
Università Ca’ Foscari di Venezia

Dipartimento di Informatica
Dottorato di Ricerca in Informatica

Ph.D. Thesis: TD-2007-1

Secure Implementations of
Typed Channel Abstractions

Marco Giunti

Supervisor

Prof. Michele Bugliesi

PhD Coordinator

Prof. Simonetta Balsamo

January, 2007

Author’s Web Page: http://www.dsi.unive.it/˜giunti

Author’s e-mail: giunti@dsi.unive.it

Author’s address:

Dipartimento di Informatica
Università Ca’ Foscari di Venezia
Via Torino, 155
30172 Venezia Mestre – Italia
tel. +39 041 2348411
fax. +39 041 2348419
web: http://www.dsi.unive.it

Abstract

The use of abstractions in the analysis of distributed computer systems permits to
focus on the main features of the system while ignoring low-level details represented
abstractly such as those inherent in the mechanism by which the components of the
system communicate. In process calculi, the communication medium of distributed
systems is abstracted by the notion of channel that ideally represents the address
of the endpoints of communication. Further features of such systems as a client-
server communication paradigm where clients and servers are allowed to read from
and write on a resource, respectively, may be modeled by using typed abstractions
and by relying on a type-checker to regulate the behavior of processes. However,
such abstractions are reasonable only insofar as the low-level details do not hide
particulars that compromise the feasibility of implementing the model.

In this dissertation, we show that the type-based discretional access control to
communication channels of process calculi may be enforced in untyped, open, dis-
tributed environments by using cryptography without any assumption on the behav-
ior of the processes running in such environments. We develop a typed pi calculus
with matching in which capability types are employed to realize the policies for the
access to communication channels, and we present implementations that compile
the high-level processes of the pi calculus into low-level principals of a cryptographic
process calculus based on the applied pi calculus. In these translations, the type
capabilities of the high-level calculus are implemented as term capabilities protected
by encryption keys only known to the intended receivers. As such, the implemen-
tation is effective even when the low-level compiled principals are deployed in open
contexts, for which no assumption on trust and behavior may be made.

Our technique and results draw on, and extend, previous work on secure imple-
mentation of channel abstractions in a dialect of the join calculus [8]. In particular,
our translation preserves the forward secrecy of communications in calculi which
support the dynamic exchange of write and/or read access rights among processes.
We establish the adequacy and full abstraction of the implementation by contrast-
ing the untyped equivalences of the low-level cryptographic calculus, with the typed
equivalences of the high-level source calculus.

Acknowledgments

I would like to thank Michele Bugliesi for his great involvement in the supervision of
my studies. Michele has been a friendly and patient supervisor always available for
discussions; he gave me good advises and taught me the rigour of research. Thanks
to Sabina Rossi for encouraging me to understate the PhD program. I am grateful
to my parents for having been very understanding and supporting during all my
studies. My wife Angela has been so close and careful, giving me the strength to go
on with my doctorate; thank you, love.

Contents

1 Introduction 1
1.1 Main contributions . 6
1.2 Structure of the thesis . 6

2 A pi calculus with dynamic typing for resource access control 9
2.1 Syntax of api@ calculus . 13
2.2 Dynamically typed structural operational semantics 20
2.3 Typed behavioural equivalence . 23
2.4 A coinductive proof technique . 25
2.5 Relationships with statically typed pi calculi 49
2.6 Related work . 52

3 The implementation language 55
3.1 Background on applied pi calculus . 55
3.2 Operational semantics and term-indexed behavioural equivalence . . . 59
3.3 Related work . 67

4 Secure implementations 71
4.1 Obstacles to a fully abstract implementation 72
4.2 The implementation framework . 75
4.3 A sound implementation . 79
4.4 A fully abstract implementation using a certification authority 86
4.5 Related work . 88

5 Proofs 91
5.1 Outline of the proof of soundness . 91
5.2 Administrative equivalences . 94
5.3 Lemmas on symmetric and asymmetric cryptographic schemes 112
5.4 Operational correspondence . 123
5.5 Full abstraction theorem . 138

6 A distributed implementation 149
6.1 An api@ calculus with domains . 149
6.2 A compositional implementation using domain authorities 150

Conclusions 155

Bibliography 157

ii Contents

List of Tables

2.1 The typing system . 15
2.2 api@ Labelled Transition System . 21
2.3 Typed Actions . 26

3.1 Constructors and Destructors . 57
3.2 Labelled transitions for the applied pi 60

4.1 Channels and a compositional translation of client processes 81
4.2 Fully Abstract Translation . 87

6.1 Distributed Translation . 152

iv List of Tables

1
Introduction

In this thesis we study secure implementations of concurrent systems communicat-
ing through channel abstractions. Ideally, a concurrent system is formed by a set of
computation units, named processes, that interact among each other by using com-
munication links. We view such units as representation of distributed agents located
on different machines connected by a network. The communication mechanism may
be abstracted by interpreting the endpoints of communication as addresses that take
the form of channel names from a countable set, and by representing communica-
tion as an atomic synchronization among a sender process and a receiver process,
writing on and reading from the same channel, respectively. This permits to focus
on the high-level properties of concurrent systems ignoring the low-level details of
communication, e.g. routing, physical addressing.

The π-calculus [74] is one of the most studied models for concurrent systems
based on channel abstractions. The expressions of the language are processes gen-
erated by a concise grammar that includes input and output name-prefixes repre-
senting the sender and the receiver process, respectively, a restriction operator to
make channels private, and parallel composition representing concurrent computa-
tion. The dynamics of processes are described by a formal semantics that includes
the rule for atomic synchronization mentioned above; an algebraic theory to manip-
ulate processes and formally compare their behaviour is provided. Particularly, we
study the asynchronous π-calculus [26, 65] that mainly differs from the π-calculus
because of the output prefix has no continuation. Indeed, we believe that abstract
models for concurrent distributed systems should consider an asynchronous commu-
nication paradigm in order to adequately represent communications arising in such
systems.

The general question we address in this dissertation is whether the level of
abstraction provided by process calculi is adequate for describing concurrent, dis-
tributed systems. The details ignored by the abstraction should not compromise the
implementability of the model; a feasible implementation of the channel abstraction
in distributed scenarios is therefore a fundamental issue to be settled. In this thesis,
following a common approach (e.g., [1, 8]), we refer to implementation as a trans-
lation from an high-level distributed calculus using private channels to a low-level
cryptographic calculus using non-private channels. Indeed, from an abstract point

2 1. Introduction

of view, the low-level language models the open and distributed communications
that characterize actual network protocols. To study implementations of the chan-
nel abstraction, it is therefore important to understand which is the communication
paradigm modeled by the abstraction. Consider the communication rule of the pi
calculus:

a〈b〉 | a(x).P −→ P{b/x} (∗)

Since we interpret the output and input processes as a sender and a receiver, respec-
tively, that are physically located in different machines, we see this rule as a model
of point-to-point connection among two machines using a dedicated line.

Evidently, implementing distributed systems that communicate by using ded-
icated lines is hardly feasible. Rather, our implementations should use a public
network as communication medium. Relying on the representation of the public
network with a channel net known to the environment, we can implement the sender
and the receiver in a subset of the pi calculus where the only free channel is net
with little effort; to avoid confusions, we call this subset the low-level language and
the full pi calculus the high-level language. For instance, we may use the channel
name as an address inside the message, and add a filtering mechanism to the re-
ceiver. The following reduction on low-level processes1 corresponds to the high-level
reduction (∗):

net〈b, a〉 |net(x, y).(if y = a then P) −→ if a = a then P{b/x}

In the same vein, we can interpret the reduction (∗) as a communication in
multicast by providing an implementation with replicated emissions of the form
! net〈b, a〉.

A more subtle question concerns the implementability of the restriction operator.
Typically, this construct is used in process calculi to protect channels and the com-
munications occurring on them. For instance the operator can prevent interferences
in the execution of a protocol: we can make non-interruptible the communication
of b in (∗) by restricting the communication channel.

(new a)(a〈b〉 | a(x).P) −→ (new a)(P{b/x}) (∗∗)

In our view, the reduction (∗∗) models a communication occurring on a dedicated
line such that the communication is invisible to the environment, i.e. the environ-
ment has not physical access to the line. Since we want to rely on public communi-
cations in our low-level model, the problem is to protect the low-level protocol from
interferences without using private channels. A possible solution is to use cryptog-
raphy to protect the content of the emission on the high-level channel; therefore our

1Clearly, the input process should also be instrumented with a recovery mechanism to handle
all those cases in which it picks up “wrong packets” from the channel net representing the public
network: at this stage, however, we omit this and other details for ease of readability.

3

low-level language should provide primitives to encrypt and decrypt messages. The
high-level channel a is mapped into a couple of low-level cryptographic keys a+, a−

such that the sender packages messages with the encryption key a+ while the re-
ceiver uses the decryption key a− to recover the content of the packet. The following
synchronizations of low-level principals correspond to the high-level reduction (∗∗):

(new a+, a−)net〈{b}a+〉 |net(y).(decrypt y as {x}a− in P)

−→ decrypt {b}a+ as {x}a− in P

However, this does not prevent the low-level environment to notice that the commu-
nication in (∗∗) occurred, while (∗) is invisible to the high-level environment. For
instance, the low-level environment may notice that the emission net〈{b}a+〉 is not
more available after the reduction (∗∗), and infer that (∗∗) occurred. While some
traffic is practically always present on the network interfaces that link actual dis-
tributed systems, this rarely prevents information leaks through traffic analysis (e.g.,
due to message sizes, addresses). On the other hand, due to the model’s limitations,
we do not handle such attacks; therefore assuming the presence of a noise process
creating endless fresh non-intelligible messages on the network interface represents
a possible solution to this problem.

Protecting access to resources Next we investigate whether the typed abstrac-
tions used in process calculi to regulate the access to channels can be implemented
in open, distributed systems. The need of controlling the access to channels it is
often relevant both for design and security issues. From a security perspective, hav-
ing knowledge of a channel name means possess a communication capability; in this
vision, channels indeed represent the abstract resources of our concurrent systems.
In the original pi calculus [74], the only way to protect a channel is by using the re-
striction operator, as we have seen in (∗∗): the restriction prevents the environment
both to read from and write on the channel a.

However, the specification of modern computer systems usually require finer
methods to protect access to resources (see [67, 18]). For instance, in systems based
on a client-server communication paradigm it is often requested that the server even-
tually writes on a channel while a client eventually read from a channel. A model
language suitable for the design of distributed systems should therefore provide the
possibility to specify systems satisfying such constraints. In [88] this problem is
tackled by using typed abstractions (see [90, 36]) that regulate the correct use of
resources. The authors introduce a sorting discipline on channel names that sepa-
rate the capability to read from channels from the capability to write on channels.
Processes wishing to read from or writing on a channel need to possess the read
or the write capability on that channel, respectively; a process may distribute ca-
pabilities on names only if it possesses them. The discipline is enforced by a type
system that typechecks only processes obeying at the rules above. Assuming that
all processes in the concurrent system are statically typed by the same type system,

4 1. Introduction

one can deploy systems enjoying discretional access to resources by programming
an adequate distribution of capabilities.

This leads to a crucial implementation problem, since this assumption is too
strong for open, distributed systems. Such systems indeed are typically composed
by several independent machines that are not administrated by an unique global
authority. At the high-level, the access control is based on the use of a static
type system that predicates that processes receiving a resource will not use it in a
forbidden modality, i.e. typed contexts behave well. But what happens when we
deploy such systems in contexts that do not respect the high level type assumptions?
Stated more explicitly: can we compile our typed processes as low-level principals
to run in distributed, open environments while preserving the high-level reasonings
on the protection of resources we have established?

This appears to be an important question, as it constitutes a fundamental pre-
requisite to the use of typed process calculi as an abstract specification tool for
concurrent computations in distributed, open systems.

Implementing typed processes in untyped contexts The objective of this
dissertation is to provide a secure implementation of an abstract machine where
the distribution of capabilities on channel abstractions is type-based, to low-level
agents operating on a model of network where no assumptions on behaviour or trust
can be made, and the correct distribution of capabilities is enforced by using cryp-
tography. More in detail, we translate pi calculus processes using private channels
and typed abstractions, into lower-level processes using open communications and
cryptographic functions, and we prove that the implementation is secure.

The formal tool we use to establish the security of our implementations is the
concept of full abstraction [1]; roughly, an encoding fully abstract equates encoded
expressions if and only if the source expressions are equivalent. We say that two
expressions are equivalent in a given language, noted E1

∼= E2, if yield the same
results in all contexts of the language (cf. [45, 76]). Formally, a translation [[·]]
of expressions of a language H into expressions of a language L is said to be fully
abstract if for all expressions E1, E2 of the language H we have (i) [[E1]] ∼=L [[E2]]
implies E1

∼=H E2 and (ii) E1
∼=H E2 implies [[E1]] ∼=L [[E2]] . As Abadi noted in

[1], the direction (ii) is particularly relevant for security concerns, since it ensures
that the translation does not introduce information leaks.

More in detail we want to preserve typed equivalences of the form I |= P ∼= Q
stating the indistinguishability (hence the equivalence) of P,Q in all enclosing con-
texts that satisfy the typed assumptions in I, i.e. all processes typechecked by I (cf.
[23, 60, 91]). As we will argue, we believe that no fully abstract implementation
may rely on static typing alone, as distributed and open networks do not validate
any useful assumption on the trustworthiness, hence the well-typeness, of the con-
texts where (the low-level agents representing) our typed processes operate. Indeed
requiring all low-level processes running in the system to be statically typed by

5

the same type system is a too strong assumption for distributed and open systems.
Therefore, the low-level environment cannot be trusted to follow the type discipline.
Rather than assuming that a context satisfies the constraints imposed by a typing
assumption, our implementations should enforce them.

Enforcing access control with dynamic typing To make a fully abstract im-
plementation feasible, the solution we propose here is to adopt a new typing disci-
pline for the source calculus, based on a combination of static and dynamic typing
to control the interaction with the context. Dynamic typing is an appealing solution
when dealing with computing in wide-area distributed systems; static verification of
such systems is impractical since the typing information may be partial or missing
and the components of the system may be unknown or partially known to each other.
To avoid to stop the execution and re-check, components must dynamically carry
sufficient behavioral information that can be checked at runtime by the system’s
components (e.g., [82]).

We formalize our approach by developing a typed version of the (asynchronous)
pi calculus where the values emitted in the output construct are coerced with the
intended type to be released, noted p〈a@T 〉, regardless of the type of p. A static
typing system guarantees that a may indeed be assigned the coercion type T , while
a mechanism of dynamically typed synchronization guarantees that a is received
only at types less informative than T , so as to guarantee type soundness of each
exchange.

By breaking the dependency between the types of the transmission channels and
the types of the names transmitted, distinctive of the approaches to typing in the pi
calculus tradition [88, 60], we can safely reduce the capability types to the simplest,
flat structure that only exhibits the read/write access rights on channels, regardless
of the types of the values transmitted, namely T ∈ {rw, r, w}. Furthermore, and
more interestingly for our present concerns, the combination of type coercion and
dynamically typed synchronization allows us to gain further control on the interac-
tions among processes as well as between processes and their enclosing context.

To illustrate, we program in this language a process that releases the read capa-
bility of a resource a that we assume unknown to the environment, and provides a
receiver on the same channel a for internal use: p〈a@r〉 | a(x).0. The intention of the
specification is clear, and best formalized by the following typed equation stating
the invisibility of the read resource a:

p : T |= p〈a@r〉 | a(x).0 ∼= p〈a@r〉

Dynamic typing will prevent processes of the form P = p(x@w).P ′ to receive the
resource a and use it for write access, revealing the presence of a(x).0. Indeed, in
this example the process P asks for a name to be used in write modality and, in
contrast, the channel a is released in read modality; therefore dynamic typing does
not permit the synchronization among p〈a@r〉 and P .

6 1. Introduction

As the example shows, the knowledge of the environment on p is irrelevant to
establishing the equation above; this is the main difference from our approach and
that of [88, 60]. We can therefore rely on a adequate programming of the distri-
bution of capabilities in order to guarantee that the system does not release more
capabilities than the intended ones.

1.1 Main contributions

In this thesis we provide a fully abstract implementation of a typed pi calculus with
matching into a lower-level calculus using open communications and cryptography.
Since our high-level process calculus is a conservative extension of the untyped pi
calculus, we also have a direct secure implementation of the pi calculus with match-
ing.

This result shows that the dynamic management of capabilities enforced at the
high level by using a global type system, can be effectively enforced in untyped,
open, distributed environments by using cryptography without any assumption on
the behavior or trust of the low-level contexts. To the best of our knowledge, this
is the first result of this kind for typed process calculi. Further, we resolved the
problem of forward secrecy of communications (see [1]) that is the main obstacle to
the implementation of process calculi which supports the dynamic exchange of write
and/or read access rights among processes. Particularly, we devised the first secure
implementation of the untyped pi calculus with matching; an implementation of the
pi calculus without matching already exists (cf. [51, 8]).

We proposed a typed version of the pi calculus, namely the api@ calculus, that,
in our opinion, can be useful to model the distribution of capabilities on abstract
resources; we believe that the declarative style characterizing our calculus and type
theory can make easier and less error-prone the hard task of specifying distributed
systems where the access to resources is discretional. We provided an observational
theory for the calculus, and we gave a coinductive proof technique for observational
equivalence.

Publications

The api@ calculus, it’s observational theory and a proof technique for observational
equivalence have been published in [29]. The secure implementations of the api@
calculus have been published in [30].

1.2 Structure of the thesis

In Chapter 2 we introduce syntax and operational semantics of api@ processes and
we prove type soundness. Then we introduce a notion of contextual equivalence
among processes, namely typed behavioral equivalence, and we provide it with a

1.2. Structure of the thesis 7

coinductive proof technique. A few equations characterizing the calculus are draw.
Finally we relate the api@ calculus with the (asynchronous version of the) pi calculus
of [60] by providing a sound translation of the former in to the latter. Comparison
with related work is available at the end of the chapter. This chapter is based
on [29].

In Chapter 3 we review the implementation language that is an asynchronous
version of the applied pi calculus [7]. We introduce semantics for the destructors
of interest that include functions implementing symmetric/asymmetric encryption
and digital signatures. Next we review the syntax and the operational semantics of
applied pi processes. We assume that destructors are only used in let-expressions
and may not occur in arbitrary terms; the semantics is given in terms of labelled
transitions and does not rely on active substitutions as in the original formulation.We
define a notion of term-indexed behavioral equivalence among processes and we prove
some useful closure properties. Finally we review some related work.

Chapter 4 contains implementations of api@ calculus in the applied pi calcu-
lus. We first review the main obstacles arising in implementing fully abstract the pi
calculus and in particular the problem of preserving the forward secrecy of commu-
nications. Then we describe the implementation framework, and we present a first
compositional compilation of high-level processes into low-level ones. We show that
the implementation is sound by establishing the operational correspondence of the
translation. Next, we enhance the design by giving a fully abstract implementation
that relies on a proxy server to prevent compiled processes to have undesired inter-
actions with low-level, possibly malicious contexts. Comparison with related work
is analyzed at the end of the chapter. This chapter is based on [30].

Chapter 5 contain the proofs of the results of Chapter 4; an up-to technique
to prove the operational correspondence of “non-prompt” [84] translations is given.
Chapter 6 extends the fully abstract centralized implementation provided in Chapter
4 by introducing a distributed implementation based on the partitioning of the
network in domains each of which is administrated by a proxy server. To model
this partitionining of the network, we extend the calculus presented in Chapter 2
by labelling processes with domain labels; we let domains have not impact on the
dynamics and/or the typing of the api@ calculus. We define a notion of contextual
equivalence that is closed under composition of known domains. Finally we provide
a fully abstract translation of the high-level processes labelled with domains into
low-level ones. The distributed implementation has been published in [30].

8 1. Introduction

2
A pi calculus with dynamic typing for

resource access control

In this chapter we introduce the high level language that we use to specify concurrent
systems supporting the dynamic exchange of write and/or read access rights among
processes. The language is a typed variant of the pi calculus [74, 72, 104, 73] with
a matching construct and polyadic communications, and is a conservative extension
of the untyped pi calculus. We provide the calculus with a typed equational the-
ory, and we give a co-inductive proof technique useful to prove equivalences among
processes. The technique relies on labelled transitions on configurations of the form

I . P
α−−→ I′ . P ′ where α range over typed input/output actions and silent actions,

and I is a type environment less informative than the environment that typechecks
P . Basically input and output transitions arise only if they are allowed by I; silent
transitions are invisible to the environment. Finally we compare our process calculus
with the pi calculus of Hennessy and Rathke [60] which embeds input/output types
generalizing those of [88], and we provide a sound encoding of the former into the
latter. The main results of this chapter has been published in [29].

Background

The use of types to control the behavior of processes in the pi calculus is a long
known and well established technique. The idea was first introduced by Pierce and
Sangiorgi in their seminal work on the subject [88], and is best illustrated by their
motivating example:

S = (new s)!d〈s〉 | !s(x).print〈x〉 C = d(x).x〈j〉

S is a print spooler serving requests from a private channel s that it communicates
to its clients via the public channel d. C is one such client, that receives s and uses
it to print the job j.

While the intention of the specification is clear, reasoning on its properties is
subtler. For instance, given the initial configuration S |C, can we prove that the
jobs sent by C are eventually received and printed? Stated in more formal terms:

10 2. A pi calculus with dynamic typing for resource access control

is there a proof of the following equation?

S |C ?∼= S | print〈j〉 (2.1)

Here we take P ∼= Q to mean that P and Q are behaviorally indistinguishable, i.e.
they have the same observable behavior when executed in any arbitrary context.
Back to our example, (2.1) is easily disproved by exhibiting a context that interferes
with the intended protocol between S and C. A first example is the context C1[−] =
− | d(x).!x(y).0, that initially behaves as a client, to receive s, but then steals the
jobs intended for S. A second example is the context C2[−] = − | (new s′)d〈s′〉,
which may succeed in transmitting to C a dead-ended channel that will never serve
the purpose C expected of it.

As shown in [88], hostile contexts such as those above can be ruled out by
resorting to a system of capability types to control the transmission and/or reception
of values over channels based on the possession of corresponding type capabilities. In
our example, that system allows us to protect against contexts like C1 by requiring
that clients be only granted write capabilities on the channel s, and by reserving
read capabilities on s to the spooler. Similarly, we may build safeguards against
attackers like C2 by demanding that clients only have read access on d.

Both the requirements are expressed formally by the typing assumption d :
((T)w)r: this typing grants read-only access on d and write-only access to any name
received on d, as desired. We may now refine the equation in (2.1) into its typed
version below

d : ((T)w)r |= S |C ∼= S | print〈j〉. (2.2)

Typed equations of the form I |= P ∼= Q express behavioral equivalences between
processes in any context that typechecks in the type environment I. Here I represents
the context’s view of the processes under observation, given in terms of a set of
typing assumptions on the names shared between the processes and the context
itself. Incidentally, but importantly, the typing assumptions on the shared names
may in general be different –in fact, more accurate– for the processes than they
are for the context. To illustrate, in (2.2), a context is only assumed to have read-
capabilities on d, while for the system to typecheck the name d must be known at
the lower (hence more accurate) type ((T)w)rw, so that to allow S to write and C
to read. Similarly, for the system S |C to typecheck, the name s must be known at
the type (T)rw including both a write-capability, granted to S, and read-capability,
granted to any process that receives s: the context, instead, will only acquire s at
the super-type (T)w determined by the type of the transmission channel d.

Typed processes in untyped contexts

Given the type for d available to the context, it is not difficult to be convinced that
(2.2) above (under appropriate hypotheses on the context’s view of the name print,

11

see Section 2.3) represents a valid equivalence as no context that typechecks under
d : ((T)w)r may tell the two processes apart.

Typed equivalences like these are very useful, and effective in all situations in
which we have control on the contexts observing our processes, i.e. in all situations
in which we may assume that such contexts are well-typed, hence behave according
to the invariants enforced by the typing system.

The question we address in this thesis is whether the same kind of reasoning
can still be relied upon when our processes are to be deployed in distributed, open
environments. Stated more precisely: can we implement our typed processes as
low-level agents to be executed in arbitrary, open networks, while at the same time
preserving the typed behavioral congruences available for the source processes?

We argue that no implementation with the desired properties may rely on static
typing alone, as distributed and open networks do not validate any useful assumption
on the trustworthiness, hence the well-typeness, of the contexts where (the low-level
agents representing) our typed processes operate. Rather than assuming that a con-
text satisfies the constraints imposed by a typing assumption, our implementations
should enforce them.

The implementation schema we envision here is one in which the statically
checked possession and distribution of type capabilities in the source-level processes
is realized in terms of the possession and the dynamic distribution of corresponding
term-level capabilities in the implementation agents. For instance, each channel
could be implemented by means of a pair of cryptographic keys representing the
write and read capabilities. If designed carefully, and instrumented with adequate
measures to protect against hostile contexts (see [1, 8], Chapter 4) this represents a
viable idea to pursue.

The problem remains, however, to make sure that the implementation preserves
the desired typed equations of the source calculus: for that to be the case, one must
guarantee that for each name, the distribution of the term capabilities in the low-
level agents match the corresponding type capabilities in the source level process.
While this is possible for the names that are statically shared with the context,
ensuring such correspondence is much harder, if at all possible, for the names that
are dynamically acquired by the context. There are two fundamental difficulties:

• first, as we have observed, the type at which the context acquires a name
depends on the type of the channel over which the name is communicated;

• secondly, the type of the transmission channel may vary dynamically in ways
that cannot be predicted statically.

The dynamic evolution is particularly problematic in a calculus with matching be-
cause, as noticed by Hennessy and Rathke in [60], matching makes it possible to
progressively refine the type at which a name is known during the computation.
This is best illustrated by the following typed labelled transition, borrowed from

12 2. A pi calculus with dynamic typing for resource access control

[60], that formalizes the effect of emitting a name on a public channel.

Ir(a) ↓

I . a〈n〉.P a〈n〉−−→ I u n : Ir(a) . P

The configuration I.P represents a process P operating in a context that typechecks
under I, and Ir(a) ↓ indicates that I (hence the context) has a read capability on the
name a. The meet Iun : Ir(a) in the resulting configuration represents the ability of
the context to “merge” its current type for n with the type determined by receiving n
on a: as explained in [60], taking the meet mimics the ability of the context to match
n with the names already known to it (possibly, at different types), and obtain a more
informative type based on that. For instance if I contains the typing assumptions
n : (S)r, a : ((S)w)r, q : S, then the context C [−] = a(x).[x = n] n〈q〉 |n(y).0;0 is
typechecked by the typing system of [60]; here the ability to check if the channel
received through a at type (S)w is equal to the channel n known at type (S)r let
the context use both the read and the write capability of n. The problem is that
the effect of this type refinement may propagate dynamically in ways that cannot
be determined statically. To illustrate, let I and P be the typing environment and
the process defined as follows:

I = n : ((T)w)r, a : (((T)r)r)r

P = a〈n〉 | (new p : (T)rw)n〈p〉

We have Ir(n) = (T)w and Ir(a) = ((T)r)r, and from this we compute I′ , I u n :
Ir(a) = a : (((T)r)r)r, n : ((T)rw)r. Now we see that a context that typechecks under
I will acquire p at the type (T)w or at the type (T)rw depending on which one of
the two names p and n it receives first in its interactions with process P . This is
reflected by the following two transition sequences available from I . P .

I . P
(new p)n〈p〉−−−−−−−→ I, p : (T)w . a〈n〉 a〈n〉−−→ I u n : ((T)r)r, p : (T)w . 0

I . P
a〈n〉−−→ I′ . (new p : (T)rw)n〈p〉 (new p)n〈p〉−−−−−−−→ I′, p : (T)rw . 0

Clearly, this dynamic evolution of the typing knowledge of the context is problem-
atic, as a fully abstract implementation would need to tune the distribution of the
term-capabilities associated with n on the types available dynamically to the con-
text: as the example shows, this is in general impossible to achieve at compile time,
by simply inspecting the structure of the source level processes.

Enforcing access control with dynamic typing

While the problem with the previous example is a direct consequence of the presence
of matching, a more fundamental obstacle against full abstraction is in the very

2.1. Syntax of api@ calculus 13

structure of the capability types adopted in the source calculus, and in the way that
structure determines the acquisition of new capabilities on a name. As we have
shown, acquiring a name, say n, at a type not only informs on how n will be used,
but also determines how other names transmitted over n will be circulated and used
in the system. These invariants are all encoded in the static type of the channel at
which n is received, and clearly they will not be guaranteed if that channel is shared
with an untyped context.

To make a fully abstract implementation feasible, the solution we propose here
is to adopt a new typing discipline for the source calculus, based on a combination
of static and dynamic typing to control the interaction with the context.

We formalize our approach by introducing a typed variant of the (asynchronous)
pi calculus. In this calculus, named api@, the types at which the emitted values are
to be received by the context are decided by the output sites. This is accomplished
by introducing a new output construct, noted a〈v@T 〉, that relies on type coercion to
enforce the delivery of v at the type T , regardless of the type of the communication
channel a. A static typing system will ensure that v has indeed the type T to which
it is coerced, while a mechanism of dynamically typed synchronization guarantees
that v is received only at supertypes of T , so as to guarantee the type soundness of
each exchange of values.

By breaking the dependency between the types of the transmission channels and
the types of the names transmitted, in api@ we may safely dispense with the nested
types of [88, 60], and rely instead on channel types with a flat structure that only
exhibits the read/write access rights associated with the channels, regardless of the
types of the values they transmit. Needless to say, the resulting discipline of static
typing is much looser: to compensate for that one then needs a dynamically typed
operational semantics to ensure type soundness.

What is more interesting and relevant for our present concerns is that the new
typing discipline makes it possible to recover fully abstract implementations, i.e.
implementations for which the typed congruences of the source calculus are preserved
even in the presence of untyped, and potentially hostile contexts. We show how this
can be accomplished in Chapter 4. Before that, we introduce the source calculus
formally, and look at the consequences of the new typing discipline on the ability to
reason about process behavior.

2.1 Syntax of api@ calculus

Given the intended use of calculus as a specification language for distributed systems,
we opt for an asynchronous version of the calculus. However, the same results and
technique would apply, mutatis mutandis, to the synchronous case.

We presuppose countable sets of names and variables, ranged over by a− n and
x, y, . . . respectively. We use u, v to range collectively over names and variables
whenever the distinction does not matter. The structure of processes is defined by

14 2. A pi calculus with dynamic typing for resource access control

the following productions:

P, Q, . . . ::= 0 | P |Q | (new n : A)P | !P pi calculus
| [u = v] P ; Q matching

| u〈ṽ@Ã〉 type-coerced output

| u(x̃@Ã).P typed input

We use ũ and Ã to note (possibly empty) tuples of values and types, respectively,
and the notation ṽ@Ã as a shorthand for v1@A1, . . . , vn@An.

The reading of the process forms is standard, with the exception of the con-
structs for input/output. The process u〈ṽ@Ã〉 represents the polyadic output of
values v1, . . . , vn respectively at the types A1, . . . , An: the rules of the operational
semantics will ensure that outputs at this types only synchronizes with input pre-
fixes expecting values at types respectively higher than (or equal to) A1, . . . , An.
The input process u(x̃ : Ã).P acts as a binder for the variables x1, . . . , xn. The inert
process is represented by 0; concurrent computation is expressed by using parallel
composition P |Q. The matching process [u = v] P ; Q behaves as a conditional that
proceeds as P if u = v, and as Q otherwise. We often omit trailing inert processes
and abbreviate [u = v] P ;0 with [u = v] P . Process (new n : A)P acts as a binder
of the name n in P ; the type information is used to ensure that n is used consis-
tently in P . Finally !P represents the replication of P . We let the free names of
P , noted fn(P) be the set of names occurring in P that are not bound; similarly
the free variables of P , noted fv(P) are the variables not bound in P . We assume
a well-defined capture-free substitution operation P{v/x} which allow the value v
to be substituted to x in the process P . We use the notation P{ṽ/x̃} to indicate
nested substitutions applications ((P{v1/x1}) . . .){vn/xn}. A process with no free
variables is said to be closed. We let two processes P, Q be α-equivalent, noted
P = Q, when Q may from obtained by P by a finite number of changes of bound
names and/or bound variables.

The types of api@ include a top type and capability types for names. As intro-
duced in Chapter 1, the channel types we use have the flat structure defined in Table
2.1 that only exhibits the read/write access rights on channels. The types ch(·) are
the types of channels, built around the capabilities r, w and rw which provide read,
write and full fledged access to the channel, respectively. To ease the notation, we
henceforth denote channel types by only mentioning the associated capabilities. >
is the type of all values and may be used to export a name without providing any
capability for synchronization or exchange. The ability of match identity of names
still give a distinguishing power to contexts knowing a name at type top [104].

The subtyping relation <:, also in Table 2.1, is the preorder that satisfies the
expected relationship over capability types, and admits a meet operator; we will
often write T :> S to indicate that S <: T . A binary operator over the types
introduced above is said to be a meet if it is commutative, associative and satisfies
(i) A <: B and A <: C implies A <: B u C and (ii) A u B <: A. We define the

2.1. Syntax of api@ calculus 15

Table 2.1 The typing system

Types
A,B, . . . ::= ch(rw) | ch(r) | ch(w) capabilities

| > top

Subtyping

ch(rw) <: ch(r) ch(rw) <: ch(w)

A ∈ {ch(rw), ch(w), ch(r),>}
A <: >

Typing Rules
(T-Pro) (T-Nil)

Γ(u) <: A

Γ ` u : A Γ ` 0

(T-New) (T-Par) (T-Repl)

Γ, n : A ` P

Γ ` (new n : A)P

Γ ` P Γ ` Q

Γ ` P |Q
Γ ` P

Γ `!P

(T-Match)

Γ ` Q Γ ` u : A Γ ` v : B Γ u u : B u v : A ` P

Γ ` [u = v] P ; Q

(T-Out@) (T-In@)

Γw(u) ↓ Γ ` v1 : B1, . . . , Γ ` vn : Bn

Γ ` u〈ṽ@B̃〉
Γr(u) ↓ Γ, x̃ : Ã ` P

Γ ` u(x̃@Ã).P

16 2. A pi calculus with dynamic typing for resource access control

operator u as follows:

rw u r , rw rw u w , rw w u r , rw

A u > , A A u A , A A uB , B u A

Proposition 1. The operator u defined above is a meet operator.

Proof. Follows easily by a case analysis.

The following propositions illustrate easy but useful results for the meet operator u.

Proposition 2. If A <: B then A uB = A.

Proposition 3. A <: B implies (A u C) <: (B u C).

Typing System

We introduce a few preliminary definitions to formalize the structure of typing en-
vironments. Type environments, ranged over by Γ, ∆, are finite mappings from
names and variables to types. We use the notation Γ, u : A to indicate the mapping
Γ∪ (u,A). Following [60], we extend type environments by using the meet operator:
Γ u u : A = Γ, u : A if u 6∈ dom(Γ), otherwise Γ u u : A = Γ′ with Γ′ differing from
Γ only at u: Γ′(u) = Γ(u) u A. We let (Γ, u : A) \ u , Γ.

Differently from [60], extending a type environment is always a defined operation
since in our subtyping relation the meet is not partial (as in [60]). When extending
a type environment with tuples, we often omit to indicate parentheses and write
Γu ṽ : Ã to indicate ((Γuv1 : A1)u. . .)uvn : An, and in case dom(Γ)∩dom(Γ′) = ∅,
we write Γ, Γ′ to indicate the type environment containing all mappings in Γ and
in Γ′. Subtyping is extended to type environments as expected: Γ <: ∆ whenever
dom(Γ) = dom(∆) and for all a ∈ dom(Γ) we have Γ(a) <: ∆(a). If Γ(n) <: r, we
say that Γr(n) is defined, written Γr(n) ↓. Correspondely, we let Γw(n) ↓ whenever
Γ(n) <: w.

Most of the typing rules in Table 2.1 are standard and self explained. Rule (T-
Pro) ensures that environments type values at supertypes of their actual types.
Rule (T-Par) says that the composition of processes typed independently by the
same environment is well-typed. The typing of matching process [u = v] P ; Q is
inherited from [60]. Differently from companion type systems for pi calculi with
matching (see [104]), we do not require the environment to possess both the read
and the write capability in order to test a value, i.e. u, v may be known at types
higher than rw. Similarly, we do not insist that u, v have identical types to infer
the well-typeness of the matching process. Indeed u, v may be bound to the same
value and represent distinct capabilities; in such case the matching process should
continue as P and collate the type information about the values. This is done in
rule (T-Match) by implicitly casting the types of u, v to their greatest common

2.1. Syntax of api@ calculus 17

subtype. To illustrate, as a result of that rule, the following judgment is derivable:
x : r, y : w ` [x = y] x〈〉;0.

The typing of input/output is characteristic of our present calculus, and is a
direct consequence of the structure of the channel types. In particular, notice that
the rules (T-out@) and (T-in@) do not expect/impose any relationship between
the type of the channel u and the types associated with the values transmitted
(in (T-out@)) or expected (in (T-in@)). The only constraint, at the output
sites, is that the types at which the emitted values are coerced must be valid. As
we mentioned earlier, this rather loose form of static typing is complemented by
dynamic type checks to be performed upon synchronization.

