
To appear in EPTCS.

Type Congruence, Duality, and Iso-Recursive Session Types

Marco Giunti
University of Oxford, UK

Nobuko Yoshida
University of Oxford, UK

Session types [17, 31, 18] are an effective method to control the behaviour of software components that
run in message-passing distributed systems. In most works on session types, recursive types follow an
equi-recursive view [27] and represent infinite trees that are manipulated co-inductively. This represen-
tation does not have a direct counterpart in non-lazy programming languages, which typically resort to
iso-recursive types [1, 27] that are manipulated inductively. Moreover, lazy evaluation of predicates on
equi-recursive trees might not terminate, and is thus not effective for static program analysis. In practice,
session types are embedded in non-lazy languages by encoding equi-recursive types; for instance, [20]
defines infinite sequence of types as polymorphic lenses [9] by using OCaml GADTs.

Our proposal to overcome this problem consists in introducing a theory of iso-recursive session types
relying on a type system that uses a novel notion of type congruence to relate the types of dual sessions.
This contribution complements recent results [14] presenting a theory of iso-recursive multiparty session
types. The paper [14] follows the bottom-up approach known as generalised multiparty session types,
e.g. [21, 30, 29, 2, 12, 26, 16, 3], and decides deadlock-freedom without using global types. Differently
from previous work, it considers iso-recursive types and computes the properties of session environments
in the type system, instead of assessing these properties with model checkers (cf. [29]).

In this talk, we type check the parallel composition of sessions typed with folded and unfolded dual
iso-recursive session types by means of a type congruence on types. We mechanise type congruence in
Coq [6] without resorting to coinductive types, and use the proof assistant to establish two key properties
of type congruence: closure under (i) session type duality and (ii) labelled transitions of types.

Iso-recursive sessions. The syntax of types and processes is below. We consider contractive [27]
iso-recursive types of the form µX .T where µX .T and its unfolding are not equal, but isomorphic. We
stress that types have a finite representation rather than abstract infinite trees (cf. equi-recursive types).

S ∋ S := nat | int | str | bool | unit Sorts
T ∋ T := r!l(S).T | r?l(S).T | T +T | end | µX .T | X | ⊥ Types
P ∋ P := r!l⟨e⟩.P | r?l(x).P | P+P | µχ.P | χ | if e then P else Q | 0 Processes
M ∋ M := r◁P | (p◁P ∥ p◁Q) Sessions

We use p,q,r to range over participants, l to range over labels, X to range over type variables,
e to range over expressions, v to range over values, x to range over variables, and χ to range over
process variables. We assume an involution r. Type ⊥ is reserved for closing the composition of two
threads [18]. The constructor µ is a binder in types and processes; the remaining binder for processes
is input. Free variables are those that are not bound; closed terms are those without free variables. We
assume the substitution of free occurrences of a type variable X in a type T1 with a closed type T2, written
T1{T2/X}; similarly, we assume the process substitution P1{P2/χ} whenever P2 is closed. The labelled
transition semantics of sessions M rely on structural equivalence to swap the order of threads; most rules
are standard [15]. We note that recursive sessions r◁µχ.P are silently unfolded to r◁P{µχ.P/χ}.

Type congruence. Following [23, Chapter 4], we let type congruence be the union of all symmetric
equivalences. We devise a notion of type equivalence that is tailored at equating folded and unfolded well-
formed types (WF(T) [15, App. A]). A relation R ⊆T ×T is a type equivalence whenever T1 R T2 and

2 Iso-Recursive Session Types

(i) T1 = µX .U1 and T2 = µX .U2 imply U1 RU2 and U1{µX .U1/X}R T2 and T1 RU2{µX .U2/X}
(ii) T1 = µX .U1 and T2 ̸= µX .U2 imply U1{µX .U1/X}R T2
(iii) T1 ̸= µX .U1 and T2 = µX .U2 imply T1 RU2{µX .U2/X}

The remaining cases are homomorphic. A relation R ⊆T ×T is a structural equivalence whenever
it is (i) a type equivalence and (ii) symmetric. Type congruence, noted ≡⊆ T ×T , is the union of all
structural equivalences. The mechanisation of types in Coq takes advantage of iso-recursion and does
not rely on the command CoInductive (cf. [7]). The mechanisation of type congruence follows.
Notation X £ T := (substT T X (typ_mu X T)) (at level 40).
Definition equiv R := ∀ t1 t2, R t1 t2 → match t1, t2 with

| typ_mu X1 U1, typ_mu X2 U2 ⇒ R U1 U2 ∧ R (X1 £ U1) t2 ∧ R t1 (X2 £ U2)
| typ_mu X U, _ ⇒ R (X £ U) t2 | _, typ_mu X U ⇒ R t1 (X £ U) | · · · end.

