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Abstract
In this paper, we develop a novel notion of dependent information
flow types. Dependent information flow types fit within the standard
framework of dependent type theory, but, unlike usual dependent
types, crucially allow the security level of a type, rather than just the
structural data type itself, to depend on runtime values.

Our dependent function and dependent sum information flow
types provide a direct, natural and elegant way to express and enforce
fine grained security policies on programs, including programs
that manipulate structured data types in which the security level
of a structure field may depend on values dynamically stored in
other fields, still considered a challenge to security enforcement in
software systems such as data-centric web-based applications.

We base our development on the very general setting of a
minimal λ-calculus with references and collections. We illustrate
its expressiveness, showing how secure operations on relevant
scenarios can be modelled and analysed using our dependent
information flow type system, which is also shown to be amenable
to algorithmic type checking. Our main results include type-safety
and non-interference theorems ensuring that well-typed programs
do not violate prescribed security policies.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.4.6 [Operating Sys-
tems]: Security and Protection – Information Flow Controls; F.3.3
[Logics and Meanings of Programs]: Type Structure
Keywords Information Flow; Dependent Type Systems

1. Introduction
Among the main challenges currently posed to software develop-
ment one inevitably finds security enforcement, particularly relevant
for the construction of data-centric applications to be made available
on the web, or on mobile computing environments. Many reported
security leaks in globally used information systems, including email
management or social network systems, turn out in many cases to
result from programming errors introducing insecure information
flows in complex and heterogeneous software layers. A relevant
research issue consists on finding improved techniques to ensure
trustworthy confidentiality in the presence of multi-tenancy and
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container sharing, as e.g., when logically different security com-
partments are not statically mapped to different physical or data
structure compartments, but are instead dynamic and dependent on
runtime data, including on configuration parameters.

In this paper, we develop the notion of dependent information
flow types. Dependent information flow types provide a direct,
natural and elegant way to express and statically enforce fine grained
security policies on programs, including programs that manipulate
structured data types in which the security level of a structure
field may depend on values dynamically stored in other fields, still
considered a challenge to security enforcement in software systems
such as data-centric web-based applications. In standard information
flow type systems [1, 8, 10, 12, 28], a type has the form τ s, where
the structural type τ is tagged with a security label s, an element of a
security lattice modelling an hierarchy of security compartments or
levels. For example, one defines (int> → int>)⊥ as the type of a
low security (⊥) function that maps a high security (>) integer to a
high security integer. However, as already suggested, it is often the
case that the security level of data values depends on the manipulated
data itself; such dependencies are obviously not expressible by such
basic security labelling approaches.

The key idea behind dependent information flow types is fairly
simple. We propose to extend dependent types in such a way that
not only the (structural) type assigned to a computation may depend
on values but also its security level, expressed by associating to a
data type a value dependent security label [17], instead of a plain
security label, as described above. To achieve this goal, we present
in this paper a novel theory of dependent information flow types
within the framework of dependent type theory, including sum and
function dependent types, aiming to capture the general essence
of value dependent security classification. A simple example of a
dependent (function) information flow type is

Πx:string⊥.stringusr(x)

One could assign such a type to the function get_passwd that given
a user name (a string) returns its password (a string). Although
the security level of user “pat” is public (⊥), pat’s password itself
belongs to the security level usr(“pat”), where usr(x) is a value
dependent security label. For another simple example, consider the
following dependent (labeled product) information flow type:

Σ[uid : string⊥ × passwd : stringusr(uid)]

This would type records in which the security level of passwd field
depends on the actual value assigned to the uid field. Value de-
pendent security labels, such as usr(x), denote concrete security
levels in the given security lattice, along standard lines, but allow
security levels to be indexed by program values, useful to express se-
curity constraints to depend on dynamically determined data values.
In such a setting, we would expect the security levels usr(“joe”)
and usr(“pat”) to be incomparable, thus avoiding insecure infor-
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mation flows between the associated security compartments, rep-
resenting the private knowledge of users joe and pat respectively.
In particular the security level of the password returned by the call
get_passwd("joe") is usr(“joe”) rather than, say, just usr, which
in our setting could be denoted by the label usr(>), representing
the security level of the information available from any user. Thus
dependent types together with value indexed security labels allows
secure computations to be expressed with extra precision.

Other key feature of our type system is the way it allows us
to capture general data-dependent security constraints within data
structures containing elements classified at different security levels,
as necessary to represent, e.g., realistic rich security policies on
structured documents or databases. Typically, it is required to
flexibly inspect, select, and compose such structure elements during
computations, while enforcing all the intended information flow
policies. For example, consider a (global) password file users
modelled by a collection (e.g. a list) of records of dependent type.
The type assigned to such a collection would be:

users : Σ[uid : string⊥ × passwd : stringusr(uid)]∗⊥

(notice that s∗ is the type of collections (lists) of values of type s).
Then, consider the following function

let getPasswords = λ(u).
foreach (x in users) with acum = {} do
if x.uid = u then x.pwd :: acum else acum

The function getPasswords extracts from the global data struc-
ture users the collection of passwords associated to a user id (the
foreach iterator is a familiar functional collection fold combinator
[3]; x is the current item/cursor and acum denotes the value accu-
mulated from previous iteration, with initial value {}). Notice that
although the collection users contains passwords classified in dif-
ferent security levels, the security level of the collection returned by
the function is always usr(u), with u the user id string passed as
argument. Then, the following typing holds:

getPasswords : Πu:string⊥.string∗usr(u)

We base our development on a minimal λ-calculus with records,
(general) imperative references, and collections. Although extremely
parsimonious, we show that our programming language and its
dependent information flow type system is already quite expressive,
allowing practically relevant scenarios to be modelled and analysed
against natural value dependent information flow policies.

Although approaching a substantial level of simplicity, our
type system tackles relevant technical challenges, necessary to
handle heterogeneously classified data structures and security level
dependency. As in classical approaches (e.g., [1, 12]), both a type τ
and a security label s are assigned to expressions by our typing
judgment ∆ `rS e : τ s, reflecting the fact that the value of e
does not depend on data classified with security levels above s
or incomparable with s, where s is in general a value dependent
label. The analysis of implicit flows is also particularly interesting
in our setting, even if we adopt standard techniques to track the
computational context security level r (the “program counter”). The
additional component S represents a set of the equational constraints,
used to refine label indices, and establish type equality.

We summarise the contributions of this paper. First, we motivate,
introduce, and develop a type-based information flow analysis for
a λ-calculus with references and collections. We build on a new
notion of dependent information flow types, developed along the
lines of a standard dependent type theory but where the security
level (not just the structure) of data types may depend on values
(Section 2). Second, we illustrate the expressiveness of our language
and analysis using several examples (Section 3). Third, we present
our main technical results: type safety (preservation and progress)

(Theorems 5.4 and 5.5) and a non-interference (Theorem 5.11),
which together imply that well-typed programs do not break data
confidentiality according to the security policies prescribed by
dependent information flow types (Section 5). After discussing
algorithmic type checking (Section 6), we overview key related
work (Section 7), and offer some concluding remarks (Section 8).

2. Dependent Information Flow Types
In this section, we motivate dependent (function and sum) informa-
tion flow types by means of several examples, providing an informal
overview of the approach developed in the paper.

As in any information flow analysis, we are concerned about
insecure flows that might arise during the execution of a program but
not with how data is accessed (which concerns access control). Our
analysis associates security levels s to types τ to classify expressions
e, so typing an expression at security level s, denoted ∆ ` e : τ s,
means that data used or computed by expression e will only be
affected by data classified at security levels up to s. We proceed
by illustrating our programming language, a simple λ-calculus
with references, using as toy example, a typical data centric web
application: a conference manager.

In this scenario, a user of the system can be either a registered
user, an author user, or a programme committee (PC) member
user. The system stores data concerning its users’ information, their
submissions, and the reviews of submissions in “database tables”
which we will represent in our core programming language as lists
of (references to) records (e.g., mutable lists), as shown in Figure 1d
for the types declared in Figure 1a: Users stores information for
each registered user; Submissions keeps track of each submission
in the system by storing its id, the author’s id, and the contents
of the submission; and Reviews stores information regarding the
evaluation of each submission namely: the id of the PC member
reviewing the submission, the id of the submission, the comments for
the other PC members, and the comments and grade to be delivered
to the author. The system offers operations to add new data as well
as some listing operations. We exemplify some of them.