The following propositions state useful properties of the typing of values.

Proposition 4 (Weakening). If Γ ` u : A then Γ, v : B ` u : A.

Proof. The typing Γ ` u : A has been inferred from (T-Pro); from this we infer
Γ(u) <: A. From (Γ, v : B)(u) <: A and a further application of (T-Pro) we obtain
the desired result.

Proposition 5 (Strengthening). If Γ, v : B ` u : A and u 6= v then Γ ` u : A.

Proof. In this case Γ, v : B ` u : A has been inferred from Γ(u) <: A, because u 6= v;
we apply (T-Pro) and obtain Γ ` u : A, as desired.

Proposition 6 (Subtyping). If Γ ` v : A and Γ′ <: Γ then Γ′ ` v : A.

Proof. From (T-Pro) we know that Γ(v) <: A. From Γ′ <: Γ we easily obtain
Γ′(v) <: Γ(v) since or v = a and Γ′(a) <: Γ(a) holds by definition, or v = x and
Γ′(x) = Γ(x). From the transitivity of <: we infer Γ′(v) <: A. We apply (T-Pro)
obtaining Γ′ ` v : A.

Proposition 7. If Γ ` P then Γ u ṽ : B̃ ` P .

Proof. The proof proceeds by induction on the type inference and use weakening
and subtyping for values. Indeed Γ u ṽ : B̃ = Γ′, ∆ for some (possibly empty) type
environment ∆ and for some Γ′ <: Γ. We leave the considerable proof details to the
reader.

An important property of the type inference system is that typings are preserved
by the substitution of values into variables. We let Γ〈v/x〉 be Γ whenever x 6∈ dom(Γ)
and be ∆ u v : A whenever Γ = ∆, x : A; Γ〈ṽ/x̃〉 is defined similarly.

Lemma 8 (Substitution). Suppose Γ ` v : A.

1. (Values) If Γ, x : A u∆ ` u : B then Γ u∆〈v/x〉 ` u{v/x} : B

2. (Processes) If Γ, x : A u∆ ` P then Γ u∆〈v/x〉 ` P{v/x}.
Proof. The first part is proved by a case analysis, the second part is proved by
induction on length of the inference of the type judgment.

18 2. A pi calculus with dynamic typing for resource access control

Values For the first part of the statement, we analyze the rule for typing values.
From (T-Pro) we have that (Γ, x : A u∆)(u) <: B. There are two cases corre-

sponding to (a) v ∈ dom(∆〈v/x〉) or (b) not. In case (b) we easily infer x 6∈ dom(∆)
and in turn Γu∆〈v/x〉 = Γu∆. There are two sub-cases corresponding to (i) x 6= u
or (ii) x = u. In sub-case (i) the substitution is vacuous. From the hypothesis
Γ, x : A u ∆ ` u : B and strengthening we infer Γ u ∆ ` u : B, as desired. In
sub-case (ii) the type inference has the form Γ, x : A u∆ ` x : B; from (T-Pro) we
deduce A <: B since we showed that in the current case (b) under analysis we have
x 6∈ dom(∆). From Γ(v) <: A we infer Γ(v) <: B. From u being a meet operator we
infer (Γu∆)(v) <: A. We apply (T-PRo) and infer the desired result, Γu∆ ` v : B.

Suppose case (a) holds. There are two sub-cases corresponding to (i) u 6= x or
(ii) u = x. In sub-case (i) the substitution is vacuous. By applying strengthening
(Prop. 5) to the hypothesis we infer Γ u (∆ \ x) ` u : B. Since ∆〈v/x〉 is equal to
∆ whenever x 6∈ dom(∆) and otherwise it is defined as (∆ \ x)u v : ∆(x), we apply
Proposition 6 and infer Γ u∆〈v/x〉 ` u : B. In sub-case (ii) the type inference has
the form Γ, x : A u∆ ` x : B. From (T-Pro) we infer A u∆(x) <: B or A <: B (in
case x 6∈ dom(∆)). In case Au∆(x) <: B we infer that (Γu((∆\x)uv : ∆(x)))(v) <:
(Γ(v) u ∆(x)); from Γ(v) <: A we infer (Γ u ((∆ \ x) u v : ∆(x)))(v) <: B. We
apply (T-Pro) and obtain Γ u∆〈v/x〉 ` v : B. In the remaining case x 6∈ dom(∆)
from (Γ u ∆)(v) <: A, A <: B and (T-Pro) we easily obtain the desired result,
Γ u∆ ` v : B.

Processes For the second part of the statement, we analyze the rules for typing
processes. (T-Nil) is trivial. (T-New), (T-Par), (T-Repl) are similar; we show (T-
New), the remaining ones are easier.

(T-New) We have Γ, x : A u ∆ ` (new n : B)P which in turn is derived from
(Γ, x : Au∆), n : B ` P by assuming n 6∈ dom(Γ, ∆) (eventually by alpha-renaming
n). From n 6∈ dom(Γ, ∆) we infer (Γ, x : A u ∆), n : B = (Γ, n : B, x : A) u
∆. By the hypothesis Γ ` v : A and weakening (Proposition 4) we obtain Γ, n :
B ` v : A (notice v ∈ dom(Γ) and therefore n 6= v). By induction we have that
Γ, n : B u ∆〈v/x〉 ` P{v/x}. From n 6∈ dom(Γ, ∆) we infer Γ, n : B u ∆〈v/x〉 =
(Γ u∆〈v/x〉), n : B. We apply (T-New) and infer the desired result, Γ u∆〈v/x〉 `
(new n : B)P{v/x}.
The interesting case is matching.

(T-Match) We have Γ, x : Au∆ ` [u1 = u2] P ; Q since there are types A1, A2 such
that

1. Γ, x : A u∆ ` u1 : A1

2. Γ, x : A u∆ ` u2 : A2

2.1. Syntax of api@ calculus 19

3. Γ, x : A u∆ ` Q

4. Γ, x : A u∆′ ` P

where ∆′ = ∆uu1 : A1uu2 : A2 (the associativity of meet let Γ, x : Au∆′ be equal
to ((Γ, x : A u∆) u u1 : A1) u u2 : A2)). We apply the first part of the proposition
or induction and obtain

(i) Γ u∆〈v/x〉 ` u1{v/x} : A1

(ii) Γ u∆〈v/x〉 ` u2{v/x} : A2

(iii) Γ u∆〈v/x〉 ` Q{v/x}

(iv) Γ u∆′〈v/x〉 ` P

Let I = ((Γu∆〈v/x〉)uu1{v/x} : A2)uu2{v/x} : A1. Notice that I = Γu∆′〈v/x〉.
We apply induction and obtain Γu∆′〈v/x〉 ` P{v/x}. An application of (T-Match)
give us the desired result, Γ u∆〈v/x〉 ` [u1{v/x} = u2{v/x}] P{v/x}; Q{v/x}.
The remaining cases are (T-Out@) and (T-In@).

(T-Out@) We have Γ, x : A u ∆ ` u〈w̃@Ã〉. From (T-Out@) we know Γ, x :
A u ∆ ` u : w and ∀i ∈ 1, . . . , n we have Γ, x : A u ∆ ` wi : Ai where w̃@Ã =
w1@A1, . . . wn@An. We apply the first part of the Lemma and we deduce that both
Γ u ∆〈v/x〉 ` u{v/x} : w and Γ u ∆〈v/x〉 ` wi{v/x} : Ai for all i ∈ 1, . . . , n. We
apply (T-Out@) and infer Γ u∆〈v/x〉 ` u{v/x}〈w̃{v/x}@Ã〉.

(T-In@) We have Γ, x : A u ∆ ` u(ỹ@B̃).P ; we assume x 6∈ ỹ. From (T-In@)
we know Γ, x : A u ∆ ` u : r and (Γ, x : A u ∆), ỹ : B̃ ` P . From ỹ fresh to
the domain of Γ, ∆ and x 6∈ ỹ we infer (Γ, x : A u ∆), ỹ : B̃ = (Γ, vy : B̃, x :
A) u ∆. We apply the first part of the Lemma or induction and we deduce that
(Γ, ỹ : B̃) u ∆〈v/x〉 ` u{v/x} : r and (Γ, ỹ : B̃) u ∆〈v/x〉 ` P{v/x}. From
(Γ, ỹ : B̃)u∆〈v/x〉 = (Γu∆〈v/x〉), ỹ : B̃ and (T-In@) we obtain the desired result,
Γ u∆〈v/x〉 ` u{v/x}(ỹ@B̃).P{v/x}.

The following Corollary generalizes the substitution result for processes.

Corollary 9. Let ṽ = v1, . . . , vn and Ã = A1, . . . , An and assume that for all i ∈
1, . . . , n we have Γ ` vi : Ai. If Γ, x̃ : Ã u∆ ` P then Γ u∆〈ṽ/x̃〉 ` P{ṽ/x̃}.

Proof. By induction on the structure of x̃. Notice that the base coincides with the
second part of Lemma 8.

20 2. A pi calculus with dynamic typing for resource access control

2.2 Dynamically typed structural operational se-

mantics

The dynamics of the calculus is defined by means of a labelled transition system
built around the following actions:

Actions α ::= τ | u(ṽ@B̃) | (c̃ : C̃) u〈ṽ@B̃〉
The output action (c̃ : C̃) u〈ṽ@B̃〉 carries a type tag along with the output value:
it represents the output of a tuple (possibly including fresh) values v1, . . . , vn re-
spectively at the types B1, . . . , Bn; we require each bound name in c̃ to be unique.
Dually, the input action u(ṽ@B̃) represents the input of v1, . . . , vn respectively at
the types B1, . . . , Bn. Most of the transitions, in Table 2.2, are standard. Rule
(Pi-Output@) says that values are emitted together with the tag syntactically
occurring in the definition of the output process. Scope extrusion is provided by
rule (Pi-Open). The axiom (Pi-Input@) says that input processes with bound
variables x1, . . . , xn tagged respectively with type B1, . . . , Bn may receive values
v1, . . . , vn tagged respectively with type B1, . . . , Bn, and when values are received
they are substituted for the place-holders x1, . . . , xn. We assume that the arity of ṽ
and x̃ coincide. As anticipated, synchronizing input and output requires a dynamic
type check: in (Pi-Com@), complementary labels synchronize only if they agree on
the type of the values exchanged. The notation B̃ <: B̃′ is short for the subtyping
judgments on the component types. The (Pi-Match) rule say that whenever match
succeeds the matching process behaves as the process in the then branch; dually in
the (Pi-Mismatch) rule the matching process behaves as the process in the else
branch whenever match fails. The remaining rules are the standard rules for parallel
composition, replication and new of the pi calculus. For the sake of readability, in
the remainder of the section we use the notation I ` ṽ : Ã to indicate the judgments
I ` v1 : A1, . . . , I ` vn : An whenever ṽ = v1, . . . , vn and Ã = A1, . . . , An.

The subject reduction theorem below follows routinely thanks to these dynamic
checks. As is often the case its proof heavily relies on a substitution Lemma.

Theorem 10 (Subject Reduction). Suppose Γ ` P . Then

1. P
τ−−→ P ′ implies Γ ` P ′

2. P
a(ṽ@B̃)−−−−−→ P ′ implies Γr(a) ↓ and Γ u ṽ : B̃ ` P ′

3. P
(c̃:C̃)a〈ṽ@B̃〉−−−−−−−−→ P ′ implies Γw(a) ↓ and Γ, c̃ : C̃ `: ṽ : B̃ and Γ, c̃ : C̃ ` P ′

Proof. By induction on the length of the inference P
α−−→ P ′ and by a case analysis

of the last rule used. The most interesting cases are input, output, open, com-
munication and matching transitions. In the following we let ṽ = v1, . . . , vn and
B̃ = B1, . . . , Bn.

2.2. Dynamically typed structural operational semantics 21

Table 2.2 api@ Labelled Transition System

(Pi-Output@)

a〈ṽ@B̃〉 a〈ṽ@B̃〉−−−−−→ 0

(Pi-Open)

P
(c̃:C̃)a〈ṽ@B̃〉−−−−−−−−→ P ′ b 6= a, b ∈ fn(ṽ)

(new b : B)P
(b:B, c̃:C̃) a〈ṽ@B̃〉−−−−−−−−−−−→ P ′

(Pi-Input@)

a(x̃@B̃).P
a(ṽ@B̃)−−−−−→ P{ṽ/x̃}

(Pi-Com@)

P
(c̃:C̃)a〈ṽ@B̃〉−−−−−−−−→ P ′ Q

a(ṽ@B̃′)−−−−−→ Q′ B̃ <: B̃′ c̃ ∩ fn(Q) = ∅

P |Q τ−−→ (new c̃ : C̃)(P ′ |Q′)

(Pi-Match)

P
α−−→ P ′

[a = a] P ; Q
α−−→ P ′

(Pi-Mismatch)

a 6= b Q
α−−→ Q′

[a = b] P ; Q
α−−→ Q′

(Pi-Par)

P
α−−→ P ′ bn(α) ∩ fn(Q) = ∅

P |Q α−−→ P ′ |Q

(Pi-Repl)

P
α−−→ P ′

!P
α−−→ P ′ | !P

(Pi-Res)

P
α−−→ P ′ a 6∈ n(α)

(new a : A)P
α−−→ (new a : A)P ′

22 2. A pi calculus with dynamic typing for resource access control

(Pi-Input@) In this case the reduction has the form a(x̃@B̃).P
a(ṽ@B̃)−−−−−→ P{ṽ/x̃}

(note that by the usual convention on binders we have that x̃ are not in the domain
of Γ and are disjunct from ṽ). From Γ ` a(x̃@B̃).P and (T-In@) we infer Γ ` a : r
and Γ, x̃ : B̃ ` P . Clearly we have Γu ṽ : B̃ ` vi : Bi for all i in 1, . . . , n.. We apply
Proposition 7 and infer (Γ, x̃ : B̃) u ṽ : B̃ ` P . From x̃ 6∈ dom(Γ) ∪ ṽ we obtain
(Γ, x̃ : B̃)u ṽ : B̃ = (Γu ṽ : B̃), x̃ : B̃. An application of Corollary 9 choosing ∆ = ∅
let us infer Γ u ṽ : B̃ ` P{ṽ/x̃}, as required.

(Pi-Out@) In this case the reduction has the form a〈ṽ@B̃〉 a〈ṽ@B̃〉−−−−−→ 0. From
Γ ` a〈ṽ@B̃〉 and (T-Out@) we infer Γ ` a : w and Γ ` vi : Bi for all i in 1, . . . , n.
From (T-Nil) we deduce Γ ` 0 and we conclude.

(Pi-Open@) In this case the reduction has the form (new b : B)P
(b:B,c̃:C̃)a〈ṽ@B̃〉−−−−−−−−−−→ P ′

with a 6= b and has been inferred from P
(c̃:C̃)a〈ṽ@B̃〉−−−−−−−−→ P ′. From Γ ` (new b : B)P

we infer Γ, b : B ` P . By the inductive hypothesis we have Γ, b : B ` a : w and
Γ, b : B, c̃ : C̃ ` vi : Bi for all i ∈ 1, . . . , n and Γ, b : B, c̃ : C̃ ` P ′. Since by
hypothesis a 6= b we may apply strengthening (Proposition 5) to Γ, b : B ` a : w
and deduce Γ ` a : w, and we are done.

(Pi-Com@) In this case the reduction has the form P |Q τ−−→ (new c̃ : C̃)(P ′ |Q′)

and has been inferred from P
(c̃:C̃)a〈ṽ@B̃〉−−−−−−−−→ P ′ and from Q

a(ṽ@B̃′)−−−−−→ Q′ and Bi <: B′
i

for all i ∈ 1, . . . , n with c̃ ∩ fn(Q) = ∅. From Γ ` P |Q and (T-Par) we infer Γ ` P
and Γ ` Q. By induction on Γ ` P we have that Γ ` a : w and Γ, c̃ : C̃ ` vi : Bi

for all i ∈ 1, . . . , n, and Γ, c̃ : C̃ ` P ′. By induction on Γ ` Q we infer Γ ` a : r
and Γ u ṽ : B̃′ ` Q′. Assume (u1 : A1, . . . , um : Am) = ṽ : B̃′ \ c̃ : C̃ and let
ũ : Ã = u1 : A1, . . . , um : Am. From Γ, c̃ : C̃ ` vi : Bi and the hypothesis of dynamic
typing Bi <: B′

i we obtain Γ, c̃ : C̃ ` vi : B′
i for all i ∈ 1, . . . , n. From strengthening

we obtain that for all j ∈ 1, . . . , m holds Γ ` uj : Aj and in turn from (T-Pro)
Γ(uj) <: Aj. This let us infer Γ u ũ : Ã = Γ (see Prop. 2). This result implies that
Γ u ṽ : B̃′ = Γ, c̃ : C̃. By induction we obtain Γ, c̃ : C̃ ` Q′. We apply (T-Par) to
Γ, c̃ : C̃ ` P ′ and Γ, c̃ : C̃ ` Q′ and we obtain Γ, c̃ : C̃ ` P ′ |Q′. An application of
(T-New) give us the desired result, Γ ` (new c̃ : C̃)(P ′ |Q′).

(Pi-Match) In this case the reduction has the form [a = a] P ; Q
α−−→ P ′ and has

been inferred from P
α−−→ P ′. From Γ ` [a = a] P ; Q and (T-Match) we know that

there are types A,B such that Γ ` a : A and Γ ` a : B and Γ u a : B u a : A ` P .
This let us infer Γ(a) <: A and Γ(a) <: B and in turn Γ u a : B u a : B = Γ. We
apply induction to Γ ` P and P

α−→ P ′ and infer that

2.3. Typed behavioural equivalence 23

• if α = τ then Γ ` P ′;

• if α = a(ṽ@B̃) then Γr(a) ↓ and Γ u ṽ : B̃ ` P ′;

• if α = (c̃ : C̃)a〈ṽ@B̃〉 then Γw(a) ↓ and Γ, c̃ : C̃ ` ṽ : B̃ and Γ, c̃ : C̃ ` P ′.

2.3 Typed behavioural equivalence

The notion of observational equivalence, based on weak bisimulation, is inherited
almost directly from [60]. As usual in typed equivalences [23, 91, 46], we observe
the behavior of processes by means of contexts that have a certain knowledge of the
processes, represented by a set of type assumptions contained in a type environment.
However, following [60], we take the view that the typing information available to
the context may be different (less informative) than the information available to the
system. Thus, while the system processes may perform certain action because they
posses the required (type) capabilities, the same may not be true of the context.
We formalize these intuitions below.

Given two type environments Γ and I such that Γ <: I, we will often say that Γ is
compatible with I.

Definition 1. A type-indexed relation R is a family of binary relations between
processes (hence closed) indexed by type environments. We write I |= PRQ to mean
that (i) P and Q are related by R at I and (ii) there exist Γ and ∆ compatible with
I such that Γ ` P and ∆ ` Q. We often write I |= PRQ as P RI Q.

Definition 2 (Contextuality). A type-indexed relation R is contextual whenever

(i) I ² PRQ implies I, a : A ² PRQ

(ii) I ² PRQ and I ` R imply I ² P |RRQ |R
(iii) I, a : A ² PRQ implies I ² (new a : A)P R (new a : A)Q.

We define the barb predicate relative to a type environment as follows. Let =⇒ be
the reflexive and transitive closure of

τ−→.

Definition 3 (Barbs). Let I be a type environment and let P be a closed process.
We let:

1. P ↓a if and only if P
(c̃:C̃)a〈b̃@B̃〉−−−−−−−−→ ;

2. P ⇓a if and only if P ==⇒ ↓a.
3. I ² P ↓a if and only if I(a)r ↓ ∧ P ↓a;

24 2. A pi calculus with dynamic typing for resource access control

4. I ² P ⇓a if and only if I(a)r ↓ ∧ P ⇓a.

We define our notion of observational equivalence.

Definition 4 (Typed behavioral equivalence). Typed behavioral equivalence,
noted ∼=π, is the largest symmetric and contextual type-indexed relation R such that
I |= PRQ implies

(i) if I ² P ↓n then I ² Q⇓n

(ii) if P
τ−→ P ′ then Q =⇒ Q′ and I |= P ′RQ′ for some Q′ .

Behavioural equivalence is indeed an equivalence relation; we will prove this result
in Section 2.4.

Example As a simple illustration of the calculus and its behavioral theory we draw
an example inspired from [88]. In that paper the authors argued that some desirable
properties of distributes systems, for instance availability of public resources, can
be guaranteed in the pi calculus only by using types that control the behavior of
processes. The claim is best illustrated by their motivating example:

S = (new s)!d〈s〉 | !s(x).print〈x〉 C = d(x).x〈j〉

S is a print spooler serving requests from a private channel s that it communicates
to its clients via the public channel d. C is one such client, that receives s and uses
it to print the job j. While the intention of the specification is clear, one easily sees
that, given the initial configuration S |C, is not guaranteed that the jobs sent by C
will eventually be received and printed. Formally:

S |C � S | print〈j〉 (2.3)

Here ∼= is the observational equivalence of the untyped pi calculus. The in-equation
above is easily proved by exhibiting a context that interferes with the intended
protocol between S and C: for instance the context C1[−] = − | d(x).!x(y).0, that
initially behaves as a client, to receive s, but then steals the jobs intended for S.

We show how to recover equation (2.3) in the api@ calculus. Letting J be the
type of jobs, the two processes S and C may be defined as follows:

S = (new s : rw)!d〈s@w〉 | !s(x@J).print〈x@J〉 C = d(x@w).x〈j@J〉

The important thing to note is the type s@w chosen by S for the output on d to
make sure that the spooling channel will only be received with output capabilities.
Then we can prove the desired equivalence by assuming that contexts may only read
on d, and have no control on the channel print, namely:

j : J, print : >, d : r |= S | C ∼=π S | print〈j@J〉 (2.4)

2.4. A coinductive proof technique 25

As usual [99], proving such equivalences takes some effort and is often not easy, as it
requires induction to capture all the typed contexts. Luckily (but not surprisingly),
the construction from [60] works just as well for our calculus in providing a purely
coinductive characterization for reduction barbed congruence.

A fundamental difference between our notion of equivalence and that of [60]
arises as a consequence of the different typing disciplines. In our system, the rule
for typed value exchange guarantees that the context obtains values emitted on
a public channel at the static type occurring in the coercion associated with the
output. Conversely, in [60], the type at which the context acquires the new name
is determined by the type information that the context has on the channel used
for output: that, in turn, presupposes that the context “behaves” in that it will
not try to acquire from the value emitted more than allowed by the read type of
the transmission channel. As a consequence, in [60] reasoning on the access control
policies can hardly be carried out without assuming that the context is well-typed,
with the same type system. In our solution, instead, an appropriate use of coercion
may be put in place to prevent the context from acquiring, upon output by the
system, more information than it was intended to. A corresponding mechanism
can be realized in terms of a low-level construction in the applied pi calculus. We
illustrate how this can be done in Chapter 4.

2.4 A coinductive proof technique

To prove that two processes are typed behavioural equivalent, we need to find a
relation which is symmetric, barb preserving, reduction closed and contextual. Par-
ticularly, the last condition implies the candidate relation to be closed under parallel
composition of processes that are typechecked by the environment. To avoid the dif-
ficulties implicitly arising in such quantification, we provide a characterization of ∼=π

in the terms of a bisimulation equivalence that can be proved coinductively. The
characterization draws on the definition of a set of typed labelled transitions in
which the interaction between a process and its context is mediated by the type
capabilities that the context possesses on the shared names.

Definition 5. A pair I . P is a configuration if and only if there is a closed type
environment Γ compatible with I such that Γ ` P .

The typed actions, in Table 2.3, encode transitions over configurations of the

form I . P
α−−→ I′ . P ′ where

α ::= τ | (b̃)a〈ṽ@B̃〉 | (c̃ : C̃)a(ṽ@B̃) .

The types of the bound names in the output action have been dropped as they
are not observable (they are used only for the definition of the untyped reduction

26 2. A pi calculus with dynamic typing for resource access control

Table 2.3 Typed Actions

(G-Out@)

Ir(a) ↓ Ã <: B̃

I . a〈ṽ@Ã〉 a〈ṽ@B̃〉−−−−−→ I u ṽ : B̃ . 0

(G-In@)

Iw(a) ↓ I ` ṽ : Ã′ Ã′ <: Ã

I . a(x̃@Ã).P
a(ṽ@Ã′)−−−−−→ I . P{ṽ/x̃}

(G-Open)

I, b : > . P
(c̃)a〈ṽ@Ã〉−−−−−−→ I′ . P ′ b 6= a, b ∈ fn(ṽ)

I . (new b : B)P
(b, c̃) a〈ṽ@Ã〉−−−−−−−−→ I′ . P ′

(G-Weak)

I, b : B . P
(c̃:C̃)a(ṽ@Ã)−−−−−−−−→ I′ . P ′ b 6∈ {a, c̃}

I . P
(b:B, c̃:C̃) a(ṽ@Ã)−−−−−−−−−−−→ I′ . P ′

(G-Match)

I . P
α−−→ I′ . P ′

I . [a = a] P ; Q
α−−→ I′ . P ′

(G-Mismatch)

a 6= b I . Q
α−−→ I′ . Q′

I . [a = b] P ; Q
α−−→ I′ . Q′

(G-Reduce)

P
τ−−→ P ′

I . P
τ−−→ I . P ′

(G-Par)

I . P
α−−→ I′ . P ′ bn(α) ∩ fn(Q) = ∅
I . P |Q α−−→ I′ . P ′ |Q

(G-Res)

I, a : > . P
α−−→ I′, a : > . P ′ a 6∈ n(α)

I . (new a : A)P
α−−→ I′ . (new a : A)P ′

(G-Repl)

I . P
α−−→ I′ . P ′

I . !P
α−−→ I′ . P ′ | !P

2.4. A coinductive proof technique 27

relation
τ−−→). Conversely input actions now may contain fresh names generated

by the environment at given types and assumed to occur in the input. These tran-
sitions identify actions by the process P that are only possible if they are allowed
by the environment I. Not surprisingly, most of the typed transitions in our system
are derived directly from their companion transitions in the system of [60].

The input and output forms are characteristic of our labelled transition system,
as these reflect the nature of the interactions with the context distinctive of our
calculus. Specifically, the (G-out@) rule formalizes the fact that a context willing
to observe an output action performed by a process on a channel readable by the
environment may only do so by guessing a super-type of the actual type used in
the type coercion: that supertype is also the type at which the context acquires the
values emitted. The notation Ã <: B̃ is short for the subtyping judgments on the
component types. Dually, the (G-in@) rule shows that an input by a process on
a channel writable by the environment may in general only be observed at a lower
type than actually performed by the process. All this is a consequence of the format
of our subtype-based synchronization rule (Pi-Com@) in Table 2.2.

Rule (G-Open) depicts the behaviour of a process sending fresh values to the
environment. Note that in the premises b has to be in the domain of the environ-
ment since for I, b : >.P to be a configuration it is required that exists ∆ <: I, b : >
such that ∆ ` P , and this requires ∆ ` ṽ : Ã with b ∈ ṽ. However, knowing b at top
precludes to the environment any access to the channel. Rule (G-Weak) says that
the environment can create new values at given types inside input actions. Rule
(G-Reduce) formalizes the intuition that Table 2.3 depicts interactions among
processes and the environment; in such case the internal reduction of the process is
not visible to the environment. Rules for replication, parallel composition, match-
ing and mismatching are simple extensions of their correspondent untyped forms.
Similarly rule (G-New) extends its untyped version; similarly to (G-Open), in the
premises the name a bound in P needs to be in the domain of the environment to
let I, a : > . P be a configuration.

Based on the labelled transition system of Table 2.3, we develop a bisimulation
equivalence that can be used as a proof technique for ∼=π, as we will show. The
resulting notion of asynchronous bisimilarity arises as expected [15].

We let
α̂−→ be the identity whenever α = τ else

α̂−→, α−→.

Definition 6 (Typed labelled bisimilarity). A symmetric type indexed relation
R over processes is an asynchronous bisimulation if whenever I |= PRQ, one has:

• if I . P
α−→ I′ . P ′ and α is (c̃) a〈ṽ@Ã〉 or τ then I . Q

α̂
=⇒ I′ . Q′ with

I′ |= P ′RQ′

• if I . P
α−→ I′ . P ′ and α is (c̃ : C̃)a(ṽ@Ã) then

– I . Q
α

=⇒ I′ . Q′ with I′ |= P ′RQ′ or

28 2. A pi calculus with dynamic typing for resource access control

– I . Q =⇒ I . Q′ with I′ |= P ′RQ′ | a〈ṽ@Ã〉.

Asynchronous labelled bisimilarity, noted ≈π
a , is the largest type indexed asynchronous

bisimulation.

Perhaps interestingly, the reader will notice that the types C̃ and Ã chosen to match
the input transition are, in both cases, exactly the types occurring in the label of
the transition to be matched.

In proving that two process are behaviorally equivalent, is often convenient to
exhibit a relation that is smaller than the one required by the definition. These so
called up to techniques (see [103]) need to be carefully analyzed to ensure that they
are sound, i.e. we need to prove that the smaller relation induced by the definition
is actually contained in behavioural equivalence.

Definition 7 (Up to technique). A type-indexed relation is an asynchronous
bisimulation up to R1, R2 (noted up to R whenever R1 = R = R2) if I |= P S Q

and I . P
α−−→ I′ . P ′ then I . Q answers with the same weak move of the defi-

nition of typed labelled bisimilarity and for the appropriate Q′ we have that I′ |=
P ′R1 S R2 Q′.

We introduce lemmas that establish a number of useful properties about the
typed actions of Table 2.3 and connect them with corresponding untyped actions.

Proposition 11. If I . P
α−−→ I′ . P ′ then I u b̃ : B̃ . P

α−−→ I′ u b̃ : B̃ . P ′.

Proof. By straightforward rule induction. In rule (G-Out@) supposing α = a〈ṽ@Ã〉
we exploit the hypothesis I(a)r ↓ and the fact that Iu b̃ : B̃ = I′, ∆ for type environ-
ments I′, ∆ such that I′ <: I to infer (I u b̃ : B̃)r(a) ↓; the thesis then follows easily.
Similarly in rule (G-In@) supposing α = a(ṽ@Ã) we infer (I u b̃ : B̃)w(a) ↓ and
Iu b̃ : B̃ ` v1 : A1, . . . Iu b̃ : B̃ ` vn : An that let us infer the desired transition. The
remaining cases follow directly by the induction hypothesis.

Lemma 12. Let I be a closed type environment and P a closed process.

1. If I.P
(c̃)a〈ṽ@B̃〉−−−−−−→ I′ .P ′ then Ir(a) ↓, I′ = Iu ṽ : B̃ and there are types Ã <: B̃

and types C̃ such that P
(c̃:C̃)a〈ṽ@Ã〉−−−−−−−−→ P ′.

Vice versa if P
(c̃:C̃)a〈ṽ@Ã〉−−−−−−−−→ P ′ and Ir(a) ↓ then for all types B̃ :> Ã holds

I . P
(c̃)a〈ṽ@B̃〉−−−−−−→ I u ṽ : B̃ . P ′.

2.4. A coinductive proof technique 29

2. If I . P
(c̃:C̃)a(ṽ@Ã)−−−−−−−−→ I′ . P ′ then Iw(a) ↓, I′ = (I, c̃ : C̃), I′ ` ṽ : Ã and there

are types A′ :> A s.t. P
a(ṽ@Ã′)−−−−−→ P ′.

Vice versa if P
a(ṽ@Ã′)−−−−−→ P ′ and I(a)w ↓ then for all types Ã <: Ã′ such that

I ` ṽ : Ã holds I . P
(c̃:C̃)a(ṽ@Ã)−−−−−−−−→ I, c̃ : C̃ . P ′, for some types C̃.

3. I . P
τ−−→ I′ . P ′ iff I′ = I and P

τ−−→ P ′.

Proof. By rule induction. Most cases in both directions follow directly by the in-
duction hypothesis. We first sketch the main cases of the typed semantics direction.

(G-Out@) In this case the transition has the form I . a〈ṽ@Ã〉 a〈ṽ@B̃〉−−−−−→ I u ṽ :
B̃ . 0 where Ã <: B̃ and Ir(a) ↓. By the untyped semantics in Table 2.2 we infer

a〈ṽ@Ã〉 a〈ṽ@Ã〉−−−−→ 0.

(G-In@) In this case the transition has the form I.a(x̃@Ã′).P
a(ṽ@Ã)−−−−→ I.P{ṽ/x̃}

where Ã <: Ã′ and I ` ṽ : Ã and Iw(a) ↓. By the untyped semantics in Table 2.2 we

infer a(x̃@Ã′).P
a(ṽ@Ã′)−−−−−→ P{ṽ/x̃}.

(G-Weak) In this case the transition has the form I.P
(b:B,c̃:C̃)a(ṽ@Ã)−−−−−−−−−−→ I′ .P ′ that

is inferred from I, b : B . P
(c̃:C̃)a(ṽ@Ã)−−−−−−−−→ I′ . P ′ with b not occurring in a, c̃. The

inductive hypothesis is that (I, b : B)(a)w ↓, I′ = I, b : B, c̃ : C̃, I′ ` ṽ : Ã, and

P
a(ṽ@Ã′)−−−−−→ P ′ for types Ã′ :> Ã. From a 6= b, (I, b : B)(a)w ↓ and strengthening

(Proposition 5) we easily infer I(a)w ↓, and we are done.

(G-Match) In this case the transition has the form I . [a = a] P ; Q
α−−→ I′ . P ′

that is inferred from I . P
α−−→ I′ . P ′. For each α, the inductive hypothesis give

us the desired conditions on the environment typings. It’s left to check the con-
dition for the untyped transitions. Let α′ be the action executed in the untyped
semantics correspondent to α in the statement of the Lemma. The inductive hy-

pothesis is P
α′−−→ P ′. This let us apply rule (Pi-Match) in Table 2.2 and infer

[a = a] P ; Q
α′−−→ P ′, as requested.

We now prove the most interesting cases whether the hypothesis involves the
untyped semantics.

30 2. A pi calculus with dynamic typing for resource access control

(Pi-Output@) In this case the transition has the form a〈ṽ@Ã〉 a〈ṽ@Ã〉−−−−→ 0. Let
B̃ be types such that Ã <: B̃. If I(a)r ↓ then for rule (G-Out@) we have I .

a〈ṽ@B̃〉−−−−−→ I u ṽ : B̃ . 0, as desired.

(Pi-Input@) In this case the transition has the form a(x@B̃).P
a(ṽ@B̃)−−−−−→ P{ṽ/x̃}.

Let Ã be types such that Ã <: B̃. If I(a)w ↓ and I ` ṽ : Ã, for types Ã <: B̃, then

by (G-In@) we infer I . a(x@B̃).P
a(ṽ@Ã)−−−−→ I . P{ṽ/x̃}. We apply Proposition 11

and we infer I, c̃ : C̃ . a(x@B̃).P
a(ṽ@Ã)−−−−→ I, c̃ : C̃ . P{ṽ/x̃} for types C̃. We have the

valid hypothesis to apply (G-Weak@) and obtain I . a(x@B̃).P
(c̃:C̃)a(ṽ@Ã)−−−−−−−−→ I, c̃ :

C̃ . P{ṽ/x̃}, as desired.

(Pi-Open) In this case the transition has the form (new b : B)P
(b:B,c̃:C̃)a〈ṽ@Ã〉−−−−−−−−−−→ P ′

and has been inferred from P
(c̃:C̃)a〈ṽ@Ã〉−−−−−−−−→ P ′ with b distinct from a and occurring

in ṽ. By the inductive hypothesis we know that if I(a)r ↓ then for all types B̃ :> Ã

holds I . P
(c̃)a〈ṽ@B̃〉−−−−−−→ I u ṽ : B̃ . P ′. We apply Proposition 11 and we infer I, b :

> . P
(c̃)a〈ṽ@B̃〉−−−−−−→ (I, b : >)u ṽ : B̃ . P ′. From b ∈ ṽ it’s easy to see that (I, b : >)u ṽ :

B̃ = Iu ṽ : B̃. By rule (G-Open) we infer I . (new b : B)P
(b,c̃)a〈ṽ@B̃〉−−−−−−−→ Iu ṽ : B̃ .P ′,

as desired.

(Pi-Com@) In this case the transition has the form P |Q τ−−→ (new c̃ : C̃)(P ′ |Q′).

We apply (G-Reduce) and obtain I . P |Q τ−−→ I . (new c̃ : C̃)(P ′ |Q′).

(Pi-Res) Similar to case (Pi-Open).

The remaining cases are directly obtained by the induction hypothesis.

By the definition of type-indexed relation and configuration we directly infer the
following proposition.

Proposition 13. If R is type-indexed relation such that I |= PRQ, then I . P and
I . Q are configurations.

The next lemma ensures that configurations progress to valid configurations.

