved in R and m the sum of the sizes of each term
in R, then the lexicographic order of such pairs is a well-founded relation. We then prove that every

7

Inference of Conversation Types for Distributed Multiparty Systems Lourenço and Caires

Γ, this ∶ B;X ⊢ P
Γ, this ∶ rec X .B;X ⊢ rec X.P

(a) Rec rule

Γ, this ∶ X ⊢ X
(b) Var rule

Figure 6: Typing Rules for Recursive Behaviour Constructions.

transformation sequence terminates since each transformation results in a system where the pair <m,n >
is smaller under the lexicographic ordering.

4 Recursive Types

We have mainly focused on the finite part of conversation types, in this section we discuss how a simple
system of iso-recursive is to be accommodated using standard techniques for unifying recursive equa-
tions on our constraint’s language. Although we expect that general equi-recursive types may be also
accommodated along the lines of [2], when dealing with recursive definitions in our language (such as a
recursive functions), we don’t focus on that issue in this paper. Instead, we develop here a simple solu-
tion, based on the simple interpretation of recursive types. Regarding recursive behaviour’s constructions
like CC’s rec X.P (Figure 6), these would not introduce a recursive equation and therefore their treatment
in our theory consists in adding two transformation rules to merge two recursive behavioural types, and
to merge two recursive variables, respectively:

{< x,&(B1, . . . ,Bi;rec X .B;B′i, . . . , B j;rec X .B′;B′j, . . . ,Bn) >}∪RÔ⇒A
merge rec

{< x,(Bi ∣ B j);rec X .y >}∪{< y,&(B1, . . . ,B;B′i, . . . , B′;B′j, . . . ,Bn) >}∪σ(R)

where Bi#B j and for all Bk, Bi#Bk and B j#Bk with k ∈ {1, . . . ,n} and k /= i /= j, and
σ = [(Bi ∣ B j);rec X .y/x].

{< x,&(B1, . . . ,Bi;X ;B′i, . . . , B j;X ′;B′j, . . . ,Bn) >}∪RÔ⇒A
merge recvar

{< x,(Bi ∣ B j);X ;y >}∪{< y,&(B1, . . . ,B′i, . . . ,B
′
j, . . . ,Bn) >}∪σ(R)

where Bi#B j and for all Bk, Bi#Bk and B j#Bk with k ∈ {1, . . . ,n} and k /= i /= j, and σ = [(Bi ∣ B j);X ;y/x].

We illustrate the application of these new rules on our previous example with a minor change, Figure
7. Notice that the while construction can be perceived as CC’s rec X.P construction. In this case, in step
3 of the typechecking procedure, the unification algorithm is called with the following input:

R = { <x, &(rec X.getReport!(String);X, rec X.getReport?(String);X;report!(String))> }
A = ∅

So solve(R, A) takes the following steps:

<x, &(rec X.getReport!(String);X, rec X.getReport?(String);X;report!(String))>
Ô⇒A

merge rec

<x, rec X.y> ∪ <y, &(getReport!(String);X, getReport?(String);X;report!(String))>

8

Inference of Conversation Types for Distributed Multiparty Systems Lourenço and Caires

remoteType WeatherStation: [weatherReport](rec X.getReport?(String);X;report!(String))
site WeatherSite {

def forecastWeather as {
val loc = receive(location);
join weatherReport in

http://localhost:8000/WeatherStation as {
while(cond) do

send(getReport);
}

}
};;

Figure 7: Weather Forecast Site Code Revisited.

Ô⇒A
merge sync

<x, rec X.y> ∪ <y, getReportτ(String);z> ∪ <z, &(X, X;report!(String))>
Ô⇒A′

merge recvar

with A′ = { getReport#z}

<x, rec X.y> ∪ <y, getReportτ(String);z> ∪ <z, X;w> ∪ <w, &(∅, report!(String))>
Ô⇒A′

merge inact

<x, rec X.y> ∪ <y, getReportτ(String);z> ∪ <z, X;w> ∪ <w, &(report!(String))>
Ô⇒A′

merge trivial

<x, rec X.y> ∪ <y, getReportτ(String);z> ∪ <z,X;w> ∪ <w, report!(String)>

We then obtain B = rec X.getReportτ(String);X;report!(String), A′ = { getReport#z }, and
R = { <x, rec X.y>, <y, getReportτ(String);z>, <z, X;w>, <w, report!(String)> }.

Our basic results are not affected by our treatment of recursion. Namely, decidability is preserved
since the new transformation rules preserves the well-founded ordering defined for the non-recursive
case.

5 Concluding Remarks

We have presented a type inference algorithm for conversation types and proved it to be decidable, sound
and complete. Our contributions essentially focus on the finite aspects, which are already challeng-
ing, due to the parallel-sequential behavioural algebra embedded in conversation types, and the need of
coping with the behavioural merge of behaviours originating in multiple interaction partners, including
dynamic conversation join and leave. We also showed how to accommodate recursive behaviour’s con-
structions in our type inference algorithm and proved that our results are still preserved. For future work
we wish to devise a subtyping algorithm for conversation types, and more general solution for handling
recursion.

9

Inference of Conversation Types for Distributed Multiparty Systems Lourenço and Caires

Acknowledgements. We thank Hugo Vieira and the anonymous referees for his insightful comments
and suggestions regarding this paper. This work was supported by a grant from EU Project SENSORIA,
and CMU-Portugal INTERFACES, funded by FCT/MCTES and ICTI.

References
[1] Luı́s Caires and Hugo Torres Vieira. Conversation types. In Giuseppe Castagna, editor, Programming Lan-

guages and Systems, 18th European Symposium on Programming, ESOP 2009. Proceedings, volume 5502 of
Lecture Notes in Computer Science, pages 285–300. Springer, 2009.

[2] Bruno Courcelle. Fundamental properties of infinite trees. Theor. Comput. Sci., 25:95–169, 1983.
[3] Jean H. Gallier and Wayne Snyder. Complete sets of transformations for general e-unification. Theor. Comput.

Sci., 67(2&3):203–260, 1989.
[4] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and type discipline

for structured communication-based programming. In Chris Hankin, editor, Programming Languages and
Systems - ESOP’98, 7th European Symposium on Programming, Proceedings, volume 1381 of Lecture Notes
in Computer Science, pages 122–138. Springer, 1998.

[5] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In George C.
Necula and Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2008, pages 273–284. ACM, 2008.

[6] Leonardo Gaetano Mezzina. How to infer finite session types in a calculus of services and sessions. In
Doug Lea anzd Gianluigi Zavattaro, editor, Coordination Models and Languages, 10th International Con-
ference, COORDINATION 2008. Proceedings, volume 5052 of Lecture Notes in Computer Science, pages
216–231. Springer, 2008.

[7] Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. Global principal typing in partially commutative
asynchronous sessions. In Giuseppe Castagna, editor, Programming Languages and Systems, 18th European
Symposium on Programming, ESOP 2009. Proceedings, volume 5502 of Lecture Notes in Computer Science,
pages 316–332. Springer, 2009.

[8] Hugo Torres Vieira, Luı́s Caires, and João Costa Seco. The conversation calculus: A model of service-
oriented computation. In Sophia Drossopoulou, editor, Programming Languages and Systems, 17th European
Symposium on Programming, ESOP 2008. Proceedings, volume 4960 of Lecture Notes in Computer Science,
pages 269–283. Springer, 2008.

10

	Introduction
	Conversation Calculus
	Type Inference
	Recursive Types
	Concluding Remarks