Example 2.1 Operation assignReviewer assigns a PC member to
review a given submission, initialising the remaining fields.
let assignReviewer = λ (u, s).

let new_rec = refδa
[uid=u, sid=s, PC_only= "", review="", grade=""]

in Reviews := new_rec :: !Reviews

Example 2.2 Operation viewAuthorPapers iterates the Submissions
collection to build a list of all records with a given author id

let viewAuthorPapers = λ (uid_a).
foreach(x in !Submissions) with y = {} do

let tuple = !x in
if tuple.uid = uid_a then tuple::y else y

Example 2.3 Operation viewAssignedPapers simulates a join
operation between collections Reviews and Submissions to obtain
the list of submissions assigned to the PC member with the given id.

let viewAssignedPapers = λ (uid_r).
foreach (x in !Reviews) with res_x = {} do

let tuple_rev = !x in
if tuple_rev.uid = uid_r then
(foreach(y in !Submissions) with res_y = {} do

let tuple_sub = !y in
if tuple_sub.sid = tuple_rev.sid then

tuple_sub::res_y else res_y )::res_x
else res_x
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τa
def
= [uid : int× name : str× univ : str× email : str]

σa
def
= [uid : int× sid : int× title : str× abs : str∗

×paper : int∗]

δa
def
= [uid : int× sid : int× PC_only : str∗×

review : str∗ × grade : int]

(a) Purely structural types (not expressing security levels)

τb
def
= [uid : ⊥× name : U× univ : U× email : U]

σb
def
= [uid : ⊥× sid : ⊥× title : A× abs : A× paper : A]

δb
def
= [uid : ⊥× sid : ⊥× PC_only : PC× review : A× grade : A]

(b) Standard security types for information flow
(e.g., [1, 12]) - we omit base types

τc
def
= Σ[uid : ⊥× name : U(uid)× univ : U(uid)×

email : U(uid)]

σc
def
= Σ[uid : ⊥× sid : ⊥× title : A(uid, sid)×

abs : A(uid, sid)× paper : A(uid, sid)]

δc
def
= Σ[uid : ⊥× sid : ⊥× PC_only : PC(uid, sid)×

review : A(>, sid)× grade : A(>, sid)]

(c) Dependent information flow types

let Users = refref(τ(·))∗⊥ (refτ(·) [] )::{} in

let Submissions=refref(σ(·))∗⊥ (refσ(·) [] )::{} in

let Reviews = refref(δ(·))∗⊥ (refδ(·) [] )::{}

(d) Declaration of (mutable) collections of mutable records
(replace (·) with a, b or c for according type)

Figure 1: Expressing security policies

The foreach primitive computes the accumulated value of a list’s el-
ements. For instance, foreach(x in viewAuthorPapers(03))with
count = 0 do count + 1, returns the number of submissions of
author with id 03.

Our goal is to statically ensure by typing the confidentiality of
the data stored in the conference manager system. As in classical
approaches (e.g., [1, 12]), both a type τ and a security label s
are assigned to expressions by our typing judgment ∆ ` e:τ s,
expressing the fact that the value of e will only be affected by
computations interfering at security levels ≤ s. As is usual in
information flow analysis, a partial order (the so-called security
lattice) relating security levels is defined, and information is only
allowed to flow upwards (in the order). For the purpose of static code
analysis, the given security lattice could be declared as a preamble to
the code to be checked. To specify security policies for our system,
we thus classify the data manipulated by our conference manager
with security levels from a suitable security lattice (omitting data
types when not necessary, for simplicity). We assume security
lattices are bounded by a top,>, and bottom,⊥ element denoting the
most restrictive (no one can observe) and most permissive (public
data, anyone can observe) security levels, respectively. For the
conference manager we can then specify, say, that information is
classified in three additional security levels: U for the data that can
be disclosed to any registered user; A for data observable to authors;
and PC for data that only programme committee members can see.
In such simple case, we may let ⊥<U<A<PC<> and specify the
according security policy for each conference manager entity as
shown in Figure 1d for the types declared in Figure 1b. Such policy
states that a registered user’s information is observable from security
level U, meaning any registered user (including authors and PC
members) can see it; that the content of a paper can be seen by
authors; and, finally, regarding a submission’s review we have that
comments to the PC are observable only to its members and reviews
and grade of the submission can be seen by authors.

This policy, however, is not precise enough to protect the confi-
dentiality of the data. An author, who has at least the security level
A, is able to execute the operation viewAuthorPapers (Example 2.2)
using a different id than his own, which clearly violates confiden-
tiality. Thus, the security policy that we need is the following: a
registered user’s information is only observable by himself ; the con-
tent of a paper can be seen by its author as well as its reviewers;
and regarding a submission’s review, we have that comments to
the PC can only be observable to the other members that are also
reviewers of the submission, and that comments and grade of the

submission can be seen by its author only. To express these kind
of data-dependent policies and make sure that operations that de-
pend on them are secure according to the given policies (such as
the operation illustrated above), we introduce a general notion of
dependent information flow type, which builds on the notion of
indexed security label [17]. Using indexed security labels we may
partition security levels by indexing labels ` with values v, so that
each partition `(v) classify data at a specific level, depending on the
value v. For example, we can partition the security level U into n
security compartments, each representing a single registered user
of the system, so security level U(01) represents the security com-
partment of the registered user with id 01. Of course, one may also
consider indexed labels of arbitrary arity, for instance for security
level A (author) we can index with both the author’s id and submis-
sion’s id so A(42,70) would stand for the security compartment of
data relating to author (with id 42) and his submission (with id 70).

Going back to our example, we assume the following defined se-
curity levels: U(uid), for registered users with id uid; A(uid,sid),
for author of submission with id sid and whose user id is uid;
and PC(uid,sid), for PC members assigned to review submis-
sion with id sid and whose user id is uid. In general, the secu-
rity lattice is required to enforce `(v, u, w) ≤ `(v,>, w) and
`(v,⊥, w) ≤ `(v, u, w), for all u, v and w. So, e.g, for all uid we
have U(⊥) ≤ U(uid) ≤ U(>); we can see U(>) as the approxi-
mation (from above) of any U(uid), e.g, standing for the standard
label U (Figure 1b). Levels A(⊥,⊥), and PC(⊥,⊥) stand for the
security compartment accessible to any author and any PC member,
respectively; but A(>,>), and PC(>,>) respectively represent the
compartments containing the information of all authors and all PC
members; level A(uid,>) stands for registered users with id uid
that are authors; A(>,sid) represents the security compartment of
authors of submission with id sid; A(uid,⊥) means a registered
author with no authority over submitted papers; and so on. We define
the declarations in Figure 1d for the types declared in Figure 1c, and
the partial order defining the sample security lattice by the following
axioms (quantifiers ranging over natural numbers):

∀uid,sid. U(uid)≤ A(uid,sid)
∀uid1,uid2,sid. A(uid1,sid)≤ PC(uid2,sid)

We proceed our motivation of dependent information flow types
with a series of code snippets relevant for our conference manager
scenario.

Consider then the following code
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Example 2.4

let t = first((foreach(x in !Submissions) with y={} do
let t_sub = !x in
if t_sub.uid = 42 and t_sub.sid = 70 then
t_sub.title::y else y ))

in (foreach(x in !Submissions) with y = {} do
let t_sub = !x in
if t_sub.sid = 70 and t_sub.uid = 42 then
let new_rec = [uid=t_sub.uid, title=t+"!", . . .]
in x:= new_rec )

In this example Submissions is a (mutable) collection of references
of type σc (Figure 1c). The type σc is a dependent sum type where
the security level of some fields depends on the actual values
bound to other fields (as already explained in the Introduction).
For example, notice that the security level of the title field is
declared as A(uid,sid) where uid and sid are other fields of the
(thus dependent) record type. Also, t gets security level A(42,70)
since we are retrieving a record with uid value 42 and sid value
70. To type the record initialising the reference new_rec, we need
to obtain type [uid:⊥×sid:⊥×title:A(uid,sid)×. . .], which in
turn needs to check the type of expression t+"!" for field title. But
since we know t has security level A(42,70) and that t_sub.sid=70
and t_sub.uid=42 (so fields uid and sid have value 42 and 70,
respectively, in new_rec), we can deem secure the assignment
x:=new_rec.

On the other hand, if we change the last conditional to be if
t_sub.sid = 24, then we would be attempting to associate data of
security level A(42,70), value t, within the security compartment
A(24,>) for author with uid 24. So, in other words, data from
author 42’s submission is being associated to submissions of author
24, inducing an illegal flow of information.

For brevity, as in the example above, when writing new record
values based on existing ones, we just mention the fields being
assigned a new value, and a sample field indicating the record
value from which the other values are to be copied. For example,
in [uid=t_sub.uid, title=t + "!",. . .] we mean that fields sid,
abs, and paper are just copied from t_sub as uid=t_sub.uid, e.g,
sid=t_sub.sid, etc. Consider now the following code fragment

foreach (x in !Submissions) with y = {} do
let t_sub = !x in

if (t_sub.uid = 42) then
[uid = t_sub.uid, sid = t_sub.sid,

title = t_sub.title]::y else y

The result of evaluating this program is a collection of records of
sum type (resulting from projecting part of submission records
of type σc). The expected type, given the definition of σc, is
[uid:⊥ × sid:⊥ × title: A(uid, sid) ]. However, our type
system can track value dependencies and constraints imposed by
programs, so a more precise type is assigned in this case, namely
Σ[uid:⊥ × sid:⊥ × title: A(42,sid)]. Such ability to track
dependencies is crucial to rigorously analyse fine grained security
policies. For instance, in order to check if PC member with id 10
could observe the result of the above operation, we need to establish
that A(42,sid)≤ PC(10,sid), which would not be possible had we
approximated the field sid with >.