Lemma 14. I . P is a configuration and I . P
α−−→ I′ . P ′ imply that I′ . P ′ is a

configuration.

2.4. A coinductive proof technique 31

Proof. Assume I .P
α−−→ I′ .P ′ and let Γ be a type environment compatible with I

such that Γ ` P . We need to show that there exists Γ′ compatible with I′ such that

Γ′ ` P ′. The proof is by induction on length of the derivation of I . P
α−−→ I′ . P ′.

Most cases follow directly by the induction hypothesis. We look at the cases (G-in)
and (G-open).

(G-in@) In this case the transition has the form I.a(x̃@Ã).P
a(ṽ@Ã′)−−−−−→ I.P{ṽ/x̃}

where Ã′ <: Ã. Moreover, we know I(a)w ↓ and I ` ṽ : Ã′. By the untyped semantics

we know a(x̃@Ã).P
a(ṽ@Ã)−−−−→ P{ṽ/x̃}. From Γ ` P and subject reduction we obtain

Γ u ṽ : Ã ` P{ṽ/x̃}. From I(ṽ) <: Ã′ and Ã′ <: Ã and transitivity of <: we infer
I(ṽ) <: Ã. Since Γ(ṽ) <: I(ṽ), these results let us infer Γ u ṽ : Ã = Γ, and in turn
Γ ` P{ṽ/x̃}, as requested.

(G-open) In this case, the the transition in question has the form I.P
(b,c̃)a〈ṽ@A〉−−−−−−−→ I′.

P ′ derived from I, b : > . P
(c̃)a〈ṽ@A〉−−−−−−→ I′ . P ′. By the induction hypothesis we know

that I′ . P ′ is a configuration which is all we need.

The next Lemma formalizes the intuition that in a configuration the environment
plays the role of permitting labelled transitions and collecting the type information
on the received capabilities, and that these tasks are fulfilled due to the observation
of labels.

Lemma 15. Let I, J be closed type environments and P,Q be closed processes.

Assume I . P
α−−→ I′ . P ′. If J . Q

α−−→ J′ . Q′ then also I . Q
α−−→ I′ . Q′.

Proof. Follows directly by Lemma 12, reasoning by cases on the shape of α.

Lemma 16. If I ` P and I . P
α−→ I′ . P ′, then there exists I′′ such that I′ = I, I′′.

Proof. The intuition is that processes that typechecks at I may contribute new names
to the information conveyed by I, whereas they may refine the knowledge about (i.e.
lower the types of any of the) existing names in I. Formally, the proof is by a cases
analysis on the form of α. If α is an input or silent action the proof follows directly
by Lemma 12. Instead, when α has the form (c̃)a〈ṽ@A〉, by Lemma 12 we know

that I′ = I u ṽ : A, and P
(c̃:C̃)a〈ṽ@A′〉−−−−−−−−→ P ′ for suitable types C̃ and Ã′ <: Ã. Then,

from I ` P , by Subject Reduction, we have I, c̃ : C̃ ` ṽ : A′ and I, c̃ : C̃ ` P ′. We
have found the required I′′ = c̃ : C̃.

Lemma 17. Let Γ ` P with Γ compatible with I. If P
(c̃:C̃)a〈ṽ@Ã〉−−−−−−−−→ P ′ then Γ, c̃ : C̃

is compatible with I u ṽ : Ã.

32 2. A pi calculus with dynamic typing for resource access control

Proof. From the transition of the hypothesis and Lemma 12 we deduce I.P
(c̃)a〈ṽ@Ã〉−−−−−−→

I u ṽ : Ã . P ′. From Γ ` P and subject reduction we infer Γ, c̃ : C̃ ` ṽ : Ã. From
the judgement of values we obtain (i) ṽ ∈ dom(Γ, c̃ : C̃) and (ii) (Γ, c̃ : C̃)(ṽ) <: Ã.
From (i) and c̃ ∈ ṽ we infer dom(Γ, c̃ : C̃) = dom(I u ṽ : Ã). From (ii) and the
hypothesis Γ compatible with I we infer Γ, c̃ : C̃ <: I u ṽ : Ã. The two inferences
give us the desired result.

We define an up to technique which will be useful to ease the proof of soundness
of typed labelled bisimilarity (see Proposition 24). To this aim we introduce the
usual notion of structural congruence of the pi calculus.

Definition 8 (Structural congruence). Structural congruence, noted ≡, is the
least relation that is closed under α-conversion, preserved by the operators of the
language, and that satisfies the following axioms:

P | (new a : A)Q ≡ (new a : A)(P |Q) if a 6∈ fn(P)

[a = a] P ; Q ≡ P

[a = b] P ; Q ≡ Q if a 6= b

P |Q ≡ Q |P
!P ≡ !P |P

P |0 ≡ P .

To prove that asynchronous bisimulation up to ≡ is a sound technique we use
the following result stating that ≡ commutes with the typed dynamics of Table 2.2,
in the following sense.

Proposition 18. If P ≡ Q and I.P
α−−→ I′.P ′ then there is Q′ s.t. I.Q

α−−→ I′.Q′

and P ′ ≡ Q′.

Proof. Let I . P
α−−→ I′ . P ′. We proceed by case analysis on α and for each α by

using the left to right direction of Lemma 12 we find an appropriate untyped action

α′ such that P
α′−−→ P ′. We then show that P ≡ Q and P

α′−−→ P ′ implies that

there is Q′ s.t. Q
α′−−→ Q′ and P ′ ≡ Q′. The proof of this result is similar to the

demonstrations available in the literature (cf. [104]), and proceeds by induction on
the number of applications of the rewriting rules of Definition 8. Finally for each

untyped action α′ we apply the right to left direction of Lemma 12 to Q
α′−−→ Q′

and we infer I . Q
α−−→ I′ . Q′, as needed.

Proposition 19. If R is an an asynchronous bisimulation up to ≡ then R ⊆≈π
a .

Proof. The proof consists in showing with a chasing-diagram argument that ≡ R ≡
is an asynchronous bisimulation. We use the convention to indicate existential rela-
tions with dotted lines; we let ³ represent ==⇒ . We first sketch the case whether

2.4. A coinductive proof technique 33

α is an output action.

I . P
≡

I . P ∗ R
I . Q∗ ≡

I . Q

I′ . P1

α

?
................
≡

I′ . P ∗
1

α

??

...............

...
R
... I′ . Q∗

1

α

??

..............

.....
≡
..... I′ . Q1

α

??

..............

The first inference on the left is obtained from Proposition 18. Now from I |= P ∗RQ∗

and I . P ∗ α
==⇒ I′ . P ∗

1 it’s easy to see that whenever α is an output action there is
Q∗

1 s.t. I . Q∗ α
==⇒ I′ . Q∗

1 and I′ |= P ∗
1 RQ∗

1. Similarly one proves that Proposition
18 still holds whenever the strong move of the hypothesis is substituted with a weak
move. This let us conclude that there is Q′ s.t. I . Q

α
==⇒ I′ . Q1 with Q1 ≡ Q∗

1.
We now draw the case whether α is an input action and I.Q∗ answers with a silent

action; the case whether the configuration matches the move with the same input
move is analogous to the previous output case. To ease the notation we indicate
with α the asynchronous output derived from the input action α in the definition of
asynchronous bisimilarity.

I . P
≡

I . P ∗ R
I . Q∗ ≡

I . Q

I′ . P1

α

?
................
≡

I′ . P ∗
1

α

??

...............

...
R
... I′ . Q∗

1 |α I . Q∗
1

??

...............

.....
≡
..... I . Q1

??

...............

From I |= P ∗RQ∗ and I.P ∗ α
==⇒ I′.P ∗

1 we have that there is Q∗
1 s.t. I.Q∗ ==⇒ I.Q∗

1

and I′ |= P ∗
1 RQ∗

1 |α. As in the previous case from Q∗ ≡ Q we infer that there is Q′

s.t. I . Q ==⇒ I . Q1 and Q∗
1 ≡ Q1, as needed.

The case α = τ is trivial and we omit it.

Soundness of typed labelled bisimilarity

We prove a series of lemmas and propositions that imply that ≈π
a is contained in

∼=π.

Proposition 20. ≈π
a is (i) reduction closed and (ii) barb preserving.

Proof. Let I |= P ≈π
a Q. To see (i), let I . P

τ−−→ I′ . P ′. By definition of ≈π
a there

is Q′ s.t. I . Q ==⇒ I′ . Q′ and I |= P ′ ≈π
a Q′, that is ≈π

a is reduction closed. To see

34 2. A pi calculus with dynamic typing for resource access control

(ii), from the definition of I |= P ↓a we obtain that I may read a, that is I(a)r ↓,and

there is P ′ and types Ã, C̃ such that P
(c̃:C̃)a〈ṽ@Ã〉−−−−−−−−→ P ′. We apply Lemma 12 and

we deduce that there is I′ such that I . P
(c̃)a〈ṽ@Ã〉−−−−−−→ I′ . P ′ . Thus there is Q′ s.t.

I . Q
(c̃)a〈ṽ@Ã〉

======⇒ I′ . Q′ with I′ |= P ′ ≈π
a Q′. Since I(a)r ↓, this implies I |= Q⇓a.

In the the rest of this section we focus on the proof that ≈π
a is contextual.

Lemma 21 (Subtype closure). Assume I |= P ≈π
a Q. If I <: I′ then I′ |= P ≈π

a Q.

Proof. Let J be a type environment: define R to be the type-indexed relation such
that J |= PRQ whenever I <: J and I |= P ≈π

a Q.

Assume J . P
α−→ J′ . P ′. An inspection of the typed transitions shows that for

I <: J we have I . P
α−→ I′ . P ′ with I′ <: J′. If α is a silent or output transition,

by the hypothesis I |= P ≈π
a Q we know that I . Q

α̂
=⇒ I′ . Q′ and I′ |= P ′ ≈π

a Q′.

By Lemma 15 we know that J . Q
α̂

=⇒ J′ . Q′: by this we can conclude because
I′ |= P ′ ≈π

a Q′ implies J′ |= P ′RQ′.
The case when α is an input transition is proved in the same way.

The next lemma proves that labelled bisimilarity respects the first clause of
contextuality (Definition 2).

Proposition 22 (Weakening closure). Assume I |= P ≈π
a Q. If I, I′ is an

environment then I, I′ |= P ≈π
a Q.

Proof. The proof follows by co-induction. We need the following simple properties
of typed actions . Assume I . P is a configuration. Then, for every I′ such that that
I, I′ . P

α−→ J . P ′, with α a silent or output transition it must be the case that
fn(α) ⊆ dom(I). From this we have:

(i) If I.P
(c̃)a〈ṽ@A〉−−−−−−→ Iuṽ : A.P ′ then I, I′.P

(c̃)a〈ṽ@A〉−−−−−−→ J.P ′ with J = (Iuṽ : A), I′.

(ii) Conversely, if I . P is a configuration, and I, I′ . P
(c̃)a〈ṽ@A〉−−−−−−→ J . P ′, then

J = (I u ṽ : A), I′ and I . P
(c̃)a〈ṽ@A〉−−−−−−→ I u ṽ : A . P ′

Notice (i) specializes Proposition 11 for the case of output actions and environment
I′ such that the domains of I, I′ do not intersect.

Let I′ be a type environment: define R to be the type-indexed relation such
that I, I′ |= PRQ whenever I, I′ is a legal type environment and I, I′ |= P ≈π

a Q or
I |= P ≈π

a Q.

We show that R is an asynchronous bisimulation: from this the result follows directly
as R being a bisimulation implies that, pointwise, it is contained in ≈π

a .

2.4. A coinductive proof technique 35

Assume I, I′ |= PRQ and I, I′ . P
α−→ J . P ′: we must find Q′ such that I, I′ . Q

α̂
=⇒

J . Q′ and J |= P ′RQ′. If I, I′ |= PRQ because I, I′ |= P ≈π
a Q the claim follows

trivially. We examine the case when I |= P ≈π
a Q, reasoning by cases on the shape

of α.

(α = (c̃)a〈ṽ@A〉) From I |= P ≈π
a Q we know that I .P is a configuration. From (ii)

above, we know that J = (I u ṽ : A), I′ and also that

I . P
(c̃)a〈ṽ@A〉−−−−−−→ I u ṽ : A . P ′.

From I |= P ≈π
a Q, we find Q′ such that

I . Q
(c̃)a〈ṽ@A〉

======⇒ I u ṽ : A . Q′

and I u ṽ : A |= P ′ ≈π
a Q′. From (i) we know that

I, I′ . Q
(c̃)a〈ṽ@A〉

======⇒ J . Q′

and we are done because I u ṽ : A |= P ′ ≈π
a Q′ implies that J |= P ′RQ′.

(α = τ) In this case the hypothesis is I, I′ . P
τ−→ I, I′ . P ′. By Lemma 12 (in the

‘only if’ direction) we know that P
τ−→ P ′ and from this, again by Lemma 12 (in

the ‘if’ direction) we have I . P
τ−→ I . P . Because I |= P ≈π

a Q, we find Q′ such
that I . Q =⇒ I . Q′ and I |= P ′ ≈π

a Q′. By two further applications of Lemma
12 we obtain I, I′ . Q =⇒ I, I′ . Q′, by which we conclude as I |= P ′ ≈π

a Q′ implies
I, I′ |= P ′RQ′ as desired.

(α = (c̃ : C̃)a(ṽ@A)). From I, I′ . P
α−→ J . P ′, by (G-Weak), we obtain I .

P
(I′)α−−−→ J′.P ′. By Lemma 12, we know that J′ = J = I, I′, c̃ : C̃. From I |= P ≈π

a Q

we find Q′ such that either (a) I . Q
(I′)α−−−→ J . Q′ and J |= P ′ ≈π

a Q′, or (b)
I.Q =⇒ I.Q′ with J |= P ′ ≈π

a (Q′ | a〈ṽ@A〉). In case (a), an inspection of the typed

transitions shows that I, I′ . Q
α−−→ J . Q′: we can conclude because J |= P ′ ≈π

a Q′

implies J |= P ′RQ′ as desired. We can conclude case (b) as well because we have
found Q′ such that I, I′, c̃ : C̃ . Q =⇒ J . Q′ with J |= P ′R(Q′ | a〈ṽ@A〉)

Next we tackle closure of bisimilarity under new.

Proposition 23. If I, a : A |= P ≈π
a Q then I |= (new a : A)P ≈π

a (new a : A)Q.

Proof. It is simpler to show that I, a : > |= P ≈π
a Q implies I |= (new a : A)P ≈π

a

(new a : A)Q. From this, the desired result follows by Lemma 21 as I, a : A |= P ≈π
a

Q implies I, a : > |= P ≈π
a Q.

Let R be the type indexed relation such that I |= PRQ whenever (i) I |= P ≈π
a Q or

(ii) P and Q have the form (new a : A)P ′ and (new a : A)Q′ and I, a : > |= P ′ ≈π
a Q′.

36 2. A pi calculus with dynamic typing for resource access control

That R is a type indexed relation follows from these facts. Let Γ = Γ′, a : A. From
Γ ` P and (T-New) we have Γ′ ` (new a : A)P ′. From Γ <: I, a : > we obtain
Γ′ <: I. The same reasoning holds for (new a : A)Q′ and hence the claim.

We show that R is a type indexed bisimulation: specifically, we show that every
transition from I . P can be matched by I . Q.Case (i) is trivial; we consider (ii).

Assume I, a : > |= P ≈π
a Q and I . (new a : A)P

α−→ I′ . P ′. We reason by rule
induction, by cases on the last rule in the derivation.

(G-Open) Then the transition in question has the form I . (new a : A)P
(a)α−−→ I′ .

P ′, and is derived from I, a : >.P
α−→ I′ .P ′. By the hypothesis I, a : > |= P ≈π

a Q,
we know that there exists Q′ such that I, a : > . Q

α
=⇒ I′ . Q′ and I′ |= P ′ ≈π

a Q′.

From the last transition, by (G-Open), we have I. (new a : A)Q
(a)α

===⇒ I′ .Q′. This
is enough to to conclude because I′ |= P ′ ≈π

a Q′ implies, by definition, I′ |= P ′RQ′.

(G-Res) Then the transition in question has the form I . (new a : A)P
α−−→ I′ .

(new a : A)P ′ with a 6∈ n(α), and is derived from I, a : > .P
α−→ I′, a : > .P ′. From

the hypothesis that I, a : > |= P ≈π
a Q, it follows that there exists Q′ such that I, a :

> . Q
α

=⇒ I′, a : > . Q′ and with I, a : > |= P ′ ≈π
a Q′. Thus, by applying (G-Res)

together with the hypothesis a 6∈ n(α) , we infer I . (new a : A)Q
α

==⇒ I′ . (new a :
A)Q′. By definition I, a : > |= P ′ ≈π

a Q′ implies I |= (new a : A)P ′R(new a : A)Q′,
and we are done.

(G-Reduce) Then the transition in question is I.(new a :)P
τ−→ I′.(new a : A)P ′,

derived from (new a : A)P
τ−→ (new a : A)P ′, which in turn derives from P

τ−→ P ′.
We show that there exists Q′ such that I . (new a : A)Q =⇒ I′ . (new a : A)Q′ and
I, a : > |= P ′ ≈π

a Q′. From P
τ−→ P ′, by Lemma 12, we know that I, a : > . P

τ−→
I, a : > . P ′. Since I, a : > |= P ≈π

a Q there exists Q′ such that I, a : > . Q =⇒ I, a :
> . Q′ and I, a : > |= P ′ ≈π

a Q′. We have found the desired Q′ because from the
last weak transition, we easily see that I . (new a : A)Q =⇒ I . (new a : A)Q′ (by
repeated applications of (G-Reduce) followed by (G-Res) followed by repeated
applications of (G-Reduce)).

(G-Weak) Then the transition in question has the form I.(new a : A)P
(b)α−→ I′.P ′,

and is derived from I, b : D . (new a : A)P
α−→ I′ . P ′. From I, a : > |= P ≈π

a Q, by
Proposition 22 we know that I, b : D, a : > |= P ≈π

a Q. By the induction hypothesis,
we find a weak transition I, b : D . (new a : A)Q

α
=⇒ I′ . Q′ (or else the weak

transition corresponding to case (b) in the definition of asynchronous bisimulation),
with I′ |= P ′ ≈π

a Q′, and hence I′ |= P ′RQ′. It is not difficult to see that from the

last transition we obtain I . (new a : A)Q
(b)α
=⇒ I′ . Q′, as desired.

2.4. A coinductive proof technique 37

The most difficult case is the closure of labelled bisimilarity under parallel com-
position.

Proposition 24. If I |= P ≈π
a Q and I ` R then I |= (P |R) ≈π

a (Q |R).

Proof. To ease the notation, we write (new ∆)P whenever ∆ has the form ã : Ã
with ã names; we write |∆| for the names ã. With this understanding, let R be the
type-indexed relation defined as follows:

I |= (new ∆)(P |R)R(new ∆′)(Q |R) iff dom(∆) = dom(∆′) and there
exists J such that:

• I u J |= P ≈π
a Q and I u J ` R

• there exist Γ and Γ′ such that Γ, ∆ and Γ′, ∆′ are compatible with
I u J, and one has Γ, ∆ ` P and Γ′, ∆′ ` Q

We show that R is an asynchronous bisimulation up to ≡. By Proposition 19 we
obtain that R is contained in ≈π

a . Then, since I |= (P |R)R(Q |R), the proposition
follows by coinduction. To see that I |= (P |R)R(Q |R), let ∆ = ∆′ = ∅. Then,
choosing J = ∅ we have I |= P ≈π

a Q and I ` R by our hypothesis. That there exist
Γ, Γ′ as required follows by the fact that I |= P ≈π

a Q implies that I . P and I . Q
are configurations.

First we observe that I |= (new b : B, ∆)(P |R)R(new b : B′, ∆′)(Q |R) implies
I, b : > |= (new ∆)(P |R)R(new ∆′)(Q |R). To see that, assume I |= (new b :
B, ∆)(P |R)R(new b : B′, ∆′)(Q |R) and let J be the environment such that IuJ |=
P ≈π

a Q and I u J ` R. In addition we know that there exists Γ and Γ′ such
that Γ, b : B, ∆ ` P , Γ′, b : B′, ∆′ ` Q and Γ, b : B, ∆ and Γ′, b : B′, ∆′ are
compatible with I u J. But then b ∈ dom(I u J), from which we easily see that
I, b : >u J = Iu J. Thus we have found J that satisfies both the conditions required
to say I, b : > |= (new ∆)(P |R)R(new ∆′)(Q |R).

Now assume I |= (new ∆)(P |R)R(new ∆′)(Q |R) and I . (new ∆)(P |R)
α−→ I′ . S:

we proceed by rule induction to find a matching transition for I . (new ∆′)(Q |R).
The reasoning is by cases on the last rule applied in the derivation.

(G-Open) Our hypothesis is I |= (new b : B, ∆)(P |R)R(new b : B′, ∆′)(Q |R),

and the transition is I . (new b : B, ∆)(P |R)
(b)α−→ I′ . S, derived from I, b : > .

(new ∆)(P |R)
α−→ I′ . S. By the property we just showed, we know that I, b :

> |= (new ∆)(P |R)R(new ∆′)(Q |R). Thus, by the induction hypothesis we find
a matching transition I, b : > . (new ∆)(Q′ |R)

α
=⇒ I′ . S ′ with I′ |= SRS ′ (notice

that only this case applies because G-Open moves involve output actions). From

the last weak transition we have I . (new b : B′, ∆)(Q |R)
(b)α
=⇒ I′ . S ′ as desired, by

(G-open).

38 2. A pi calculus with dynamic typing for resource access control

(G-Weak) The proof is similar to the case (G-Open).

(G-Res) Assume I |= (new a : A, ∆)(P |R)R(new a : A′, ∆′)(Q |R), and consider
the transition I . (new a : A, ∆)(P |R)

α−→ I′ . (new a : A)S, derived from I, a :
> . (new ∆)(P |R)

α−→ I′, a : > . S. As in the previous case, we know that I, a :
> |= (new ∆)(P |R)R(new ∆′)(Q |R). Thus, by the induction hypothesis we find
the desired matching transition, namely: either I, a : > . (new ∆′)(Q |R)

α
=⇒ I′, a :

> . S ′ with I′, a : > |= SRS ′, when α is a silent or output action, or I, a : > .
(new ∆′)(Q |R) =⇒ I, a : > . S ′ with I′, a : > |= SR(S ′ | b〈ṽ@B̃〉), when α is an
input action.

In the first case we find the transition I.(new a : A′, ∆′)(Q |R)
α

=⇒ I′.(new a : A′)S ′,
in the second the transition I′ . (new a : A′, ∆′)(Q |R) =⇒ I′, .(new a : A′)S ′. To
conclude, we need to show I′ |= (new a : A)SR(new a : A′)S ′ and I′ |= (new a :
A)SR(b〈ṽ@B̃〉 | (new a : A′)S ′). The first relation follows from I′, a : > |= SRS ′, by
applying the definition of the relation R. The second relation follows similarly.

(G-Par) Our hypothesis is I |= (P |R)R(Q |R), and we have two sub-cases de-
pending on whether the move comes from P or from R.

If P moves, then the transition is I . (P |R)
α−→ I′ . (P ′ |R), derived from I . P

α−→
I′ . P ′. From our hypothesis we know that I |= P ≈π

a Q. Then, if α is a silent or
output action, we find Q′ such that I . Q

α
=⇒ I′ . Q′ and I′ |= P ′ ≈π

a Q′, and from
the last weak transition we have I . Q |R α

=⇒ I′ . Q′ |R. We can conclude because
from I′ |= P ′ ≈π

a Q′ and from I ` R we have I′ |= (P ′ |R)R(Q′ |R) by definition. If
α = (∆)a(ṽ@A) we either reason as before, or find Q′ such that I, ∆ . Q =⇒ I′ . Q′

and I′ |= P ′ ≈π
a (Q′ | a〈ṽ@A〉). From the last weak transition, we have I, ∆.Q |R =⇒

I′ . Q′ |R. We can conclude because from I′ |= P ′ ≈π
a (Q′ | a〈ṽ@A〉) and I ` R we

have I′ |= (P ′ |R)R ≡ (Q′ |R | a〈ṽ@A〉) by definition, as desired.

If R moves, then the transition is I . (P |R)
α−−→ I′ . P |R′, derived from I . R

α−→
I′ . R′. From our hypothesis, we know that I |= P ≈π

a Q. By Lemma 16, we know
that I′ = I, I′′, for a suitable I′′. Thus, by Proposition 22, we have I′ |= P ≈π

a Q.
Now we can proceed as in the previous case.

(G-Reduce) In this case, the transition has the form I. (new ∆)(P |R)
τ−→ I.S,

derived from (new ∆)(P |R)
τ−→ S. An inspection of the labelled transitions shows

that the last transition has, in fact, the form (new ∆)(P |R)
τ−→ (new ∆)T , derived

from P |R τ−→ T . This transition may be the result of of P or R making an
autonomous silent transition: these two cases are similar to the two sub-cases we
just worked out above. In particular, if P

τ−→ P ′, then T = P ′ |R. Furthermore,
from P

τ−→ P ′, by Lemma 12, we know that IuJ.P
τ−→ IuJ.P ′. Then a matching

transition can be found by observing that IuJ |= P ≈π
a Q implies IuJ.Q =⇒ IuJ.Q′

and I u J |= P ′ ≈π
a Q′. Then, again by Lemma 12, we also have Q =⇒ Q′, and we

2.4. A coinductive proof technique 39

can construct the weak transition I . (new ∆)(Q |R) =⇒ I . (new ∆)(P ′ |R) which
proves this case. The case when R moves is similar.

We have two further sub-cases, that arise when the transition is the result of the
interaction between the two processes.

1. P |R τ−→ (new ∆P)(P ′ |R′) because (i) P
(∆P)a〈ṽ@B̃〉−−−−−−−−→ P ′, (ii) R

a(ṽ@B̃′)−−−−−→ R′

and B̃ <: B̃′

2. P |R τ−→ (new ∆R)(P ′ |R′) because (i) P
a(ṽ@B̃′)−−−−−→ P ′, (ii) R

(∆R)a〈ṽ@B̃〉−−−−−−−−→ R′

and B̃ <: B̃′

In case (1) the transition in our hypothesis is I . (new ∆)(P |R)
τ−→ I .

(new ∆, ∆P)(P ′ |R′), and we need to find a matching transition from I .
(new ∆′)(Q |R). From (ii), and Iu J ` R, by Subject Reduction, Iu Ju ṽ : B̃′ ` R′.

From (i), by Lemma 12, we infer Iu J . P
(|∆P |)a〈ṽ@B̃〉−−−−−−−−−→ Iu Ju ṽ : B̃ . P ′. From the

hypothesis I u J |= P ≈π
a Q, we have I u J . Q

(|∆Q|)a〈ṽ@B̃〉
=========⇒ I u J u ṽ : B̃ . Q′ with

I u J u ṽ : B̃ |= P ′ ≈π
a Q′. From I u J u ṽ : B′ ` R′, by weakening I u J u ṽ : B ` R′.

Furthermore, from the last weak transition, by Lemma 12, we know that there exists

Ã <: B̃ and ∆Q such that Q
(∆Q)a〈ṽ@Ã〉

========⇒ Q′. From this, from B̃ <: B̃′, from transi-
tivity of <:, and from (ii) we find the weak transition Q |R =⇒ (new ∆Q)(Q′ |R′),
and from this the typed transition I . (new ∆′)(Q |R) =⇒ I . (new ∆, ∆Q)(Q′ |R′).
Having proved that I u J u ṽ : B |= P ′ ≈π

a Q′ and I u J u ṽ : B ` R′, it remains to
show that Γ, ∆, ∆P and Γ, ∆′, ∆Q are compatible with Iu Ju ṽ : B. This follows by
Lemma 17, from the hypothesis that Γ, ∆ and Γ, ∆′ are compatible with I u J.

In case (2) the transition in our hypothesis is I . (new ∆)(P |R)
τ−→ I .

(new ∆, ∆R)(P ′ |R′), and we need to find a matching transition from I .
(new ∆′)(Q |R). From (ii), and I u J ` R, by Subject Reduction, I u J, ∆R ` R′,
and I u J, ∆R ` v : B. Since B <: B′, this implies I u J, ∆R ` v : B′. From this and

from (i), by Lemma 12, I u J . P
(∆R)a(ṽ@B̃′)−−−−−−−−→ I u J, ∆R . P ′. From the hypothesis

I u J |= P ≈π
a Q, we have:

(a) I u J . Q
(∆R)a(ṽ@B̃′)

=========⇒ I u J, ∆R . Q′, with I u J, ∆R |= P ′ ≈π
a Q′, or

(b) I u J, ∆R . Q =⇒ I u J, ∆R . Q′, with I u J, ∆R |= P ′ ≈π
a (Q′ | a〈ṽ@B̃′′〉), for all

B′′ <: B′ such that I u J, ∆R |= ṽ : B′′.

In case (a) we find the desired matching transition (a) reasoning as in case (1) above.
We examine case (b). From the weak transition I u J, ∆R . Q =⇒ I u J, ∆R . Q′, by

Lemma 12, we obtain Q =⇒ Q′. Now, an analysis of transition R
(∆R)a〈ṽ@B̃〉−−−−−−−−→ R′

shows that R ≡ (new ∆R)(R′ | a〈ṽ@B̃〉). From this and Q =⇒ Q′, we obtain
Q |R =⇒≡ (new ∆R)(Q′ | a〈ṽ@B̃〉 |R′) from which we may construct the typed

40 2. A pi calculus with dynamic typing for resource access control

action I . (new ∆′)(Q |R) =⇒ I . (new ∆′, ∆R)(Q′ | a〈ṽ@B̃〉 |R′). Now we observe
that I u J ` R implies I u J, ∆R ` R′ and I u J, ∆R ` ṽ : B. Hence I u J, ∆R |=
P ′ ≈π

a (Q′ | a〈ṽ@B̃〉) and it only remains to be proved that Γ, ∆, ∆R and Γ, ∆′, ∆R

are compatible with Iu J, ∆R. But this follows directly by the hypothesis that Γ, ∆
and Γ, ∆′ are compatible with I u J.

Remark The hypothesis that I ` R is crucial for the proof. Furthermore, we
observe that some of the standard properties that hold for asynchronous bisimilarity,
do not hold for its type indexed counterpart. In particular, I |= P ≈π

a Q does not
imply I |= P |P ≈π

a Q |Q. To see that, consider the following counter-example:

P = n().n().m〈〉 |n〈〉, Q = n().n() |n〈〉, I = n : >,m : r

That I |= P ≈π
a Q follows by observing that the only available action for P and Q is

the internal synchronization on n: in particular, the environment may not observe
any action on n because it does not have capabilities on n. On the other hand,

I 6|= P |P ≈π
a Q |Q as in this case there exists a transition I . P |P m〈〉

=⇒ I . P ′ that
cannot be matched by I . Q |Q.

Reasoning in the same way, we also see that I |= P ≈π
a Q does not imply I 6|= !P ≈π

a

!Q.

We have thus proved all that is needed to show the desired soundness result.

Theorem 25 (Soundness). The relation ≈π
a is barb preserving, reduction closed

and contextual, hence contained in ∼=π.

Proof. Apply Propositions 20, 22, 23 and 24.

Finally we prove that ≈π
a is an equivalence relation. This and the soundness and

completeness results guarantee that ∼=π is an equivalence relation.

Proposition 26. ≈π
a is an equivalence relation.

Proof. The reflexivity of ≈π
a follows trivially by verifying that Id is a bisimulation.

Since ≈π
a is symmetric by definition, it remains to prove transitivity. We prove by

chasing-diagrams arguments that ≈π
a≈π

a is indeed a bisimulation. We first need the
following result: if I |= P ≈π

a Q and I . P
α

==⇒ I′ . P ′ then there is Q′ such that (i)

I . Q
α̂

=⇒ I′ . Q′ with I′ |= P ′ ≈π
a Q′ or (ii) I . Q ==⇒ I . Q′ with I′ |= P ′ ≈π

a Q′ |α
where α is an input action and α is its output co-action. The proof of this result
proceeds by straightforward induction on the number of τ reductions.

2.4. A coinductive proof technique 41

Let I . P ≈π
a I . R ≈π

a I . Q. From I |= P ≈π
a R and I |= R ≈π

a Q we infer that
there are Γ and Γ′ such that Γ <: I, Γ′ <: I and Γ ` P , Γ′ ` Q. Next suppose

I . P
α−−→ I . P ′. When α is an output action or τ we have the following diagram:

I . P
≈π

a I . R
≈π

a I . Q

I′ . P ′

α

?
.................
≈π

a
I′ . R′

α̂

??

...............

......
≈π

a...... I′ . Q′

α̂

??

..............

From I′ |= P ′ ≈π
a R′ and I |= R′ ≈π

a Q′ we infer that there are ∆ and ∆′ that
respectively define P ′ and Q′ w.r.t. I′.
Now let α be an input action. We have:

I . P
≈π

a I . R
≈π

a I . Q

I′ . P ′

α

?
........
≈π

a........ I′ . R′ |α I . R′
??

...............

.....
≈π

a..... I . Q′
??

..............

To conclude we need to show that I′ |= P ′ ≈π
a≈π

a Q′ |α, that is we have to prove
that I′ |= R′ |α ≈π

a Q′ |α. Let α = (c̃ : C̃)a(ṽ@Ã); thus α = a〈ṽ@Ã〉. By Lemma
12 we know that I′ = I, c̃ : C̃ and I(a)w ↓ and I, c̃ : C̃ ` ṽ@Ã. From these results
it’ easy to infer that I′ ` α. We apply Proposition 22 to I |= R′ ≈π

a Q′ obtaining
I′ |= R′ ≈π

a Q′. Then by Proposition 24 we obtain I′ |= R′ |α ≈π
a Q′ |α, as needed.

By subject reduction we infer that there are ∆, ∆′ such that ∆ <: I′, ∆′ <: I′ and
∆ ` P ′ and ∆′ ` Q′ |α; this together with the previous results implies that ≈π

a≈π
a

is a type-indexed relation.

By repeating the same proof for the hypothesis I .Q
α−−→ I′ .Q′ one obtains the

symmetry of ≈π
a≈π

a and in turn that ≈π
a≈π

a is an asynchronous bisimulation.

Completeness

We conclude this part by showing that bisimulation coincides with behavioral equiv-
alence. As in [60] the completeness result relies on that the observations of processes
we make in typed actions in Table 2.3 are contextually valid. The behaviour of the
environment that interacts with processes through typed actions and learn capabil-
ities from or send (possibly fresh) capabilities to them, can be actually represented

42 2. A pi calculus with dynamic typing for resource access control

through well-typed contexts. We formalize these intuitions by associating each typed
input and output action to a typed context that mimics the behaviour of the envi-
ronment in the typed transition. The results we gain say that labelled transitions
induce reductions in their correspective label contexts and vice versa.

We will use the following abbreviations. Let I = ã : T̃ . We write n〈I〉 for the
process n〈ã@T̃ 〉; we indicate with (I) the types T̃ and with aI the values ã. We let
I after (c̃)a〈b̃@B̃〉 be I u b̃@B̃, I after (c̃ : C̃)a(b̃ : B̃) be (I, c̃ : C̃) and I after τ be I.

Proposition 27. If I . P
α−−→ I′ . P ′, then I′ = I after α.

Proof. By induction on the length of the inference I.P
α−−→ I′.P ′ and case analysis

on the last rule used.

Proposition 28 (Contextuality of labels). For each label α 6= τ and environment
I, there exists a process CI

α and a name e fresh to I such that I, e : rw ` CI
α and for

all P for which I . P is a configuration one has:

1. If I.P
α−−→ I′.P ′, then CI

α |P ==⇒ (new ∆) P ′ | e〈I′〉 where dom(∆) = bn(α)

2. Conversely, let CI
α |P ==⇒ (new ∆) P ′ | e〈ṽ@T̃ 〉, for ∆ such that dom(∆) =

bn(α) and e 6∈ dom(∆). Then

• if α is (c̃) a〈b̃@B̃〉 or τ , then I . P
α

==⇒ (I after α) . P ′

• if α is (c̃ : C̃)a(b̃@B̃) then I . P
α

==⇒ (I after α) . P ′ or P ′ ≡ P ′′ | a〈b̃@B̃〉
where P =⇒ P ′′.

Proof. First note, for future reference, that the hypotheses that I .P is a configura-
tion and e is fresh to I imply that e 6∈ fn(P). Then, we define the testing processes
CI

α as follows:

CI
(c̃)a〈b̃@B̃〉 = a(x̃@B̃).QI

(c̃)b̃

CI
(c̃:C̃) a(b̃@B̃)

= (new c̃ : C̃) (a〈b̃@B̃〉 | e〈I, c̃ : C̃〉)

The process QI
(c̃)b̃

is defined as follows. Let b̃ = b1, . . . , bn, and let j̃, k̃ be the sub-

indexes of 1, . . . , n such that for each j ∈ j̃ and for each k ∈ k̃ we have respectively
that bj is free and bk is bound in (c̃)a〈b̃@B̃〉. Then QI

(c̃)b̃
is so defined as to ensure that

QI
(c̃)b̃
{b̃/x̃} =⇒ e〈I u b̃ : B̃〉 iff ∀j ∈ j̃.(xj = bj) ∧ ∀k ∈ k̃.(xk 6∈ dom(I))∧ the name

equalities of fresh names are respected. For instance the definition for the tuple
(c)(b, c, c) and x̃ = x1, x2, x3 is QI

(c)(b,c,c) , [x1 = b] ([x2 6∈ I] ([x3 = x2] e〈I u x̃ : B̃〉)).
Here x 6∈ I is coded by using nested conditionals to check that x is not equal to the
names in I.