Definition struct_equiv R := equiv R ∧ symmetric typ R. Definition typ_scongr := union_st typ typ struct_equiv.
Notation ”T1 == T2” := (typ_scongr T1 T2) (at level 40). Check equiv_scongr. equiv_scongr : equiv typ_scongr
Check exist_se. exist_se : ∀ (R : typ → typ→ Prop) (t1 t2 : typ), struct_equiv R → R t1 t2 → t1 == t2
Ltac prove_scongr R := match goal with | ⊢ ?W1 == ?W2 ⇒ eapply (exist_se R); eauto end.

Type system and subject reduction. Let Γ map variables to sorts and process variables to types. We
consider a type system for processes, noted Γ ⊢ P : T , and a type system for sessions, noted Γ ⊩ M : T .
The system ⊩ only invokes the system ⊢ with well-formed types. The process rules depicting the essence
of iso-recursive session types are the following:

T-REC
Γ,χ : µX .T ⊢ P : T{µX .T/X}

Γ ⊢ µχ.P : µX .T
T-VAR

Γ(χ) = µX .T
Γ ⊢ χ : µX .T

Note the difference with equi-recursive systems [11], where T-REC requires that the type of µχ.P
and of P are equal, because µX .T and T{µX .T/X} are equal. The rule for typing a session composition
is defined as follows, where type duality, noted T , is syntactic rather than coinductive [10, 13].

Γ ⊢ P : T1 and Γ ⊢ Q : T2 and WF(T1) and WF(T2) and T1 ≡ T2 imply Γ ⊩ p◁P ∥ p◁Q : ⊥
The proof of subject reduction relies on a transition system of types, noted T

α

−→ T ′. Recursive types
µX .T silently reach T{µX .T/X}. The proof stands on two mechanised results on type congruence.
Lemma Let α1Dα2 be action duality.

(i) T1 ≡ T2 implies T1 ≡ T 2

(ii) WF(T1) and WF(T2) and T1 ≡ T2 and α1 D α2 and T1
α1
−→ U1 and T2

α2
−→ U2 imply U1 ≡U2

The substitution of recursive processes at execution time preserves typing; the result is mechanised.
Lemma (Process Substitution) If Γ,χ : T ⊢ P : U and Γ ⊢ Q : T then Γ ⊢ P{Q/χ} : U.

Subject reduction also relies on value substitution, and on type preservation of structural congruence;
the last result is mechanised. Case (i) occurs when (2) is inferred from the reduction of an if-then-else
process. The mechanisation of subject reduction is ongoing. The proof of the theorem is closed; it is left
to prove intermediate results used in the proof on type well-formedness and on value substitution.

Theorem (Subject Reduction) Let M be a closed session and assume (1) Γ⊩M : T and (2) M
α

−→ M ′.

We have (i) Γ ⊩ M ′ : T or (ii) T
α

−→ T ′ and Γ ⊩ M ′ : T ′.

Related Work. Only few works follow an iso-recursive approach to session types. Recently [14, 15] we
introduced iso-recursive multiparty session types and automatically verified [25, 5, 8] the properties of a
function deciding the soundness of compositions. [19] studies iso-recursive and equi-recursive subtyping
for binary session propositions with least and greatest fixed points [4, 32]. Many recent papers [33, 34,
35, 36, 28, 24, 22] present iso-recursive variants of the λ -calculus, following the seminal work on Amber
rules [1]. Pierce [27] discusses the differences between iso-recursive and equi-recursive types.