Let us consider the following code for a function viewUserProfile

let viewUserProfile = λ (uid_a).
foreach(x in !Users) with y = {} do

let usr = !x in
if usr.uid = uid_a then usr::y else y

Function viewUserProfile returns a collection of records of depen-
dent sum type whose security labels on fields title, abs, and paper
depend on the value of the parameter uid_a. A precise typing for
viewUserProfile is Π(uid_a:⊥).
Σ[uid:⊥×name:U(uid_a)×univ:U(uid_a)×email:U(uid_a)]∗.
Notice that the return type depends on the value of the function ar-
gument, so the type of viewUserProfile is a functional dependent
type. Then the expression first(viewUserProfile(42)).email
has type U(42).

Example 2.5 The addCommentSubmission operation is used by the
PC members to add comments to submissions. The types ensure
that only PC members assigned to the particular paper will see such
comments.

let addCommentSubmission = λ(uid_r: ⊥, sid_r: ⊥).
foreach (p in viewAssignedPapers(uid_r)) with _ do
if p.sid = sid_r then
foreach(y in !Reviews) with _ do
let t_rev = !y in
if t_rev.sid = p.sid then
let up_rec =
[uid=t_rev.uid,PC_only=comment(p.uid,p.sid,p),. . .]
in y := up_rec

Function viewAssignedPapers has type (Π(uid_r:⊥).C, where
type C is Σ[uid:⊥×sid:⊥×title:A(uid,sid)×abs:A(uid,sid)
× paper:A(uid,sid)]∗ (Example 2.3). Since there is no de-
pendency (uid_r not free in C), we may abbreviate the func-
tional type by Int⊥→ C, thus identifier p has type C. Function
comment returns a given paper’s PC comments, and has type Π

u:⊥.Πs:⊥.Πr:C.A(u,s). Notice that its return type in the call
comment(p.uid,p.sid,p) has security label A(p.uid,p.sid).

Additionally, we know t_rev has the type of the collection’s
references (type δc of Figure 1c). So, in order to type check the
assignment expression, y := up_rec, we need to check that up_rec
has the same type as the prescribed type for the collection’s elements,
type δc. Namely, we have to check if comment(p.uid, p.sid,p)
has type PC(t_rev.uid,p.sid).

As we said, the type for comment(p.uid, p.sid,p) has secu-
rity label A(p.uid, p.sid) but since it has field dependencies, we
need to infer values for them. In this case, we cannot infer a value for
field uid so we approximate to > obtaining A(>,p.sid). However,
because we know by the conditional that t_rev.sid = p.sid, we
can index the security level by field sid instead, which allows us
to type the assignment operation since field sid is bounded by the
dependent sum type of the record being used for the assignment.

Then we can type comment(p.uid, p.sid,p) with type
A(>,p.sid) and thus, due to A(>,p.sid) ≤ PC(⊥, p.sid), we
can up-classify comment(p.uid, p.sid,p) with PC(t_rev.uid,
p.sid). Notice that this up-classification is only possible to PC
members assigned to the paper whose sid is p.sid, so only those
PC members will be able to see the added comment. So we can,
finally, type the record up_rec with the dependent sum type Σ
[uid:⊥ ×sid:⊥ ×PC_only:PC(uid,sid) ×review:A(>,sid)
×grade:A(>,sid)]. We refer back to this example in Example 4.3,
where we detail the relevant steps taken by the system to typecheck
the program. Without dependent types, we would lose precision
in the typing of comment(p.uid, p.sid,p) (obtaining A(>,>)
instead) and not be able to raise the security level to the required
level, thus addCommentSubmission would not type check despite
being secure.

After introducing our core language and dependent information flow
types, we now formally introduce its syntax and semantics.
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e : := (expression)
| e.m (field access)
| let x = e1 in e2 (let)
| e1(e2) (application)
| if c then e1 else e2 (conditional)
| [m = e] (record)
| e (collection)
| e1::e2 (cons)
| foreach(e1, e2, x.y.e3) (iteration)
| refτs e (reference)
| e1 := e2 (assign)
| !e (deref)
| x (identifier)
| v (value)

v : := (values)
v (collection)
| [m = v] (record)
| λ(x:τ s).e (abstraction)
| true (true)
| false (false)
| () (unit)
| l (locations)

c : := (conditions)
| ¬c (negation)
| c1 ∨ c2 (disjunction)
| V = V (equality)
| V (term)

V : := (terms)
V (collection)
| [m = V ] (record)
| λ(x:τ s).e (abstraction)
| true (true)
| false (false)
| x (identifier)
| () (unit)
| V.m (field access)

Figure 2: Syntax: expressions, values, conditions, terms

3. Core Language
Our core language (Figure 2) is a higher-order functional language
with references and primitive collections. Primitive values (v) in-
clude abstractions, booleans, records, collections (lists of values,
also present in languages such as DMinor [3]), and locations. We
consider two values v, u equal, v = u, when they are the same up
to reordering of record labels, and assume intensional equality on
lambda abstractions. Expressions (e) include let-expression, condi-
tional, application, field access, cons operator to add an element to a
collection, collection iterator, values, variables, locations, references,
dereference and assignment. These primitives are to be understood
as usual, namely the collection iterator foreach computes the ac-
cumulated value of a list’s elements, as showed in the examples of
Section 2. For readability purposes, we sometimes use the more
natural concrete syntax adopted in the previous section. We assume
other basic data types (integers, strings) and associated operations,
such as first(-) and rest(-) for collections (but omit standard
details). To illustrate primitive types, we will usually include just
booleans in our formal presentation. As for abbreviations, we use
an overbar to represented indexed sets of syntactic elements. Con-
cretely, [m = e] stands for [m1=e1, . . . ,mn=en], and e stands for
{e1, . . . , en}. Logical conditions c are used in conditionals, which
we require to be pure (side-effect free). We also consider terms V ,
used in conditions, e.g., terms are values that may be checked for
equality. Pure expressions are those side-effect free, in concrete, all
expressions except assignment, reference expressions and deference.

Programs in our language are closed expressions. The operational
semantics is defined using a reduction relation, defined by the rules
in Figure 3, which basically extend the standard ones for a call-by-
value λ-calculus. Reduction is defined between configurations of the
form (S; e), where S is a store, and e is an expression. A reduction
step of the form (S; e) −→ (S′; e′) states that expression e under
state S evolves in one computational step to expression e′ under state
S′. A store S is a mapping from locations to values. Reduction rules
follow predictable lines, we briefly comment on the less standard
ones. Rules (foreach-left) and (foreach-right) reduce the first and
second expressions of the list iterator operator, respectively. These
rules, together with rule (foreach), imply an evaluation order from
left to right. Evaluation of (store independent) logical conditions
is given by the map C : c → {true, false}, using an auxiliary
evaluation map for closed terms T : V → v , defined as expected
(see [34] for more details).

4. Type System
As already discussed above, our type system for information flow
builds on fairly traditional concepts from information flow type

systems [1, 12], but crucially explores a notion of type dependency
on security labels, in a way that cleanly fits within a standard
framework of dependent type theory with canonical dependent
functional and sum types. We assume a multilevel security approach
that classifies information into security compartments, according
to some given security lattice, and mediates users access to data
according to the security clearance they possess. As in typical type-
based information flow analyses, types are annotated with a security
label. In our system, we consider value dependent security labels
`(v), so our types take the form τ s where τ is a data type and
s is a (indexed) security label `(v) - non-indexed labels may be
represented by `(>).

If an expression e is assigned type τ s then the system must
ensure that only users with enough permissions to read information
at security level s have access to the value computed by e. Otherwise,
the result of e is assumed to be opaque and thus cannot be observed
by such an user. As for the attacker model, we assume an attacker
can observe information, including stored data, that has security
level ⊥ (public), and may be a user of the system. So interaction
with the system is possible using the core language we show here.
This view is extended to any given security level, so that attackers
with access to data classified at security level s can only observe
information classified up to s.
Security Labels and Security Lattice. Security labels, which we
consider in general to be value dependent, have the form `(v), where
v is a list of security label indexes. Label indexes are given by:

v : := (label indexes)
| > (top) | ⊥ (bot)
| true (true) | false (false)
| v (collection) | [m : v] (record)
| x.m (field selection) | x (variable)
|m (field identifier)

We call concrete a security label if all of its indexes is ⊥,>, or a
value v, not a (record) field identifier m or a variable x. As made
clear below, labels indexed by a simple field identifier, e.g., `(m),
only make sense in the scope of a field m in a dependent sum type.