2.4. A coinductive proof technique 43

Proof of (1.) First consider the case when α is (c̃ : C̃) a(b̃@B̃). From the hypoth-

esis I.P
α−−→ I′.P ′, by Lemma 12, we know that P

a(b̃@D̃)−−−−→ P ′ for types D̃ such that
B̃ <: D̃. By Prop. 27 we know I′ = I, c̃ : C̃. Then, by the (Pi-Com@) rule in Table
2.2, under the condition c̃∩ fn(P) = ∅, we obtain CI

α |P τ−→ (new c̃ : C̃) (P ′ | e〈I′〉),
as desired.

Now take α = (c̃) a〈b̃@B̃〉. From the hypothesis I . P
α−−→ I′ . P ′, again by Lemma

12, we know that P
(c̃:C̃)a〈b̃@D̃〉−−−−−−−−→ P ′ for types D̃ <: B̃ and C̃, and by Prop. 27 we

know I′ = I u b̃ : B̃. From this, by (Pi-Com@) rule, we derive Cα |P τ−→ (new c̃ :
C̃) (P ′ |QI

b̃
{b̃/x̃}) and the claim follows by the properties ensured by the definition

of QI
b̃
.

Proof of (2.) First consider the case when α is (c̃)a〈b̃@B̃〉. Since e is fresh to P ,
the transition CI

α |P ==⇒ (new ∆) P ′ | e〈ṽ@T̃ 〉 in the hypothesis must have involved
both P and the process CI

α. In particular, the transition must have been derived
from:

P
(c̃:C̃)a〈b̃@D̃〉

========⇒ P ′ and CI
α

a(b̃@B̃)−−−−→ QI
b̃
{b̃/x̃} =⇒ e〈ṽ@T̃ 〉

with D̃ <: B̃ and ∆ = (c̃ : C̃) and ṽ@T̃ = I u b̃ : B̃. From Prop. 27 we infer
I u b̃ : B̃ = I after α. From the left transition above, and the fact that D̃ <: B̃, we

derive I . P
(c̃)a〈b̃@B̃〉

======⇒ (I after α) . P ′ directly by Lemma 12.

Now take the case when α is (c̃ : C̃)a(b̃@B̃). Here, from the structure of CI
α and the

hypothesis CI
α |P ==⇒ (new ∆) P ′ | e〈ṽ@T̃ 〉, we have two possible sub-cases:

• either P
a(b̃@D̃)

=====⇒ P ′, CI
α

(c̃:C̃)a〈b̃@B̃〉−−−−−−−−→ e〈ṽ@T̃ 〉, with B̃ <: D̃ and ṽ@T̃ = I.c̃ :
C̃,

• or P ′ ≡ P ′′ | a〈b̃@B̃〉 with P =⇒ P ′′,

In the second sub-case we are done. In the first, the hypothesis that I, e : rw ` CI
α

and rules (T-New) and (T-Out@) of Table 2.1 imply that I, c̃ : C̃ ` b̃ : B̃ and
Iw(a) ↓. By Prop. 27 we infer Iu c̃ : C̃ = I after α. Hence, by Lemma 12, we conclude
I . P

α
=⇒ (I after α) . P ′ as desired.

To adequately use the information on exported names carried on the fresh chan-
nel e, we need an intermediate result. The following proposition says that the
capabilities exported through the lts can be actually collected by the environment.

Proposition 29. Let ∆, c̃ : C̃ and ∆′, c̃ : C̃ ′ be compatible with I′, let ∆, c̃ : C̃ ` P
and ∆′, c̃ : C̃ ′ ` Q, and let e be a name fresh to P and Q. Then
I, e : rw |= (new c̃ : C̃) P | e〈I′〉 ∼=π (new c̃ : C̃ ′) Q | e〈I′〉 for any environment I
implies I′ |= P ∼=π Q.

44 2. A pi calculus with dynamic typing for resource access control

Proof. The proof proceeds by co-induction. Let R be the type-indexed relation
defined as follows.

I′ |= PRQ whenever

• ∆, c̃ : C̃ and ∆′, c̃ : C̃ ′ are compatible with I′

• there is I and e : rw fresh to P,Q s.t.
I, e : rw |= (new c̃ : C̃)(P | e〈I′〉) ∼=π (new c̃ : C̃ ′)(Q | e〈I′〉)

We prove that R is is a typed behavioural equivalence, hence R is included in ∼=π.

Barb preservation To see that R preserve barbs, suppose I′ |= P ↓a. We choose
a process R as testing context to receive the environment I′ from e and subsequently
unblock the barb P ↓a by executing an input on a; a fresh channel is used to signal
the success of the operation. To ease the notation, we write a().P to indicate the
process a(x̃@>).P whenever the bound variables x̃ do not occur in P and the arity
of x̃ is clear from the context.

Take e′ : rw fresh to I, e : rw and consider the process R = e(x̃@(I′)).xa().e
′〈〉

where xa is the component of x̃ that will become bound to a whenever R will receive
the capabilities vI′@(I′).

From the contextuality of ∼=π, particularly from the weakening clause, we infer
I, e : rw, e′ : rw |= (new c̃ : C̃)(P | e〈I′〉) ∼=π (new c̃ : C̃ ′)(Q | e〈I′〉). Next, we use the
closure under parallel composition clause to compose both sides with R.

To see that e : rw, e′ : rw ` R, note that from I′ |= P ↓a we obtain I′ ` a : r. From
I′(a) <: r we infer I′, e : rw, e′ : rw, x̃ : (I′) ` xa().e

′〈〉 since I′(xa)
r ↓; then the thesis

easily follows.
We obtain

I, e : rw, e′ : rw |= (new c̃ : C̃)(P | e〈I′〉) |R ∼=π (new c̃ : C̃ ′)(Q | e〈I′〉) |R .

From the untyped semantics (rule (Pi@-Com) in Tab. 2.2) we obtain

e〈I′〉 |R τ−−→ a().e′〈〉

From P ↓a and (Pi-Com@) and the previous result we deduce

P | e〈I′〉 |R =⇒↓e′

From Lemma 12 we easily infer

I, e : rw, e′ : rw |= (new c̃ : C̃)(P | e〈I′〉) |R⇓e′ .

Since ∼=π preserve barbs, it needs to be

I, e : rw, e′ : rw |= (new c̃ : C̃)(Q | e〈I′〉) |R⇓e′ .

2.4. A coinductive proof technique 45

Since e′ is fresh to Q, the barb e′ come from R. To unblock this barb, it’s needed to
unblock the channel a. Since e′ is fresh to Q, the only possibility for Q to unblock
R is that Q⇓a. This and I(a)r ↓ let us conclude I |= Q⇓a.

Reduction closure of R is trivial. We concentrate on contextuality, namely clo-
sure under parallel composition and new. Weakening is straightforward.

Closure under parallel composition Suppose I′ |= PRQ and I′ ` R. We need
to show that I′ |= P |RRQ |R.

By hypothesis I, e : rw |= (new c̃ : C̃)(P | e〈I′〉) ∼=π (new c̃ : C̃ ′)(Q | e〈I′〉). We
choose e′ : rw fresh to P and Q and R (we also assume that e is fresh to R) and
we define R′ = e(x̃@(I′)).(R | e′〈vI′@(I′)〉)[x̃/vI′]. Since the free names occurring in
e(x̃@(I′)).(R | e′〈vI′@(I′)〉) are e, e′ and vI′ (this follows from I′ ` R) we easily obtain
e : rw, e′ : rw ` R′.

We exploit contextuality of ∼=π (namely closure under weakening, new names
and parallel composition) and obtain

I, e′ : rw |= (new c̃ : C̃, e : rw)(P | e〈I′〉 |R′) ∼=π (new c̃ : C̃ ′, e : rw)(Q | e〈I′〉 |R′) .

Since e is fresh to P it’s easy to check that

I, e′ : rw |= (new c̃ : C̃, e : rw)(P | e〈I′〉 |R′) ∼=π (new c̃ : C̃)(P | e′〈I′〉) |R)

Note indeed that the term on the left side reach in one reduction the term on the
right, and that the reduction is non-blockable as P cannot interact with R′.
Similarly from e fresh to Q we have

I, e′ : rw |= (new c̃ : C̃, e : rw)(Q | e〈I′〉 |R′) ∼=π (new c̃ : C̃)(Q | e′〈I′〉) |R)

These equalities let us infer

I, e′ : rw |= (new c̃ : C̃)(P | e′〈I′〉) |R) ∼=π (new c̃ : C̃)(Q | e′〈I′〉) |R) .

Since e′ : rw is fresh to P, Q, and by hypothesis on I, this let us infer I |= P |RRQ |R,
as desired.

Closure under new Let I′ = J, a : A and I′ |= PRQ, and let (∆, c̃ : C̃)(a) = B
and (∆′, c̃ : C̃ ′)(a) = C. We need to show that J |= (new a : B)PR(new a : C)Q.

Let Γ = ∆, c̃ : C̃ \ a : B and Γ′ = ∆′, c̃ : C̃ \ a : C. From the hypotheses
∆, c̃ : C̃ ` P and ∆′, c̃ : C̃ ′ ` Q and with ∆, c̃ : C̃, ∆′, c̃ : C̃ ′ compatible with I′ we
infer

Γ ` (new a : B)P and Γ′ ` (new a : C)Q

From the compatibility hypotheses we easily obtain that Γ and Γ′ are compatible
with J.

46 2. A pi calculus with dynamic typing for resource access control

Next, consider the hypothesis I, e : rw |= (new c̃ : C̃)(P | e〈I′〉) ∼=π (new c̃ :
C̃ ′)(Q | e〈I′〉). There are two cases corresponding to (i) a ∈ c̃ and (ii) a ∈ dom(I); this
follows from a ∈ dom(I′) and that ∼=π is a type indexed relation. In case (i) we easily
infer J |= (new a : B)PR(new a : C)Q as Γ ` (new a : B)P and Γ ` (new a : C)Q
and Γ, Γ′ compatible with J. In case (ii) we use contextuality of ∼=π to infer

(I \ a), e : rw |= (new c̃ : C̃, a : B)(P | e〈I′〉) ∼=π (new c̃ : C̃ ′, a : C)(Q | e〈I′〉) .

Again from Γ ` (new a : B)P and Γ ` (new a : C)Q and Γ, Γ′ compatible with J we
obtain J |= (new a : B)PR(new a : C)Q, as desired.

Based on the contextuality of labels (Proposition 28) and on the previous Propo-
sition we show that ≈π

a provides a characterization of typed behavioural equivalence.

Theorem 30 (Completeness). If I |= P ∼=π Q, then I |= P ≈π
a Q.

Proof. Let R be the type-indexed relation defined as follows:

I |= PRQ whenever I |= P ∼=π Q

We prove that R is an asynchronous bisimulation up to ≡. Let I |= PRQ and

suppose I . P
α−−→ I′ . P ′.

If α is an output or τ transition, we must find Q′ such that I . Q
α̂

==⇒ I′ . Q′ and
I |= P ′ ∼=π Q′.

The case when α = τ is easy. From I . P
τ−→ I′ . P ′ and Lemma 12 we know that

P
τ−→ P ′ and I′ = I. Moreover from this transition, since I |= P ∼=π Q we find Q′

such that Q =⇒ Q′, hence by Lemma 12 we have I . Q =⇒ I . Q′, and I |= P ′ ∼= Q′,
as desired.

Let then α = (c̃)a〈b̃@B̃〉, and take e fresh to I such that I, e : rw ` CI
α. By Lemma 12

we know I′ = Iu b̃@B̃ and that there are types Ã <: B̃ and C̃ s.t. P
(c̃:C̃)a〈b̃@Ã〉−−−−−−−−→ P ′.

Let ∆ be the an environment such that ∆ ` P and ∆ <: I. By subject reduction
∆, c̃ : C̃ ` P ′. Since c̃ ⊆ b̃, from ∆ <: I we infer ∆, c̃ : C̃ <: I′.

By the hypothesis I . P
(c̃)a〈b̃@B̃〉−−−−−−→ I′ . P ′ and Proposition 28.1, and previous re-

sults for types C̃, we know that CI
α |P =⇒ (new c̃ : C̃) P ′ | e〈I′〉. Now let Cf =

g〈〉 | e(x̃@(I′)).g().f〈x̃@(I′)〉, for f and g two names fresh to I. By contextuality,
from I |= P ∼=π Q, we have that

I, f : rw, g : rw |= (new e)Cf |CI
α |P ∼=π (new e)Cf |CI

α |Q (2.5)

For the left-hand side we may derive the following sequence of reductions (up to
structural congruence)

(new e)Cf |CI
α |P ==⇒ (new e)Cf | (new c̃ : C̃) P ′ | e〈I′〉 ==⇒ (new c̃ : C̃) P ′ | f〈I′〉

2.4. A coinductive proof technique 47

We refer to the process reached as to CP . Notice that CP 6 ⇓g, since g is not in the
free names of P ; on the other hand, clearly, CP ⇓f . From repeated applications of
(G-Reduce) we infer

I, f : rw, g : rw . (new e)Cf |CI
α |P ==⇒ I, f : rw, g : rw . CP

From (2.5) and and the last sequence of transitions, we find CQ such that

I, f : rw, g : rw . (new e) Cf |Cα |Q ==⇒ I, f : rw, g : rw . CQ

and I, f : rw, g : rw |= CP ∼=π CQ. This, in particular, means that I, f : rw, g : rw 6|=
CQ⇓g, I, f : rw |= CQ⇓f , and hence implies that the prefix e(x̃@(I′)).g() must have
been consumed in CQ. Using minor structural rearrangements, we may thus find Q′

such that CQ ≡ (new c̃ : C̃ ′)Q′ | f〈ṽ@T̃ 〉. Furthermore, by the construction of Cf ,
we see that to consume the prefix e(x̃@(I′)).g() and the output g〈〉, the sequence
of transitions leading to CQ must have been derived from the following untyped
transition sequence from CI

α |Q

CI
α |Q ==⇒ (new c̃ : C̃ ′) Q′ | e〈I′〉

and thus we deduce that

CQ ≡ (new c̃ : C̃ ′)Q′ | f〈I′〉 .

Now we apply Proposition 28.2 to obtain I . Q
α

==⇒ I′ . Q′.

Similarly to the case ∆ ` P , if ∆′ is a type environment such that ∆′ ` Q and
∆′ <: I by subject reduction we obtain ∆′, c̃ : C̃ ′ ` Q′. We know ∆′, c̃ : C̃ ′ <: I′.
By g 6∈ fn(CP , CQ) and I, f : rw, g : rw |= CP ∼=π CQ it’s not hard to see that
I, f : rw |= CP ∼=π CQ. We may then apply Proposition 29 to I, f : rw |= CP ∼=π CQ,
and we obtain I′ |= P ′RQ′, as desired.

We conclude by examining the case when α is an input transition. Let then α = (c̃ :
C̃) a(b̃@B̃). The proof proceeds exactly as in the output case (with the difference
that here we know that C̃ ′ = C̃), and leads us find a sequence of transitions

CI
α |Q ==⇒ (new c̃ : C̃) Q′ | e〈I′〉.

Now Proposition 28.2 gives us two sub-cases, corresponding to the definition of
asynchronous bisimulation: either I . Q

α
==⇒ I′ . Q′ or Q′ ≡ Q′′ | a〈b̃@B̃〉 where

Q =⇒ Q′′.

In the first sub-case we reason exactly as for output transitions. In the second,
from Q =⇒ Q′′, by Lemma 12, we know that I, c̃ : C̃ . Q =⇒ I, c̃ : C̃ . Q′′. Then
I′ |= P ′RQ′ follows by Proposition 29 as in the previous cases.

48 2. A pi calculus with dynamic typing for resource access control

Theorem 31 (Soundness and Completeness). I |= P ≈π
a Q if and only if

I |= P ∼=π Q.

Using this characterization, our equation (2.4) in page 24 can now be proved coin-
ductively. We find a relation containing the process equated by (2.4) and we show
that is a bisimulation. To ease the notation, let S ′ = !d〈s@w〉 | !s(x@J).print〈x@J〉.
We have S = (new s : rw)S ′. By verifying that the relation R below is a bisimulation
and by Theorem 31 one obtains the proof of (2.4).

R , Id ∪ {j : J, print : >, d : r |= S | C ≈ S | print〈j@J〉}
∪ {j : J, print : >, d : r |= (new s : rw)S ′ | s〈j@J〉 ≈ S | print〈j@J〉}
∪ {j : J, print : >, d : r, s : T |= S ′ |C ≈ S ′ | print〈j@J〉 | w <: T}
∪ {j : J, print : >, d : r, s : T |= S ′ | s〈j@J〉 ≈ S ′ | print〈j@J〉

| w <: T}

Next we focus on some distinguishing equations for api@. As we show below, the

presence of typed synchronization has some noticeable consequences on the behav-
ioral theory.

A first law we examine is the following generalization of a standard fact about
replication.

a : r |= a〈n@T 〉 | !a〈n@S〉 ∼= !a〈n@S〉 whenever S <: T (2.6)

That this law holds also in case S 6= T is a consequence of our subtype-based syn-
chronization rule. The proof of this equivalence follows by coinduction by verifying
that the relation R below is a bisimulation:

R , Id ∪ {a : r |=a a〈n@T 〉 | !a〈n@S〉 ≈ !a〈n@S〉}
∪ {a : r, n : S ′ |=a a〈n@T 〉 | !a〈n@S〉 ≈ !a〈n@S〉 | S <: S ′}

Another interesting consequence of the typed semantics is observed in the behavior
of forwarder processes like a(x).b〈x〉. In particular, we show that one of the distin-
guishing equations of the asynchronous pi calculus holds only in very specific cases
in api@. Let T be a type; we say that T is minimal iff T <: S for every type S.
Specifically, we have:

a : rw |= a(x@T).a〈x@T 〉 ∼= 0 iff T is minimal

The “if” direction can be proved by co-induction, showing that R below is an
asynchronous bisimulation.

R , {a : rw |=a a(x@T).a〈x@T 〉 ≈ 0} ∪
{a : rw, n : T |=a a〈n@T 〉 ≈ a〈n@T 〉 | n name}

2.5. Relationships with statically typed pi calculi 49

Note that n may only be received at T as T has no proper subtypes. For the “only
if” direction, it is enough to exhibit a distinguishing process:

CS , a〈v@S〉 | a(x@S).ω〈〉

It is easy to see that this process tells the two processes apart if S is a proper subtype
of T . Let P , a(x@T).a〈x@T 〉. For all S <: T , we have

CS |P −−→ a〈x@T 〉 | a(x@S).ω〈〉

Now CS |0 have two possibilities to match this move:

(i) CS |0
τ−−→ ω〈〉 |0

(ii) CS |0 ==⇒ CS |0

Suppose (i) holds. The couple (a〈x@T 〉 | a(x@S).ω〈〉, ω〈〉 |0) cannot be in behavioural
equivalence as ω〈〉 |0 ↓ω and a〈x@T 〉 | a(x@S).ω〈〉 6⇓ω. In case (ii) the same argu-
ments apply for the couple (a〈x@T 〉 | a(x@S).ω〈〉, CS |0), and the result follows.

2.5 Relationships with statically typed pi calculi

Having presented our calculus in detail, we are in a position to draw more precise
comparisons with the statically typed pi calculus of [60] to which we have referred
throughout.

It is a very simple observation that the typed pi calculus can be encoded in api@.
Below we give the relevant clauses of a type-directed translation from well-typed pi
processes to processes of api@. If A is a fully fledged capability type, we let |A|
denote the outermost capability in A, and define:

[[u〈ṽ〉]] Γ = u〈ṽ@|Γw(u)|〉
[[u(x̃).P]] Γ = u(x̃@|Γr(u)|).[[P]] Γ,x̃:Γr(u)

This encoding has some of the good properties one expects: it is type-preserving,
and sound, in the following sense. Let Γ `π P and I |=π P ∼= Q denote the typability
relation and the asynchronous version of the typed congruence of [60], respectively.
Then we have:

Theorem 32. Let Γ, Γ′ be two type environments compatible with I and such that
Γ `π P and Γ′ `π Q. Then |I| |= [[P]] Γ

∼=π [[Q]] Γ′ implies I |=π P ∼= Q.

Proof. Let
α−−→HR denote the transition relation over configurations defined in

[60]. It is easy to verify the operational correspondence of the encoding:

50 2. A pi calculus with dynamic typing for resource access control

• If I.P
(c̃)a〈ṽ〉−−→HR Iu ṽ : Ir(a).P ′ then |I|. [[P]] Γ

(c̃)a〈ṽ@|Γw(a)|〉−−−−−−−−−−→ |I|u ṽ : |Γw(a)|.
[[P ′]] Γ,c̃:C̃ for HR types C̃.

If |I| . [[P]] Γ

(c̃)a〈ṽ@Ã〉−−−−−−→ |I| u ṽ : Ã . R and |Γ, c̃ : C̃| ` ṽ : Ã then ∃P ′ s.t.

I . P
(c̃)a〈ṽ〉−−→HR I u ṽ : Ir(a) . P ′ and R ≡ [[P ′]] Γ,c̃:C̃ .

• If I . P
τ−−→HR I . P ′ then |I| . [[P]] Γ

τ−−→ |I| . [[P ′]] Γ.

If |I| . [[P]] Γ

τ−−→ |I| . R then ∃P ′ s.t. I . P
τ−−→HR I . P ′ and R ≡ [[P ′]] Γ.

• If I . P
(c̃:C̃)a(ṽ)−−−→HR I, c̃ : C̃ . P ′ then |I| . [[P]] Γ

(c̃:|C̃|)a(ṽ@|Γr(a)|)−−−−−−−−−−−−→ |I, c̃ : C̃| .
[[P ′]] Γ,c̃:C̃ .

If |I| . [[P]] Γ

(c̃:|C̃|)a(ṽ@Ã)−−−−−−−−−→ |I, c̃ : C̃| . R and I, c̃ : C̃ ` ṽ : Iw(a) then ∃P ′ s.t.

I . P
(c̃:C̃)a(ṽ)−−−→HR I′ . P ′ and R ≡ [[P ′]] Γ,c̃:C̃ .

The only subtlety arises in the input case. Suppose I . P
(c̃:C̃)a(ṽ)−−−→HR I, c̃ : C̃ . P ′.

From the typed semantics of [60] we infer I, c̃ : C̃ ` ṽ : Iw(a). Let <:π be the
subtyping preorder on types defined in [60]. By Γ <:π I and contra-variance we have
Iw(a) <:π Γw(a). We know that Γr(a) ↓. By definition of types Γw(a) <:π Γr(a). By
transitivity of <:π we have Iw(a) <:π Γr(a) and by projection I, c̃ : C̃ ` ṽ : Γr(a).
By type preservation |I, c̃ : C̃| ` ṽ : |Γr(a)| and the thesis follows easily by rules
(G-IN),(G-WEAK). The other direction is clear.

Now, defined R to be the type indexed relation such that

I |=HR PRQ iff |I| |= [[P]] Γ ≈a [[Q]] Γ′ for Γ, Γ′ compatible with I and such that
Γ ` P , Γ ` Q.

The proof follows by showing that R is an asynchronous bisimulation. The sound-
ness and completeness results of [60] provide the desired result.

Let I . P
α−−→HR I′ . P ′. We show the input and output case; the reduction case

is trivial.

(Output) The reduction under analysis has the form I . P
(c̃)a〈ṽ〉−−→HR I′ . P ′. From

[60, Lemma 4.3] (that corresponds to Proposition 27) we obtain that I′ = Iuṽ : Ir(a).

We apply operational correspondence obtaining: |I| . [[P]] Γ

(c̃)a〈ṽ@|Γw(a)|〉−−−−−−−−−−→ |I| u
ṽ : |Γw(a)| . [[P ′]] Γ,c̃:C̃ for types C̃. By hypothesis there is R such that |I| .
[[Q]] Γ′

(c̃)a〈ṽ@|Γw(a)|〉
==========⇒ |I| u ṽ : |Γw(a)| . R and |I| u ṽ : |Γw(a)| |= [[P ′]] Γ,c̃:C̃ ≈π

a R. By

the typing rules in Table 2.1 it easily follows that |Γ′, c̃ : C̃| ` ṽ : |Γw(a)|.
By operational correspondence we infer that

I . Q
(c̃)a〈ṽ〉
==⇒HR I u ṽ : Ir(a) . Q′

2.5. Relationships with statically typed pi calculi 51

and R ≡ [[Q′]] Γ′,c̃:C̃ . From these results we obtain I u ṽ : Ir(a) |= P ′RQ′, as
requested.

(Input) The reduction under analysis has the form I . P
(c̃:C̃)a(ṽ)−−−→HR I′ . P ′. From

[60, Lemma 4.3] we infer I′ = I, c̃ : C̃. By operational correspondence we have

|I| . [[P]] Γ

(c̃:|C̃|)a(ṽ@|Γr(a)|)−−−−−−−−−−−−→ |I, c̃ : C̃| . [[P ′]] Γ,c̃:C̃ . There are two cases corresponding
to Γ′r(a) proper subtype of Γr(a) or not. Suppose not. From the hypothesis |I| |=
[[P]] Γ ≈a [[Q]] Γ′ we infer that two possible matching moves arise for |I|. [[Q]] Γ′ . In

case the move is matched with a weak input we have |I|.[[Q]] ′Γ
(c̃:|C̃|)a(ṽ@|Γr(a)|)

============⇒ |I, c̃ :
C̃| . R with |I, c̃ : C̃| |= [[P ′]] Γ,c̃:C̃ ≈π

a R. Since we know I ` ṽ : Iw(a) by hypothesis
on the transition of I . P , by operational correspondence we infer

I . Q
(c̃:C̃)a(ṽ)−−−→HR I, c̃ : C̃ . Q′

and R ≡ [[Q′]] Γ′,c̃:C̃ . By |I, c̃ : C̃| |= [[P ′]] Γ,c̃:C̃ ≈π
a R we infer I, c̃ : C̃ |= P ′RQ′,

as needed. So let consider when we have an asynchronous answer. The matching
move is

|I| . [[Q]] Γ′ ==⇒ |I| . R

with |I, c̃ : C̃| |= [[P ′]] Γ,c̃:C̃ ≈π
a R | a〈ṽ@|Γr(a)|〉. From Γ′, c̃ : C̃ ` ṽ@|Γr(a)| and

the hypothesis above on Γ′r(a) we infer Γ′r(a) = Γr(a). Thus R | a〈ṽ@|Γr(a)|〉 ≡
[[Q′ | a〈v〉]] Γ′,c̃:C̃ and we can infer I, c̃ : C̃ |= P ′RQ′ | a〈v〉 as needed.

Now suppose Γ′r(a) proper subtype of Γr(a). From the proof of the operational
correspondence we know that Iw(a) ↓ and Iw(a) <:π Γ′w(a) <: Γ′r(a). Thus I, c̃ : C̃ `
ṽ : Γ′r(a) and in turn |I| . [[P]] Γ

(c̃:|C̃|)a(ṽ@|Γ′r(a)|)−−−−−−−−−−−−→ |I, c̃ : C̃| . [[P ′]] Γ,c̃:C̃ . We proceed
as in the previous case and we infer that one of the following cases holds:

(i) |I| . [[Q]] Γ′
(c̃:|C̃|)a(ṽ@|Γ′r(a)|)−−−−−−−−−−−−→ |I, c̃ : C̃| . R ∧ |I, c̃ : C̃| |= [[P ′]] Γ,c̃:C̃ ≈π

a R

(ii) |I| . [[Q]] Γ′ ==⇒ |I| . R ∧ |I, c̃ : C̃| |= [[P ′]] Γ,c̃:C̃ ≈π
a R | a〈ṽ@|Γ′r(a)|)〉

Case (i) proceeds as above by using operational correspondence. In case (ii) by
operational correspondence we infer I . Q ==⇒ I . Q′ and R ≡ [[Q′]] Γ′ . From
R | a〈ṽ@|Γ′r(a)|)〉 ≡ [[Q′ | a〈ṽ〉]] Γ′,c̃:C̃ we deduce I, c̃ : C̃ |= P ′RQ′ | a〈v〉, as needed.

Not surprisingly, however, the translation is not fully abstract. To see that, sim-
ply take Q = 0, and P = a(x).a〈x〉 with Γ = a : ((T)r)rw, so that [[P]] Γ =
a(x@r).a〈x@r〉. Then, a : ((T)r)rw |=π P ∼= Q while a : rw 6|= a(x@r).a〈x@r〉 ∼= 0, as
we have showed previously.

52 2. A pi calculus with dynamic typing for resource access control

While we do not have a formal separation result between the two calculi, it appears
that achieving a fully abstract encoding is just as hard as giving a fully abstract
implementation of the pi calculus. In fact, as we observed, the flat capability types
of api@ provide much looser control over the dynamic invariants of execution than
the fully fledged capability types of [60]. Clearly, this affects the notion of typed
equivalence, as the representation of contexts in terms of the typing assumptions
they satisfy is much less informative on the behavior of those contexts that it is with
traditional typing systems. This loss of control is compensated by the type coercions
available for api@ processes to determine the types at which a context receives the
emitted values: still, as the example above shows, the underlying equational theory
remains affected.

On the other hand, just because its typing system makes looser assumptions
on the structure of the typed contexts, api@ lends itself to be implemented into
low-level calculi while preserving the typed behavior. We will show how that can be
achieved in the next chapters.

2.6 Related work

The asynchronous pi calculus was proposed independently by Honda and Tokoro
[65] and by Boudol [26]; more generally, properties of asynchronous labelled tran-
sition systems wit input and output capabilities are studied in [105]. Although
distinguishing features of the pi calculus can be simulated in its asynchronous frag-
ment, for instance output-prefixing [64, 26], and input-guarded choice [84], in [85]
it is elegantly shown that no “reasonable” encoding of the pi calculus into its asyn-
chronous fragment exists , i.e. any possible uniform, compositional encoding is not
correct w.r.t. most important observational theories. Behavioral theories for the
asynchronous pi calculus and its variants have been studied in [15, 52, 70, 38]. A
programming language based on the asynchronous pi calculus is presented in [92];
asynchronous theories for CCS languages have been studied in [95].

Types and advanced techniques for equational reasoning are emerging as pow-
erful tools for the analysis of distributed computations and open systems. Areas
of particular relevance to our work are related to the ability of types to talk about
resources and their usage [40, 41, 56, 44, 43, 62] and of typed equational theories
to characterize observational properties of processes [60, 23, 91, 97, 46, 66]. Partic-
ularly, [40, 41] and [56] define type systems respectively for Ambient calculus and
Klaim where values emitted in the output constructs are coerced with the intended
types to be released and type soundness derives by a combination of static and
dynamic typing, as in api@ .

Resource control, in diverse incarnations, has been the focus of extensive foun-
dational research in type theory. Topics considered relevant to our work include the
ability to read from and to write to a channel via subtyping [88], the guarantee of
secrecy within local computational environments [37, 2, 28], the control on the flow

2.6. Related work 53

and sharing of information [81, 78, 79, 80, 61, 58, 42, 31, 49]. An orthogonal ap-
proach to types is the use of logics that describe policies for the access to resources,
e.g. [5, 3, 57].

With few exceptions, most of these systems rely on classical typing techniques
whereby all the system components are type-checked under the same global typing
assumptions. This is clearly unrealistic in distributed and dynamic environments as
the ones of interest to us, and represent the starting point of this work.

Besides the relations with [60] that we have extensively discussed all along, the
typed theory presented in this chapter have several analogies with [23]. In that
paper a coinductive characterization of an observational equivalence is given for the
pi calculus without matching; as in our case, their bisimulation relies on a labelled
transition system recording type information on the types that the observer has on
names. However, the absence of matching comports notable differences among our
definition of typed bisimulation and the one of [23]. Specifically, in [23] the labels
of matching transitions of bisimilar processes may be syntactically different; for
instance it can be proved that the processes a〈b〉.L and a〈c〉.L, where L is an equator
[65] of a and b, are behaviorally equivalent. For this reason the observer’s view on the
identity of names is separated from their real identity by considering a typed closure
of the form ∆, σ where ∆ is a type environment that collects typed information on
the local variables of the observer and σ is a substitution that says the real value

of the variables in ∆. The LTS embeds transitions of the form ∆, σ .
α−−→
δ

∆′, σ′

where α is executed by the process and has a standard syntax for the pi calculus,
and δ is an environment co-action such that δσ is the dual of α. For instance when
α = (b)a〈b〉 we have δσ = a(x) since there is z such that ∆ ` z : T r, δ = z(x) and
zσ = a.

The bisimulation defined in [23] relates closures (∆, σ . P, ∆, ρ . Q) such that
whenever ∆, σ . P executes a transition with environment action δ we have that
∆, ρ .Q answers with a weak transition labelled with environment action δ, and the
converse, but for the case whether δ represents an environment internal synchroniza-
tion. The synchronization arises among two complementary actions bound to same
name as in δ = 〈x〈z〉, y(w)〉 with xσ = yσ. Since different matching labels may
lead the name xσ to be unknown in ∆, ρ the process ∆, ρ . Q may answer to this

move also by interacting with the process as in ∆, ρ . Q
α′−−→

x〈z〉

α′′−−→
y〈w〉

. The inter-

nal synchronization is necessary to represent context interactions. For instance the
configurations (∆, x : T rw), σ{b/x} . a〈b〉 and (∆, x : T rw), ρ . a〈c〉 would be possibly
equated for some ∆, σ and ρ, while clearly they are not equivalent in contexts where
the read and/or the write capability of b are available; a distinguishing context is
C [−] = a(x).x〈〉 | b().e〈〉 whenever we have the typed assumptions ∆σ ` a : (T rw)rw

and ∆σ ` e : Srw. It is worth nothing that the presence of matching in our high level
calculus permits to coinductively rule out the two configurations above by requiring
that bisimilar processes exhibit syntactically equal labels.

54 2. A pi calculus with dynamic typing for resource access control

3
The implementation language

This chapter reviews the language we use to compile our high level processes. The
language is a variant of the applied pi calculus [7] and differs from the pi calcu-
lus in that the expressions of the language are built around terms generated from
applications of functions to names. We use low-level functions implementing list
representations, hashing, symmetric/asymmetric encryption, and digital signatures;
we also use functions for testing equality of terms and to project elements in tuples
of terms. We define labelled semantics for the calculus, and on top a notion of be-
havioral equivalence indexed by term-environments (cf. [22]). A term environment
is an association from variables to terms that formally describes the knowledge of
terms by the context. The discriminating power of low-level observers basically cor-
respond to their ability to destruct terms by using (i) matching and (ii) decryption
schemes mentioned above. In the next chapter, we will use term environments to
represent the low level capabilities corresponding to the high level type assumptions
that index typed behavioral equivalences.

3.1 Background on applied pi calculus

The applied pi calculus we use is an asynchronous version of the original calculus of
[7], in which we assume that destructors are only used in let-expressions and may
not occur in arbitrary terms. This is becoming common practice in the presentations
of the applied pi calculus [19, 20, 17].

As for the high-level calculus, we presuppose countable sets of names and variables,
under the same notational conventions. In addition the calculus is characterized
by a finite set of function symbols Σ from which terms may be formed (see Table
3.1). As in [20], we distinguish constructors and destructors, and use the former
to build terms, the latter in let expressions to take terms apart. Constructors are
typically ranged over by f , destructors by d. Terms are built around variables and

56 3. The implementation language

constructors, expressions correspond to destructor application:

M, N ::= a, b, ... channel names
x, y, ... variables
f(M1, ..., Mn) constructor application

E ::= d(M̃) expression

A value is a term without variables. We always assume that constructors are applied
consistently with their arity. Processes are defined as follows:

P, Q, ::= 0 | M〈Ñ〉 | M(x̃).P | P |Q | (new n)P |
!P | let x = E in P else Q

Input prefixing, let, and restriction are binders: M(x).P and let x = E in P else Q
bind the variable x in P , (new n)P binds the name n in P . The notions of free and
bound names/variables arise as expected. The process let x = E in P else Q tries
to evaluate E; if that succeeds x is bound to the resulting term and the process
continues as P (with the substitution in place). Otherwise the process reduces to
Q. The evaluation of E is governed by a set of definitions which give semantics to
the destructor. Each definition has the form d(M̃)

.
= N where the terms M̃ and N

have no free names and fv(N) ⊆ fv(M̃). Then d(M̃) is defined only if there is a
definition d(M̃ ′) .

