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Session types [17, 31, 18] are an effective method to control the behaviour of software components that
run in message-passing distributed systems. In most works on session types, recursive types follow an
equi-recursive view [27] and represent infinite trees that are manipulated co-inductively. This represen-
tation does not have a direct counterpart in non-lazy programming languages, which typically resort to
iso-recursive types [1, 27] that are manipulated inductively. Moreover, lazy evaluation of predicates on
equi-recursive trees might not terminate, and is thus not effective for static program analysis. In practice,
session types are embedded in non-lazy languages by encoding equi-recursive types; for instance, [20]
defines infinite sequence of types as polymorphic lenses [9] by using OCaml GADTs.

Our proposal to overcome this problem consists in introducing a theory of iso-recursive session types
relying on a type system that uses a novel notion of type congruence to relate the types of dual sessions.
This contribution complements recent results [14] presenting a theory of iso-recursive multiparty session
types. The paper [14] follows the bottom-up approach known as generalised multiparty session types,
e.g. [21, 30, 29, 2, 12, 26, 16, 3], and decides deadlock-freedom without using global types. Differently
from previous work, it considers iso-recursive types and computes the properties of session environments
in the type system, instead of assessing these properties with model checkers (cf. [29]).

In this talk, we type check the parallel composition of sessions typed with folded and unfolded dual
iso-recursive session types by means of a type congruence on types. We mechanise type congruence in
Coq [6] without resorting to coinductive types, and use the proof assistant to establish two key properties
of type congruence: closure under (i) session type duality and (ii) labelled transitions of types.

Iso-recursive sessions. The syntax of types and processes is below. We consider contractive [27]
iso-recursive types of the form µX .T where µX .T and its unfolding are not equal, but isomorphic. We
stress that types have a finite representation rather than abstract infinite trees (cf. equi-recursive types).

S ∋ S := nat | int | str | bool | unit Sorts
T ∋ T := r!l(S).T | r?l(S).T | T +T | end | µX .T | X | ⊥ Types
P ∋ P := r!l⟨e⟩.P | r?l(x).P | P+P | µχ.P | χ | if e then P else Q | 0 Processes
M ∋ M := r◁P | (p◁P ∥ p◁Q) Sessions

We use p,q,r to range over participants, l to range over labels, X to range over type variables,
e to range over expressions, v to range over values, x to range over variables, and χ to range over
process variables. We assume an involution r. Type ⊥ is reserved for closing the composition of two
threads [18]. The constructor µ is a binder in types and processes; the remaining binder for processes
is input. Free variables are those that are not bound; closed terms are those without free variables. We
assume the substitution of free occurrences of a type variable X in a type T1 with a closed type T2, written
T1{T2/X}; similarly, we assume the process substitution P1{P2/χ} whenever P2 is closed. The labelled
transition semantics of sessions M rely on structural equivalence to swap the order of threads; most rules
are standard [15]. We note that recursive sessions r◁µχ.P are silently unfolded to r◁P{µχ.P/χ}.

Type congruence. Following [23, Chapter 4], we let type congruence be the union of all symmetric
equivalences. We devise a notion of type equivalence that is tailored at equating folded and unfolded well-
formed types (WF(T ) [15, App. A]). A relation R ⊆T ×T is a type equivalence whenever T1 R T2 and
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(i) T1 = µX .U1 and T2 = µX .U2 imply U1 RU2 and U1{µX .U1/X}R T2 and T1 RU2{µX .U2/X}
(ii) T1 = µX .U1 and T2 ̸= µX .U2 imply U1{µX .U1/X}R T2
(iii) T1 ̸= µX .U1 and T2 = µX .U2 imply T1 RU2{µX .U2/X}

The remaining cases are homomorphic. A relation R ⊆T ×T is a structural equivalence whenever
it is (i) a type equivalence and (ii) symmetric. Type congruence, noted ≡⊆ T ×T , is the union of all
structural equivalences. The mechanisation of types in Coq takes advantage of iso-recursion and does
not rely on the command CoInductive (cf. [7]). The mechanisation of type congruence follows.
Notation X £ T := (substT T X ( typ_mu X T)) ( at level 40).
Definition equiv R := ∀ t1 t2, R t1 t2 → match t1, t2 with

| typ_mu X1 U1, typ_mu X2 U2 ⇒ R U1 U2 ∧ R ( X1 £ U1) t2 ∧ R t1 ( X2 £ U2)
| typ_mu X U, _ ⇒ R (X £ U) t2 | _, typ_mu X U ⇒ R t1 (X £ U) | · · · end.