We consider a general notion of security lattice. We require
the lattice L elements to be concrete security labels, with > the
top element (the most restrictive security level), and ⊥ the bottom
element (the most permissive security level), and t, u, denote the
join and meet operations respectively. The lattice partial order is
noted ≤ and < its strict part; we write s#s′ to assert that neither
s ≤ s′ nor s′ ≤ s. As suggested above, dependent security
labels `(⊥) and `(>) are interpreted as approximations to the
“standard” non-value dependent label `. We thus require that for
any values v1, . . . , vn that make the label `(v1, . . . , vn) concrete,
`(⊥) ≤ `(v1, . . . , vn) ≤ `(>) holds in the given security lattice
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(app-left)
(S; e1) −→ (S′; e′1)

(S; e1(e2)) −→ (S′; e′1(e2))

(app-right)
(S; e2) −→ (S′; e′2)

(S; (λ(x : τ s11 ).e)(e2)) −→ (S′, (λ(x : τ s11 ).e)(e′2))

(app)

(S; (λ(x : τ s11 ).e)(v)) −→ (S; e{v/x})

(if-true)
CJcK

(S; if c then e1 else e2) −→ (S; e1)

(if-false)
¬CJcK

(S; if c then e1 else e2) −→ (S; e2)

(ref-left)
(S; e) −→ (S′; e′)

(S; refτse) −→ (S′; ref τse′)

(ref-right)
l 6∈ dom(S)

(S; ref τsv) −→
(S ∪ {l 7→ v}; l)

(assign-left)
(S; e1) −→ (S′; e′1)

(S; e1 := e2) −→ (S′; e′1 := e2)

(assign-right)
(S; e2) −→ (S′; e′2)

(S; l := e2) −→ (S′; l := e′2)

(assign)
l ∈ dom(S)

(S; l := v) −→ (S[l 7→ v]; ())

(deref-left)
(S; e) −→ (S′; e′)

(S; !e) −→ (S′; !e′)

(deref )
S(l) = v

(S; !l) −→ (S; v)

(foreach-left)
(S; e1) −→ (S′; e′1)

(S; foreach(e1, e2, x.y.e3) −→
(S′; foreach(e′1, e2, x.y.e3))

(foreach-right)
(S; e2) −→ (S′; e′2)

(S; foreach(v, e2, x.y.e3) −→
(S′; foreach(v, e′2, x.y.e3))

(foreach)
vl = h::hs

(S; foreach(vl, v, x.y.e3) −→
(S; foreach(hs, e3{h/x}{v/y}, x.y.e3))

(foreach-base)
(S; foreach({}, v, x.y.e3) −→ (S; v)

(let-left)
(S; e1) −→ (S′; e′1)

(S; let x = e1 in e2) −→ (S′; let x = e′1 in e2)

(let-right)
(S; let x = v in e2) −→ (S; e2{v/x})

(field-right)
(S[. . .m:v . . .].m) −→ (S; v)

(record)
(S; e) −→ (S′; e′)

(S; [. . .m:e . . .]) −→ (S′; [. . .m:e′ . . .])

(list)
(S; e) −→ (S′; e′)

(S; {. . . e . . .}) −→ (S′; {. . . e′ . . .})
(field-left)

(S; e) −→ (S′; e′)

(S; e.m) −→ (S′; e′.m)

(cons-left)
(S; e1) −→ (S′; e′1)

(S; e1::e2) −→ (S′; e′1::e2)

(cons-right)
(S; e2) −→ (S′; e′2)

(S; v::e2) −→ (S′; v::e′2)

(cons)
(S; v::{v1, . . . , vn}) −→ (S; {v, v1, . . . , vn})

Figure 3: Reduction

s, r, t, q : := `(v) security label
τ s, σs : := | Bools bool type

| (Πx:τ s.r;σq)t dependent function type
| Σ[m : τ s]r dependent sum type
| τ∗s collection type
| ref(τ s)t reference type
| cmds command type

Figure 4: Types

L, and that the ordering between labels is well defined and satisfies
the lattice property (i.e., well defined meets and joins, etc). We
assume that the intended lattice (required for each particular security
analysis) is specified by a list of schematic assertions of the form
∀x.`1(u) ≤ `2(v), where the (optional) x may occur in u, v. We
already gave examples of lattice assertions in Section 2.

Types. The type structure (Figure 4) includes boolean, unit (or
command), reference, dependent sum, dependent function, and
collection types. In collection type τ∗s each collection element
has type τ s. We assume other basic types, such as integers and
strings with their associated operations, not formalised for the
sake of simplicity, but used in examples. Dependent sum types
and dependent functional types assume a key role in our type system
as they allows us to express (runtime) value dependency on security
labels, as already highlighted. A dependent sum type has the form

Σ[m1:τ s11 × . . .×mn:τ snn ]t

where any of the security labels si with i > 1 may be dependent on
previous fields (via the field identifier). For instance, the type

Σ[uid:⊥× name:user(uid)]⊥

is a dependent sum type where field name has the value dependent
security level, user(uid), which is indexed by the (runtime) value
in field uid. A dependent functional type has the general form

(Πx:τ s.r;σq)t

where the (security level of) the codomain type σq may depend
on the value of the argument (denoted by the bound variable x).
Level r specifies a lower bound on the security level of the function
effects (writes), if omitted it is assumed to be ⊥. When x does not
occur free in σq we write (τ s

r→ σq)t for the type above, or simply
(τ s→σq)t if r is ⊥. Notice that in source types and programs non-
concrete security labels may only occur in the context of dependent
sum types and dependent functional types. Also, even if types for
collections are homogeneous, due to the presence of dependent sum
types, the system accommodates collections of elements containing
data in different, possibly incomparable, security compartments.
Dependencies in Security Labels. As stated earlier, and for nat-
ural reasons, the security lattice only relates concrete labels. As
such, at some points, our type system is required to approximate
runtime values to eliminate dependencies occurring in security la-
bels. For example, should we project field name of a record typed
with Σ[uid : ⊥ × name : user(uid)]⊥, then we would need to
eliminate the field dependency in the resulting type’s security la-
bel, user(uid), into either user(s) if the actual name s can be
deduced from the computational context as is often the case, or, at
least, by user(>). Dually, it may also be necessary to capture value
dependencies in security labels, e.g., if we declare a reference of
type Σ[uid : ⊥ × name : user(uid)]⊥ and then initialise with a
record with type Σ[uid : ⊥ × name : user(0)]⊥, then we would
need to introduce the field dependency in user(0). We achieve such
introduction and elimination of dependencies in security labels by:
(1) tracking knowledge regarding dependencies in a constraint set S
carried along in typing judgements; (2) using a equational theory to
entail runtime values or dependencies, depending whether we are
eliminating or capturing dependencies in security labels.

A constraint set S is a finite set of equational constraints of the
form e

.
= e′ where e, e′ are pure (without side-effects) expressions.

We assume a decidable sound equational theory, talking about basic
data such as booleans, integers, records, etc, and write S |= e

.
= e′
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(s-indexLeft)
`(>) ≤ s

τ`(v) <: τ s

(s-indexRight)
s ≤ `(⊥)

τ s <: τ`(v)

(s-record)

∀i τ sii <: τ
s′i
i t′ ≤ t

Σ[m : τ s]t <: Σ[m : τ s
′
]t
′

(s-expr)
s ≤ s′

τ s <: τ s′

s-arrow
τ s
′
<: τ s σq <: σq′ r′ ≤ r

(Πx:τ s.r;σq)t <: (Πx:τ s
′
.r′;σq′ )t

Figure 5: (Key) Subtyping rules

for the entailment of e .
= e′ given the constraints in S. We also

naturally require .
= to be compatible with reduction in the sense

that for any e, e′ pure if (S; e) −→ (S; e′) then |= e
.
= e′. As for

any equational theory, we assume that S |= E and S ∪ {E} |= E′

implies S |= E′ (deduction closure). We denote by S{x .
= e}

the set S ∪ {x .
= e} if e is a pure expression, and S otherwise.

For instance, {x.uid .=uid_r, uid_r .=42}|=x.uid .
= 42. For the

purpose of this work we consider constraint solving issues inside a
black-box, subject to the mentioned general requirements. We do not
specify any particular equational theory since its precise formulation
is orthogonal to our analysis, as long as it is decidable and sound
(the more complete the theory the better).
Typing Judgements and Rules. A typing judgment has the form

∆ `rS e : τ s

It asserts that expression e has type τ s under typing environment ∆,
given constraints S . The label s states that the value of expression e
does not depend on data classified with security levels above s or
incomparable with s. As expected from type-based approaches to
information flow analysis, our type system ensures that information
only flows upwards the security lattice, e.g., only from a level l to a
level h such that l ≤ h. Label r is concrete and expresses the security
level of the computational context (cf. the “program counter"
[18, 22]), a familiar technique to prevent implicit flows. Typing
declarations assign types to identifiers x:τ s, and types to locations,
l:τ s. A typing environment ∆ is a list of typing declarations. In
Figure 6 we show the typing rules. The system also relies on a simple
subtyping relation, denoted <:, which allows up-classification of
security labels, defined in Figure 5. Rules s-indexLeft/Right/expr rely
on the lattice order, where we consider s ≤ s′ to be an instance of a
lattice assertion, in rule s-expr we assume τ not to be dependent type.
We also define well-formed types and well-formedness definition
of typing contexts, denoted as as ∆ ` �. Well-formed types are
denoted by judgment ∆ `N τ s, stating that type τ s is well-formed
under typing context ∆, given names set N . The full set of rules
defining well-formed types can be found in [34].

