
On using VeriFast, VerCors, Plural, and KeY
to check object usage

João Mota, Marco Giunti, António Ravara

NOVA School of Science and Technology, Portugal

ECOOP 2023

Background

● Static analysis for objected-oriented programming (OOP)
● Underlying idea:

○ Objects have internal state that determines which operations are “safe”

○ E.g. a stack object in empty state does not support pop operation

○ Set of available operations changes with time, e.g. method n is not available until
after method m has been called

● This approach has been pursued under several names, e.g.

○ Typestates

○ Non-uniform objects

2

Typestates

● Typestates define object’s behavior in terms of a state machine: a
method execution is described as a state transition

● A typestate associated to a class can be seen as the protocol that
instances must follow

3

while (iterator.hasNext()) {
Object value = iterator.next();

}

?hasNext

!false

!true

?next

Safety of protocols = compliance + completion

Well-typed programs inherit the following protocol properties:

● Compliance: methods called in correct order

● E.g. x.next() always “encapsulated” in context if x.hasNext(){e1; ❍; e2;} else e3
where e1 does not change the state of x

● Completion: when the program terminates, all protocols have “ended”

4

?hasNext

!false

!true

?next

while (iterator.hasNext()) {
Object value = iterator.next();

}

Main limitation: sharing not supported

● Static analysis based on typestates or uniform objects typically relies
on ownership control: objects’ behaviour is strictly linear

● Main limitation: objects cannot be stored in shared data structures

● Typical unhandled scenarios: a file reader; a collection of file
readers; an iterator

● Several less extreme techniques for control of aliasing have been
studied, but can we use them while relying on typestates?

5

Research challenge

● We are interested in (re-)using static analysis tools and
techniques for OOP

● Requirements -- the program analysis must:

○ Be instrumented to use typestate-based reasoning in order to ensure protocol
compliance and completion

○ Support sharing

● This talk:

○ We assess whether this can be done in four mature Java tools
6

Outline

● Research methodology

● Use cases:

● File reader
● Singly-linked list with double handle (head and tail)
● Iterator

● Experiments

● Assessment

7

Methodology: Research Question (RQ)

Are current static verification tools capable of verifying:

● Protocol compliance
● Protocol completion

even when objects are shared in collections?

8

Methodology: state-of-the-art Java tools

9

Description Specifications / Underlying logic Interactivity Active

VeriFast Modular verifier for C and
Java

Separation logic + Fractional
permissions

IDE Yes

VerCors Modular verifier for C, Java,
OpenCL and PVL

Permission-based concurrent
separation logic + Fractional
permissions

None Yes

KeY Verifier for sequential Java
programs

JML + First-order dynamic logic Interactive
theorem prover

Yes

Plural Eclipse plugin to verify Java
code

Typestates + Access permissions None No

We report our experience on using four tools for Java:

Methodology: RQ assessment

● RQ: Can tools ensure protocol compliance and completion,
even with objects shared in collections?

● Identify elaborated use cases and stress the tools in order to
positively answer to the RQ

● Evaluate the programmer’s effort

10

Use cases: File Reader’s protocol

11

FileReader file = new FileReader();

file.open();

while (!file.eof()) {

file.read();

}

file.close();

Closed ∈
Ended_states

Initial_state
= Init

Use cases: Linked-list with double handle (2-Linked-list)

12

head tail

null

Singly-linked list with double-handle: list has head and tail fields

next next next next

• Tail field efficient to add
entries; structure useful
e.g. to implement queues

• Challenging for interplay
between ownership and
aliasing: next and tail
might be aliases

Use cases: Iterator

13

while (iterator.hasNext()) {
Object value = iterator.next();

}

public class Iterator {

private Node curr;

public Iterator(Node head) {
curr = head;

}

public boolean hasNext() {
return curr != null;

}
public Object next() {

Object value = curr.value;

curr = curr.next;
return value;

}
}

Usage example: consuming a list of file readers

static void main() {
LinkedList list = new LinkedList();

FileReader f1 = new FileReader("a.txt");

FileReader f2 = new FileReader("b.txt");

FileReader f3 = new FileReader("c.txt");

list.add(f1);
list.add(f2);

list.add(f3);

useFiles(list);

}

14

Pre-condition: all files in the list in the Init state

Post-condition: all files in the list in the closed state

static void useFiles(LinkedList list){

LinkedListIterator it = list.iterator();

while (it.hasNext()) {
FileReader f = it.next();

f.open();

while (!f.eof()) f.read();
f.close();

}
}

Experiments: encoding FileReader’s protocol
Protocol states are encoded with:

● A runtime state field (VeriFast)
● A ghost state field (VerCors, KeY)
● Typestates (Plural)

Protocol steps are encoded with
method annotations in all tools.

15

private int state; //VeriFast

//@ ghost private int state; //VerCors

/*@ ghost private spec_public int state;*/ //Key

@Refine({
@States(value={"init", "opened", "closed"}, refined="alive"),
@States(value={"eof", "notEof"}, refined="opened")

}) //Plural

//@ requires filereader(this, STATE_INIT, _); //VeriFast
//@ ensures filereader(this, STATE_OPENED, _); //VeriFast

//@ requires state == 1; //VerCors
//@ ensures state == 2; //VerCors

/*@ requires state == STATE_INIT;
ensures state == STATE_OPENED; @*/ //Key

@Unique(requires="init", ensures="opened") //Plural

Experiments: encoding 2-Linked-list & Iterator’s protocols

VeriFast, VerCors, KeY
We represent the structure (memory

footprint) of the list and iterator using:
● Separation logic (VeriFast, VerCors)
● First-order dynamic logic (KeY)

We reason about the state of the 2-linked-
list with a ghost sequence of values.