M. Giunti and N. Yoshida 3

References

[1] Martín Abadi & Luca Cardelli (1996): A Theory of Objects. Monographs in Computer Science, Springer,
doi:10.1007/978-1-4419-8598-9.

[2] Adam D. Barwell, Alceste Scalas, Nobuko Yoshida & Fangyi Zhou (2022): Generalised Multiparty
Session Types with Crash-Stop Failures. In Bartek Klin, Slawomir Lasota & Anca Muscholl, edi-
tors: 33rd International Conference on Concurrency Theory, CONCUR 2022, September 12-16, 2022,
Warsaw, Poland, LIPIcs 243, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 35:1–35:25,
doi:10.4230/LIPICS.CONCUR.2022.35.

[3] Matthew Alan Le Brun & Ornela Dardha (2023): MAGπ: Types for Failure-Prone Communication. In
Thomas Wies, editor: Programming Languages and Systems - 32nd European Symposium on Programming,
ESOP 2023, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2023, Paris, France, April 22-27, 2023, Proceedings, Lecture Notes in Computer Science 13990, Springer,
pp. 363–391, doi:10.1007/978-3-031-30044-8_14.

[4] Luís Caires & Frank Pfenning (2010): Session Types as Intuitionistic Linear Propositions. In Paul Gastin &
François Laroussinie, editors: CONCUR 2010 - Concurrency Theory, 21th International Conference, CON-
CUR 2010, Paris, France, August 31-September 3, 2010. Proceedings, Lecture Notes in Computer Science
6269, Springer, pp. 222–236, doi:10.1007/978-3-642-15375-4_16.

[5] Arthur Charguéraud, Jean-Christophe Filliâtre, Cláudio Lourenço & Mário Pereira (2019): GOSPEL - Pro-
viding OCaml with a Formal Specification Language. In Maurice H. ter Beek, Annabelle McIver & José N.
Oliveira, editors: Formal Methods - The Next 30 Years - Third World Congress, FM 2019, Porto, Portu-
gal, October 7-11, 2019, Proceedings, Lecture Notes in Computer Science 11800, Springer, pp. 484–501,
doi:10.1007/978-3-030-30942-8_29.

[6] Coq development team: Reference manual. Available at https://coq.inria.fr/doc/V8.20.0/
refman/.

[7] Burak Ekici & Nobuko Yoshida (2024): Completeness of Asynchronous Session Tree Subtyping in Coq. In
Yves Bertot, Temur Kutsia & Michael Norrish, editors: 15th International Conference on Interactive Theorem
Proving, ITP 2024, September 9-14, 2024, Tbilisi, Georgia, LIPIcs 309, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, pp. 13:1–13:20, doi:10.4230/LIPICS.ITP.2024.13.

[8] Jean-Christophe Filliâtre & Andrei Paskevich (2013): Why3 - Where Programs Meet Provers. In Matthias
Felleisen & Philippa Gardner, editors: Programming Languages and Systems - 22nd European Symposium
on Programming, ESOP 2013, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, Lecture Notes in Computer Science
7792, Springer, pp. 125–128, doi:10.1007/978-3-642-37036-6_8.

[9] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce & Alan Schmitt (2007):
Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem. ACM
Trans. Program. Lang. Syst. 29(3), p. 17, doi:10.1145/1232420.1232424.

[10] Simon J. Gay & Malcolm Hole (2005): Subtyping for session types in the pi calculus. Acta Informatica
42(2-3), pp. 191–225, doi:10.1007/S00236-005-0177-Z.

[11] Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas & Nobuko Yoshida (2019): Precise
subtyping for synchronous multiparty sessions. J. Log. Algebraic Methods Program. 104, pp. 127–173,
doi:10.1016/J.JLAMP.2018.12.002.

[12] Silvia Ghilezan, Jovanka Pantović, Ivan Prokić, Alceste Scalas & Nobuko Yoshida (2023): Precise Subtyping
for Asynchronous Multiparty Sessions. ACM Trans. Comput. Logic 24(2), doi:10.1145/3568422.