We avoid commenting on typing rules standard for any typed
λ-calculus and focus on key typing rules specific to our system. For
simplicity and w.l.o.g we consider in our presentation that security
labels are indexed by a single label index, assuming the obvious
extension of type rules to deal with labels with multiple indexes,
when necessary, e.g, in examples. In rule (t-record) we require the
security label of record values to be, at most, the greatest lower
bound of all the security labels occurring in their fields, otherwise
implicit flows could occur on assignments of record values. Since
a field’s security label s may have dependencies, we approximate
the values they denote with ⊥, via |s|↓. Notice that this allows
(but does not force) records storing both private and public data to
be classified as public. Such a scenario is in fact, secure, as will
only leak, at most, information that a record is present, but not the
field contents (except those classified as public). We will get back
to this discussion below. Rule (t-app) is the expected rule for any
value dependent function application where free occurrences of x
in the result type are replaced with a value v. In our system we

approximate the argument value v of e2 via constraint entailment
given the additional knowledge x .

= e2, otherwise we set v = >. In
rule (t-foreach), we require the security level of all sub expressions to
be the same. This is required to disallow insecure programs such as,
e.g., in which one could count the elements of a collection classified
with a high security level, and assign the result to a low level.

Example 4.1 Suppose we have collection top_secrets with ele-
ments classified at security level > and consider the code snippet.

foreach (x in top_secrets) with count = 0 do count+1

This code can only be typed as int>. If we allowed the body of the
foreach loop to be typed at a level lower that >, we could type the
result of the above program at security level⊥ since the computation
only involves values at that level. That, however, would represent an
implicit flow since one could then observe some information about
collection top_secrets at level ⊥, namely its number of elements,
breaking noninterference. On the other hand, assume boxed to be a
collection of records typed as boxed : (Σ[secret : string>])∗⊥.
All fields contents of the collection’s records are classified as high
(>), but the records themselves and the collection itself is classified
as low (⊥). In this case, it is possible to type

foreach (x in boxed) with count = 0 do count+1

with type int⊥. This means that the collection and its records
(borders) are visible entities at level ⊥, while the actual record field
contents are concealed from the same level. With this spec, it would
be allowed to a low observer to observe the collection size, but not
the contents of the secret fields, preserving non-interference.

Rule (t-if ) is as expected: to prevent implicit flows from occurring,
we raise the security level of the computational context to the least
upper bound of its current level with the logical condition’s security
level. Moreover, we enforce the security level of both branches and
the logical condition to be the same, and track knowledge to the
constraint set S about the condition’s value in each branch. Rules
(t-refineRecord) and (t-unrefineRecord), adequate to our dependent
labeled sum types, correspond to introduction and elimination
rule for (value-dependent) existential types. Rule (t-refineRecord)
potentially introduces a dependent sum type by indexing a label with
fieldmj , given that a concrete witness value v can be identified from
mj via constraint entailment. The converse is achieved with rule
(t-unrefineRecord), that is, one may eliminate a field dependency
(and potentially a dependent sum type) by replacing such a field
with a concrete value witness, derivable as discussed for the (t-
refineRecord) rule. We illustrate with some examples.

Example 4.2 Recall the viewAuthorPapers from Example 2.2,

let viewAuthorPapers = λ (uid_a).
foreach(x in !Submissions) with y = {} do

let tuple = !x in
if tuple.uid = uid_a then tuple::y else y

While typing expression tuple::y, while typing the then branch,
we obtain type Σ[uid:⊥ × sid:⊥ × title:A(uid,sid) ×
abs:A(uid,sid) × paper:A(uid,sid)]∗⊥. However, at this point,
we know that tuple.uid = uid_a, which was added to the con-
straint set S according to rule (t-if ). So, to type tuple, we can apply
rule (t-unrefineRecord), adding a new constraint {x .

= tuple} for a
fresh identifier x, and entail
S ∪ {tuple.uid=uid_a .

= true, x
.
= tuple} |= x.uid

.
=uid_a

to eliminate the field dependency uid in the security label, ob-
taining the type Σ[uid:⊥ × sid:⊥ × title:A(uid_a,sid) ×
abs:A(uid_a,sid) × paper:A(uid_a,sid)]⊥.
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(t-field )

∆ `rS e : Σ[. . .×mi:τ sii × . . .]
s′

∆ `rS e.mi : τ
si
i

(t-record)

∀i ∆ `rS ei : τ
si
i

∆ `rS [. . . ,mi=ei, . . .] : Σ[. . .×mi:τ sii × . . .]u|si|
↓

(t-refineRecord)

∆ `rS e : Σ[. . .×mj :τ
sj
j × . . .×mi:τ

`i(v)
i × . . .]s

S{x .
= e} |= x.mj

.
= v

∆ `rS e : Σ[. . .×mj : τ
sj
j × . . .×mi : τ

`i(mj)

i × . . .]s

(t-unrefineRecord)

∆ `rS e : Σ[. . .×mj :τ
sj
j × . . .×mi:τ

`i(mj)

i × . . .]s
S{x .

= e} |= x.mj
.
= v

∆ `rS e : Σ[. . .×mj : τ
sj
j × . . .×mi : τ

`i(v)
i × . . .]s

(t-sub)

∆ `rS e : τ s τ s <: τ s
′

r′ ≤ r

∆ `r′S e : τ s′

(t-let)

∆ `rS e1 : τ s ∆, x : τ s `rS{x .=e1} e2 : τ ′s
′

∆ `rS let x = e1 in e2 : τ ′s′

(t-app)
∆ `rS e1 : (Πx:τ s.r′σq)t ∆ `rS e2 : τ s

(v = >) ∨ (S{x .
= e2} |= x

.
= v) r ≤ r′

∆ `rS e1(e2) : σ{v/x}q{v/x}tt

(t-lambda)
∆, x : τ s `rS e : σq

∆ `rS λ(x : τ s).e : (Πx:τ s.r;σq)⊥

(t-collection)
∀i ∆ `rS ei : τ s

∆ `rS {e1, . . . , en} : τ∗s

(t-cons)
∆ `rS e1 : τ s ∆ `rS e2 : τ∗s

∆ `rS e1::e2 : τ∗s

(t-foreach)
∆ `rS e1 : τ∗s ∆ `rS e2 : τ ′s

∆, x : τ s, y : τ ′s `rS e3 : τ ′s

∆ `rS foreach (e1, e2, x.y.e3) : τ ′s

(t-if )
∆ `rS c : Bools

∆ `rtsS∪{c .=true} e1 : τ s ∆ `rtsS∪{c .=false} e2 : τ s

∆ `rS if c then e1 else e2 : τ s

(t-or)
∆ `rS c1 : Bools ∆ `rS c2 : Bools

∆ `rS c1 ∨ c2 : Bools

(t-not)
∆ `rS c : Bools

∆ `rS ¬c : Bools

(t-equal)
∆ `rS V1 : τ s ∆ `rS V2 : τ s

∆ `rS V1 = V2 : Bools

(t-true)

∆ `rS true : Bool⊥

(t-false)

∆ `rS false : Bool⊥

(t-unit)

∆ `rS () : cmd⊥

(t-ref )
∆ `rS e : τ s r ≤ s

∆ `rS refτ s e : ref(τ s)⊥

(t-deref )

∆ `rS e : ref(τ s)s
′

s′ ≤ s

∆ `rS !e : τ s

(t-assign)

∆ `rS e1 : ref(τ s)s
′

∆ `rS e2 : τ s r t s′ ≤ s

∆ `rS e1 := e2 : cmd⊥

(t-loc)

∆, l : τ s `rS l : ref(τ s)⊥

Figure 6: Typing Rules

Finally, in both branches, y is typed as the collection type
with element type the dependent sum type above (since we are
adding tuple to y and the conditional branches must have the
same type). So function viewAuthorPapers is assigned type Π

(uid_a:⊥).Σ[uid:⊥× sid:⊥× title:A(uid_a,sid)× . . .]∗⊥.