We reason about the state of the iterator
with:

● A current node field
● A ghost sequence of values seen
● A ghost sequence of values to see

16

Plural
● Challenge: how to represent the memory footprint in a

model with only typestates and access permissions?

● Encoding
● The list has exclusive access (via unique) to the

first node
● Each node has exclusive access to the next node
● We use unique to enforce that the list is not circular

● Limitation: as in Rust, we cannot implement a 2-
linked-list using both a head and a tail (mutable
fields next and tail might be aliases)

● We can’t “transfer” the permission (cf. Sep. logic)

RQ Assessment: protocol compliance and completion

Compliance is assessed by:
● Verify that only the allowed methods in each state can be called
● VeriFast, VerCors, and KeY:

○ By means of pre-conditions and post-conditions
● Plural

○ By means of typestate abstraction directly supported

Completion is assessed by:
● Checking that if and when the program terminates, all the objects are in

the ended states of their protocols
17

RQ Assessment: use cases’ compliance

Can we implement solutions to compliance for the the use cases?

● File reader

○ Successfully implemented in all tools

● 2-Linked-list and iterator

○ Successfully implemented in VeriFast, VerCors, and KeY:

● VeriFast and VerCors: deductive reasoning was often required
● KeY: often results required interactivity
● In all three: there was specification burden

18

Example: detection of non-compliance in Plural

19

FileReader f = new FileReader();

f.open();

while (f.eof()) { // bug! The guard should be !f.eof()
f.read(); // expected error: argument this must be in state [notEof] but is in [eof]

}

f.close(); // expected error: argument this must be in state [eof] but is in [notEof]

Plural successfully detects when protocol compliance does not hold

RQ Assessment: use cases’ completion

Can we implement solutions to completion for the use cases?

With workarounds, we verify protocol completion in

VeriFast, VerCors, and KeY:

● VeriFast and VerCors: with ghost counters counting active file readers
● KeY: with universal quantification

We could not verify completion in Plural
● permissions may be “dropped” and we cannot overcome the issue as we

did in the other tools by relying on deductive reasoning (e.g. to count the
number of active objects)

20

Example: useFiles completion in VeriFast
public static void useFiles(LinkedList list)

//@ requires list != null &*& llist(list, _, _, ?l) &*& tracker(length(l)) &*& foreachp(l, INV(FileReader.STATE_INIT));

//@ ensures list != null &*& llist(list, _, _, l) &*& tracker(0) &*& foreachp(l, INV(FileReader.STATE_CLOSED));

{

LinkedListIterator it = list.iterator();

while (it.hasNext())

/*@ invariant

it != null &*& iterator(list, it, _, l, ?a, ?b) &*& tracker(length(b)) &*&

foreachp(a, INV(FileReader.STATE_CLOSED)) &*&

foreachp(b, INV(FileReader.STATE_INIT));

@*/

{

FileReader f = it.next();

//@ open foreachp(b, _);

//@ open INV(FileReader.STATE_INIT)(f);

f.open();

while (!f.eof()) //@ invariant f != null &*& filereader(f, FileReader.STATE_OPENED, _);

{ //@ open filereader(f, _, _);

f.read();

}

f.close();

//@ close foreachp(nil, INV(FileReader.STATE_CLOSED));

//@ close foreachp(cons(f, nil), INV(FileReader.STATE_CLOSED));

//@ foreachp_append(a, cons(f, nil));

}

//@ dispose_iterator(it);

}

21

Receive a list with file
readers in the Init state
and finish their protocol

Return the permission to the list the iterator got

All seen files are closed,
the others are at the init state

counter at 0

RQ assessment: summary

22

Protocol compliance Protocol completion

VeriFast Yes, but with effort Yes, but with workarounds

VerCors Yes, but with effort Yes, but with workarounds

KeY Yes, but with effort Yes, but with workarounds

Plural Yes for the file reader, with no effort.
We could not implement a 2-Linked-
list

No, but could be done by allowing only
permissions for ended objects to be “dropped”

RQ: Are current static verification tools capable of verifying protocol compliance and completion even
when objects are shared in collections?

Discussion

● In state-of-the-art OOP tools, protocols are not first-class
entities: they are usually encoded with method contracts

● First-class protocols would make reasoning on relevant
properties more easy than on lower level encodings

● Our previous experience on typestate-checking Java programs in
the presence of inheritance* (but without sharing) confirms this
intuition

(*) Bacchiani et al. A Java typestate checker supporting inheritance.
Sci. Comput. Program. 221 (2022)

24

Discussion

We motivate the need for lightweight methods to statically guarantee:

● protocol compliance
● protocol completion

in the presence of several patterns of sharing

(like objects with protocol stored in collections)

while supporting OOP features as inheritance, upcast/downcast,

generics, … 25

Thank you!

(running examples: github.com/jdmota/tools-examples)

26