[13] Marco Giunti & Vasco Thudichum Vasconcelos (2016): Linearity, session types and the Pi calculus. Math.
Struct. Comput. Sci. 26(2), pp. 206–237, doi:10.1017/S0960129514000176.

https://doi.org/10.1007/978-1-4419-8598-9
https://doi.org/10.4230/LIPICS.CONCUR.2022.35
https://doi.org/10.1007/978-3-031-30044-8_14
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-030-30942-8_29
https://coq.inria.fr/doc/V8.20.0/refman/
https://coq.inria.fr/doc/V8.20.0/refman/
https://doi.org/10.4230/LIPICS.ITP.2024.13
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1007/S00236-005-0177-Z
https://doi.org/10.1016/J.JLAMP.2018.12.002
https://doi.org/10.1145/3568422
https://doi.org/10.1017/S0960129514000176

4 Iso-Recursive Session Types

[14] Marco Giunti & Nobuko Yoshida (2025): Iso-Recursive Multiparty Sessions and their Automated Verifica-
tion. In: 34th European Symposium on Programming (ESOP 2025), Lecture Notes in Computer Science,
Springer. To appear: full version [15].

[15] Marco Giunti & Nobuko Yoshida (2025): Iso-Recursive Multiparty Sessions and their Automated Verification
– Technical Report, doi:10.48550/ARXIV.2501.17778. arXiv:2501.17778.

[16] Paul Harvey, Simon Fowler, Ornela Dardha & Simon J. Gay (2021): Multiparty Session Types for Safe
Runtime Adaptation in an Actor Language. In Anders Møller & Manu Sridharan, editors: 35th Euro-
pean Conference on Object-Oriented Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark
(Virtual Conference), LIPIcs 194, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 10:1–10:30,
doi:10.4230/LIPIcs.ECOOP.2021.10.

[17] Kohei Honda (1993): Types for Dyadic Interaction. In Eike Best, editor: CONCUR ’93, 4th International
Conference on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993, Proceedings, Lecture Notes
in Computer Science 715, Springer, pp. 509–523, doi:10.1007/3-540-57208-2_35.

[18] Kohei Honda, Vasco Thudichum Vasconcelos & Makoto Kubo (1998): Language Primitives and Type Disci-
pline for Structured Communication-Based Programming. In Chris Hankin, editor: Programming Languages
and Systems - ESOP’98, 7th European Symposium on Programming, Held as Part of the European Joint
Conferences on the Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998,
Proceedings, Lecture Notes in Computer Science 1381, Springer, pp. 122–138, doi:10.1007/BFB0053567.

[19] Ross Horne & Luca Padovani (2024): A logical account of subtyping for session types. J. Log. Algebraic
Methods Program. 141, p. 100986, doi:10.1016/J.JLAMP.2024.100986.

[20] Keigo Imai, Rumyana Neykova, Nobuko Yoshida & Shoji Yuen (2020): Multiparty Session Program-
ming With Global Protocol Combinators. In Robert Hirschfeld & Tobias Pape, editors: 34th Euro-
pean Conference on Object-Oriented Programming, ECOOP 2020, November 15-17, 2020, Berlin, Ger-
many (Virtual Conference), LIPIcs 166, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 9:1–9:30,
doi:10.4230/LIPICS.ECOOP.2020.9.

[21] Julien Lange, Nicholas Ng, Bernardo Toninho & Nobuko Yoshida (2018): A static verification framework
for message passing in Go using behavioural types. In Michel Chaudron, Ivica Crnkovic, Marsha Chechik
& Mark Harman, editors: Proceedings of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018, ACM, pp. 1137–1148, doi:10.1145/3180155.3180157.

[22] Jay Ligatti, Jeremy Blackburn & Michael Nachtigal (2017): On Subtyping-Relation Completeness,
with an Application to Iso-Recursive Types. ACM Trans. Program. Lang. Syst. 39(1), pp. 4:1–4:36,
doi:10.1145/2994596.

[23] Robin Milner (1989): Communication and concurrency. PHI Series in computer science, Prentice Hall.

[24] Marco Patrignani, Eric Mark Martin & Dominique Devriese (2021): On the semantic expressiveness of
recursive types. Proc. ACM Program. Lang. 5(POPL), pp. 1–29, doi:10.1145/3434302.