= N and a substitution σ such that M̃ = M̃ ′σ, in which case d(M̃)
evaluates to the term Nσ = N∗, noted d(M̃) → N∗. Conversely, we note d(M̃)6→
whenever there is no M̃ ′σ = M̃ with a defining equation. The destructors under
consideration together with their defining equations are listed in Table 3.1. Most
of them are inherent to cryptography and will be presented in Section 3.1; rules
(3.8)-(3.11) will be introduced in the next Chapter. We say that a constructor f is
one-way if no destructor application ever returns its argument(s).

We always omit trailing nil processes and similarly write let x = E in P instead
of let x = E in P else 0. We also use multiple let-bindings instead of writing the
corresponding nested definitions.
Evaluation contexts are processes with one hole that are built apart the following
grammar:

C, D ::= − | (new a)C | C |P | P |C
We will often write C[−] to explicit that C is a context; we indicate with C[P] the
process obtained by replacing the hole − with the process P .

We implement recursion by blocking/unblocking replications prefixed by a private
input:

rec X.P , (new a) (a〈〉 | !a().P{a〈〉/X}) a 6∈ fn(P)

Following [20], we define an if − then− else construct in terms of let as shown below:

if M = N then P else Q , let x = equals(M,N) in P

else Q (x 6∈ fv(P,Q))

3.1. Background on applied pi calculus 57

Table 3.1 Constructors and Destructors

Constructors

:: (M,N), ∅, sk(M), ek(M), dk(M), rd(M),wr(M), p(M), q(M),

hash(M), pub(M), priv(M), rw, w, r,>

Destructors and their defining equations

πi(x1, . . . , xn)
.
= xi (3.1)

equals(x, x)
.
= x (3.2)

hd(x :: y)
.
= x (3.3)

tl(x :: y)
.
= y (3.4)

decipher(cipher(x, ek(y)), dk(y))
.
= x (3.5)

decipher(cipher(x, sk(y)), sk(y))
.
= x (3.6)

verify(sign(x, priv(y)), pub(y))
.
= x (3.7)

⇑((x, y, z, w), rw)
.
= (x, y, z, w) (3.8)

⇑((x, y, z, w), r)
.
= (x,>, z, w) (3.9)

⇑((x, y, z, w), w,)
.
= (x, y,>, w) (3.10)

⇑((x, y, z, w),>)
.
= (x,>,>, w) (3.11)

58 3. The implementation language

Operations on lists

Our applied pi calculus includes destructors to project the elements of tuples (noted
πi), as well as two constructors for lists, :: (cons) and ∅ (nil), together with the
standard destructors for retrieving the head (hd) and the tail (tl) of a list .

In the following we program some code to fulfill useful tasks on lists. We use the
process if M 6∈ N then P else Q to test if a term M does not occur in a list N and
in case continue as P , else as Q:

if M 6∈ N then P else Q , (new a) a〈N〉 | !a(z).let h = hd(z), t = tl(z) in
(if h = M then Q else a〈t〉)

else (if z = M then Q else P)

Similarly process let ỹ =?(M,N) in P else Q retrieves from a list N of associations
(MI , M̃) (where we assume that M̃ has the same arity as ỹ) the terms M̃ associated
to M = MI and in case continues as P{M̃/ỹ}; if there is not an MI such that
M = MI we continue as Q. We informally call the list N a table and the term MI

an index of M̃ .

let ỹ =?(M,N) in P else Q ,
(new a)a〈N〉 | !a(w).let h = hd(w), t = tl(w), hI = π1(h), ỹ = π2(h) in

(if hI = M then P else a〈t〉) else R(w, ỹ)

R(x, ỹ) , let hI = π1(x), ỹ = π2(x) in (if hI = M then P else Q)
else Q

We write if M 6∈ Setn then P , for a process that adds M to a list carried on the
channel n, and, in case M does not belong to the list, continues as P .

if M 6∈ Setn then P , n(y).(if M 6∈ y then n〈y :: M〉 |P else n〈y〉)

Constructors and destructors for cryptography

We introduce a few useful function symbols that provide the structure of the cryp-
tosystem employed in the implementation.

The one-way unary constructor hash generate a hash from the seed M . The two
unary one-way constructors ek and dk generate encryption and decryption keys
ek(M) and dk(M) from a seed M . We often abbreviate ek(M) to M+ and dk(M) to
M−. We use unary one-way constructors rd ,wr , p, q to generate seeds for encryption
and decryption keys.

A unary one-way constructor sk generates a shared key sk(M) from the seed M .
The one-way constructor pub generate a public key pub(M) from the seed M while
priv generates a private key priv(M) from M . We often abbreviate pub(M) with
MID.

3.2. Operational semantics and term-indexed behavioural equivalence 59

Digital signatures are built using the binary constructor sign and checked by using
the destructor verify [19, 20] (Tab. 3.1(3.7)); for instance (sign(M, priv(N)), pub(N))
certifies that M has been signed by the identity N . Encrypted packets are formed
around the binary constructor cipher , and taken apart by using the destructor
decipher . The behavior of the destructor is given by the two defining equations
Tab. 3.1(3.5) and Tab. 3.1(3.6) capturing asymmetric and symmetric encryption,
respectively. In the implementation, we use four further constructors, rd ,wr , p, q,
to construct different sets of keys associated with the same seed (cf. Chapter 4).

We often use the conventional spi calculus notation {M̃}N for the encrypted packet
cipher(M̃, N); we often overload the notation and write {M̃}priv(N) to indicate the

signed packet sign(M̃, priv(N)). We also introduce an explicit form for decryption,
that binds multiple variables, as in the original spi calculus.

decrypt M as {ỹ}N in P else Q ,
let x = decipher(M, N) in (x 6∈ fv(P,Q))

let y1 = π1(x), . . . , yn = πn(x) in P else Q

3.2 Operational semantics and term-indexed be-

havioural equivalence

The operational semantics is defined in terms of labelled transitions. We chose to
not base it on active substitutions as in the original formulation (e.g., similarly
to the reduction semantics in [20, 17]). Although several proofs contained in this
thesis would be probably helped by using active substitutions (as in proofs for full
abstraction for security in the join calculus for which they were designed), we prefer
to use a separate environment that represents a nice counterpart to the typing
envinroments that index equivalent processes in the source calculus (see Chapter 4),
and that are not represented by active subtitutions.

The labelled transitions in Table 3.2 are standard. For simplicity, we require
that all synchronizations occur on channel names, rather then arbitrary terms. As
usual we require the bound names c̃ in the output action (c̃) a〈M̃〉 to be unique.
The treatment of let is taken from [20]. The transitions are only defined over closed
processes (without free variables).

Behavioural equivalence As in Chapter 2, we rely on a notion of behavioral
equivalence based on weak bisimulation, and relative to contexts with a certain
knowledge about names and terms. The formal definitions are mostly based on the
work of Boreale, De Nicola and Pugliese in [22].

Definition 9 (Term environment). A term environment ρ is a finite substitution
from variables to terms. We write fn(ρ) to mean fn(Range(ρ)). Substitutions may

60 3. The implementation language

Table 3.2 Labelled transitions for the applied pi

(out)

a〈M̃〉 a〈M̃〉−−−→ 0

(open)

P
(b̃) a〈M̃〉−−−−−→ P ′ c 6= a, c ∈ fn(M̃)

(new c)P
(b̃,c) a〈M̃〉−−−−−−→ P ′

(in)

a(x̃).P
a(M̃)−−−→ P{M̃/x̃}

(close)

P
(b̃) a〈M̃〉−−−−−→ P ′ Q

a(M̃)−−−→ Q′ b̃ 6∈ fn(Q)

P |Q τ−−→ (new b̃)(P ′ |Q′)

(let)

d(M̃)→ N P{N/x} α−−→ P ′

let x = d(M̃) in P else Q
α−→ P ′

(let-else)

d(M̃) 6→ Q
α−−→ Q′

let x = d(M̃) in P else Q
α−→ Q′

(New)

P
α−−→ P ′ n 6∈ n(α)

(new n)P
α−−→ (new n)P ′

(Par)

P
α−−→ P ′ bn(α) ∩ fn(Q) = ∅

P |Q α−−→ P ′ |Q

(Repl)

P
α−−→ P ′

!P
α−−→ !P |P ′

3.2. Operational semantics and term-indexed behavioural equivalence 61

only be extended with new bindings for fresh variables: ρ, M/x indicates the extension
of ρ with x 6∈ dom(ρ).

Given a term environment ρ, we let A(ρ) be the analysis of ρ, that is, the environ-
ment obtained by extending ρ with new bindings for the terms resulting from the
application of destructors to the range of ρ. Formally:

Definition 10. The analysis A(ρ) of ρ is the smallest substitution σ extending ρ
that is closed by the following rule:

d(Ñ)
.
= N ∃σ′ . Ñσ′ ⊆ Range(σ) (Nσ′ 6∈ Range(σ) ∧ z 6∈ dom(σ))

Nσ′/z ∈ σ

Abusing the notation we often write N ∈ A(ρ) to mean N ∈ Range(A(ρ)).

Example We find the analysis of the substitution ρ = {>}sk(k)/x, k/y. The projec-
tion case (3.1) leads to bindings {>}sk(k)/z or k/z that are not introduced since the
side condition requires new terms to be not in the range of σ. Similarly (3.2) does
not introduce new bindings. Equations (3.3) and (3.4) do not apply as no terms in
the range of σ are lists. Similarly (3.7),(3.5) do not apply as no terms in Range(σ)
have the required form. The relevant case is the equation (3.6) for symmetric cryp-
tography: decipher(cipher(x1, sk(x2)), sk(x2))

.
= x1. We let σ′ = >/x1, k/x2. From

cipher(x1, sk(x2))σ
′ ∈ Range(ρ) and x2σ

′ ∈ Range(ρ) we obtain x1σ
′/z ∈ σ, that is

> is in the range of σ as the environment has built the key sk(k) apart the name
k and has used it to open the crypto-packet {>}sk(k). These results let us infer
A(ρ) = ρ,>/z.

Definition 11. Given a process P we say that ρ defines P , written ρ ` P , if
fv(P) ⊆ dom(ρ) and fn(P)∩ fn(ρ) = ∅. Given a term M , we say that ρ defines M ,
written ρ `M , if fv(M) ⊆ dom(ρ) and fn(M) ∩ fn(ρ) = ∅.
Definition 12 (Term-indexed relation). A term-indexed relation R is a family
of binary relations between closed processes indexed by term environments. We write
ρ |= PRQ (or equivalently P Rρ Q) to mean that P and Q are related by R at ρ
and that fn(P, Q) ⊆ fn(ρ).

We have a notion of contextuality corresponding to that given in Chapter 2(Def. 2).
We denote ρ \n the term environment resulting from erasing all bindings M/x such
that n ∈ fn(M).

Definition 13 (Contextuality). A term-indexed relation R is contextual whenever
ρ |= PRQ implies

(i) if ρ`R then ρ|=(P |Rρ) R (Q |Rρ),

(ii) ρ, n/x |= PRQ with n 6∈ fn(ρ)

62 3. The implementation language

(iii) ρ \ n |= ((new n)P)R((new n)Q).

The barb predicate is defined relative to a term-environment, as expected:

Definition 14 (Barbs). Let ρ be a term environment and let P be a closed process.
We have that

• P ↓a if and only if ∃P ′ such that P
(ñ)a〈M̃〉−−−−−→ P ′;

• P ⇓a if and only if ∃P ′ such that P ==⇒ P ′ ∧ P ′ ↓a;
• ρ |= P ↓a if and only if a ∈ A(ρ) ∧ P ↓a;
• ρ |= P ⇓a if and only if a ∈ A(ρ) ∧ P ⇓a.

The definition of behavioural equivalence reflects the definition of typed be-
havioural equivalence for api@ (see Definition 4).

Definition 15 (Behavioural equivalence). Behavioural equivalence, noted ∼=Aπ,
is the largest symmetric and contextual term-indexed relation R such that ρ |= PRQ
implies

(i) if ρ |= P ↓n then ρ |= Q⇓n

(ii) if P
τ−→ P ′ then ∃Q′. Q =⇒ Q′ and ρ |= P ′RQ′.

In the low-level setting it is often convenient to consider a stronger version of
behavioural equivalence.

Definition 16 (Strong behavioural equivalence). Strong behavioural equiva-
lence, noted 'Aπ, is the largest symmetric and contextual term-indexed relation R
such that ρ |= PRQ implies

(i) if ρ |= P ↓n then ρ |= Q↓n
(ii) if P

τ−→ P ′ then ∃Q′. Q
τ−→ Q′ and ρ |= P ′RQ′.

Example To illustrate the behavioral theory of the calculus, we present a result
that shows that the environment do not distinguish between ciphertexts encrypted
with keys it does not know.

(Claim) For all ρ holds ρ |= (new k)net〈{M}sk(k)〉 'Aπ (new n)net〈{n}n〉.
We give some intuitions that motivate the claim; a formal proof is available in
Chapter 5. Indeed it’s easy to see that the term-indexed relation containing the
processes above is strong barb preserving and strong reduction closed; the main
obstacle is to prove that is contextual. To this aim, consider the terms N1 = {M}sk(k)

and N2 = {n}n respectively emitted on the left and on the right side of the equation.

3.2. Operational semantics and term-indexed behavioural equivalence 63

Since N1 and N2 are encrypted respectively with terms sk(k) and n containing fresh
names, we infer that there is not a term N ′ such that:

decipher(N1, N
′ρ)→ ∨ decipher(N2, N

′ρ)→

where d(M̃) → is short for ∃N . d(M̃) → N . Similarly one infers that 6 ∃N ′ such
that

equals(N1, N
′ρ)→ ∨ equals(N2, N

′ρ)→
The application of the remaining destructors or trivially reduce in both sides or
does not reduce in both sides. Intuitively, from these results we infer that a process
closed by ρ that interacts with both sides and receives these packets and continue
as with a let application does not see any difference among the emissions. From
this result the claim follows easily by finding an appropriate relation that contains
the related processes immersed in applied pi contexts that in the left side are built
around ρ, {M}sk(k)/x while in the right side are built around ρ, {n}n/x (see Lemma
69).

Strengthening the result by removing the condition on fresh names is particularly
delicate. For instance consider the environment ρ = ρ′, e/w, net/x, n/y where e 6=
net. We have the following inequation:

ρ 6|= net〈{M}sk(k)〉 'Aπ net〈{n}n〉 (3.12)

Indeed the environment knows the seed n and can execute cryptanalysis attacks. As
a counter-example based on this, consider the context R = x(z).if z = {y}y then w〈〉.
We have ρ |= net〈{n}n〉 |Rρ ⇓e while ρ 6|= net〈{M}sk(k)〉 |Rρ ⇓e. As we will see in
the next chapter, such attacks can be prevented by inserting confounders in the
encrypted packets. Similarly, inequation (3.12) holds when the environment knows
the symmetric key sk(k): σ , σ′, e/w, net/x, sk(k)/y. The the following context
tells apart the two emissions once instantiated by σ: R = x(z).decrypt z as {}y in w〈〉.

The following results prove that ∼=Aπ and 'Aπ are indeed equivalence relations.
We prove the former result; the latter is easier. We first establish useful properties
of ∼=Aπ (cf. [104]).

Proposition 33. Assume ρ |= P ∼=Aπ Q.

(i) if ρ |= P ⇓a then ρ |= Q⇓a

(ii) if P =⇒ P ′ then ∃Q′. Q =⇒ Q′ and ρ |= P ′ ∼=Aπ Q′.

Proof. (ii) Let P
τn

=⇒ P ′ with n ≥ 0. We proceed by induction on n. The case
n = 0 is trivially obtained by choosing Q′ = Q. To see the case n + 1 suppose

P
τn

=⇒ P ′ τ−−→ P ∗. By the I.H. ρ |= P ′ ∼=Aπ Q′ we infer that there is Q∗ such that
Q′ =⇒ Q∗ and ρ |= P ∗ ∼=Aπ Q∗. Thus Q =⇒∼=Aπ

ρ P ∗, as desired.

64 3. The implementation language

(i) Assume ρ |= P ⇓a. By definition there is P ′ such that P =⇒ P ′ (c̃)a〈M̃〉−−−−−→ . We
apply (ii) to the hypothesis ρ |= P ∼=Aπ Q and infer that Q =⇒ Q′ for some Q′ s.t.
ρ |= Q′ ∼=Aπ P ′. From this hypothesis we infer ρ |= Q′⇓a. From Q =⇒ Q′ we deduce
ρ |= Q⇓a, as desired.

Proposition 34. ∼=Aπ is an equivalence relation.

Proof. That ∼=Aπ is reflexive is straightforward while the relation is symmetric by
definition. To see transitivity, we consider the relation ∼=Aπ∼=Aπ and we show that
it’s a behavioural equivalence. Let P ∼=Aπ

ρ R ∼=Aπ
ρ Q. Since fn(P,R) ⊆ fn(ρ) and

fn(R, Q) ⊆ fn(ρ), we obtain fn(P, Q) ⊆ fn(ρ). Let ρ |= P ↓a; by definition ρ |= R⇓a.
By Proposition 33(i) we have ρ |= Q⇓a, as needed. Now let P −→ P ′; by hypothesis
we have that there is R′ such that R =⇒ R′ and P ′ ∼=Aπ

ρ R′. By the hypothesis

R ∼=Aπ
ρ Q and Proposition 33(ii) we infer that there is Q′ such that Q =⇒ Q′

and R′ ∼=Aπ
ρ Q′, as needed. By gluing fn(P ′, R′) ⊆ fn(ρ) and fn(R′, Q′) we obtain

fn(P ′, Q′) ⊆ fn(ρ). That ∼=Aπ∼=Aπ is symmetric can be easily viewed by following
the same proof when the hypothesis regards Q. Next we prove that ∼=Aπ

ρ
∼=Aπ

ρ is

contextual. Let ρ ` S. By hypothesis both ρ |= P |S ∼=Aπ R |S and ρ |= R |S ∼=Aπ

Q |S. Thus ρ |= P |S ∼=Aπ∼=Aπ Q |S, as needed. Moreover fn(P, S,Q) ⊆ fn(ρ).
Now let n 6∈ fn(ρ). We have ρ, n/x |= P ∼=Aπ R and ρ, n/x |= R ∼=Aπ Q; thus
ρ, n/x |= P ∼=Aπ∼=Aπ Q, as desired. Trivially we have fn(P, Q) ⊆ fn(ρ, n/x). Finally
we know ρ \ n |= (new n)P ∼=Aπ (new n)R and ρ \ n |= (new n)R ∼=Aπ (new n)Q;
this implies ρ \ n |= (new n)P ∼=Aπ∼=Aπ (new n)Q.From these hypotheses we know
fn((new n)P, (new n)Q) ⊆ fn(ρ \ n). This together the previous results let us infer
that ∼=Aπ∼=Aπ is a term-indexed relation, and we are done.

Proposition 35. 'Aπ is an equivalence relation.

We obtain that 'Aπ is included in ∼=Aπ, in the following sense.

Proposition 36. If ρ |= P 'Aπ Q then ρ |= P ∼=Aπ Q.

Proof. Let ρ |= PRQ whenever ρ |= P 'Aπ Q. Contextuality follows straightfor-
wardly from the contextuality of 'Aπ. To see barb preservation, suppose ρ |= P ↓a.
Therefore we have that P

(c̃)a〈M〉−−−−−→ , for some a and M . From strong barb preser-

vation of 'Aπ we infer Q
(d̃)a〈N〉−−−−−→ and in turn ρ |= Q⇓a, as desired. To see that R

is reduction closed assume P
τ−→ P ′. By strong reduction closure of 'Aπ we infer

that there is Q′ such that Q
τ−→ Q′ and ρ |= P ′ 'Aπ Q′. We have thus found Q′

such that Q =⇒ Q′ and ρ |= P ′RQ′, as desired.

Similarly to the previous chapter we define a notion of up to technique.

3.2. Operational semantics and term-indexed behavioural equivalence 65

Definition 17 (Up to technique). A term-indexed relation S is contextual up
to R1, R2 (noted up to R whenever R1 = R = R2) whenever ρ |= P S Q implies

(i) if ρ`R then ρ|=(P |Rρ)R1 S R2(Q |Rρ),

(ii) ρ, n/x |= PR1 S R2Q with n 6∈ fn(ρ)

(iii) ρ \ n |= (new n)PR1 S R2(new n)Q.

A term-indexed relation is a behavioural equivalence up to R1, R2 if is barb preserv-

ing, contextual up to R1, R2 and if ρ |= P S Q and P
τ−−→ P ′ then ∃Q′ such that

Q ==⇒ Q′ and ρ |= P ′R1 S R2Q
′.

We introduce an up to technique that will be used to ease bisimulation proofs (see
Propositions 40,41).

Definition 18 (Structural congruence). Structural congruence, noted ≡, is the
least equivalence relation that is closed under α-conversion, preserved by the opera-
tors of the language, and that satisfies the following axioms:

P | (new a)Q ≡ (new a)(P |Q) if a 6∈ fn(P)

(new a)P ≡ P if a 6∈ fn(P)

let x = d(M̃) in P else Q ≡ P{N/x} if d(M̃)→ N

let x = d(M̃) in P else Q ≡ Q if d(M̃) 6→
P |Q ≡ Q |P

!P ≡ !P |P
P |0 ≡ P .

As in the api@ calculus we obtain that ≡ commutes with reduction, in the following
sense:

Proposition 37. If P ≡ Q and P
α−−→ P ′ then there is Q′ s.t. Q

α−−→ Q′ and
P ′ ≡ Q′.

Proof. The proof proceeds by induction on the number of applications of the rewrit-
ing rules of Definition 18. The only novelties w.r.t. the analogous result for the pi
calculus are the let rules. Let let x = d(M̃) in P else Q ≡ P{N/x} since d(M̃)→ N

and assume let x = d(M̃) in P else Q
α−−→ P ′. Then it must be the case that this

reduction has been inferred by using rule (LET) of Table 3.2, and therefore we also

have that P{N/x} α−−→ P ′, as needed. The case let x = d(M̃) in P else Q ≡ Q
since d(M̃) 6→ is handled similarly by using rule (LET-ELSE) .

Proposition 38. Behavioural equivalence up to ≡ is included in ∼=Aπ.

66 3. The implementation language

Proof. For reduction closure the proof is similar to Proposition 19 and proceeds
by showing by chasing diagrams arguments and using Proposition 37 that ≡∼=Aπ≡
is reduction closed. Barb preservation follows from the fact that if P ≡ Q then
P ↓a iff Q↓a. Contextuality of ≡∼=Aπ≡ is obtained straightforwardly by noting that
whenever ρ |= P ≡ Q is a term-indexed relation it is contextual; this holds since by
definition ≡ is preserved by the operators of the calculus.

A term environment informally represents the knowledge of the context based
on terms and can be used to tell apart processes interacting with the environment.
However this distinguishing power should not increase whenever terms built around
known ones are added to the environment. The proposition below shows that this
intuition is correct. We first need a technical lemma.

Lemma 39. Let ρ be a a term environment, let M be a term without free names
and suppose ρ `M . Then A(ρ, Mρ/x) = A(ρ).

Proof. It follows from Mρ/x ∈ A(ρ). To see that, it is enough to consider that
equals(M, M)ρ→Mρ.

Proposition 40 (Weakening). Let ρ be a a term environment, let M be a term
without free names and suppose ρ ` M . Then ρ |= P ∼=Aπ Q implies ρ,Mρ/x |=
P ∼=Aπ Q.

Proof. We proceed by co-induction and we show that the relation R such that (i)
ρ,Mρ/x |= PRQ whenever ρ |= P ∼=Aπ Q and ρ ` M or (ii) ρ |= PRQ whenever
ρ |= P ∼=Aπ Q is a behavioural equivalence up to ≡. Proposition 38 guarantees the
desired result. To ease the notation we let N , Mρ.
Case (ii) is trivial; we show case (i).

To see barb preservation, let ρ,N/x |= P ↓a. This means a ∈ A(ρ,N/x) and

P
(c̃)a〈M̃〉−−−−−→ . By the lemma introduced above we have that a ∈ A(ρ) and thus ρ |=

P ↓a. By barb preservation of ∼=Aπ we obtain ρ |= Q⇓a and in turn ρ,N/x |= Q⇓a,
as needed.

Reduction closure is straightforward. To see contextuality, let ρ,N/x |= PRQ.
We first show that (ρ,N/x) \ a |= (new a)PR(new a)Q. Suppose a ∈ fn(N); thus
(ρ,N/x)\a = ρ\a. By contextuality of ∼=Aπ we have ρ\a |= (new a)P ∼=Aπ (new a)Q
and by (ii) and the results above (ρ,N/x) \ a |= (new a)PR(new a)Q, as needed.
Otherwise let a 6∈ fn(N). Thus (ρ,N/x)\a = (ρ\a), N/x. By ρ\a |= (new a)P ∼=Aπ

(new a)Q we infer (ρ,N/x)\a |= (new a)PR(new a)Q, as needed. Weakening closure
of R is easily obtained by noting that fn(N) ⊆ fn(ρ). To conclude let ρ,N/x ` R.
We need to show that ρ,N/x |= P |R(ρ, N/x) ≡ R ≡ Q |R(ρ,N/x). By definition
(a) M = u or (b) M = f(M̃). We show by induction on the shape of M that
there exists R′ closed by ρ such that R(ρ, N/x) ≡ R′ρ. Case (a) is trivial as from
u ∈ dom(σ) we easily obtain the claim by considering R′ = R{u/x}. Suppose
(b) and consider R∗ = R{f(x̃)/x}. By inductive hypothesis there exists R′′ such

3.3. Related work 67

that R∗(ρ, M̃ρ/x̃) ≡ R′′ρ. From R(ρ,N/x) ≡ R∗(ρ, M̃ρ/x̃) and transitivity of ≡
we obtain R(ρ,N/x) ≡ R′′ρ, as desired. We have all we need to conclude. Let
R′ be a process closed by ρ such that R(ρ,N/x) ≡ R′ρ. By contextuality of ∼=Aπ

we have ρ |= P |R′ρ ∼=Aπ Q |R′ρ and in turn ρ,N/x |= P |R′ρRQ |R′ρ. Thus
ρ,N/x |= P |R(ρ,N/x) ≡ R ≡ Q |R(ρ,N/x), as desired.

The distinguishing power of the environment does not increase whenever we
remove entries from the base representing its knowledge. The following proposition
formalize this intuition.

Proposition 41 (Erasure). If ρ,M/x |= P ∼=Aπ Q then ρ |= P ∼=Aπ Q.

Proof. Let R be the relation such that ρ |= PRQ whenever (i) ρ,M/x |= P ∼=Aπ Q
or (ii) ρ |= P ∼=Aπ Q; we show that R is a behavioural equivalence up to ≡. We
show case (i), (ii) is trivial.

To see that R preserve barbs, suppose ρ |= P ↓a. Of course this implies ρ,M/x |=
P ↓a and by hypothesis we obtain ρ |= Q⇓a. Since a ∈ A(ρ) we deduce ρ |= Q⇓a,
as desired.

Reduction closure is straightforward. To see that R is contextual, let ρ |= PRQ.
We first show that ρ, a/y |= PRQ whenever a 6∈ fn(ρ). Let a 6∈ fn(ρ). There are
two cases corresponding to a ∈ fn(M) or not. If not we easily obtain ρ, a/y, M/x |=
P ∼=Aπ Q and in turn ρ, a/y |= PRQ. Suppose a ∈ fn(M). Since ρ |= PRQ is
a term-indexed relation we know that a 6∈ fn(P, Q), that is a is fresh to ρ, P and
Q. We therefore alpha-convert the fresh name a in M with a′ and we proceed as
above . To see that ρ \ a |= (new a)PR(new a)Q we consider cases (a) a ∈ fn(M)
and (b) a 6∈ fn(M). In case (a) ρ,M/x \ a = ρ \ a and from (ρ,M/x) \ a |=
(new a)P ∼=Aπ (new a)Q and (ii) we obtain ρ \ a |= (new a)PR(new a)Q. In case
(b) from (ρ,M/x) \ a = ρ \ a,M/x and (ρ,M/x) \ a |= (new a)P ∼=Aπ (new a)Q
we obtain ρ \ a |= (new a)PR(new a)Q. Finally let ρ ` R. Since x 6∈ fv(R)
we trivially obtain ρ,M/x ` R and Rρ ≡ R(ρ,M/x) . By hypothesis we have
ρ,M/x |= P |R(ρ,M/x) ∼=Aπ Q |R(ρ,M/x) and in turn ρ |= P |Rρ ≡ R ≡ Q |Rρ,
as desired.

3.3 Related work

The spi calculus [12] is a variant of the pi calculus where terms may be built around
cryptographic functions and told apart by a decryption process of the form
decrypt M as {x}N in P . The dynamics of the process are those of the process
P{M∗/x} whenever M = {M∗}N ; otherwise the process is stuck. The spi calculus
introduced the idea to interpret low-level contexts as attackers that try to leak
secrets by observing the communications of some protocol; invalidate the desired

68 3. The implementation language

behavioral equivalences (possibly among two protocol executions) correspond to
leak a secret from the execution of the protocol. Typically the protocol’s exchanges
occur in open channels protected by cryptographic keys; the attacker may therefore
intercepted messaged and forge new ones by interposing in all communications. In
such sense we may say that the attacker models a Dolev-Yao intruder [47]. The
leaking of secrets is particularly critical when the protocol implements high level
abstractions; in such case telling apart the implementation of high level equivalent
processes may affects the security of the implementation [1]. In this thesis, we follow
this approach and devise implementations of typed channel abstractions that do not
leak secrets when immersed in arbitrary, possibly hostile applied pi contexts; we
show how this may be accomplished in the next chapter.

Behavioral equivalences for pi calculi with low level functions have been recently
studied extensively, e.g. [7, 22, 12, 11, 24]; in [25] several notions of observational
equivalence for the spi calculus are compared. Besides the relations with the works
on the applied pi calculus [7, 19, 20, 4, 17] that we have already analyzed, the
behavioral theory we devised for our variant of the applied pi calculus have several
analogies with [22].

As in Boreale, De Nicola and Pugliese’s work, we represent the knowledge of the
environment by means of a substitution from names to terms. We also inherit from
them the notion of term-indexed relation and behavioral equivalence; differently
from [22], our behavioral equivalence consider a single index. The need of consider
different indexes holds for reasons similar to [23], namely bisimilar processes may not
exhibit the same labels (see Section 2.6). More in detail, in [22] behavioral equiv-
alence for the spi calculus is indexed by a couple of equivalent substitutions, i.e.
substitutions with the same domain that satisfy the same evaluation and matching
of terms. The paper provides a coinductive characterization of behavioral equiva-
lence based on a labelled transition system considering configuration’s transitions

of the form σ . P .
α−−→
δ

σ′ . P ′ where σ is a substitution from names to terms.

As in [23], α is a process actions while δ represents the complementary environ-
ment action; bisimilar processes exhibit the same environment actions. Indeed, as
the following example shows, insisting that bisimilar processes have the same pro-
cess actions is too restrictive in the presence of cryptography. Consider processes
P = (new k)p〈{M}k〉 and Q = (new k)p〈{N}k〉 where p is a public channel. Clearly
the environment cannot tell apart the message {M}k from {N}k as it does not have
access to the key k: indeed it can be proved that (ρ, ρ) |= P ∼=Spi Q. On the other
hand ρ . P and ρ . Q exhibit different process labels that lead to different indexes:

ρ . P
(k)a〈{M}k〉−−−−−−−→

δ
ρ, {M}k/x . 0 and ρ . Q

(k)a〈{N}k〉−−−−−−−→
δ

ρ, {N}k/x . 0. Finally to

establishing the bisimilarity of ρ . P and ρ . Q one needs to check that the substi-
tutions ρ, {M}k/x and ρ, {N}k/x are equivalent. To avoid the quantification over
all possible evaluations of terms arising in the definition of equivalent substitutions,
an alternative definition of equivalence is given; the new definition can be easily

3.3. Related work 69

checked once one has calculated the names in the analysis of each substitution.

70 3. The implementation language

4
Secure implementations

In this chapter we devise secure implementations of api@ calculus processes into
applied pi calculus processes. We first review the challenges hidden in the imple-
mentation of high-level processes into low-level, open environments (see [1]). Then
we present the framework of the implementation and we introduce the low-level
data structures that represent the names and the capability types of the high level
calculus. We give a first implementation based on channel server processes that
serve write and read requests for synchronization; high level processes represents
the clients running corresponding protocols with the servers. Relying on the op-
erational correspondence of the encoding, we prove that the translation is sound,
i.e. if the translations of P and Q are observationally equivalent in the applied
pi calculus then P and Q are behaviorally equivalent in the api@ calculus. The
opposite direction, instead, is harder to achieve as one needs to build safeguards
against attacks that rely on channel servers created by the context that hide ma-
licious code. We enhance the design by setting up the synchronization protocols
so as to ensure that all the exchanges occur over system generated (hence secure)
channel servers. We finally prove that the resulting implementation is fully abstract
(sound and complete) by showing that the untyped equivalences of the low-level
cryptographic calculus coincide, via the translation, with the typed equivalences of
the high-level calculus.

Remark In this chapter we omit most proofs that are carefully deployed in
Chapter 5. Particularly, we establish the soundness of our implementations by
relying on a Theorem of operational correspondence (see [21]) stated in terms of
weak actions. The proof of this theorem is subtle, because our translations are not
“prompt” [84], i.e. a translated process need to execute several steps to be ready for
the commit step that matches the high level synchronization. The proof relies on
the definition of an observational equivalence smaller than behavioral equivalence,
and on a strong version of operational correspondence defined over this smaller
equivalence. We omit all details and refer the reader to Chapter 5 for a rigorous
construction of the proof. For the sake of readability, we present implementations of
the monadic version of the calculus defined in Chapter 2, and we sketch how these
translations may be extended to the full polyadic calculus.

72 4. Secure implementations

4.1 Obstacles to a fully abstract implementation

In the pi calculus communications are protected trough high level abstractions such
private channels or sortings that rule out interfering contexts. To illustrate, consider
the following untyped example:

(new a)a〈b〉 | a(x).P a 6∈ fn(P)

In this process a private channel is created to ensure that the name b is sended to
P without possible interferences. Indeed we have the equation [71]:

(new a)a〈b〉 | a(x).P ∼=pi P{b/x} (4.1)

The relation ∼=pi is the untyped version of behavioral equivalence (hence is contex-
tual). The threads a〈b〉, a(x).P can be processes that physically stay in different
machines that are connected trough an open communication medium as the Inter-
net. The challenge is to implement such communications in open networks while
preserving equations like (4.1). Experience in the developing of network protocols
suggest that the way to protect open communications is cryptography (see [68]). In
this vision the objective of safely send b to process P is gained by sending it on a
public channel encrypted under a key generated apart a:

[[a〈b〉]] = net〈{[[b]] }a+〉 (4.2)

The intuition is that no context can open the packet {[[b]] }a+ since the only process
knowing the related decryption key is the intended receiver:

[[a(x).P]] = net(y).decrypt y as {x}a− in [[P]] (4.3)

Each channel is thus represented through a couple of communication keys [[b]] =
b+, b− representing respectively the capability of write and read b.

While this representation is appealing in its simplicity, it suffers from a number of
shortcomings, first made explicit by Abadi in [1]. Most of these are recoverable
by strengthening the implementation, while for the lack of forward secrecy only
workarounds are actually available for calculi that support the exchange of write
and/or read access rights among processes. We outline below the details.

The first attack mounted by the implementation above is traffic analysis. Con-
sider the equation (4.1) for the particular P = 0; this result states that the commu-
nication of b should be invisible in the implementation. This clearly does not hold
as reductions on the network are visible. The context C[−] = net(x).e〈〉 breaks the
desired equivalence:

C[(new a)[[a〈b〉 | a(x)]]]⇓e ∧ C[0] 6⇓e

4.1. Obstacles to a fully abstract implementation 73

A solution could be to inject noise in the communication interface; we let ∼=api be
the non-indexed version of our behavioral equivalence for the applied pi calculus.

!net〈{n}n〉 | (new a)[[a〈b〉 | a(x)]] ∼=api !net〈{n}n〉 |0

Needless to say, this solution is hardly realistic and does not take in account that a
determinate amount of traffic should be always be observable on the network. The
use of noise could be avoided by considering semantics equations that hold with a
certain degree of probability, e.g. [63, 39, 96, 77]; on the other hand, reasoning on
the properties of a translation in this setting appears particularly difficult.

Denial of service attacks can prevent P to receive b. In the implementation above
such attacks can be carried on by contexts (i) intercepting the message containing
b or (ii) making the receiving process stuck. As an example of (i), consider the
equation (4.1) for the particular P = x〈〉. We choose a distinguishing context
that emits a signal whenever a decryption with the key b− is successful: C[−] ,
− | !net(x).decrypt x as {}b− in e〈〉. By definitions (4.2),(4.3) we have:

C[[[P]]]
τ−−→ (new a)(C[decrypt {[[b]] }a+ as {}b− in e〈〉 | [[a(x).x〈〉]]])
≡ C[(new a)(0 | [[a(x).x〈〉]])]

Process C[[[b〈〉]]] has two possible matching answers:

(i) C[[[b〈〉]]] τ−−→ C[decrypt {}b+ as {}b− in e〈〉] ≡ C[e〈〉]
(ii) C[[[b〈〉]]] ==⇒ C[[[b〈〉]]]

Neither the couple (C[(new a)0 | [[a(x).x〈〉]] , C[e〈〉]) and the couple
(C[(new a)0 | [[a(x).x〈〉]]], C[[[b〈〉]]]) can be in behavioural equivalence as
C[(new a)0 | [[a(x).x〈〉]]] 6⇓e.