Definition struct_equiv R := equiv R ∧ symmetric typ R. Definition typ_scongr := union_st typ typ struct_equiv.
Notation ”T1 == T2” := (typ_scongr T1 T2) ( at level 40). Check equiv_scongr. equiv_scongr : equiv typ_scongr
Check exist_se. exist_se : ∀ ( R : typ → typ→ Prop) (t1 t2 : typ), struct_equiv R → R t1 t2 → t1 == t2
Ltac prove_scongr R := match goal with | ⊢ ?W1 == ?W2 ⇒ eapply (exist_se R); eauto end.

Type system and subject reduction. Let Γ map variables to sorts and process variables to types. We
consider a type system for processes, noted Γ ⊢ P : T , and a type system for sessions, noted Γ ⊩ M : T .
The system ⊩ only invokes the system ⊢ with well-formed types. The process rules depicting the essence
of iso-recursive session types are the following:

T-REC
Γ,χ : µX .T ⊢ P : T{µX .T/X}

Γ ⊢ µχ.P : µX .T
T-VAR

Γ(χ) = µX .T
Γ ⊢ χ : µX .T

Note the difference with equi-recursive systems [11], where T-REC requires that the type of µχ.P
and of P are equal, because µX .T and T{µX .T/X} are equal. The rule for typing a session composition
is defined as follows, where type duality, noted T , is syntactic rather than coinductive [10, 13].

Γ ⊢ P : T1 and Γ ⊢ Q : T2 and WF(T1) and WF(T2) and T1 ≡ T2 imply Γ ⊩ p◁P ∥ p◁Q : ⊥
The proof of subject reduction relies on a transition system of types, noted T

α

−→ T ′. Recursive types
µX .T silently reach T{µX .T/X}. The proof stands on two mechanised results on type congruence.
Lemma Let α1Dα2 be action duality.

(i) T1 ≡ T2 implies T1 ≡ T 2

(ii) WF(T1) and WF(T2) and T1 ≡ T2 and α1 D α2 and T1
α1
−→ U1 and T2

α2
−→ U2 imply U1 ≡U2

The substitution of recursive processes at execution time preserves typing; the result is mechanised.
Lemma (Process Substitution) If Γ,χ : T ⊢ P : U and Γ ⊢ Q : T then Γ ⊢ P{Q/χ} : U.

Subject reduction also relies on value substitution, and on type preservation of structural congruence;
the last result is mechanised. Case (i) occurs when (2) is inferred from the reduction of an if-then-else
process. The mechanisation of subject reduction is ongoing. The proof of the theorem is closed; it is left
to prove intermediate results used in the proof on type well-formedness and on value substitution.

Theorem (Subject Reduction) Let M be a closed session and assume (1) Γ⊩M : T and (2) M
α

−→ M ′.

We have (i) Γ ⊩ M ′ : T or (ii) T
α

−→ T ′ and Γ ⊩ M ′ : T ′.

Related Work. Only few works follow an iso-recursive approach to session types. Recently [14, 15] we
introduced iso-recursive multiparty session types and automatically verified [25, 5, 8] the properties of a
function deciding the soundness of compositions. [19] studies iso-recursive and equi-recursive subtyping
for binary session propositions with least and greatest fixed points [4, 32]. Many recent papers [33, 34,
35, 36, 28, 24, 22] present iso-recursive variants of the λ -calculus, following the seminal work on Amber
rules [1]. Pierce [27] discusses the differences between iso-recursive and equi-recursive types.
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