Example 4.3 We now refer back to Example 2.5. For clarity, we
abbreviate dependent sum types and mention only the record fields
relevant for the discussion.
let addCommentSubmission = λ(uid_r: ⊥, sid_r: ⊥).
foreach (p in viewAssignedPapers(uid_r)) with _ do
if p.sid = sid_r then
foreach(y in !Reviews) with _ do
let t_rev = !y in
if t_rev.sid = p.sid then
let up_rec =
[uid=t_rev.uid,PC_only=comment(p.uid,p.sid,p),. . .]
in y := up_rec

To typecheck y:= up_rec we need to type up_rec with the declared
type for the elements of collection Reviews, which is type δc in
Figure 1c. As shown in Example 2.5, identifier p has type

Σ[uid:⊥ × sid:⊥ × . . . × title:A(uid,sid)]

The type for comment(p.uid,p.sid,p) has level A(p.uid,p.sid).
By the lattice order A(p.uid,p.sid)≤ PC(⊥,p.sid) and by (t-
indexRight) we get PC(⊥,p.sid) ≤ PC(t_rev.uid,p.sid), hence
A(p.uid,p.sid)≤ PC(t_rev.uid,p.sid)). We may then type the
PC_only record field with PC(t_rev.uid,p.sid). At this point,
we tracked the following knowledge (via conditionals and let-
expressions) into the following constraint set:
{ p.sid

.
= sid_r, t_rev.sid

.
= p.sid,

up_rec
.
= [uid = t_rev.uid, sid = t_rev.sid,

PC_only = comment(p.uid,p.sid,p), . . .] }

Let us typecheck up_rec in the context of the assignment y:=
up_rec. After typing the record value, we eliminate field dependen-
cies, adding to S the constraint {x .

= up_rec}, for a fresh x. Then,
we can derive the entailments
S, x .

= up_rec |= x.sid
.
= p.sid

S, x .
= up_rec |= x.uid

.
= t_rev.uid.

So we refine the type of the PC_only field to PC(uid,sid) by
(t-refineRecord) and type the record bound to up_rec with the
dependent type Σ[uid:⊥,sid:⊥, PC_only:PC(uid,sid), . . .],
thus matching the expected type of reference y.

By allowing the (t-refineRecord) and (t-unrefineRecord) rules to
approximate the security label to a field identifier of another record,
as we just did in Example 4.3, we retrieve essential precision in
our analysis, required to obtain the correct typing for PC_only,
PC(uid,sid), and to typecheck function addCommentSubmission.

We briefly overview the remaining typing rules. Rule (t-ref )
imposes a lower bound on the security level of the expression initial-
izing the reference allocation to the computational context security
level. Otherwise, illegal implicit flows could occur. For instance, in
let x = (if high then refτ⊥ low) in !x, we would be able
to observe that a new reference was allocated. Rule (t-deref ) sets
the reference’s security level as the lower bound for the deference’s
security level, to prevent implicit flows since references are typed
initially at security level⊥ but may raise to a different security level,
given the computational context. For instance,
let x = refτ⊥ low in (let y = (if high then x else ref>τ
0) in !y), would leak the value of high at low level, but does not
typecheck . In (t-assign), we require that the least upper bound of
the computational context security label and the reference’s security
level to be the lower bound of the content’s security level. This way
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one can safely type basic values and commands at the ⊥ level, even
at higher computational contexts.

5. Type Preservation and Non-Interference
In this section we present our main technical results: Theorem 5.4
(Type Preservation) - types are preserved by the reduction relation;
Theorem 5.5 (Progress) - well-typed expressions are either a value
or have a reduction step; and Theorem 5.11 (Non-interference)
- well-typed expressions preserve non-interference. Our results
establish that our system ensures that well-typed programs do not
leak confidential information under the security policy prescribed
by the assumed security lattice. In other words, data does not flow
from a security compartment to another if they are unrelated or if it
is a down-flow in the security lattice. For detailed proofs see [34].
Type Safety. We start by introducing some preliminary definitions.

Definition 5.1 (Store Consistency) Let ∆ be a typing environment
and S a store, we say store S is consistent with respect to typing
environment ∆, denoted as ∆ ` S, if dom(S) ⊆ dom(∆) and
∀l ∈ dom(S) then ∆ `rS S(l) : ∆(l).

Definition 5.2 (Well-typed Configuration) A configuration (S; e)
is well-typed in typing environment ∆ if ∆ ` S and ∆ `rS e:τ s.

Theorem 5.4 says that well-typed configurations remain well-typed
after a reduction step, and possibly the final configuration is ex-
tended with new locations in the state.

Lemma 5.3 (Substitution Lemma)
If ∆, x:τ ′s

′
`rSe:τ s and ∆`r

′
Sv:τ ′s

′
then ∆ `rS e{v/x}:(τ s){v/x}.

Theorem 5.4 (Type Preservation)
Let fv(e) ∪ fv(τ s) = ∅, vars(∆) = ∅, ∆ ` S and ∆ `rS e:τ s.

If (S; e) −→ (S′; e′) then there is ∆′ such that
∆′ `rS e′ : τ s, ∆′ ` S′ and ∆ ⊆ ∆′.

Theorem 5.5, states that well-typed programs never get stuck.

Theorem 5.5 (Progress)
Let ∆`rSe:τ s and ∆`S. If e is not a value then (S; e) −→ (S′; e′).

Noninterference Theorem. To develop our main noninterference
result, we now introduce some relevant concepts. The first is the
relation of store equivalence up to a security level s. Auxiliary
function redact(∆, S, s) returns the store obtained by “redacting"
(replacing with a dummy value ?) all stored values in S with security
level higher than s, or incomparable with s (detailed definitions in
[34]). Two well-typed stores S1, S2 are said to be equivalent up to
level s, written S1 =s S2, if redact(∆, S1, s) = redact(∆, S2, s).

Definition 5.6 (Store Equivalence) Let ∆ ` S1 and ∆ ` S2.
Then S1 is equivalent to S2 up to level s (written S1 =s S2)
if and only if redact(∆, S1, s) = redact(∆, S2, s).

Example 5.7 Assume user(42)#user(666), and let S1 and S2 be
stores containing location private_file. Also, let private_file
have type Σ[uid:⊥ × content:user(uid)] under typing environ-
ment ∆, which also types both stores.
Then if S1(private_file) = {(42, "xpto"), (666, "fire")},
and S2(private_file) = {(42, "puppies"), (666, "fire")}.
We have S1 =user(666) S2 since the values "xpto" and "puppies",
classified as user(42), are not visible at level user(666), because
redact(∆,S1,user(666)) = {(42,?),(666,"fire")} =
redact(∆,S2,user(666)).
However, S1 and S2 are not equivalent at security level user(42),
S1 =user(42) S2, since the values "xpto" and "puppies" are visible
at level user(42).
In fact, redact(∆,S1,user(42)) = {(42,"xpto"), (666,?)} 6=
{(42,"puppies"),(666,?) }=redact(∆,S2,user(42)).

(e-val)

∆ `rS1 v : τ s
′

∆ `rS2 v : τ s
′

∆ `rS1,S2 v
∼=s v : τ s′

(e-exprOpaque)

∆ `rS1 e1 : τ s
′

∆ `rS2 e2 : τ s
′

s < s′ u r

∆ `rS1,S2 e1
∼=s e2 : τ s′

(e-refineRecord)

∆ `rS1,S2 e
∼=s e′ : Σ[. . .×mj : τ

sj
j × . . .×mi : τ

`i(v)
i , . . .]s

′

S1{x
.
= e} |= x.mj

.
= v S2{x

.
= e′} |= x.mj

.
= v

∆ `rS1,S2 e
∼=s e′ : Σ[. . .×mj : τ

sj
j × . . .×mi : τ

`i(mj)

i , . . .]s′

(e-sub)

∆ `r′S1,S2 e
∼=s e′ : τ s

′′
τ s
′′
<: τ s

′
r ≤ r′

∆ `rS1,S2 e
∼=s e′ : τ s′

Figure 7: Equivalence of expressions up to level s (sample rules)

Useful to formulations of non-interference results is the introduction
of a relation of expression equivalence, relating expressions at the
same type and security level. Technically, program expressions e1
and e2 are equivalent up to level s if they only differ in subexpres-
sions classified at higher (or incomparable) security levels (being
indistinguishable to attackers constrained to see only up to level s).
We say two expressions, e1, e2, are equivalent up to a security level
s, asserted by ∆ `rS1,S2 e1 ∼=s e2:τ s

′
, if they compute the same

result under all stores equivalent up to s.

Definition 5.8 (Expression Equivalence) Expression equivalence
of e1 and e2 up to s is asserted by ∆ `rS1,S2 e1 ∼=s e2:τ s

′
.

Notice that two expressions may be equivalent up to level s even
if they are typed at a different level s′. We show key rules for
expression equivalence in Figure 7 (see [34] for the complete
definition). We may now present our non-interference theorems.

Lemma 5.9 (Non-interference Step) Let vars(∆) = ∅, ∆`S1,
∆`S2, S1=sS2, ∆ `rS1,S2 e1 ∼=s e2:τ s

′
. If (S1, e1) → (S′1, e

′
1)

and (S2, e2)→ (S′2, e
′
2), then exists ∆′ such that ∆ ⊆ ∆′, ∆′`S′1,

∆′`S′2, S′1=sS
′
2, ∆′ `rS1,S2 e

′
1
∼=s e

′
2:τ s

′
.