To enforce our protocol we add replication to emission and recursion to reception;
also, we instrument the receiving process with a mechanism to throws out messages
wrongly picked up: this prevents the context to notice the presence of a receiver by
checking if it swallows messages [8].

[[a〈b〉]] = ! net〈{[[b]] }a+〉
[[a(x).P]] = rec X.net(y).decrypt y as {x}a− in [[P]] else net〈y〉 |X

The replication of emissions clearly exposes to replay attacks. Standard coun-
termeasures apply as using challenge-response, inserting identifiers or timestamps
in the emitted messages. The implementation we present below packages each emis-
sion with a fresh nonce; receivers on a channel a share a private channel a◦ to store
nonces and discard replication of accepted messages.

74 4. Secure implementations

[[a〈b〉]] = (new n)! net〈{[[b]] , n}a+〉
[[a(x).P]] = rec X.net(y).decrypt y as {x, z}a− in

(if z 6∈ Seta◦ then [[P]] else net〈y〉 |X)

else net〈y〉 |X

Saving nonces of all exchanges is unlikely proposable; [8] formalizes the intuition
that this mechanism is equivalent to use a session-based protocol.

One advantage of using nonces is that they can represent confounders to prevent
cryptanalysis attacks. To illustrate, consider processes P = (new a, b, c)a〈b〉 | a〈c〉,
Q = (new a, b)a〈b〉 | a〈b〉. We have P ∼=pi Q; this can be easily seen by noting
that both sides are weakly equivalent to 0. On contrast, an applied pi context
C[−] = net(x).net(y).if x = y then e〈〉 can distinguish among implementations (4.2)
of P and Q by comparing bit a bit the two emissions:

C[net〈{[[b]] }a+〉 | net〈{[[b]] }a+〉]⇓e

C[net〈{[[b]] }a+〉 | net〈{[[c]] }a+〉] 6⇓e

The harder obstacle to a fully abstract implementation of the pi calculus is the
lack of forward secrecy. Consider the process P = (new a)a〈b〉 | a(x).p〈a〉. Similarly
to the introductive example, a channel a is created to safely send b to the receiver.
The receiver discards b and releases the communication channel a to the environment
through a public port p. The communication of b is secret, in the sense that no pi con-
text can retrieve the content of the exchange happened on the channel a. Formally,we
have that any process Q = (new a)a〈b′〉 | a(x).p〈a〉 sending some name b′ is equiva-
lent to P : P ∼=pi Q. As in previous cases, this equation is obtained by noting that
contexts cannot interact with the port a and in turn both P and Q are behavioural
equivalent to (new a)p〈a〉. Conversely, an applied pi context can buffer the emission
of b and subsequently, once received the read capability on a, may decrypt the packet
and break the secrecy of the communication on the high level channel a. To this
aim, consider the context C[−] = net(y).net(k).decrypt y as {x}k in if x = b then e〈〉.
This context tells apart P and Q:

C[[[P]]]⇓e ∧ C[[[Q]]] 6⇓e

To the best of our knowledge, giving a direct implementation of the distribution
of read capabilities in pi calculi is still an open problem due to this attack (see the
remark below). The solution we propose in this thesis is based on the representation
of a channel as a process that serves input and output requests, so that each exchange
of messages is the result of two separate protocols with writer and reader clients.

4.2. The implementation framework 75

All channels are associated with two separate key-pairs. The decryption keys are
always stored securely at the channel, and never leaked; the encryption keys, in
turn, are available to the clients that have read and/or write access to the channel.
In the write protocol, the client sends data, and the channel buffers it on private
queue; in the read protocol, the client sends a session key and the server returns
data encrypted with that key. Publishing a read/write capability on a channel
corresponds to publishing the read/write encryption key associated with the channel.

Under appropriate, mostly standard, hypothesis on the properties of the un-
derlying network, we show that a translation based on these ideas is sound. Full
abstraction, instead, is harder to achieve as we need to build safeguards against at-
tacks that exploit malformed data or malicious channels that intentionally leak their
associated decryption keys. To account for that, we complement the translation with
a proxy-service mechanism to ensure that all communication protocols take place
via system generated (hence secure) channels. We establish the adequacy and full
abstraction of the resulting implementation by contrasting the untyped equivalences
of the low-level cryptographic calculus, with the typed equivalences of the high-level
source calculus.

Remark In [8] Abadi, Fournet and Gonthier provide a fully abstract implemen-
tation of join calculus in a lower calculus equipped with cryptographic primitives.
In [8] the problem of releasing read access rights is avoided altogether, as the join
calculus does not allow names to be communicated with read capabilities, a feature
that instead constitutes one of the fundamental ingredients of our typed calculus.
Hence, to recover forward secrecy, we need a more structured representation of type
capabilities to make sure that distributing a read capability does not correspond
to leaking any decryption key. The existence of a fully abstract encoding of the pi
calculus without matching into join [50] provides an indirect fully abstract encoding
of pi calculus. However, the solution used in [50] to implement the pi calculus does
not extend in the presence of matching, that in contrast is one of the fundamental
ingredients of our high level calculus. We will return on this point in Section 4.5.

4.2 The implementation framework

Our implementation is based on a compilation of the high-level processes of the
pi calculus into corresponding processes of the spi calculus representing low-level
principals running in an open network.

The model of the network

Our assumptions about the low-level communication model are the same as those of
[8]. In particular, we presuppose a Needham-Schroeder [83] network model, in which
an intruder can interpose a computer in all communication paths and thus alter or

76 4. Secure implementations

copy parts of messages, replay messages or forge new ones. We also assume that
each principal has a secure environment in which to compute and store private data.
On the other hand, we assume that the intruder cannot gain control of the whole
network, and thus we do not guarantee that it actually will intercept every message.
Consequently, message delivery may always be achieved with an adequate degree
of redundancy. All processes can send and receive messages through a network
interface consisting of a channel net . Typically all the exchanges over this channel
net are encrypted. As [8] our results about the implementation rely on the presence
of noise to prevent traffic analysis.

Data Structures for Names

The design of the implementation is centered around the choice of an appropriate
data structure to represent the names and the capability types of the high-level
calculus. As we mentioned at the outset, the idea is to represent the capability
types with corresponding term capabilities, implemented as encryption keys. Specif-
ically, the representation of the name n as a fully fledged channel includes the name
identity and two encryption keys corresponding to the read and write capabilities:
(pub(n), ek(wr(n)), ek(rd(n))). The application of the one-way constructors rd and
wr provide a way to construct the read and write seeds associated with the key-pairs
that implement the capability types associated with n.

The representation of a name is now obtained by introducing self-signed certificates
[19, 4] of the form:

Cert(n) , {pub(n), hash(ek(wr(n))), hash(ek(rd(n)))}priv(n)

The certificates help determine the “type” of the names they are attached to. To
illustrate, suppose we receive a tuple formed as (M0,M1,M2, Cert(n)), with Mi

arbitrary terms. One may first ensure that the certificate corresponds to the correct
identity by using the public key pub(n) to verify the certificate, and then match M0

with the public key. As this stage, one may decide whether or not M1 and M2 are
valid capabilities for the identity M0 by calculating hash(M1) and hash(M2) and by
checking whether they match the two values hash(ek(wr(n))) and hash(ek(rd(n)))
respectively: in the former case we certify a write capability, in the latter a read
capability.

We henceforth let n denote the representation of n together with the associated
certificate:

n = (pub(n), ek(wr(n)), ek(rd(n)),Cert(n)).

All the low-level protocols that implement the synchronization steps in the high-
level calculus exchange and manipulate quadruples and expect the components of
such tuples to adhere to the format above. For uniformity, we write x to note a

4.2. The implementation framework 77

quadruple of variables used to store name representations. Further, we introduce
the following mnemonic notation for the components of 4-tuple terms:

MID = π1(M) M+
w = π2(M)

M+
r = π3(M) MCERT = π4(M)

Notice that we make no assumption on the format of the 4-tuple: hence, only when
M = n for some name n, the projections select the identity, the keys and the
certificate associated with n. Abusing the notation, we often write n/x (and more
generally M/x, when M is a 4-tuple) to indicate the substitution of the components
of n (or M) for the corresponding variables composing x.

In the translation, we will find it useful to compute, and manipulate the run-
time type of terms. We give a low-level representation of the high-level types by
simply treating the latter as nullary constructors: thus the terms rw, r, w,> in the
implementation represent the corresponding high-level types ch(rw), ch(r), ch(w),>.
Following the convention adopted for names, we write T for the representation of
the type T in the low-level calculus. Also, we sometime write S <: T when S <: T .

Given this representation of names, the effect of casting a name at a higher type
in the high-level calculus is realized, in the implementation, with a mechanism to
mask away the encryption keys corresponding to the type capabilities “lost” in the
type cast. This is accomplished with the binary destructor ⇑(M, T) corresponding
to the up-cast of the source calculus (see Table 3.1). We use infix notation in the
rest of the presentation, writing M⇑T instead of ⇑(M,T ,). We often use the short
P{(M⇑T)/x̃} for the process let x̃ = ⇑(M, T) in P .

Based on these conventions, we introduce useful notation to express vari-
ous operations to manipulate the representation of names. We let let x =
Typeof(M) in P else Q note the process that verifies that M represents capabil-
ities certified by MCERT , determines the true type of M , and binds that type to
x. In such case we informally say that M has such type. If M is not certified the
process continues as Q; we will often write let x = Typeof(M) in P to indicate the
process let x = Typeof(M) in P else 0. We let if WF (M, T) then P else Q be the
process that tests whether M is certified and has type S, for some S <: T . Finally,
the process let x = Meet(M1, . . . , Mn) in P computes a new tuple representing the
result of merging the capabilities of the Mi’s and binds such tuple to x: the result
of the meet is defined only if M i

CERT = M j
CERT for all i, j ∈ [1..n].

All these operations are encoded with little effort by nested applications of projec-
tion, equality, verify and cast destructors.

let x = Typeof(M) in P else Q , let z = verify(MCERT , MID) in

(if MID = zID then (if hash(M+
w) = z+

w then

(if hash(M+
r) = z+

r then (let x = rw in P) else let x = w in P))

else (if hash(M+
r) = z+

r then (let x = r in P) else let x = > in P))

else Q

78 4. Secure implementations

let x = Meet(M1, . . . ,Mn) in P , let z = Merge((M1,M2)) in

let y = Merge((z, M3)) in . . . let x = Merge((w,Mn)) in P

let x = Merge((M, N)) in P , if M+
r = > then

(if M+
w = > then (let x = N in P) else let x = (NID , N+

r ,M+
w , NCERT) in P

else (if M+
r = > then let x = (NID ,M+

r , N+
w , NCERT) in P else let x = N in P

if WF (M,T) then P else Q , let x = Typeof(M) in (if SUB(x, T) then P

else Q) else Q

if SUB(M, N) then P else Q , if (M = rw) ∨ (N = >) ∨ (M = N) then P else Q

The process if (M1 = N1) ∨ · · · ∨ (Mn = Nn) then P else Q can be coded by using
nested conditionals: we omit all the details.

For future reference, we note instead that the implementation is structured so
that such processes are activated as part of the communication protocols only in the
presence of precise invariants that guarantee that their (the processes’) behavior is
well-defined. More precisely, the communication protocols guarantee the following
conditions: (i) whenever we activate the process let x = ⇑(M, T) in P , MCERT is
indeed a certificate that certifies the remaining components of M , and the type of
M is S <: T , (ii) whenever we evaluate let x = Meet(M1, . . . , Mn) in P , M i

CERT and
M j

CERT are the same certificate which certifies the remaining components of M i and
M j at their respective types for all i, j ∈ [1..n].

A further important remark is in order on the nature of the certificates and the
guarantees they convey. On the one hand, as we argued, the certificates help ex-
tract the capabilities from the representation of names. On the other hand, be-
ing self-signed a certificate does not by itself ensure that the capabilities extracted
from a term (MID ,M+

w ,M+
w ,MCERT) are valid encryption keys. That is indeed

the case for names generated by our implementation, but a term with this struc-
ture received from an arbitrary context may well be validated at type T with-
out being the representation of any name at any type. To illustrate, the (fake)
certificate C = {pub(n), hash(M), hash(N)}priv(n) will certify a write capability in
(pub(n),M,>, C) regardless of the structure of M , which can be any term.

Fortunately, one can build more structure in the implementation so as to protect
against such threats and give guarantees that any term used as a key is indeed a
valid key. We show how that can be accomplished in Section 4.4.

Message Filtering

All the communication protocols underlying our implementation run on the public
channel net. Consequently, as in [8], our implementation relies on the ability of

4.3. A sound implementation 79

processes to filter replays of messages, based on nonces. This is accomplished by
using the process if M 6∈ Setn then P defined in Chapter 3.

The input of a message relies on two filtering protocols. The first picks a packet
from the net and proceeds with the continuation only if the message is successfully
decrypted; otherwise it re-emits the message and retries:

filter ỹ with N in P ,
rec X.net(x).decrypt x as {ỹ}N in P else (net〈x〉 |X)

The second protocol filters messages based on their types, and up-casts them at
those types.

filter x@t from c in P ,
rec X.c(y).if WF (y, t) then (let x = ⇑(y, t) in P) else (c〈y〉 |X)

The output of a message M on a network is realized by emitting M on the net
channel, typically encrypted. To ensure delivery, the emission is replicated, and
packaged with a fresh nonce, n, to protect against replay attacks. The nonce also
acts as a confounder for cryptanalysis attacks.

emit({M}N) , (new n)! net〈{M, n}N〉

4.3 A sound implementation

We are ready to give a formal definition of the two complementary components of the
implementation: the channel infrastructure for communication, and the compilation
of high-level processes. As anticipated, the idea is to set up appropriate channel
servers to support write and read requests for synchronization and value exchange;
the high-level processes of the pi calculus, in turn, are represented as clients running
corresponding protocols with the servers.

Channels and communication protocols

Each channel server is associated with two pairs of asymmetric keys employed in
the protocols for reading and for writing, respectively. The encryption keys are
circulated among clients as components of the tuples that represent the high-level
names; the decryption keys, in turn, are stored securely at the channel servers.

Write protocol. On the client side, writing on a channel is accomplished by
emitting a packet encrypted under the channel’s write encryption key. The message
is replicated to ensure delivery, and packaged with a nonce to protect against replay
attacks. The server, in turn, uses the write decryption key to receive the message,
uses the nonce to filter multiple copies of the message (hardly realistic, of course:
indeed, the solution from [8], based on a challenge response mechanisms, would work

80 4. Secure implementations

just as well here), and stores them into a private queue. It also filters based on the
format of the messages received, requiring that they match the format expected of
the encoding of names.

Read Protocol. On the client side, the reader process uses the channel’s read
encryption key to send a request to the server. The request takes the form of pair
including a symmetric encryption key that will be used to exchange the message
with the server, and (the representation of) a type at which the client expects its
input value. The client then waits for a message from the server encrypted under
the session key: upon receiving the packet, it proceeds with its continuation. The
server, in turn, uses the channel’s read decryption key to receive a request from the
client. To protect against replays, the server keeps track of the nonces received on a
private channel. After checking the freshness of the request, the server uses the type
to select one of the messages from its private queue and then encrypts the message
with the key. The nonce can be spared on the actual message sent by the server as
the key expires at the completion of the protocol (the server may easily filter out
replays of the session key).

The definition of the channel servers is reported in Table 4.1. We use the notation
n−r and n−w to refer to dk(rd(n)) and dk(wr(n)) respectively. The two private names
n◦ and n∗ hold, respectively, the message queue and the nonce set associated with
n. The definitions, as given, are adequate for monadic exchanges only, but the
extension to the polyadic case is relatively straightforward, as one may rely on
corresponding polyadic exchanges in the implementation language. Indeed, we could
simply associate an arity with each channel, and parameterize definition of the filters
(on the server and client sides) on that arity.

Compilation of high-level processes

Having defined the underlying framework, we now illustrate the compilation func-
tion.

The translation is given by induction on the typing judgments of the pi calculus,
and is only defined for derivable judgments. We remark, however, that the output
of the translation only depends on the structure of the processes, as the latter
contain enough information to guide the generation of the low-level code. On the
other hand, the typing information is useful in stating and proving the properties
of the translation, whenever we need to draw precise connections between the static
capability types of the high-level processes and the dynamic term capabilities of the
low-level principals.

The compilation function takes an extra argument, noted µ, that collects information
on the equalities corresponding to the matching prefixes encountered in the traversal
of the process being compiled. This information is expressed as a set of bindings
u ↔ v, with u and v syntactically different (if u and v are syntactically identical,

4.3. A sound implementation 81

Table 4.1 Channels and a compositional translation of client processes

Channels

WSn , ! filter (x, z) with n−w in if z 6∈ Setn∗ then n◦〈x〉
RSn , ! filter (y, t, z) with n−r in

if z 6∈ Setn∗ then filter x@t from n◦ in ! net〈{x}y〉
Chann , (new n∗, n◦) n∗〈∅〉 |RSn |WSn

Clients

[[Γ . u〈v@T 〉]] µ , let û = [[u]] µ, v̂ = [[v]] µ in emit({v̂⇑T}û+
w
)

[[Γ . u(x@T).P]] µ , (new k) (let û = [[u]] µ in emit({sk(k), T}û+
r
))

| filter x with sk(k) in [[Γ, x:T . P]] µ

[[Γ . [u = v] P ; Q]] µ , if uID = vID then [[Γuv:Γ(u)uu:Γ(v) . P]] µ[u↔v]

else [[Γ . Q]] µ

[[Γ . (new n : A)P]] µ , (new n)(Chann | [[Γ, n : A . P]] µ)

[[Γ . P |Q]] µ . [[Γ . P]] µ | [[Γ . Q]] µ

[[Γ . !P]] µ = ! [[Γ . P]] µ

[[Γ . 0]] µ , 0

Top−level translation [[Γ . P]] , [[Γ . P]] ∅

the binding convey no information). We note µ[u↔v] the extension of µ with a
new binding. Also, we write µ ` u↔v to indicate that u↔v is derivable from the
equational theory generated by µ (notice that µ ` u↔v is decidable for finite µ′s).

The information conveyed by the argument µ is exploited by the compiler to gen-
erate code that reconstructs the run-time type of a name, gathering the encryption
keys corresponding to the capability types available in the source calculus. More
precisely, the term formed by the compiler-generated code represents the run-time
counterpart of the meet taken on the types of all the names (or variables) that oc-
cur in an match enclosing the process being compiled. In Table 4.1, we express this
calculation using the notation let x = [[u]] µ in P , which may be defined formally as
the process let x = Meet {w | µ ` u ↔ w} in P that computes the expected meet
and binds it to the fresh variable x. Notice that the set {w | µ ` u↔ w} is always
non-empty (even for an empty µ) as µ ` u↔u may be by reflexivity, for all µ and u.

We are now ready to illustrate the clauses of the translation. An output in the
source calculus is compiled into a corresponding emission: before that, however, the
compiled code computes the appropriate representation for the term to be output

82 4. Secure implementations

and collects the cryptographic key required to form the packet emitted on the public
network. Likewise, an input process is compiled into code that runs the read protocol
after having collected the appropriate key. A high-level match is compiled into the
corresponding conditional low-level process: the name-equality test in the pi calculus
is realized as a corresponding test on the public keys associated with the names
involved. In addition, in case the test is successful, the continuation process is given
access, via µ, to the new set of capabilities that corresponds to the meet of the two
types associated with the names equated in the pi process. As for restriction, the
translation of a high-level restriction generates a corresponding restriction together
with a new channel to be associated with the newly generated name. The remaining
clauses are defined homeomorphically. The definition of the translation function is
completed by a clause that introduces the top-level compilation map [[·]] .

Properties of the implementation

The format of the communication servers and the structure of the client code result-
ing from the translation ensure the following properties: (i) each message output by
a writer will reach at most one reader, and dually, (ii) a legitimate reader client will
complete the protocol provided that a type-compatible message on the same channel
has been output by a writer. Thus, if appropriate channels are allocated for the free
names of the high-level processes, one can prove that any pi synchronization on a
name is simulated by a corresponding reduction sequence in the implementation, and
conversely that the synchronizations on the channel queues in the implementation
reflect the τ -reductions of the source calculus.

Given the relative complexity of the implementation, the proof of operational
correspondence is elaborate. As a first, basic step, one needs a proof that the run-
time flow and management of the cryptographic keys representing the high-level type
capabilities provides the low-level clients with enough capabilities to simulate all of
the synchronizations of the well-typed processes. That can be proved by showing
that the translation is closed by substitution, in the sense made precise below.

Given a type environment I, define the term environment corresponding to I, noted
{| I |}, as follows:

{| ∅ |} = {net/xo}, {| I, a : A |} = {| I |}, a⇑A/x

where x 6∈ dom({| I |}). Now we can state the desired closure properties for the
translation.

Lemma 42 (Substitution Closure). Let Γ be a closed type environment such that
Γ ` v : A. Then:

[[Γ, x:A . P]] {(v⇑A)/x} ∼=Aπ
{|Γ |} [[Γ . P{v/x}]]

4.3. A sound implementation 83

To show the main result of operational correspondence, as in [8], we must rely on
the presence of noise to prevent traffic analysis. Given the simple network interface
we have assumed, injecting noise into the network is simply accomplished by the
process

W , ! (new n)! net〈{n}n〉
which generates infinitely many copies of infinitely many secret packets. Now, we
complete the definition of the computing environment by including a general inter-
face to the network, the noise-generating process and channel support for the free
names shared between the processes and the environment.

EI[−] = − | W | ∏

n∈dom(I)

Chann

As is often the case, our soundness result relies on the operational correspondence
of the translation (cf. [21], see also Section 5.1). The preservation direction of this
result is standard. On the other hand, ‘the ‘reflection” direction is subtle, as the
translation is not “prompt” [84]: in fact, it takes several steps for EI[[[P]]] to be
ready for the commit synchronization step on the channel queue that corresponds
to the high-level synchronization on the channel. These preparation steps have the
following properties: each reduction conducing to a commit (i) does not preclude
any other reduction and (ii) is invisible to the context. As we will show in the next
chapter, these reductions preserve behavioural equivalence and can be factored out
in the proof of the operational correspondence by resorting to a suitable notion of
administrative equivalence.

We have finally all we need to establish the result of operational correspondence.

Theorem 43 (Operational Correspondence). Let Γ and I be two closed type
environments such that Γ <: I. Then:

• If P ==⇒ P ′ then EI[[[Γ . P]]] ==⇒ ∼=Aπ
{| I |} EI[[[Γ . P ′]]].

• Conversely, if EI[[[Γ . P]]] ==⇒ K then there exists P ′ s.t. P ==⇒ P ′ and
K ∼=Aπ

{| I |} EI[[[Γ . P ′]]].

Given a type environment I, to prove preservation and reflection of barbs we
define testing processes of the form

T u = (new k)emit({sk(k),>}u+
r
) | filter x̃ with sk(k) in ω〈〉

where ω 6∈ fn({| I |}). The idea is that whenever I |= P ⇓a, we know that I(a)r ↓
and P

(c̃)a〈v@A〉
======⇒ . Thus both {| I |} contains the key a+

r to read from channel a
and there is a computation from EI[[[P]] Γ] such that Chana contains in its queue
the message v⇑A. Finally we use a fresh name ω to emit a signal whenever the
read request to Chana actually succeeds. To this aim we let {| I |}, ω/z be such that

84 4. Secure implementations

ω 6∈ fn({| I |}) and ({| I |}, ω/z)(y) = a+
r and we consider the process T y closed by

{| I |}, ω/z: T y , (new k)emit({sk(k),>}y+
r
) | filter x̃ with sk(k) in z〈〉. We obtain

T a ≡ T y{| I, ω/z |}.
The following barb predicate I |= P ⇓n+

w
, (n+

r ∈ A({| I |}) ∧ {| I |}, ω/x |=
(T n |P)⇓ω correspond to pi calculus barb I |= P ⇓n, in the following sense.

Proposition 44. The following hold.

1. I |= P ↓a implies I |= EI[[[Γ . P]]]⇓a+
w

2. I |= EI[[[Γ . P]]]⇓a+
w

implies I |= P ⇓a.

We can now prove that the translation [[·]] is sound, in the following sense.

Theorem 45. Let Γ, ∆ and I be closed type environments s.t. Γ, ∆ <: I. If {| I |} |=
EI[[[Γ . P]]] ∼=Aπ EI[[[∆ . Q]]], then I |= P ∼=π Q.

Proof. We consider the relation defined as I ² PRQ whenever {| I |} |= EI[[[Γ . P]]]]
∼=Aπ EI[[[∆ . Q]]], and we prove that R is a typed behavioural equivalence. We prove
that R is reduction closed by using the operational correspondence of the encoding.
In the following we omit to indicate the type environments inside the translation as

they are irrelevant for the proof. Let P
τ−−→ P ′; we apply preservation of execution

steps and find K s.t. EI[[[P]]] =⇒ K and {| I |} |= K ∼=Aπ EI[[[P
′]]]. By reduc-

tion closure of ∼=Aπ we easily deduce that there exists H s.t. EI[[[Q]] Γ] =⇒ H
and {| I |} |= K ∼=Aπ H. By reflection of execution steps we infer that there
is Q′ such that Q =⇒ Q′ and {| I |} |= H ≈A EI[[[Q

′]]]. By the results above
and transitivity of ∼=Aπ we conclude that {| I |} |= EI[[[P

′]]] ∼=Aπ EI[[[Q
′]] Γ], which

in turn implies I |= P ′RQ′, as needed. That R is barb preserving is obtained

directly by using Proposition 44. Let I |= P ↓a; thus I(a) <: r and in turn
a+

r ∈ Range({| I |}). By the contextuality of ∼=Aπ, we find ω 6∈ fn({| I |}) s.t.
{| I |}, ω/x |= EI[[[P]]] ∼=Aπ EI[[[Q]]]. Let y be the variable such that {| I |}(y) = a+

r .
From {| I |}, ω/x ` T y and closure under parallel composition of ∼=Aπ we infer
{| I |}, ω/x |= T a |EI[[[P]]] | ∼=Aπ T a |EI[[[Q]]]. By the preservation direction of
Proposition 44 we have I |= EI[[[P]]] ⇓a+

w
, that is {| I |}, ω/x |= EI[[[P]]] |T a ⇓ω.

By barb preservation of ∼=Aπ we easily deduce {| I |}, ω/x |= EI[[[Q]]] |T a⇓ω; this and
a+

r ∈ Range({| I |}) let us infer I |= EI[[[Q]]] ⇓a+
w
. We apply reflection of barbs and

obtain I |= Q⇓a, as needed.

Finally we show that R is contextual. Let I = I′, a : A. To ensure closure under new
we need to prove that I′ |= (new a : A)PR(new a : A)Q. By the hypothesis on the
shape of I we know that the computing environment EI[−] ≡ EI′ [− |Chana]. We ap-
ply contextuality of ∼=Aπ obtaining {| I |} \a |= (new a)EI[[[P]]] ∼=Aπ (new a)EI[[[Q]]].
It’s easy to see that {| I |} \ a = {| I′ |}. By the result above, by a 6∈ fn(EI′) and
by definition of [[(new n : A)P]] we deduce (new a)EI[[[P]]] ≡ EI′ [[[(new a : A)P]]].
From these results we infer {| I′ |} |= EI′ [[[(new a : A)P]]] ∼=Aπ EI′ [[[(new a : A)Q]]]

4.3. A sound implementation 85

which in turn implies I′ |= (new a : A)PR(new a : A)Q, as desired. For the second
clause of contextuality, we show that if I ` R then I |= P |RRQ |R. From I ` R we
infer fn(R) ⊆ I. Moreover, we deduce that fn([[R]]) ⊆ {| I |} and that the encryption
keys occurring in the definition of [[R]] generated around names free in [[R]] are
supplied by {| I |}, because of the assumption I ` R. We find an applied pi process TR

with bn(TR) = bn(R) such that {| I |} ` TR and [[R]] ≡ TR{| I |}. From these and con-
textuality of ∼=Aπ we infer {| I |} |= EI[[[P]]] | [[R]] ∼=Aπ EI[[[Q]]] | [[R]] . By definition
of the encoding of parallel composition and by using some structural rearrangement
we obtain {| I |} |= EI[[[P |R]]] ∼=Aπ EI[[[Q |R]]] | [[R]] and in turn the desired result,
I |= P |RRQ |R. The last clause requires that a 6∈ dom(I) implies I, a : A |= PRQ.
Assuming a 6= net, it’s easy to see that the hypothesis above implies a 6∈ fn({| I |}).
The contextuality of ∼=Aπ let us infer {| I |}, a/s |= EI[[[P]]] ∼=Aπ EI[[[Q]]]; from
Proposition 40 we infer {| I |}, a⇑A/x̃, a/s |= EI[[[P]]] ∼=Aπ EI[[[Q]]]. Let σ =
{| I |}, a⇑A/x̃, a/s. From the seed a we may build a channel for a exploiting closure
under parallel composition of ∼=Aπ: σ |= EI[[[P]]] |Chansσ ∼=Aπ EI[[[Q]]] |Chansσ;
notice that Chansσ = Chana. We use erasure (Proposition 41) to remove the bind-
ing a/s and infer {| I |}, a⇑A/x̃ |= EI,a:A[[[P]]] ∼=Aπ EI,a:A[[[Q]]]; from this we obtain
I, a : A |= PRQ, as desired.

The converse direction of Theorem 45 does not hold. In fact, as we noted,
the communication protocols presuppose a certain structure associated with names.
Indeed, for the names that are statically shared with the context, this structure
is easily enforced by allocating the corresponding channels as part of the encoding
definition. However, the context may dynamically generate new names that do not
satisfy the expected invariants. Notice, for instance, that the client of a reader
protocol presupposes a legitimate channel on the other end of the protocol and is
not protected against malformed messages received by illegitimate channels: given
that, it is easy to find a counter-example to full abstraction. For instance, in the
source calculus we have:

a : w |= a(y@rw).y(x@rw).y〈x@rw〉 ∼=π a(y@rw)

This is an instance of the api@ calculus law a : w |= a(x@rw).a〈x@rw〉 ∼=π 0 that
we have seen in Chapter 2. This is an instance of the well-known asynchronous pi
calculus law a(x).a〈x〉 ∼= 0, and holds in our pi calculus for similar reasons. On the
other hand, one easily sees that for I :> Γ we have

a+
w/z 6|= EI[[[Γ . a(y@rw).y(x@rw).y〈x@rw〉]]] ∼=Aπ EI[[[Γ . a(y@rw)]]]

In fact, a context may create the legitimate representation of a full-fledged name b
and exchange it over a; the subsequent request emit({sk(k), rw}b+r) made by the left
process can now be decrypted by the context, which possesses the decryption key
b−r , and thus the left reduct EI[[[Γ, b : rw . b(x@rw).b〈x@rw〉]]] can be distinguished
from the null process EI[0] (i.e., the process environment Γ, b : rw is not compatible

86 4. Secure implementations

with the context environment I). The following context exploits this attack to tell
apart the two implementations:

C[−] , − | (new b)net〈{b}a+
w
〉 |net(x).decrypt x as {}b−r in e〈〉

4.4 A fully abstract implementation using a cer-

tification authority

To recover full abstraction, we must shield our translated processes from such unde-
sired interactions. That may be achieved by setting up the synchronization protocols
so as to ensure that all the exchanges occur over system-generated, trusted channels
whose decryption keys remain secret.

The new translation introduces a separation between client names, used syn-
tactically by context processes and by translated processes to communicate, and
corresponding server names generated within the system and associated with sys-
tem generated channels to be employed in the actual protocols for communication.

A proxy server maintains an association map between client and server names so
as to preserve the expected interactions among clients. The map is implemented as
a list of entries of the form (pub(n),m), whose intended invariant is that m is the
server counterpart of the client name n. As introduced in Chapter 3 we call this
data structure a table. We call pub(n) the index of the entry, and m the target. The
proxy map is set up to ensure that each index has exactly one target. We represent
the public keys used by the proxy service by letting k+

P , ek(k) and k−p , dk(k),
with k a seed not known to the environment.

The read/write protocols follow the same rationale as in the previous translation,
with the difference that now the clients must first obtain the access to the system
channel by contacting the proxy server. The interaction between clients and proxy
is as follows: the client presents a name to the proxy and the proxy replies with the
corresponding server name cast at the (true) type of the name sent by the client.
In case the name received is new, the proxy returns a fresh server name for which
it also allocates a system channel. On the client side, the protocol is implemented
as shown below:

link (u, y) in P ,
(new h)emit({sk(h), u, }k+

p
) | filter y with sk(h) in P

For the proxy side, the definition is found in Table 4.2. The only subtlety is that upon
receiving a name that does not occur in the association map, the proxy allocates
two indexes for the same target: one index is the name received from the client,
the other is the public key of the target itself. This second association is needed
to make linking idempotent, so that linking a server name always returns the same
name. One may wonder how a client could possibly end up requesting a link for a

4.4. A fully abstract implementation using a certification authority 87

server name as (i) server names originate from the proxy, and (ii) are never passed
on any exchange by the clients. Notice however, that this invariant is only true of
the clients that arise from the translation, not for arbitrary applied pi processes of
the context.

Table 4.2 Fully Abstract Translation

Proxy server

Pt , ! filter (k, x, y) with k−p in if y 6∈ Set t∗ then
let s = Typeof (x) in
t(z).let y =?(xID, z) in t〈z〉 | !net〈{y⇑s}k〉

else (new n)Chann | t〈(z :: xID; n) :: (nID; n)〉
| !net〈{n⇑s}k〉

Proxy , (new t, t∗) Pt | t〈∅〉 | t∗〈∅〉
Channels

WSn , ! filter (x, z) with n−w in if z 6∈ Setn∗ then n◦〈x〉
RSn , ! filter (y, t, z) with n−r in

if z 6∈ Setn∗ then filter x from n◦@t in ! net〈{x}y〉
Chann , (new n∗, n◦) n∗〈∅〉 |RSn |WSn

Clients

〈〈Γ . u〈v@T 〉 〉〉 µ , let û = [[u]] µ, v̂ = [[v]] µ in link (û⇑w, x) in emit({v̂⇑T}x+
w
)

〈〈Γ . u(x@T).P 〉〉 µ , (let û = [[u]] µ in link (û⇑r, y) in (new k) emit({sk(k), T}y+
r
))

| filter x with sk(k) in 〈〈Γ, x : T . P 〉〉 µ

〈〈Γ . [u = v] P ; Q 〉〉 µ , if uID = vID then 〈〈Γuv:Γ(u)uu:Γ(v) . P 〉〉 µ[u↔v]

else 〈〈Γ . Q 〉〉 µ

〈〈Γ . (new n : A)P 〉〉 µ , (new n) 〈〈Γ, n : A . P 〉〉 µ

〈〈Γ . P |Q 〉〉 µ , 〈〈Γ . P 〉〉 µ | 〈〈Γ . Q 〉〉 µ

〈〈Γ . !P 〉〉 µ , ! 〈〈Γ . P 〉〉 µ

〈〈Γ . 0 〉〉 µ , 0

Top−level translation 〈〈Γ . P 〉〉 , 〈〈Γ . P 〉〉 ∅

Having given the intuitions, the definitions in Table 4.2 should be easily understood.
Notice that the clause for restriction is defined homomorphically in this translation,
as the creation of the channel is delegated entirely to the proxy server. In the
translation of the matching construct, we could test matching on linked names

88 4. Secure implementations

(which would make the translation more uniform), rather than on client names.
While this choice has no consequences in the centralized translation, it does create a
problem in the distributed implementation that we will present in Chapter 6. Indeed
in that case matching should test names linked on the same proxy and this creates
a technical problem as names are known at different proxies, under different linked
names.

Full Abstraction

Having set up the underlying infrastructure, we now have the expected protection
against hostile contexts. We may therefore strengthen the result of Theorem 45 as
desired, provided that we plug our processes in the appropriate computing environ-
ment. We first define

CE[−] = − |W |Proxy

and let the low-level term environments corresponding to the high-level type envi-
ronment be extended with a new binding expressing the knowledge of the public
proxy encryption key k+

P needed to interact with the proxy. We obtain that the
encoding 〈〈 · 〉〉 is sound and complete.

Theorem 46. Let Γ, ∆ and I be closed type environments such that Γ, ∆ <: I. Then:

I |= P∼=πQ iff {| I |}, k+
P /y|=CE[〈〈Γ . P 〉〉]∼=AπCE[〈〈∆ . Q 〉〉] .