[25] Mário Pereira & António Ravara (2021): Cameleer: A Deductive Verification Tool for OCaml. In Alexandra
Silva & K. Rustan M. Leino, editors: Computer Aided Verification - 33rd International Conference, CAV
2021, Virtual Event, July 20-23, 2021, Proceedings, Part II, Lecture Notes in Computer Science 12760,
Springer, pp. 677–689, doi:10.1007/978-3-030-81688-9_31.

[26] Kirstin Peters & Nobuko Yoshida (2024): Separation and Encodability in Mixed Choice Multiparty Sessions.
In Pawel Sobocinski, Ugo Dal Lago & Javier Esparza, editors: Proceedings of the 39th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2024, Tallinn, Estonia, July 8-11, 2024, ACM, pp. 62:1–
62:15, doi:10.1145/3661814.3662085.

[27] Benjamin C. Pierce (2002): Types and programming languages. MIT Press.

[28] Andreas Rossberg (2023): Mutually Iso-Recursive Subtyping. Proc. ACM Program. Lang. 7(OOPSLA2), pp.
347–373, doi:10.1145/3622809.

[29] Alceste Scalas & Nobuko Yoshida (2019): Less is more: multiparty session types revisited. Proc. ACM
Program. Lang. 3(POPL), pp. 30:1–30:29, doi:10.1145/3290343.

https://doi.org/10.48550/ARXIV.2501.17778
https://arxiv.org/abs/2501.17778
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFB0053567
https://doi.org/10.1016/J.JLAMP.2024.100986
https://doi.org/10.4230/LIPICS.ECOOP.2020.9
https://doi.org/10.1145/3180155.3180157
https://doi.org/10.1145/2994596
https://doi.org/10.1145/3434302
https://doi.org/10.1007/978-3-030-81688-9_31
https://doi.org/10.1145/3661814.3662085
https://doi.org/10.1145/3622809
https://doi.org/10.1145/3290343

M. Giunti and N. Yoshida 5

[30] Alceste Scalas, Nobuko Yoshida & Elias Benussi (2019): Verifying message-passing programs with depen-
dent behavioural types. In Kathryn S. McKinley & Kathleen Fisher, editors: Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019, Phoenix, AZ,
USA, June 22-26, 2019, ACM, pp. 502–516, doi:10.1145/3314221.3322484.

[31] Kaku Takeuchi, Kohei Honda & Makoto Kubo (1994): An Interaction-based Language and its Typing System.
In Constantine Halatsis, Dimitris G. Maritsas, George Philokyprou & Sergios Theodoridis, editors: PARLE
’94: Parallel Architectures and Languages Europe, 6th International PARLE Conference, Athens, Greece,
July 4-8, 1994, Proceedings, Lecture Notes in Computer Science 817, Springer, pp. 398–413, doi:10.1007/3-
540-58184-7_118.

[32] Philip Wadler (2014): Propositions as sessions. J. Funct. Program. 24(2-3), pp. 384–418,
doi:10.1017/S095679681400001X.

[33] Litao Zhou & Bruno C. d. S. Oliveira (2025): QuickSub: Efficient Iso-Recursive Subtyping. Proc. ACM
Program. Lang. 9(POPL), doi:10.1145/3704869.

[34] Litao Zhou, Qianyong Wan & Bruno C. d. S. Oliveira (2024): Full Iso-Recursive Types. Proc. ACM Program.
Lang. 8(OOPSLA2), pp. 192–221, doi:10.1145/3689718.

[35] Litao Zhou, Yaoda Zhou & Bruno C. d. S. Oliveira (2023): Recursive Subtyping for All. Proc. ACM Program.
Lang. 7(POPL), pp. 1396–1425, doi:10.1145/3571241.

[36] Yaoda Zhou, Jinxu Zhao & Bruno C. d. S. Oliveira (2022): Revisiting Iso-Recursive Subtyping. ACM Trans.
Program. Lang. Syst. 44(4), pp. 24:1–24:54, doi:10.1145/3549537.

https://doi.org/10.1145/3314221.3322484
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1145/3704869
https://doi.org/10.1145/3689718
https://doi.org/10.1145/3571241
https://doi.org/10.1145/3549537