Proof: By induction on the derivation of ∆ `rS1,S2 e1 ∼=s e2:τ s
′
.

Lemma 5.9 states that if two equivalent programs can both perform
a step under stores that differ only on information with higher (or
incomparable) security level than s, then the resulting stores remain
indistinguishable up to security level s, and the resulting program
residuals remain equivalent at the same level.

Lemma 5.10 (Value-Step-Equivalence) Let ∆`rS1,S2v ∼=s e:τ
s′ ,

vars(∆) = ∅, ∆ ` S1, ∆ ` S2 and S1 =s S2. If (S2, e) −→
(S′2, e

′) then there is ∆′ such that ∆ ⊆ ∆′, ∆′ ` S1, ∆′ ` S′2,
S1 =s S

′
2 and ∆′ `rS1,S2 v ∼=s e

′:τ s
′

(and symmetrically).

We can then prove our non-interference theorem:

Theorem 5.11 (Non-interference) Let ∆ `rS1,S2 e1 ∼=s e2:τ s
′
,

with vars(∆) = ∅, ∆ ` S1, ∆ ` S2 and S1 =s S2. If
(S1, e1)

m−−→ (S′1, v1), and (S2, e2)
n−−→ (S′2, v2) then there

is ∆′ such that ∆ ⊆ ∆′, ∆′ ` S′1, ∆′ ` S′2, S′1 =s S
′
2 and

∆′ `rS1,S2 v1 ∼=s v2:τ s
′
.

Proof: By induction on m+n, using Lemma 5.9 in the case m > 0
and n > 0. For m = 0 and n > 0 we rely on Lemma 5.10.

Suppose we apply theorem Theorem 5.11 to a program e = e1 = e2
(so ∆ `rS1,S2 e ∼=s e:τ

s′ holds by reflexivity). Then, if s 6< s′,
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we must have v1 = v2 (since e-exprOpaque is not applicable to
derive ∆′ `rS1,S2 v1 ∼=s v2:τ s

′
). One can thus conclude that an

attacker “located" at security level s never distinguishes the result of
a program executed under stores that only differ in data that should
be considered confidential for level s (data classified at any level l
such that l 6≤ s.) We now illustrate our noninterference results.

Example 5.12 Recall our conference manager from Section 2, and
consider the following program that retrieves the profile of author
with uid 42 and then inserts a new profile in collection Users using
some of the information previously retrieved.

τc
def
= Σ[uid : ⊥× name : U(uid)× univ : U(uid)× email : U(uid)]

let Users = refref(τc)∗⊥ (refτc [] )::{} in

let p = first(viewUserProfile(42)) in
Users := [uid = 42, sid = p.sid, name = p.name,

unit = p.univ, email = p.email] :: !Users

Since the new record value is associating information of security
level U(42) (value p) with user id 42, this program should be deemed
secure and the noninterference property checked.

We apply the theorem to check. The evaluation of the assignment
operation is the relevant part of this program since the program does
not compute a value but changes the state at location Users. Thus,
to illustrate the compliance of the noninterference theorem, we will
just analyse this part of the program’s evaluation, referring back to
the assignment operation as expression e.
Assume U(42)#U(666), and let S1 and S2 be stores such that
S1(Users) = {(42,70, A1, A2, A3),(666,9,B1, B2, B3)} and
S2(Users) = {(42,70, C1, C2, C3),(666,9,B1, B2, B3)}.
We have S1 =U(666) S2 since the values Ai and Ci, classified as
U(42), are not visible at level U(666), by definition of store equiva-
lence and U(42)#U(666). Also, we have ∆ `rS1,S2 e

∼=U(666)e:cmd
⊥.

Let us, then, consider the reductions (S1; e) −→ (S′1; ()) and
(S2; e) −→ (S′2; ()). Then the resulting stores are the following

S′1(Users) = {(42,70,A1,A2,A3), (666,9,B1,B2,B3),
(42,70,A1,A2,A3)} and

S′2(Users) = {(42,70,C1,C2,C3), (666,9, B1,B2,B3),
(42,70,C1,C2,C3)}

which means noninterference is satisfied, because we have
redact(∆,S′1,U(666)) = {(42,70,?,?,?),(666,9,B1,B2,B3),
(42,70,?,?,?)} = redact(∆,S′2,U(666)).
That is, S′1 =U(666) S

′
2. So, the effects of expression e are not visible

at security level U(666), as expected.
Now consider a slight modification to the presented code, where

we replace expression e with another assignment operation (which
we shall refer as e′):

Users := [uid = 666, sid = p.sid, name = p.name,
unit = p.univ, email = p.email] :: !Users

Using subexpression e′ instead of e in the main program will
now associate the contents of the profile of author with id 42 to
a profile of author with id 666. This clearly violates confidentiality,
among other things, and is disallowed by the security lattice since
U(42)#U(666), so the program using this subexpression should be
considered insecure. Let us look this in detail.
Again, we have ∆ `rS1,S2 e

′ ∼=U(666) e
′:cmd⊥. After the reduction

steps (S1; e′) −→ (S′1; ()) and (S2; e′) −→ (S′2; ()), we have

S′1(Users) = {(42,70,A1,A2,A3), (666,9,B1,B2,B3),
(666,70,A1,A2,A3)} and

S′2(Users) = {(42,70,C1,C2,C3), (666,9, B1,B2,B3),
(666,70,C1,C2,C3)}

But now, S′1 6=U(666) S
′
2 since after executing e′ the values Ai and

Ci of the new record are observable at level U(666). This is captured
by the notion of store equivalence because now we have

redact(∆,S′1,U(666)) =
{(42,70,?,?,?), (666,9,B1,B2,B3), (666,70,A1,A2,A3)}
and
redact(∆,S′2,U(666)) =
{(42,70,?,?,?), (666,9,B1,B2,B3), (666,70,C1,C2,C3)}

As expected, the thesis of non-interference theorem is not satisfied.

Of course, insecure programs like Example 5.12 are rejected by
our type system. In this particular case, it would not be possible
to give the perhaps expected dependent type τc, to record [uid =
666, sid= p.sid, name = p.name, univ = p.univ, email =
p.email] using rule (t-refineRecord) because the security level of
p.name, p.univ, and p.email is U(42) but field uid has value 666.

6. Algorithmic Typechecking
We briefly discuss a type-checking algorithm for a suitable anno-
tated version of our core language (Figure 8, remaining cases in
[34]). The algorithm already allows us to verify many interesting
examples, including those in paper, and support a prototype imple-
mentation [35]. For pragmatic reasons, we require type annotations
on reference creation, record fields, and bound variables, leaving for
future work possible inference. We introduce type cast constructs,
of the forms [τ s]e and ]s[e, useful to manually up-classify primitive
values and raise the level of the computational context, respectively.

The algorithm depends on subsidiary procedures to check sub-
typing, which we represent by the σ <: τ tests, and on a constraint
solving procedure, which we represent by S |= V

.
= U tests. The

auxiliary procedure unref (S, [. . . ,mi:τ
si
i = ei, . . .]) eliminates

field dependencies on the given (possibly dependent) record type,
and returns an unrefined record type by attempting the most pre-
cise possible approximations to the field values vi given by each
expression ei, using S{x .

= ei} |= x
.
= vi.

The subtyping test essentially implements the subtyping rules,
given a suitable security lattice. In our prototype implementation the
security lattice can be user-defined, in a preamble to the code to be
type checked. As far as constraint solving is concerned, our current
prototype relies on an encoding of the required entailment checks
on queries for the Z3 SMT solver [7]. The completeness of the
algorithm is relative to the completeness of the required constraint
solving problem.

7. Related Work
Language-based information flow analysis has attracted substantial
research effort for a long time (see e.g., [22]). In early works the
focus was on imperative languages [23, 28], λ-calculus [1, 12, 21],
object-oriented languages [18], and concurrent languages [13, 30].
More recently, there has been a growing interest in studying secure
information flows in the context of data-centric applications, namely
in web scripting languages like Javascript (JS) as well as more
general-purpose data manipulation languages (DML). While the
work in this paper is not focused on reasoning about information flow
analysis for data-centric applications, our core language can easily
encode common DML high-level operation and thus our analysis
is general enough to ensure noninterference on such applications
involving expressive security policies, depending on runtime values
as often required in realistic applications.