4.5 Related work

In the literature on process calculi, a standard method to study the expressiveness of
a calculus is to provide an encoding in another, possibly well-studied formalism, and
to reason on the semantic properties preserved by the encoding. The expressivity
of the pi calculus and its fragments has been studied intensively, e.g. [99, 85, 84,
21, 69, 32, 35, 33]; mint process calculi are often related to the pi calculus, e.g.
[51, 27, 86, 17, 16, 108, 54].

Translations from high level calculi using abstractions as secure channels and
types to lower-level ones using open communications and cryptographic functions
are often referred as implementations [12, 1, 10, 8]. Indeed, from an abstract point
of view, the low-level language models the open and distributed communications
that characterize actual network protocols. In this field, the work closest to ours
is [8]. In that paper, a fully abstract encoding of the join calculus into a dialect of
join using cryptographic primitives is given. The located nature of channels in the
join calculus makes it possible to rely on a very compact representation in which a
communication channel a is associated with a low level key name a+, and to protect
communications using an asymmetric cryptosystem. The authors of [8] propose two
encodings, with different purposes. A first, compositional encoding translates every

4.5. Related work 89

message of the source process in a cryptographic protocol without any assumption
on the distribution of processes. The second encoding avoids the use of cryptog-
raphy for all communications by using a centralized context that acts as a firewall
with an encrypting tunnel [9]. Join processes immersed in this context execute in-
ternal communications without be disturbed by the firewall, while messages sent
outside the context boundary and received from the context are respectively mar-
shalled and unmarshalled by encoding/decoding contents. The authors prove that
the two encodings are equivalent, up-to behavioral equivalence. The soundness of
the compositional encoding is based on correctness conditions for the protocol; for
instance (a) the emission of a message needs to be non-interruptible, (b) a recipient
of a message upon picking a “wrong message” needs both to recover it’s initial state
and to make the picked message available, (c) an emission needs not to interfere with
other emissions. We followed these guidelines and devised cryptographic protocols
that satisfy the conditions above.

The problem of preserving the forward secrecy of communications (see Section
4.1) in [8] is avoided altogether, because in the join calculus the capability of receiv-
ing on a channel can never been transferred. Quoting the authors: “An advantage
of the join-calculus as the starting point of our work is that, it relies on asymmetric
(one-directional) channels, unlike the standard pi calculus which relies on symmetric
(two-directional) channels. We did in fact attempt to use the pi calculus, but we
encountered a subtle difficulty [1]”. The use of join-calculus instead of pi calculus
does not entail a loss of expressiveness, because there is a fully abstract encoding
from the pi calculus without matching in the join-calculus [51]; like ours, the trans-
lation relies both on the presence of proxy pairs of internal and external names, and
on relays among the pairs components. By composing the two encodings [51],[8]
one obtains a fully abstract encoding of the pi calculus without matching. How-
ever, the approach followed in [51] to encode the pi calculus does not extend in the
presence of matching. This is because, as noted in [104], the ability of test syntac-
tic equality on names invalidates the semantic equalities on names provided by the
equators [65] used in [51] to merge internal and external names. Therefore, it is not
clear how to implement matching in a join calculus extended with a name-matching
construct [53, 8].

A different approach to the implementation of high level channel abstractions is
followed in [14]; in that paper high level processes are mapped in a computational
setting, rather than in an algebraic framework. The authors implement high-level
functionalities of a variant of the pi calculus supporting reliable messaging and
authentication primitives, by using concrete cryptography based on probabilistic al-
gorithms that operate on bitstrings. This is in contrast with the algebraic view of
cryptographic protocols followed in this thesis and in other recent works, e.g. [10, 8].
We agree that the approach we followed is probably too abstract. Providing a cryp-
tographically sound implementation of the type-based management of capabilities
we have presented in this thesis seems to us an interesting challenge.

90 4. Secure implementations

5
Proofs

In this chapter we present the proofs of the results of Chapter 4. We first intro-
duce the outline of the proof of soundness. Then we introduce the definitions of
administrative reductions and equivalence and prove some useful properties of ad-
ministrative equivalence and its variants. Then we prove cryptographic Lemmas
that will be useful to treat the leftover of the protocol as noise (cf. [8]). The next
sections are dedicated respectively to the proof of the soundness and completeness
of the encoding 〈〈 · 〉〉 .

5.1 Outline of the proof of soundness

In programming languages translations, often the soundness of the encoding is a
direct consequence of the operational correspondence:

(i) P → P ′ implies {|P |} → R{|P ′ |}
(ii) {|P |} → Q implies ∃P ′ . P → P ′ and QR{|P ′ |}

Here R is a behavioural equivalence finer as possible (∼= often not suffices, e.g. [21]).
(i) is often called preservation of execution steps while (ii) is called reflection of
executions steps. While preservation is typically easily gained, the reflection of exe-
cutions is stated as above only for “prompt” encodings [84], i.e. encodings that are
immediately ready to execute a move that match an non-translated reduction. Prov-
ing reflection in non-prompt encodings often needs workarounds that are typically
ad-hoc for the specific translation.

In this section we outline the approach we have used in order to prove the
soundness of our encoding (that is non-prompt) and particularly the reflection of
executions steps (see Proposition 87). The technique relies on a partitioning of
the reduction relation of the transition system of the calculus that is the target

of the encoding, in two smaller relations, noted
A−→ and

s−→, that are partially

confluent. Here the reductions
A−→ represent those introduced by the encoding in

order to prepare the protocol for the commit action and to complete the protocol.
In contrast,

s−→ represents the commit action that corresponds to the high level
execution step.

92 5. Proofs

To ease the readability of the outline, we consider an applied pi calculus with
unlabelled semantics and a standard notion of contextuality for behavioral equiva-
lence. We let solid and dotted lines indicate respectively universal and existential
quantification. For a relation R we let R= be its reflexive closure.

The first step is to define when a reduction is administrative. While in the
next section we give a definition based on the classification of the reductions of the
encoded processes, for the sake of clearness here we base the definition on the prop-
erties sufficient to our aim. Such properties are exploited in the proof of Proposition
65.

Definition 19. Let P be a closed process. We let administrative reduction, noted
A−→, be the subset

A−→=→ \ s−→ induced by the following diagrams.

P
A- P ′ P

A- P ′

P ′′

A

?
.....................

A

=
- •

A =

?

..................
P ′′

s

?
.....................

A

=
- •

s

?

..................

We let
A

=⇒ be the reflexive and transitive closure of
A−→. We update the definition

of behavioral equivalence for this simplified applied pi calculus. We say that a
relation is contextual if it is closed under all contexts of the language.

Definition 20 (Behavioral equivalence). Behavioral equivalence, noted ≈Aπ, is
the largest symmetric relation R ⊆P ×P that is barb preserving, contextual and
such that PRQ and P −→ P ′ implies that there is Q′ such that Q =⇒ Q′ and
P ′RQ′.

Behavioral equivalence relate processes that may need a different number of
execution steps to reach related redexes. For this reason, it is often too loose, and
smaller relations considering a more finer treatment of weak reductions have been
introduced, e.g. [103]. Following this approach, we give a notion of equivalence that
ignores only reductions that have the confluence properties defined above.

Definition 21 (Administrative equivalence). Administrative equivalence, noted
≈A, is the largest symmetric relation R ⊆ P ×P that is strong barb preserving,
contextual and such that PRQ implies:

• P
A−→ P ′ imply Q

A
=⇒ Q′ for some Q′ such that P ′RQ′

• P
s−→ P ′ imply Q

A
=⇒ s−→ A

=⇒ Q′ for some Q′ such that P ′RQ′ .

We then prove that administrative equivalence is indeed an equivalence relation,
and that is included in behavioral equivalence.

5.1. Outline of the proof of soundness 93

Proposition 47. If P ≈A Q then P ≈Aπ Q.

Then we show an important property of administrative equivalence that says
that is closed under administrative reductions, in the following sense.

Lemma 48. If P
A−→ P ′ then P ≈A P ′.

Roughly, we gain the following result.

Proposition 49 (Operational Correspondence). Let P be an api@ calculus
process and let Γ be a closed type environment such that Γ ` P .

(i) P
τ−→ P ′ implies [[P]]

A
=⇒ s−→≈A [[P ′]]

(ii) H ≈A [[P]] ∧ H
τ−→ H ′ implies ∃P ′ such that P =⇒ P ′ and H ′ ≈A [[P ′]] .

Proof. (i) is proved by induction on the derivation of P
τ−→ P ′ . (ii) is proved

in two steps. If H
A−→ H ′ we use the lemma above and infer H ≈A H ′ and in

turn by transitivity of ≈A we obtain H ′ ≈A [[P]] , as requested. Otherwise we

have the transition H
s−→ H ′, and by definition there is K, K ′ such that [[P]]

A
=⇒

K
s−→ A

=⇒ K ′ and H ′ ≈A K ′. We then show that there is a canonical sequence of

administrative reductions, noted
pAq
=⇒, only including the administrative steps from

[[P]] required to enable the synchronization in K, and having the following property:

[[P]]
pAq
=⇒ s−→≈A K ′. We therefore prove that when the reductions above hold, there

is P ′ such that P
τ−→ P ′ and [[P ′]] ≈A K ′. This is done by case analysis on

s−→
and by observing that the low-level commit actions arise when reductions occur on
a channel queue, and that any of such queue reductions occurs only when at the
high level there is a dynamically typed synchronization. Finally we use transitivity
of ≈A to infer the expected result, [[P ′]] ≈A H ′.

The proposition above and the inclusion of administrative equivalence in behav-
ioral equivalence let us prove the Theorem of soundness of the translation (see [21]
and the proof of Theorem 45). We let ≈π be the non-indexed version of behavioral
equivalence for api@ calculus processes.

Theorem 50. Let P, Q be api@ calculus processes and let Γ, ∆ be closed type envi-
ronments such that Γ ` P and ∆ ` Q. If [[P]] ≈Aπ [[Q]] then P ≈π Q.

Discussion The approach we followed draws inspiration from the up to technique
used by Fournet in his doctoral dissertation [50] to prove the completeness of the
encoding of the pi calculus into the join calculus. Based on a confluence theorem
by Van Oostrom [107], the author devised a sound up to technique based on a sub-
set of the reduction relation, namely deterministic reduction, that roughly satisfies
our two diagrams plus other diagrams used to “roll back” such reductions. These

94 5. Proofs

further conditions are too strong for our encoding. There is however an important
difference among the diagrams we share: we match each commit reduction with ex-
actly one commit reduction, while in [50] it is admitted that a commit reduction it
is matched in zero or one commit reductions. This would invalidate our reasonings
on the operational corresponding of encodings, that are based on the assumption
that administrative equivalence relate processes that have executed exactly the same
number of commit while they may differ in administrative steps introduced by the
synchronization protocol.

5.2 Administrative equivalences

As introduced in Sections 4.3 and 5.1, our translated processes need to execute
several steps before to be ready for the commit synchronization step on the channel
queue that corresponds to the high-level synchronization on the channel. As it turns
out, however, these steps are not observable and can be factored out in the proof
by resorting to a suitable notion of (term-indexed) administrative equivalence ≈A.
The definition of ≈A draws on a classification for the reductions of the compiled
processes into commitment steps, corresponding to synchronizations on the channel
queues, and administrative reductions, corresponding to the steps that precede and
follow the commitment steps (similarly to [55]). Then two processes are equated by
≈A only if they are behaviorally equivalent and, in addition, they can simulate each
other’s commitment transitions in a ‘strong’ way.

Given these intuitions, in the following we present the definition of administrative
reduction and equivalence. Then we prove some interesting closure properties of
administrative equivalence, and we show that the relation is contained in behavioral
equivalence.

Remark The translations we presented in the previous chapter make use of re-
cursion in filtering packets from the network. The recursion mechanism is imple-
mented through the process rec X.P = (new a) (a〈〉 | !a().P{a〈〉/X}) with a 6∈ fn(P).
Clearly, this make filtering not prompt, i.e. filter ỹ with N in P needs to execute a
deterministic step to be able to receive a packet from the network. As we will show,
this step is not visible up to administrative equivalence. Nevertheless, to ease the
proofs presented in this chapter it is convenient to consider prompt filters. To this
aim we modify recursion as in the following (admitely less elegant) definition:

rec X.P , (new a) (P{a〈〉/X} | !a().P{a〈〉/X}) a 6∈ fn(P) .

Administrative reductions and equivalence

Based on these intuitions, in the following we introduce the notion of administrative
reduction.

5.2. Administrative equivalences 95

A reduction is administrative whenever satisfies one of the clauses of the Defini-
tion 22 introduced some lines below; we assume that the processes of interest use a
public interface for communications.

The first clause is clear. The second clause describes a protocol that uses a symmetric
cryptoscheme and that is formed by a recursive filter process waiting for packets on
the public interface and a replicated public emission of the packet waited by the filter;
the reduction involving the filter receiving the packet is administrative whenever the
content of the packet has the correct arity and there not exists another packet with
different content that could be accepted by the filter.

The third clause describes a similar protocol involving a recursive filter and a
public output and says that a reduction is administrative whenever is inferred from
the filter receiving a wrong packet (i.e., encrypted with a different key or containing
terms mismatching the expected arity). The fourth clause describes the behaviour
of a filter of type T on a private channel n◦ which receives a term which represents
a type S that is not a sub-type of T . The fifth clause describes the behaviour of a
process which receives a set carried on by a private output n∗〈M〉 and then tests if
a term N belong to the set and if yes continue as Q; the reduction is administrative
whenever the existence in the scope of n∗ of a testing process on the same term N
and continuing as Q′ implies that Q ≡ Q′.

The sixth clause describes a protocol where a table list carried on a private
channel is managed in a way similar to that of the Proxy server (see Tab. 4.2). The
managing of the table is done by a meta-process TN(Q) defined around Q; here Q
is a process with free variables that will be closed in TN(Q). The reduction under
analysis is the one where TN(Q) receives a table M from a private output t〈M〉.
Next the continuation of TN(Q) tests if M contains an index NID (and in case
binding the associated entry to the free variables of Q): if yes the process continue
as t〈M〉 |Q otherwise it creates a channel for the fresh name n, outputs on t the
updated M :: (NID; n) :: (nID; n) and executes Q with n binding the free variables of
Q. The last clause says that that the unblocking reduction by which we implement
recursion in rec X.P is administrative.

In the following, for terms M, N we write M = N to indicate that M is syntac-
tically equal to N ; we write |M | to refer to the dimension of M .

Definition 22 (Administrative reduction). Let net ∈ fn(P) and suppose P
τ−→

P ′. We say that P
τ−→ P ′ is an administrative reduction, noted P

A−→ P ′, when
P ↓a⇔ P ′ ↓a and one of the following cases holds:

1. the reduction is inferred from a synchronization among a replicated input on
net and a replicated output on net;

2. P ≡ C[filter ỹ with sk(N) in P | ! net〈{M}sk(N)〉] and
P ′ ≡ C[filter {M}sk(N) with sk(N) in P | ! net〈{M}sk(N)〉] and |M | = |ỹ|

96 5. Proofs

and ∀C ′,M ′ : P ≡ C ′[net〈{M ′}sk(N)〉] ∧ |M ′| = |ỹ| ⇒ M = M ′ where

filter M̃ with N in P is the process Q s.t. filter x̃ with N in P
net(M̃)−−−−→ Q;

3. P ≡ C[filter ỹ with sk(N) in P | net〈M〉] and P ′ ≡ C[filter M with sk(N) in P]
and ¬(M = {M ′}sk(N) ∧ |M ′| = |ỹ|);

4. P ≡ C[(new n◦)Q | filter ỹ from n◦@T in P |n◦〈M〉] and
P ′ ≡ C[(new n◦)Q | filter M from n◦@T in P] and M has type S 6<: T where

filter M from c@T in P is the process Q s.t. filter x̃ from c@T in P
c(M)−−−→ Q;

5. P ≡ C[(new n∗)n∗〈N〉 | i∈I if Ni 6∈ Setn∗ then Qi] and P ′ ≡ C[(new n∗)(if Nj 6∈
N then n∗〈Nj :: N〉 |Qj else n∗〈N〉) | i∈I\j if Ni 6∈ Setn∗ then Qi] and ∀i, j ∈
I . (Ni = Nj)⇒ (Qi ≡ Qj);

6. P ≡ C[(new t)t〈M〉 | i∈ITNi
(Qi)] and P ′ ≡ C[(new t)let ỹ =?(NjID,M) in

t〈M〉 |Qj else ((new n)Chann | t〈(NjID, n) :: (nID, n) ::
M〉 |Qj{n/ỹ}) | i∈I\jTNi

(Qi)] where TN(Q) = t(z).let ỹ =
?(NID, z) in t〈z〉 |Q else (new n)Chann

| t〈(NID :: n) :: (nID; n) :: z〉 |Q{n/ỹ} and fv(Q) = ỹ;

7. P ≡ C[(new n)n〈〉 | !n(x).Q{n〈〉/X}] and P ′ ≡ C[rec X.Q] where n 6∈ fn(Q);

where I = 1, . . . , n. We let
A

=⇒ be the reflexive and transitive closure of
A−→.

We set −→=
τ−−→ \ A−→.

Based on this we have the following notion of equivalence that ignores adminis-
trative reductions.

Definition 23 (Administrative equivalence). Administrative equivalence, noted
≈A, is the largest symmetric and contextual term-indexed relation R such that ρ |=
PRQ implies:

• if ρ |= P ↓n then ρ |= Q↓n
• P

A−→ P ′ imply Q
A

=⇒ Q′ for some Q′ such that ρ |= P ′RQ′

• P −→ P ′ imply Q
A

=⇒−→ A
=⇒ Q′ for some Q′ such that ρ |= P ′RQ′ .

The first desirable property is that ≈A is indeed an equivalence. We first need a
technical lemma.

Lemma 51. Assume ρ |= P ≈A
ρ Q. The following hold.

(i) (P
A

=⇒ P ′)⇒ ∃Q′ . Q A
=⇒ Q′ ∧ P ′ ≈A

ρ Q′

(ii) (P
A

=⇒→ A
=⇒ P ′)⇒ ∃Q′ . Q A

=⇒→ A
=⇒ Q′ ∧ P ′ ≈A

ρ Q′

5.2. Administrative equivalences 97

Proof. The proof of (i) is is analogous to the proof of Proposition 33; we prove (ii).

Let P ≈A
ρ Q and suppose P

A
=⇒ P ′ −→ P ′′ A

=⇒ P ∗. By definition ∃Q′ such that

Q
A

=⇒ Q′ and Q′ ≈A
ρ P ′. By this we infer that there is Q′′ such that Q′ A

=⇒→ A
=⇒ Q′′

and Q′′ ≈A
ρ P ′′ Finally we infer that ∃Q∗ such that Q′′ A

=⇒ Q∗ and P ∗ ≈A
ρ Q∗. We

glue the reductions obtaining Q
A

=⇒→ A
=⇒≈A

ρ P ∗, as desired.

Proposition 52. ≈A is an equivalence relation.

Proof. It’s easy to see that ≈A is reflexive; by definition the relation is symmetric.
We therefore prove that ≈A is transitive. We proceed by chasing-diagram arguments
and show that ≈A≈A is an administrative equivalence.

Let P ≈A
ρ R ≈A

ρ Q. From fn(P, R) ⊆ fn(ρ) and fn(R, Q) ⊆ fn(ρ) we obtain
fn(P,Q) ⊆ fn(ρ). To see barb preservation, let ρ |= P ↓a; by definition ρ |= R↓a and

in turn ρ |= Q↓a, as needed. To see reduction closure, let P
A−→ P ′. By hypothesis

we have that there is R′ such that R
A

=⇒ R′ and P ′ ≈A
ρ R′. By the hypothesis

R ≈A
ρ Q and (i) we infer that there is Q′ such that Q

A
=⇒ Q′ and R′ ≈A

ρ Q′, as needed.
By gluing fn(P ′, R′) ⊆ fn(ρ) and fn(R′, Q′) we obtain fn(P ′, Q′) ⊆ fn(ρ). Otherwise

assume P −→ P ′. By hypothesis we have that there is R′ such that R
A

=⇒−→ A
=⇒ R′

and P ′ ≈A
ρ R′. By (ii) we infer that there is Q′ such that Q

A
=⇒−→ A

=⇒ Q′ and
Q′ ≈A

ρ R′, as needed.
That ≈A≈A is symmetric can be easily viewed by following the same proof when

the hypothesis regards Q. Next we prove that ≈A≈A is contextual. Let P ≈A
ρ R ≈A

ρ

Q. To see closure under composition assume ρ ` S∗ and let S = S∗ρ. By hypothesis
both ρ |= P |S ≈A R |S and ρ |= R |S ≈A Q |S. Thus ρ |= P |S ≈A≈A Q |S, as
needed. Moreover fn(P, S, Q) ⊆ fn(ρ). Now let n 6∈ fn(ρ). We have ρ, n/x |= P ∼=Aπ

R and ρ, n/x |= R ∼=Aπ Q; thus ρ, n/x |= P ∼=Aπ∼=Aπ Q, as desired. Trivially we
have fn(P,Q) ⊆ fn(ρ, n/x). Finally we know ρ \ n |= (new n)P ∼=Aπ (new n)R and
ρ \ n |= (new n)R ∼=Aπ (new n)Q; this implies ρ \ n |= (new n)P ∼=Aπ∼=Aπ (new n)Q.
From the hypotheses above we know fn((new n)P, (new n)Q) ⊆ fn(ρ \ n), and we
are done.

A simple, but important property of ≈A is that it is contained in ∼=Aπ. More
precisely:

Lemma 53. If ρ |= P ≈A Q then ρ |= P ∼=Aπ Q.

Proof. Let ρ |= PRQ whenever ρ |= P ≈A Q. The contextuality of R follows
directly from the definition of ≈A. To see that R preserve barbs, suppose ρ |= P ↓a;
by definition of ≈A we have ρ |= Q ↓a and in turn ρ |= Q⇓a, as requested. To see

reduction closure, let P
τ−−→ P ′. In case P

A−−→ P ′ we infer that ∃Q′ s.t. Q
A

=⇒ Q′

and ρ |= P ′ ≈A Q′. We have thus found Q′ s.t. Q ==⇒ Q′ and ρ |= P ′RQ′. In

98 5. Proofs

case P −−→ P ′ we infer that ∃Q′ s.t. Q
A

=⇒−→ A
=⇒ Q′ and ρ |= P ′ ≈A Q′. Thus

Q
τ

==⇒ Q′ and ρ |= P ′RQ′.

A hierarchy of administrative equivalences

In carrying out proofs, it is often convenient to consider relations smaller than
administrative equivalence. To this aim, we introduce the strong version and an
asymmetric version of administrative equivalence (cf. [103]).

We first define the strong version of administrative equivalence.

Definition 24 (Strong administrative equivalence). Strong administrative
equivalence, noted ∼A, is the largest symmetric, contextual term-indexed relation
R such that ρ |= PRQ implies:

• ρ |= P ↓n iff ρ |= Q↓n
• P

A−→ P ′ implies Q
A−→ Q′ for some Q′ such that ρ |= P ′RQ′

• P −→ P ′ implies Q −→ Q′ for some Q′ such that ρ |= P ′RQ′.

The proof of the following result follows the same rationale of the respective
proofs for ≈A.

Lemma 54. ∼A is an equivalence relation.

The next lemma says that structural congruence is included in strong administra-
tive equivalence. The lemma relies on the commutation of administrative reductions
with ≡.

Proposition 55. Let P ≡ Q. The following hold.

1. If P
A−→ P ′ then there is Q′ s.t. Q

A−→ Q′ and P ′ ≡ Q′;

2. If P −→ P ′ then there is Q′ s.t. Q −→ Q′ and P ′ ≡ Q′.

Proof. We first prove (1). Suppose P
A−→ P ′. Let n be the clause of Def. 22

from which P
A−→ P ′ has been inferred. Let Pn, P

′
n be the processes such that in

Def. 22(n) we have P ≡ Pn and P ′ ≡ P ′
n. For instance when n = 1 by Def. 22(1)

we infer P1 = C[! net〈M〉 | !net(x).S], for some M and S, and P ′
1 = C[! net〈M〉

| !net(x).S |S{M/x}]. From transitivity of ≡ we infer Q ≡ Pn. From Prop. 37 and

P ≡ Q we infer that there is Q′ such that Q
τ−−→ Q′ and P ′ ≡ Q′. By transitivity of

≡ we have Q′ ≡ P ′
n. Therefore by Definition 22(n) we obtain Q

A−→ Q′, as desired.
Next we prove (2). Suppose P −→ P ′. Therefore for all clause n of Def. 22 we have
that ¬(P ≡ Pn ∧ P ′ ≡ P ′

n) where Pn and P ′
n are defined as above. From Q ≡ P

and Prop. 37 we infer that there is Q′ such that Q
τ−−→ Q′ and P ′ ≡ Q′. From

5.2. Administrative equivalences 99

transitivity of ≡ and P ≡ Q and P ′ ≡ Q′ and the hypothesis above we infer that
for all clause n of Definition 22 we have ¬(Q ≡ Pn ∧Q′ ≡ P ′

n), that is Q −→ Q′, as
desired.

Lemma 56. If P ≡ Q then ρ |= P ∼A Q.

Proof. Let ρ |= PRQ whenever P ≡ Q. We show that R is a strong administrative
equivalence. From strong barb preservation of ≡ we infer that R is strong barb
preserving. Since ≡ is preserved by all operators of applied pi calculus and since ρ is
arbitrary we easily infer that R is contextual. We prove that R is reduction closed.

Let ρ |= PRQ. Suppose P
A−→ P ′. By Prop.55(1) we have that there is Q′ such

that Q
A−→ Q′ and P ′ ≡ Q′. By definition ρ |= P ′RQ′, as desired. Now suppose

P −→ P ′. We apply Prop.55(2) and find Q′ such that Q −→ Q′ and P ′ ≡ Q′. We
obtain ρ |= P ′RQ′, as desired.

As one would expect we have that strong administrative equivalence is included
in administrative equivalence.

Lemma 57. If ρ |= P ∼A Q then ρ |= P ≈A Q.

Proof. Let R be the relation containing the couples related by the lemma and sup-
pose ρ |= P ∼A Q. Contextuality and barb preservation of R are straightforward.

To see that R is reduction closed, suppose P
A−→ P ′. By definition of ∼A we have

that there exists Q′ such that Q
A−→ Q′ and ρ |= P ′ ∼A Q′. We have thus found Q′

such that Q
A

=⇒ Q′ and ρ |= P ′RQ′. Now suppose P −→ P ′. From definition of R
we infer that there exists Q′ such that Q −→ Q′ and ρ |= P ′ ∼A Q′. We have done

as this implies Q
A

=⇒−→ A
=⇒ Q′ and ρ |= P ′RQ′, as desired.

We define an asymmetric variant of administrative equivalence that will be useful

in proving that a relation is contained in this equivalence (cf. [103]). We let
A=−→ be

the reflexive closure of
A−→.

Definition 25 (Administrative expansion). Administrative expansion, noted
ºA, is the largest contextual term-indexed relation R such that ρ |= PRQ implies:

• ρ |= P ↓n iff ρ |= Q↓n
• P

A−→ P ′ implies Q
A=−→ Q′ for some Q′ such that ρ |= P ′RQ′

• P −→ P ′ implies Q −→ Q′ for some Q′ such that ρ |= P ′RQ′

• Q −→ Q′ implies P
A

=⇒−→ A
=⇒ P ′ for some P ′ such that ρ |= P ′RQ′

• Q
A−→ Q′ implies P

A
=⇒ A−→ A

=⇒ P ′ for some P ′ such that ρ |= P ′RQ′.

100 5. Proofs

When convenient we will write often ρ |= Q ¹A P whenever (ρ, P, Q) ∈ºA.

The following result ensures transitivity of ºA. We first need a technical lemma.

Lemma 58. Let P
A−→ . . .

A−→︸ ︷︷ ︸
n times

P ′ be noted as P
An−→ P ′ whenever n ≥ 0. Then

(a) (P ºA
ρ Q ∧Q

Am

=⇒ Q′ ∧m ≥ 0)⇒ (∃P ′ . P An

=⇒ P ′ ∧ n ≥ m ∧ P ′ ºA
ρ Q′)

Proof. We proceed by induction on m. To ease the notation we write P
A+

=⇒ P ′

whenever P
An

=⇒ P ′ and n ≥ 0. The base case m = 0 trivially holds by choosing

P ′ = P . For the induction step, let the hypothesis holds for m and assume Q
Am

=⇒
Q′ A−→ Q∗. By I.H. we have P ′ A+

=⇒ P ∗ for some P ∗ s.t. P ∗ ºA
ρ Q∗. We glue

the results and infer that P
An

=⇒ A+

=⇒ºA
ρ Q∗ that actually proves the claim since by

hypothesis n ≥ m.

Proposition 59. ºA is a preorder.

Proof. The reflexivity of ºA follows easily by showing that the identity relation is
an administrative expansion. To show transitivity, we consider the relation ºAºA

and we show that is an administrative expansion. Let P ºA
ρ R ºA

ρ Q. To see that
the relation is barb preserving assume ρ |= P ↓a. By hypothesis ρ |= R ↓a and
again by hypothesis ρ |= Q ↓a. The other direction is analogous since the clause
for barb preservation is symmetric in ºA. To see reduction closure, we first assume

P
A−→ P ′. By hypothesis we have that there is R′ such that (i) R

A−→ R′ or (ii)
R′ = R and ρ |= P ′ ºA R′. In case (i) by hypothesis we infer that there is Q′ such

that Q
A=−→ Q′ with ρ |= R′ ºA Q′. Thus ρ |= P ′ ºAºA Q′, as needed. In case

(ii) from the hypothesis ρ |= R ºA Q we infer ρ |= P ′ ºAºA Q, as desired. The
case P −→ P ′ is trivial. The next case is Q −→ Q′. By hypothesis there is R′

such that R
A

=⇒−→ A
=⇒ R′ and ρ |= R′ ºA Q′. Thus there are processes R1, R2

and integers m′,m′′ such that R
Am′
=⇒ R1 −→ R2

Am′′
=⇒ R′. By Lemma 58 and the

hypothesis P ºA
ρ R we infer that there is P ′ and n′ ≥ m′ such that P

An′
=⇒ P1 and

ρ |= P1 ºA R1. Next by this and R1 −→ R2 we infer that P1 −→ P2 for some P2

s.t. ρ |= P2 ºA R2. Finally from Lemma 58 we infer that for some P ′ and n′′ ≥ m′′

we have P2
An′′−→ P ′ and ρ |= P ′ ºA R′. From these results we infer P

A
=⇒−→ A

=⇒ P ′

and from ρ |= P ′ ºAºA Q′ we obtain reduction closure. The case Q
A−→ Q′ follows

directly from Lemma 58. Briefly, from the hypothesis above we infer R
Am

=⇒ R′ for

some m > 0 and R′ s.t. ρ |= R′ ºA Q′ and in turn P
An

=⇒ºA
ρ R′ for some n ≥ m, as

requested.
The proof that the relation is contextual is analogous to the demonstration of

contextuality of ≈A≈A that we have drawn in Proposition 52.

5.2. Administrative equivalences 101

The following results relate ºA with ∼A and ≈A.

Proposition 60. If ρ |= P ∼A Q then ρ |= P ºA Q and ρ |= Q ºA P .

Proof. Analogous to the proof of Lemma 57.

Proposition 61. If ρ |= P ºA Q then ρ |= P ≈A Q.

Proof. Let R be the relation such that ρ |= PRQ whenever ρ |= P ºA Q . That
R is barb preserving and contextual is straightforward. To see reduction closure

assume P
A−→ P ′. By definition of R we infer that there is Q′ such that Q

A=−→ Q′

and ρ |= P ′ ºA Q′. We have thus found Q′ such that Q
A

=⇒ Q′ and ρ |= P ′RQ′, as
desired. Next suppose P −→ P ′. By definition of R we infer that there is Q′ such

that Q −→ Q′ and ρ |= P ′ ºA Q′. Therefore Q
A

=⇒−→ A
=⇒ Q′ and ρ |= P ′RQ′, as

desired. Now suppose Q −→ Q′. By definition of R we infer that there is P ′ such

that P
A

=⇒−→ A
=⇒ P ′ and ρ |= P ′ ºA Q′, as desired since by definition this implies

ρ |= P ′RQ′. Finally let Q
A−→ Q′. By definition of R we infer that there is P ′ such

that P
A

=⇒ A−→ A
=⇒ P ′ and ρ |= P ′ ºA Q′. We have done as from the previous result

we infer P
A

=⇒ P ′ and ρ |= P ′RQ′, as desired.

The following corollary summarizes all previous results about the classification
of the relations over applied pi calculus processes that we have introduced.

Corollary 62. The following inclusions hold.

≡ ⊆ ∼A ⊆ ºA ⊆ ≈A ⊆ ∼=Aπ

Up to techniques

In this section we setup up to techniques (cf. [101, 94]) for administrative equivalence
and for behavioral equivalence. The following technique is used to prove Lemmas
73, 81.

Definition 26 (Up to technique). A term-indexed relation R is an administrative
equivalence up to expansion if it symmetric, strong barb preserving, contextual up to
ºA,¹A, and s.t. ρ |= PRQ implies

• P
A−→ P ′ imply Q

A
=⇒ Q′ for some Q′ such that ρ |= P ′ ºA R ¹A Q′

• P −→ P ′ imply Q
A

=⇒−→ A
=⇒ Q′ for some Q′ such that ρ |= P ′ ºA R ¹A Q′.

Lemma 63. If R is an administrative equivalence up to expansion, then R ⊆≈A.

102 5. Proofs

Proof. Let S =ºA R ¹A. We need to show that S is an administrative equiva-
lence. Then by S ⊆≈A one has R ⊆≈A.

Let P ºA
ρ P ∗RQ∗ ¹A

ρ Q. To see that S preserve barbs, assume ρ |= P ↓a. By
definition of ºA we have ρ |= P ∗ ↓a. By definition of R we have ρ |= Q∗ ↓a, and by
Q ºA

ρ Q∗ we infer ρ |= Q↓a. The case ρ |= Q↓a is analogous.

To see reduction closure assume P
A−→ P1. The case whether P ∗ does not match

the move is trivial as in this case P ′ ºA
ρ P ∗RQ∗ ¹A

ρ Q. Otherwise by the properties
of ºA

ρ and R and by using Lemma 58 we build the following diagram:

P
ºA

ρ
P ∗ R

Q∗ ¹A
ρ

Q

P1

A

?
...................
ºA

ρ
P ∗

1

A

?

.................
..................
ºA

ρ
P]

1
....................

R
Q]

1
..........
¹A

ρ
.......... Q∗

1

Am m ≥ 0

?

................
..................

¹A
ρ
............. Q1

An n ≥ m

?

................

From transitivity of ºA (see Prop. 59) we infer that if ρ |= P S Q and P
A−→ P1

there is Q1 s.t. Q
A

=⇒ Q1 and ρ |= P1 S Q1. The diagram for Q
A−→ Q1 is analogous

as R is symmetric.

It remains to analyze the case P −→ P1. By the properties of ºA
ρ and R we

build the following diagram; the last inference on the right is obtained exactly by
the same steps we did in the proof of transitivity of ºA.

P
ºA

ρ
P ∗ R

Q∗ ¹A
ρ

Q

Am′
m′ ≥ 0
?

.............
An′ n′ ≥ m′

?

.............

? ?

P1

?
...................
ºA

ρ
P ∗

1

?

..
..................
ºA

ρ
P]

1
....................

R
Q]

1
..........
¹A

ρ
............ Q∗

1

Am′′
m′′ ≥ 0

?

...........
....................

¹A
ρ
................ Q1

An′′ n′′ ≥ m′′

?

...........

From transitivity of ºA and the diagram above we infer that if ρ |= P S Q and

P −→ P1 there is Q1 s.t. Q
A

=⇒−→ A
=⇒ Q1 and ρ |= P1 S Q1. The case Q −→ Q1

is similar.

5.2. Administrative equivalences 103

Last, we prove that S is contextual. Suppose ρ ` R∗ and let R = R∗ρ. By the
contextuality of ºA we infer ρ |= P |R ºA P ∗ |R. Similarly ρ |= Q |R ºA Q∗ |R.
By the contextuality of R up to ºA,¹A we have that ρ |= P ∗ |R ºA R ¹A Q∗ |R.
From transitivity of ºA and these results we infer ρ |= P |R S Q |R, as requested.

Now consider a name n 6∈ fn(ρ). By the contextuality of ºA we have both
ρ, n/x |= P ºA P ∗ and ρ, n/x |= Q ºA Q∗. By definition of R we have ρ, n/x |=
P ∗ ºA R ¹A Q∗. By transitivity of ºA and the results above we infer ρ, n/x |=
P S Q, as requested.

Finally from the contextuality of ºA
ρ we infer both ρ \ n |= (new n)P ºA

(new n)P ∗ and ρ \ n |= (new n)Q ºA (new n)Q∗. By definition of R we have
ρ \ n |= (new n)P ∗ ºA R ¹ (new n)Q∗. These results and By transitivity of ºA let
us infer ρ \ n |= (new n)P S (new n)Q, as needed.