Static approaches have also been employed for secure informa-
tion flows in data-centric applications, to cite a few of the relevant
work: [3–5, 15], these works do not provide any kind of value-
dependent information flow analysis, as we do here.
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tc(∆,S, r, true)
def
= Bool⊥

tc(∆,S, r, 1)
def
= Int⊥

tc(∆,S, r, x)
def
= ∆(x)

tc(∆,S, r, [τ s]e) def
= if tc(∆,S, r, e) <: τ s

then τ s else typerror

tc(∆,S, r, ]s[e) def
= if r ≤ s then tc(∆,S, s, e) else typerror

tc(∆,S, r, λ(x:τ s).e)
def
=

let σt = tc(∆ ∪ {x:τ s},S, r, e) in (Πx:τ s.r;σt)⊥

tc(∆,S, r, e1(e2))
def
=

if tc(∆,S, r, e1) = (Πx:τ s.r′;σt)q and
tc(∆,S, r, e2) <: τ s and r ≤ r′ then

if S |= e2
.
= v then σt{v/x} else σt{>/x}

else typerror

tc(∆,S, r, [. . . ,mi:τ sii = ei, . . .])
def
=

let Σ[. . .×mi:τ ′i
s′i× . . .]s = unref (S, [. . . ,mi:τ sii = ei, . . .])

in if (forall ei. σt
i = tc(∆,S, r, ei) and σt

i <: τ ′i
s′i)

then Σ[. . .×mi:τ sii × . . .]
s else typerror

tc(∆,S, r, e.m)
def
= let τ s = tc(∆,S, r, e) in

if τ = Σ[. . .×m:σ`(n)× . . .] then

( if S{f .
= e} |= f.n

.
= v then σ`(v) else σ`(>) )

else typerror

tc(∆,S, r, if e1 then e2 else e3)
def
=

let τ s = tc(∆,S, r, e1) in
if τ = Bool then
( let τ2s2 = tc(∆,S ∪ {e1

.
= true}, r t s, e2) in

let τ3s3 = tc(∆,S ∪ {e1
.
= false}, r t s, e3) in

if τ2 = τ3 then τ sts2ts32 else typerror
) else typerror

tc(∆,S, r, refτ s e)
def
= let σt = tc(∆,S, r, e) in

if σt <: τ s and r ≤ s then (refτ s )
⊥ else typerror

tc(∆,S, r, !e) def
= let σt = tc(∆,S, r, e) in

if σt <: (refτ s )
t and t ≤ s then τ s else typerror

tc(∆,S, r, e1 := e2)
def
= let σt = tc(∆,S, r, e1) in

let τ s = tc(∆,S, r, e2) in

if σt <: (refτ s )
t and r t t ≤ s then Cmd⊥ else typerror

Figure 8: Typechecking algorithm

Two interesting ideas put forward recently are the specification
of security policies that rely on runtime first-class representations
of principals, by Tse and Zdancewic [27], and security labels that
can dynamically change, by Zheng and Myers in [32]. The former is
based on the (seminal) decentralised label model (DLM) introduced
by Myers and Liskov in [19], and presents a typed λ-calculus where
principals are values and thus can be used during program execution,
for e.g. for conditional testing, increasing the expressiveness of the
security policy model. The authors also prove a noninterference
result for an information flow type system using this notion of
runtime principals. Although it is conceivable that some dynamically
enforced form of value dependent security label could be encoded in
some version of the DLM (e.g., using label passing [2]) in this work
we deliberately focus on a direct and lightweight static approach.

The second work, introduces a static type-based information flow
analysis where security labels can change during execution time
and are case-analysed via a label-test primitive. This construction
is used to add label constraints that are statically checked by the
type checker. In our work we do not consider runtime principals
nor dynamically changing labels but, instead, use runtime values
to index security labels to ensure data dependent security policies.

With our label model, we are able to specify security labels that
depend on the actual program’s (stored) data.

To the best of our knowledge, dependent information flow types
in the sense introduced here, leading to a general non-interference
theorem, are novel; we have no perspective on how to conveniently
and precisely express valued dependent security classification in
existing dependent type systems.

Several recent works explore applications of dependent types
[20, 25, 26] to language-based security in the context of stateful
static information flow. In [25] Swamy et. al. present FINE, a
general-purpose and very expressive dependently typed language
based on Fable [24], and suggest several encodings in the language
of high-level security concerns such as information flow and access
control policies. To express an information flow analysis in such
setting, the programmer is required to hardcode the security labels
as well as the lattice and all its operations/axioms (meet, join,
partial order relation, etc) into inductive types and logic formulae
within a module that internalizes the intended information flow
policy inside the framework. In [25] a value abstraction result is
presented, stating that code within a module does not interfere
with another module’s protected code, which is different from the
(standard) notion of noninterference used in our work, and does not
primitively and explicitly address the fundamental notion of value
dependent classification through dependent typing, which is the core
contribution of our work (which, in addition, covers a language
with general imperative features). Moreover, the use of dependent
types to express security properties in such line of work relies on
refinement types and relative logical encodings of meta properties,
which is very different from what we do here, that does not involve
refinement types, and adopts a simple and primitive notion of value
dependent classification directly at the level of the type structure,
leading to an absolute non-interference theorem.

In [20], Nanevski et. al., use a very expressive relational Hoare
type theory (RHTT) to reason about access control and information
flow in stateful programs. Besides standard dependent types, this
work introduces a special dependent type, STsec, to specify security
policies via pre and post-conditions, using higher-order logic formu-
lae capable of expressing heap union disjointness. The STsec type
is used to type potentially side-effectful operations, but the relevant
part w.r.t. to information flow analysis is the post-condition that
specifies the behaviour of two different runs of the program, relating
the outputs, input heaps and output heaps of any two terminating
executions of the program. Another interesting work, based on [26]
and [20], is RF∗ [33], where the authors introduce the notion of
relational refinement types. The key idea of relational refinement
types consists in extending classic refinement types to relational
formulae, which in turn enables to relate the left and right value of
every program variable in scope through projections L and R. With
this setting, the author’s type system is able to relate expressions at
a relational refined type that can describe the results of both expres-
sions. A distinguishing feature of these latter approaches is that data
is not classified with security labels (as expected from traditional
information flow analyses). Instead, and similarly to the approach
of [25], the noninterference property is expressed directly in the
post-condition via detailed assertions that relate the initial heap with
the final heap as well as the output values for any two runs of the
program. While it might be conceivable, in principle, to express
value-dependent information flow policies in such a framework, and
in fact, in any sufficiently expressive logical framework for imper-
ative programs supporting general functional properties, the goal
of our work follows a much lightweight and tractable type-based
approach, and aims to single out and address in a direct and explicit
way the core notion of value dependent information classification.

A concept of indexed security label was introduced in [17], as an
useful yet isolated feature to express security policies in a domain
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specific language with high-level monolithic data manipulation
operations, much less general and expressive than what we achieve
here. The developments in this paper put forward, in a principled way
and for the first time, the notion of data/state dependent information
flow in terms of a fairly canonical dependent type theory with first-
order sum and arrow types, defined by a set of simple type rules,
and for a parsimonious λ-calculus with references and collections.

Several proposals for dynamic information flow analysis on web
languages have been put forward such as [6, 9, 11, 14, 16, 31]. In
this work we focus on static certification techniques, developing the
new notion of dependent information flow types. In future work it
would be interesting to study combinations of static and dynamic
typing in the context of our dependent type system.

8. Concluding Remarks
In this paper, we have motivated, introduced and studied a novel
theory of dependent information flow types, which provide a direct,
natural and elegant way to express and statically enforce fine grained
security policies on programs. In our framework, the security level
of data types, rather than just the data types themselves, may depend
on runtime values, unlike in traditional dependent type systems. We
have illustrated, including by means of many examples, how the
proposed approach provides a general, expressive and fine grained
way to formulate realistic, yet challenging, security policies. Our
development is carried out on top of a minimalistic λ-calculus
with general references and collections, thus adding generality and
application scope to the approach. Our main technical results are
expressed by type safety and non-interference theorems, which
ensure the soundness of our value dependent information flow
analysis: well-typed programs do not disclose information in ways
violating the prescribed security polices.

Reasoning about the identity of dependent security labels, e.g,
necessary to eliminate dependent sum type field dependencies or
approximate dependent function argument values, requires runtime
values to be approximated by a given constraint system. It may also
be the case that the elimination of a dependent sum type results
in replacing field dependencies with another dependent sum type’s
field identifier (e.g., an assignment operation in a conditional’s
then branch whose logical condition relates the field dependency
with another record field, instead of a value), as long the final
type remains well-formed. The constraint system used to deduce
approximations of runtime values can only contain pure expressions
thus disallowing constraints containing dereferences, however, this
is a natural restriction that in our experience does not seem to limit
much the expressiveness of the approach, but that deserves further
study. We have also briefly discussed some algorithmic aspects of
our approach, that has led to a prototype implementation [35], which
can already be used to check examples, including those in this paper.

Adding variant types to our language is a trivial exercise, and
would be important also for practical reasons. It would be interesting
to investigate formulations of our type system integrating notions of
type refinement (e.g, [29]), and type inference. As another follow
up topic, as information flow analysis per se is not enough to
ensure full data security guarantees, we would like to investigate
the combination of our dependent information flow types with an
adequate form of role-based access control.
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