The next definition and result will be useful to discard administrative reductions
when proving that a relation is included in behavioural equivalence. We use this
technique to prove the Theorem of completeness of the translation (see Theorem
95).

Definition 27 (Behavorial equivalence up to administrative equivalence).
A term-indexed relation R is a behavioral equivalence up to administrative equiva-
lence if it is symmetric, contextual up to ≈A and such that ρ |= PRQ implies:

• if ρ |= P ↓n then ρ |= Q⇓n

• P
A

=⇒ P ′ implies Q
A

=⇒ Q′ for some Q′ such that ρ |= P ′ ≈A R ≈A Q′

• P
A

=⇒−→ A
=⇒ P ′ implies Q =⇒ Q′ for some Q′ such that ρ |= P ′ ≈A R ≈A Q′

.

Proposition 64. If R is a behavioral equivalence up to administrative equivalence
then R ⊆∼=Aπ.

Proof. We prove that ≈A R ≈A is a behavioural equivalence. Let P ≈A P ∗RQ∗ ≈A

Q. To see barb preservation assume ρ |= P ↓a. By hypothesis ρ |= P ∗ ↓a. By
definition of R we infer ρ |= Q∗ ⇓a. By applying Lemma 53 to the hypothesis
ρ |= Q∗ ≈A Q we obtain ρ |= Q∗ ∼=Aπ Q. We apply Proposition 33 and obtain
ρ |= Q⇓a.

Suppose P
τ−→ P1. We first build the diagram for the case P

A−→ P1; to ease
the notation we let ³,=⇒. The last inference on the right is obtained by Lemma
51(i).

104 5. Proofs

P
≈A

ρ
P ∗ R

Q∗ ≈A
ρ

Q

P1

A

?
...................
≈A

ρ
P ∗

1

A

??

...............

..................
≈A

ρ
P]

1
....................

R
Q]

1
..........
≈A

ρ
..... Q∗

1

A

??

...............

..........
≈A

ρ
..... Q1

A

??

...............

From Q
A

=⇒ Q′ we infer Q ==⇒ Q′ (remember that
A−→∈ τ−→).From transitivity of

≈A stated in Proposition 52 we infer ρ |= P1 ≈A R ≈A Q1, as desired.
Next we build the following diagram for P −→ P1. The last inference on the

right is inferred by using ≈A⊆∼=Aπ, and Proposition 33(ii).

P
≈A

ρ
P ∗ R

Q∗ ≈A
ρ

Q

A
??

............

?

P1

?
...................
≈A

ρ
P ∗

1

A

??

..........

..................
≈A

ρ
P]

1
....................

R
Q]

1
..........
≈A

ρ
..... Q∗

1

??

.....................................

..........
≈A

ρ
..... Q1

??

.....................................

From transitivity of ≈A we infer ρ |= P1 ≈A R ≈A Q1, as needed.

To conclude we show contextuality. Assume ρ ` R∗ and let R = R∗ρ. By
definition of ≈A both ρ |= P |R ≈A P ∗ |R and ρ |= Q∗ |R ≈A Q |R. By definition of
R we infer ρ |= P ∗ |R ≈A R ≈A Q∗ |R. By transitivity of ≈Awe infer ρ |= P |R ≈A

R ≈A Q |R, as desired. Let n 6∈ fn(ρ). By the definitions of ≈A and R we obtain
respectively ρ, n/x |= P ≈A P ∗, ρ, n/x |= Q∗ ≈A Q and ρ, n/x |= P ∗RQ∗. Thus
ρ, n/x |= P ≈A R ≈A Q, as needed. In the last case we have ρ \ n |= (new n)P ≈A

(new n)P ∗, ρ \n |= (new n)Q∗ ≈A (new n)Q and ρ \n |= (new n)P ∗R(new n)Q∗and
we infer ρ \ n |= (new n)P ≈A R ≈A (new n)Q, as desired.

Closure properties of administrative equivalence

The key property of administrative reductions is that they are closed under admin-
istrative equivalence, in the following sense.

5.2. Administrative equivalences 105

Proposition 65. If P
A−→ P ′, then ρ |= P ≈A P ′.

Proof. Let σ ⊆ ρ and let b̃ ∩ fn(ρ) = ∅. We let σ |= C[P]RC[Q] whenever P
A−→ Q

and C[−] = (new ñ)R(ρ, b̃/x̃) | − and ρ, b̃/x̃ ` R and fn(R) = ñ. We consider the
identity relation Id such that (P,Q) ∈ Id whenever P ≡ Q. We show that R ∪ Id
is an administrative equivalence up to administrative expansion. That the identity
satisfies Definition 26 follows easily by coinduction and closure of

τ−→ under ≡ (see
Proposition 37 in Section 3.2). We show that R is barb preserving, reduction closed

and contextual. To ease the notation we let S = R(ρ, b̃/x̃). We say that P
τ−−→ Q

and P
τ−−→ R are obtained by non-overlapping redexes if there are C,P ′, P ′′ such

that P ≡ C[P ′ |P ′′], and Q ≡ C[Q′ |P ′′] and P ′ τ−−→ Q′, and R ≡ C[P ′ |R′′] and

P ′′ τ−−→ R′′.

Barb preservation Let ρ |= C[P]↓a. If ρ |= C ↓a we are done as ρ |= C[Q]↓a. If

ρ |= P ↓a, by definition of
A−→ we have that Q has the same strong barbs: ρ |= Q↓a.

We conclude that ρ |= C[Q]↓a.

Reduction closure To see reduction closure, let C[P]
τ−−→ H. We first tackle

the case whenever this reduction is administrative: C[P]
A−→ H.

We analyze each case of Def. 22 and we show that there is K such that C[Q]
A

=⇒
K and (i) H

A−→ K or (ii) H ≡ K.

1. The first case Def. 22(1) holds whenever C[P]
A−→ H is in-

ferred from a replicated input on net and a replicated output syn-
chronizing. We have C[P] ≡ D[!net(x̃).P ′ | (new c̃)!net〈M̃〉], H ≡
D[!net(x̃).P ′ | (new c̃)!net〈M̃〉 |P ′{M̃/x̃}].
The administrative reduction P

A−→ Q has been inferred from one of the cases

outlined in Def. 22. If P
A−→ Q belongs to one of the cases Def. 22(4-7) we

infer that the reduction occurs on a channel different from net and we easily ob-

tain that P
A−→ Q and C[P]

A−→ H have been obtained from non-overlapping
redexes. Therefore there are D′, R such that D[−] = D′[R | −] and C[Q] ≡
D′[R′ | !net(x̃).P ′ | (new c̃)!net〈M̃〉] where R

A−→ R′. We close the diagram by

noting that H
A−→ D′[R′ | !net(x̃).P ′ | (new c̃)!net〈M̃〉 |P ′{M̃/x̃}] A←− C[Q].

Indeed we have found K , D′[R′ | !net(x̃).P ′ | (new c̃)!net〈M̃〉 |P ′{M̃/x̃}] such

that C[Q]
A−→ K and σ |= HRK.

If P
A−→ Q belongs to the one of the cases Def.22(2-3) we know that this

reduction has been inferred from an input redex that is non overlapping with

C[P]
A−→ H; this holds since the inputs involved in case Def.22(2-3) are under

replication. On the other hand P
A−→ Q may involve the emission ! net〈M̃〉;

106 5. Proofs

in this case from the semantics of the applied pi calculus, more in detail from
the (BANG) rule, we easily infer that there are D′, R such that D[−] ≡
D′[net(ỹ).R | −] and C[Q] ≡ (new c̃)D′[R{M̃/ỹ} | !net(x̃).P ′ | !net〈M̃〉]. We

conclude that H
A−→ (new c̃)D′[R{M̃/ỹ} | !net(x̃).P ′ | !net〈M̃〉 |P ′{M̃/x̃}] A←−

C[Q], as desired. In case P
A−→ Q and C[P]

A−→ H has been obtained by non-

overlapping redexes we proceed as above and find K such that H
A−→ K

A←−
C[Q], as desired.

The remaining case arises whenever P
A−→ Q has been inferred from Def.

22(1). The case H ≡ C[Q] is trivial. Assuming H 6≡ C[Q] then three cases

arise: (i) P
A−→ Q and C[P]

A−→ H involve the same input prefix or (ii)

P
A−→ Q and C[P]

A−→ H involve the same output prefix or (iii) P
A−→ Q and

C[P]
A−→ H are obtained by non-overlapping redexes. Case (ii) is analogous

to the case analyzed above where P
A−→ Q and C[P]

A−→ H share an input
redex. Case (i) is specular; we omit the demonstration that follows the same
rationale. Case (iii) is obtained as usual. Thus on both three cases we find K

such that H
A−→ K

A←− C[Q], as desired.

2. In case C[P]
A−→ H has been inferred from Def. 22(2) we have

C[P] ≡ D[filter ỹ with sk(N) in R | ! net〈{M}sk(N)〉] and H ≡
D[filter {M}N with sk(N) in R | ! net〈{M}sk(N)〉] where |M | = |ỹ| and
∀D′, M ′ : C[P] ≡ D′[net〈{M ′}sk(N)〉] ∧ |M ′| = |ỹ| we have M = M ′. In case

P
A−→ Q is inferred from one of the cases Def. 22(4-7) we infer that does not

have redexes overlapping with C[P]
A−→ H as P

A−→ Q arises on a channel dif-

ferent from net. We therefore find K such that H
A−→ K

A←− C[Q], as desired.

In case P
A−→ Q has been inferred from Def. 22(1) then or (i) the reduction

may involve the redex ! net〈{M}sk(N)〉 or (ii) the reduction has not overlapping

redexes with C[P]
A−→ H. This holds since the filter process is not replicated

and thus P
A−→ Q and C[P]

A−→ H do not share an input redex. In case (i)
we infer that there are D′, R′ such that D[−] ≡ D′[!net(x).R′ | −] and C[Q] ≡
D′[R′{{M}sk(N)/x} | filter ỹ with sk(N) in R | ! net〈{M}sk(N)〉]. We note that

H
A−→ D′[R′{{M}sk(N)/x} | filter {M}N with sk(N) in R | ! net〈{M}sk(N)〉] A←−

C[Q], as desired.

In case Def. P
A−→ Q is inferred from Def. 22(2) we infer that P

A−→ Q

and C[P]
A−→ H (i) have an overlapping input redex or (ii) have an

overlapping output redex or (iii) do not have overlapping redexes or (iv)
have both redexes overlapping. Suppose case (i) holds. In this case we
have that there are D′,M ′, N ′ such that D[−] ≡ D′[!net〈{M ′}N ′〉 |−] and
C[Q] ≡ D′[filter {M ′}N ′ with sk(N) in R | !net〈{M ′}N ′〉 | !net〈{M}sk(N)〉]. By

definition we have that filter {M ′}N ′ with sk(N) in R , (new r) (decrypt

5.2. Administrative equivalences 107

{M ′}N ′as {ỹ}sk(N)in R else net〈{M ′}N ′〉 | r〈〉) | !r.filterr ỹ with sk(N) in R

where filtern ỹ with M in P , net(x).decrypt x as {ỹ}M in P else (net〈x〉 |n〈〉).
Two cases arise corresponding to (a) N ′ = sk(N) ∧ |M̃ ′| = |ỹ| and (b)
N ′ 6= sk(N) ∨ |M̃ ′| 6= |ỹ|. In case (a) by the initial hypothesis of
Def. 22(2) we have that N ′ = sk(N) ∧ |M̃ ′| = |ỹ| implies M̃ ′ = M̃ ; we
easily infer infer that H ≡ C[Q] and we are done. In case (b) we in-
fer that the decryption fails and in turn filter {M ′}N ′ with sk(N) in R ≡
net〈{M ′}N ′〉 | (new r)r〈〉 | !r.filterr ỹ with sk(N) in R. To see that, we note
that in case N ′ 6= sk(N) we obtain the result by inferring d({M ′}N ′ , sk(N)) 6→
and in turn by the let-else axiom of structural congruence. In case N ′ 6=
sk(N) ∧ |M̃ ′| 6= |ỹ| we infer the result by noting that among nested appli-
cations of projections there is i ∈ 1, . . . , |ỹ| such that πi(M̃) 6→; by nested
applications of let axiom followed by the let-else axiom we obtain the claim.

From the result above we easily obtain that filter {M ′}N ′ with sk(N) in R
A−→

filter ỹ with sk(N) in R | net〈{M ′}N ′〉 and in turn C[Q]
A−→≡ C[P]; struc-

tural congruence is used to let net〈{M ′}N ′〉 be absorbed by ! net〈{M ′}N ′〉.
We conclude that C[Q]

A
=⇒ H and we are done as (H, H) is in the identity.

In cases (ii),(iii) we proceed as in case (2) and infer that there is K such that

H
A−→ K

A←− C[Q]. In case (iv) we have H ≡ C[Q] and we are done.

In case Def. P
A−→ Q is inferred from Def. 22(3) we easily infer that C[Q]

A−→
C[P]; this move is inferred by executing the reduction that rolls back the

reduct to the prompt filter that absorbed a wrong packet. Thus C[Q]
A

=⇒ H
and we are done since (H,H) is in the identity.

3. In case C[P]
A−→ H has been inferred from Def. 22(3) we have C[P] ≡

D[filter ỹ with sk(N) in R | net〈M〉] and H ≡ D[filter M with sk(N) in R]
for some term M such that ¬(M = {M ′}N ∧ |M ′| = |ỹ|). By defini-
tion we have filter M with sk(N) in R , (new r)(decrypt M as {ỹ}N in R
else net〈M〉 | r〈〉) | !r.filterr ỹ with N in R. As we have seen in the previ-
ous case (2) sub-case (i), from the hypotheses on the shape of M we infer
filter M with sk(N) in
R ≡ net〈M〉 | (new r)r〈〉 | !r.filterr ỹ with sk(N) in R. We ignore the adminis-
trative reduction that rolls back the filter with administrative expansion:
filter M with sk(N) in R ºA

σ filter ỹ with sk(N) in R. From this we infer
H ºA

σ C[P]. We do not need to match this move as σ |= H ºA C[P]RC[Q].

4. In case C[P]
A−→ H has been inferred from Def. 22(4) we have C[P] ≡

D[filter ỹ from n@T in R |n〈M〉] and H ≡ D[filter M from n@T in R]
and M has type S 6<: T . By definition filter M from n@T in R ,
(new r) if WF (M, t) then (let ỹ = ⇑((x̃, t)) in P) else (n〈M〉 | r〈〉)
| !r.filterr ỹ from n@T in R where filtern ỹ from c@T in P ,
c(x̃).if WF (x̃, T) then (let ỹ = ⇑((x̃, T)) in P) else (c〈x̃〉 |n〈〉). As we have

108 5. Proofs

introduced in Section 4.2 the meta-process
if WF (ũ, T) then P else Q is implemented by nested applications of equality
and projection destructors and succeeds whenever ũ is certified and has type
S <: T . By the hypothesis S 6<: T we infer that the process is equivalent (due
to a let-else axiom of structural congruence) to the else branch; from this we
infer filter M from n@T in R ≡ n〈M〉 | (new r)r〈〉 | !r.filterr ỹ from n@T in R.

We ignore the reduction filter M from n@T in R
A−→ filter ỹ from n@T in R

and infer filter M from n@T in R ºA
σ filter ỹ from n@T in R and in turn

H ºA
σ C[P]. We not need to match this move as σ |= H ºA C[P]RC[Q].

5. In case C[P]
A−→ H has been inferred from Def. 22(5) we have C[P] ≡

D[(new n∗)n∗〈N〉 | i∈nif Ni ∈ Setn∗ then Ri] and H ≡ D[(new n∗)(if Nj 6∈
N then n∗〈Nj :: N〉 |Rj else n∗〈N〉) | i∈I\j if Ni 6∈ Setn∗ then Ri] and ∀i, j ∈
I . (Ni = Nj) ⇒ (Ri ≡ Rj). If P

A−→ Q has been inferred from one of
the cases of Def. 22(1-3) then the reduction occurred on the free channel

net and in turn P
A−→ Q and C[P]

A−→ H have no overlapping redexes.

If P
A−→ Q has been inferred from Def. 22(4,6,7) a case analysis shows that

the bound channel on which the reduction P
A−→ Q occurs is different by n∗

and in turn P
A−→ Q and C[P]

A−→ H have no overlapping redexes. The

remaining case arises whenever P
A−→ Q has been inferred from Def. 22(5).

We have that there is k ∈ 1, . . . , n such that C[K] ≡ D[(new n∗)(if Nk 6∈
N then n∗〈Nk :: N〉 |Rk else n∗〈N〉) | i∈I\kif Nk 6∈ Setn∗ then Rk]. There
are two cases corresponding to (a) (Nj = Nk) or (b) (Nj 6= Nk). In
case (a) from the hypothesis above we infer Rj ≡ Rk. Now two sub-cases
arise corresponding to (i) Nj ∈ N or (ii) Nj 6∈ N . In case (i) by defi-
nition of the meta-process if M 6∈ N then P else Q there is a nested ap-
plication of axioms of structural congruence let and let-else followed by a
let such that both if Nj 6∈ N then n∗〈Nj :: N〉 |Rj else n∗〈N〉 ≡ n∗〈N〉
and if Nk 6∈ N then n∗〈Nk :: N〉 |Rk else n∗〈N〉 ≡ n∗〈N〉. By using
again the same chain of applications of let and let-else axioms we obtain:

H
A−→ D[(new n∗)(n∗〈N〉 | i∈I\j,kif Ni 6∈ Setn∗ then Ri]

A←− C[Q], as de-
sired. In sub-case (ii) we infer that there is a nested application of axioms
of structural congruence let and let-else followed by a let-else such that both
if Nj 6∈ N then n∗〈Nj :: N〉 |Rj else n∗〈N〉 ≡ n∗〈Nj :: N〉 |Rj and if Nk 6∈
N then n∗〈Nk :: N〉 |Rk else n∗〈N〉 ≡ n∗〈Nk :: N〉 |Rk. We then infer that

H
A−→ H ′ , D[(new n∗)(Rj | if Nk ∈ Nj :: N then n∗〈Nj :: N〉n∗〈Nk :: Nj ::

N〉 |Rk) | i∈I\j,kif Ni 6∈ Setn∗ then Ri]. Since Nj = Nk we proceed as in case (a)
and obtain H ′ ≡ D[(new n∗)(Rj |n∗〈Nj :: N〉 | i∈I\j,kif Ni 6∈ Setn∗ then Ri].

Similarly from Nj = Nk we obtain C[Q]
A−→≡ D[(new n∗)(Rk |n∗〈Nj ::

N〉 | i∈I\j,kif Ni 6∈ Setn∗ then Ri]. We glue the results and by using Rj ≡ Rk

we infer H
A−→ A←− C[Q], as desired.

5.2. Administrative equivalences 109

Now suppose case (b) arises and let H
A−→ K and C[Q]

A−→ K ′ be the
reductions inferred respectively from if Nk ∈ Setn∗ then Rk receiving the list
of nonces carried on by n∗ in H (that may be N or Nj :: N) and from if Nj ∈
Setn∗ then Rj receiving the nonce set carried on by n∗ in C[Q] (that may be
N or Nk :: N). Since Nj 6= Nk we note that the shape of K, K ′ depends only
on N ; from this and by proceeding as in case (a) we easily infer K ≡ K ′ and
we are done.

6. In case C[P]
A−→ H has been inferred from Def. 22(6) we have

C[P] ≡ D[(new t)t〈M〉 | i∈nTNi
(Ri)] and H ≡ D[(new t)let ỹ =

?(Nj,M) in t〈M〉 |Rj else ((new n)t〈(Nj; n) :: (nh; n) ::

M〉 |Rj{n/ỹ}) | i∈n∧i6=jTNi
(Ri)]. If P

A−→ Q has been inferred from
one of the cases of Def. 22(1-5,7) then for reasons that are analo-
gous to those of case (5) we infer that the reduction occurs on chan-

nel different from t. From this we deduce that C[P]
A−→ H and

P
A−→ Q have no overlapping redexes. Let P

A−→ Q be inferred from
Def. 22(6). We have C[Q] ≡ D[(new t)let ỹ =?(Nk,M) in t〈M〉 |Rk else
((new n)t〈(Nk; n) :: (nh; n) :: M〉 |Rk{n/ỹ}) | i∈n∧i6=kTNi

(Ri)]. We use
the notation N 7→M Ñ whenever M = M1 :: (N, Ñ) :: M2 and
M1,M2 are list of couples (or tables); we write N 67→M whenever M
does not have the shape above. There are four cases corresponding
to (a) Nk 7→M Õ ∧ Nj 7→M Õ or (b) Nk 7→M Õ ∧ Nj 67→M or (c)
Nj 7→M Õ′ ∧ Nk 67→M or (d) Nj 67→M ∧Nk 67→M . Suppose case (a) holds.
By nested applications of let and let-else axioms we obtain both C[Q] ≡
D[(new t)Rk{Õ/ỹ} | t〈(M〉 | i∈n∧i6=kTNi

(Ri)] and for the same reasons we out-
lined above we have H ≡ D[(new t)Rj{Õ′/ỹ} | t〈M〉 | i∈n∧i6=jTNi

(Ri)]. We note

that H
A−→ D[(new t)Rj{Õ′/ỹ} |Rk{Õ/ỹ} | t〈M〉 | i∈n∧i 6=j,kTNi

(Ri)]
A←− C[Q].

In case (b) we have H ≡ D[(new n, t)Chann |Rj{n/ỹ} | t〈(Nj, n) :: (nh, n) ::
M〉 | i∈n∧i6=jTNi

(Ri)] and C[Q] ≡ D[(new t)Rk{Õ/ỹ} | t〈(M〉 | i∈n∧i6=kTNi
(Ri)].

We conclude by noting that H
A−→ D[(new n, t)Chann |Rk{Õ/ỹ} |Rj{n/ỹ}

| t〈(Nj, n) :: (nh, n) :: M〉 | i∈n∧i6=j,kTNi
(Ri)]. Case (c) is specular to case (b).

Suppose case (d) holds. If Nj 6= Nk we proceed similar to the previous cases

and find K such that H
A−→ K

A←− C[Q]. Otherwise assume Nj = Nk.
We have C[Q] ≡ D[(new n, t)Chann |Rk{n/ỹ} | t〈(Nj, n) :: (nh, n) :: M〉
| i∈n∧i 6=kTNi

(Ri)] and H ≡ D[(new m, t)Chanm |Rk{m/ỹ} | t〈(Nj,m) ::

(mh,m) :: M〉 | i∈n∧i6=jTNi
(Ri)] We note that C[Q]

A−→ K ′ ,
D[(new n, t)Chann

|Rk{n/ỹ} |Rj{n/ỹ} | t〈(Nj, n) :: (nh, n) :: M〉 | i∈n∧i6=j,kTNi
(Ri)] and H

A−→
K , D[(new m, t)Chanm |Rk{m/ỹ} |Rj{m/ỹ} | t〈(Nj, m) :: (mh,m) :: M〉
| i∈n∧i 6=j,kTNi

(Ri)].

By alpha-renaming of bound names n,m respectively in K ′ and K and by

110 5. Proofs

Nj = Nk we obtain K ′ ≡ K, as requested.

7. If C[P]
A−→ H has been inferred from Def. 22(7) we have C[P] ≡ D[(new n)n〈〉

| !n(x).R{n〈〉/X}] and H ≡ D[rec X.R] where n 6∈ fn(R). By the hypothe-

ses above and P
A−→ Q we infer that or (a) C[Q] ≡ H or (b) C[Q] ≡

D′[(new n)n〈〉 | !n(x).R{n〈〉/X}] for some D′ such that D
A−→ D′. We note

that H
A−→ D′[rec X.R]

A←− C[Q]; we have thus found K , D′[rec X.R] such

that C[Q]
A−→ K and ρ |= HRK.

Next we analyze the case C[P] −→ H.

1. If P
A−→ Q has been inferred from Def. 22(1) then P ≡ D[!net(x).R | (new c̃)

!net〈M〉] and Q ≡ D[!net(x).R | (new c̃)!net〈M〉 |R{M/x}]. Three cases arise
corresponding to (a) sharing the input redex or (b) sharing the output redex or
(c) have not overlapping redexes. The case whether the two reductions share

both redexes does not hold since this would imply C[P]
A−→ H that is a contra-

diction as −→, τ−→ \ A−→. In case (a) we have that there is E and N such that
C[D[−]] ≡ E[net〈N〉 | −] and H ≡ E[R{N/x} | !net(x).R | (new c̃)!net〈M〉].
We obtain reduction closure by noting that H

A−→ E[R{N/x} |R{M/x}
| !net(x).R | (new c̃)!net〈M〉]←− C[Q]. In case (b) have that there is E and T
such that C[D[−]] ≡ E[net(x).T | −] and H ≡ E[(new c̃)T{M/x} | !net(x).R

| !net〈M〉]. We obtain reduction closure by noting that H
A−→

E[(new c̃)T{M/x}
|R{M/x} | !net(x).R | !net〈M〉]←− C[Q]. In case (c) it must be C[D] −→ E

for some E such that H ≡ E[!net(x).R | (new c̃)!net〈M〉] and in turn H
A−→

E[(new c̃)R{M/x} | !net(x).R | !net〈M〉]←− C[Q], as desired.

2. If P
A−→ Q has been inferred from Def. 22(2) we have that C[P] ≡

D[filter ỹ with N in R | ! net〈{M}N〉] and C[Q] ≡ D[filter {M}N with N in R
| ! net〈{M}N〉] where |M | = |ỹ| and ∀C ′,M ′ : D[−] ≡ C ′[net〈{M ′}N〉 | −] ∧
|M ′| = |ỹ| we have that M = M ′. Two cases arise corresponding to C[P] −→
H and P

A−→ Q (a) sharing the output redex or (b) have not overlapping
redexes. Notice the two reductions cannot share both redexes as this would
imply C[P]

A−→ H, contradiction. Moreover they cannot share the input redex;

we show this by contradiction. Suppose P
A−→ Q and C[P]

A−→ H share the
input redex. Then for some D′ and M∗ we have that D[−] ≡ D′[net〈M∗〉 | −]
and H ≡ D′[filter M∗ with N in R | ! net〈{M}N〉]. Two cases arise correspond-
ing to (i) (M∗ = {M ′}N ∧ |ỹ| = |M ′|) or (ii) not. Suppose (i) holds; by
the initial hypothesis we know M ′ = M . By the replication axiom of struc-
tural congruence we have C[P] ≡ D′[filter ỹ with N in R | ! net〈{M}N〉] and
H ≡ D′[filter {M}N with N in R | ! net〈{M}N〉], contradiction, as by definition

5.2. Administrative equivalences 111

Def. 22(1) this implies C[P]
A−→ H. Now suppose (ii) holds. Therefore the

filtering is unsuccessful and by Def. 22(3) we infer C[P]
A−→ H, contradiction.

Cases (a),(b) are treated similarly to as we did respectively in case (1), sub-

cases (b),(c); in both cases this let us find K such that H
A−→ K ←− C[Q],

as desired.

3. If P
A−→ Q has been inferred from Def. 22(3) we have that P ≡

D[filter ỹ with N in R | net〈M∗〉] and Q ≡ D[filter M with N in R] and ¬(M∗ =
{M}N ∧ |M | = |ỹ|). From this we infer that by nested application of let
and let-else axioms of structural congruence we have filter M with N in R ≡
net〈M〉 | (new r)r〈〉 | !r.filterr ỹ with N in R and in turn Q

A−→ P . This let us

infer that C[Q]
A

=⇒−→ H and since the couple (H,H) is in the identity we
are done.

4. If P
A−→ Q has been inferred from Def. 22(4) we have that we have P ≡

D[(new n◦)P ′ | filter ỹ from n@T in R |n〈M〉] and Q ≡ D[(new n◦)P ′

| filter M from n@T in R] and M has type S 6<: T . By this hypothe-
sis and applying let and let-else axioms of structural congruence we obtain
filter M from n@T in
Q ≡ net〈M〉 | (new r)r〈〉 | !r.filter ỹ from n@T in R. From

filter M from n@T in Q
A−→ net〈M〉 | filter ỹ from n@T in R we infer Q

A−→ P

and in turn C[Q]
A

=⇒−→ H, as desired since the couple (H, H) is in the
identity.

5. If P
A−→ Q has been inferred from Def. 22(5) then P ≡

D[(new n∗)n∗〈N〉 | i∈I if Ni ∈ Setn∗ then Qi] and Q ≡ D[(new n∗)if Nj 6∈
N then n∗〈Nj :: N〉 |Qj else n∗〈N〉) | i∈I\j if Ni 6∈ Setn∗ then Qi] where

∀i, j ∈ I . (Ni = Nj) ⇒ (Qi ≡ Qj). From this we infer that P
A−→ Q and

C[P] −→ H have not overlapping redexes. We show this by contradiction.

Suppose P
A−→ Q and C[P] −→ H have an overlapping redex. Since redexes

involved by P
A−→ Q communicate on channel n∗ we infer that the reduction

C[P] −→ H occurred on n∗. By shape analysis we easily see that this implies
that there is k such that H ≡ C[D[(new n∗)n∗〈N〉if Nk 6∈ N then n∗〈Nk ::
N〉 |Qk else n∗〈N〉) | i∈I\kif Ni ∈ Setn∗ then Qi]. By hypothesis we have that
∀i, j ∈ I . (Ni = Nj) ⇒ (Qi ≡ Qj) and in turn by Def. 22(5) we obtain

C[P]
A−→ H, contradiction. Since P

A−→ Q and C[P] −→ H have not over-

lapping redexes we easily find K such that H
A−→ K ←− C[Q], as desired.

6. If P
A−→ Q has been inferred from Def. 22(6) we have that P ≡ D[(new t)t〈M〉

| i∈ITNi
(Qi)] and Q ≡ D[(new t)let ỹ =?(NjID,M) in t〈M〉 |Qj else

((new n)Chann | t〈(NjID, n) :: (nID, n) :: M〉 |Qj{n/ỹ}) | i∈I\jTNi
(Qi)]. As

112 5. Proofs

in the previous case (5) we infer that P
A−→ Q and C[P] −→ H have not

overlapping redexes. This can be shown by contradiction; indeed a shape
analysis shows that all reductions on t are administrative. As in previous

cases we easily find K such that H
A−→ K ←− C[Q], as desired.

7. If P
A−→ Q has been inferred from Def. 22(7) we have that P ≡ D[(new n)n〈〉

| !n(x).Q{n〈〉/X}] and Q ≡ D[rec X.Q] where n 6∈ fn(Q) By shape analysis we

infer that P
A−→ Q and C[P] −→ H have not overlapping redexes and find K

such that H
A−→ K ←− C[Q], as desired.

Contextuality Let σ |= C[P]RC[Q] where C[−] = (new ñ)R(ρ, b̃/x̃) | − and
ρ, b̃/x̃ ` R and fn(R) = ñ. The first clause of contextuality requires that whenever
σ ` T then σ |= Tσ |C[P]RC[Q] |Tσ. We let D[−] = (new ñ)(R |T)(ρ, b̃/x̃) | − and
infer σ |= D[P]RD[Q]; by application of scope and composition rules for structural
congruence we obtain the desired result. For the second clause, let n 6∈ fn(σ). Since
σ |= C[P]RC[Q] and C[−] is built around R(ρ, b̃/x̃) we infer that (fn(R(ρ, b̃/x̃)) \
fn(σ)) ⊆ ñ. Therefore assume without loss of generality that n 6∈ fn(ρ). From the
hypothesis σ ⊆ ρ we infer σ, n/x ⊆ ρ, n/x. We let D[−] ≡ (new ñ)R(ρ, n/x, b̃/x̃,) | −
with {b̃, n} ∩ fn(ρ) = ∅ and infer ρ, n/x |= D[P]RD[Q], as desired. For the last
clause, from σ ⊆ ρ we infer σ \ n ⊆ ρ and in turn σ \ n |= D[P]RD[Q] where
D[−] , (new ñ, n)R(ρ, b̃/x̃) | −.

The following corollary extends the previous result to an arbitrary number of
administrative reductions.

Corollary 66. If P
A

=⇒ Q, then ρ |= P ≈A Q.

Proof. We proceed by induction on the number n of reductions P
A

=⇒ Q, noted

P
An

=⇒ Q. The case n = 0 follows straightforwardly by reflexivity of ≈A. Suppose

P
An

=⇒ P ∗ A−→ Q. By I.H. we have that P ≈A
ρ P ∗. We apply Prop. 65 to P ∗ A−→ Q

obtaining P ∗ ≈A
ρ Q. We build the chain:P ≈A

ρ P ∗ ≈A
ρ Q, and by transitivity of ≈A

we obtain P ≈A
ρ Q.

5.3 Lemmas on symmetric and asymmetric cryp-

tographic schemes

We first present a lemma saying that a ciphertext encrypted with a symmetric cryp-
toscheme cannot be distinguished from noise without knowledge of the symmetric
key. In the next sections we will use this result to treat leftovers of protocol’s private
communications as noise. We first need some technical results.

5.3. Lemmas on symmetric and asymmetric cryptographic schemes 113

Lemma 67. Let σ = (ρ, {M}N/x), ς = (ρ, {M ′}N ′/x) where fn(N) 6⊆ fn(ρ) ∧
fn(N ′) 6⊆ fn(ρ). We have that there are M̃ closed by A(ρ), {M}N/x,A(ρ), {M ′}N ′/x
such that A(σ) = A(ρ), Ñ/x̃ and Ñ = M̃(A(ρ), {M}N/x) and A(ς) = A(ρ), Ñ ′/x̃
and Ñ ′ = M̃(A(ρ), {M}N ′/x).

Proof. First notice that the packets {M}N , {M ′}N ′ cannot be destructed, since both
N and N ′ contain some name that is not in the free names of ρ. Formally, we have
that the defining equations to open these packets have the form d(N1, N2)

.
= N∗

in Table 3.1 (3.5),(3.6), (3.7). Since fn(ρ) = fn(A(ρ)), we cannot find N2 such
that N2A(ρ) = N or N2A(ρ) = N ′, and the claim follows. Therefore each Ni/xi is
obtained by applying σ to some definition in Table 3.1 different from those above,
i.e. the message {M}N is used as a normal form. We build each N ′

i correspondent
to Ni by applying ζ to the correspondent defining equation.

Lemma 68. Let ρk = (ρ, {M}sk(k)/x) and ρn = (ρ, {N}n/x) where ρ is a substi-
tution such that {n, k} ∩ fn(ρ) = ∅. Let A(ρk) ` P and A(ρn) ` P . The following
hold.

(a) If PA(ρk)
(b̃)a〈M̃〉−−−−−→ R then there are P ′ and M̃ ′ closed by A(ρk) such that

R ≡ P ′A(ρk) and M̃ = M̃ ′A(ρk) and PA(ρn)
(b̃′)a〈M̃ ′A(ρn)〉−−−−−−−−−−→ P ′A(ρn); the

symmetric result holds for the hypothesis PA(ρn)
(b̃)a〈M̃〉−−−−−→ R;

(b) If PA(ρk)
a(M̃)−−−→ R then there is P ′ closed by A(ρk, M̃/x̃) such that R ≡

P ′A(ρk, M̃/x̃) and PA(ρn)
a(M̃)−−−→ P ′A(ρn, M̃/x̃); the symmetric result holds

for the hypothesis PA(ρn)
a(M̃)−−−→ R;

(c) If PA(ρk)
τ−−→ R then there is P ′ closed by A(ρk) such that R ≡ P ′A(ρk) and

PA(ρn)
τ−−→ P ′A(ρn); the symmetric result holds for the hypothesis

PA(ρn)
τ−−→ R .

Proof. We proceed by induction on the last rule of the inference (see Table 3.2) and
prove the left to right direction of each clause. The vice versa direction is analogous.
We first prove clause (a).

(OUT) In this case the transition has the form u〈ṽ〉A(ρk)
u(ṽ)A(ρk)−−−−−−→ 0. We apply

Lemma 68 and we trivially obtain u〈ṽ〉A(ρn)
u〈ṽA(ρn)〉−−−−−−→ 0.

(OPEN) In this case the transition has the form (new c)PA(ρk)
(b̃,c)a〈M̃〉−−−−−−→ R and

has been inferred from PA(ρk)
(b̃)a〈M̃〉−−−−−→ R. The inductive hypothesis is that there

are P ′, M̃ ′ closed by A(ρk) such that M̃ = M̃ ′A(ρk) and R ≡ P ′A(ρk) and

114 5. Proofs

PA(ρn)
(b̃′)a〈M̃ ′A(ρn)〉−−−−−−−−−−→ P ′A(ρn). We apply (OPEN) and infer (new c)PA(ρn)

(b̃′,c)a〈M̃ ′A(ρn)〉−−−−−−−−−−−→ P ′A(ρn), as desired.

(LET) In this case the transition has the form (let y = d(Ñ) in P else Q)A(ρk)
(b̃)a〈M̃〉−−−−−→ R and has been inferred from d(ÑA(ρk))→ N ′ and P{N ′/y} (b̃)a〈M̃〉−−−−−→ R.

By the definition of analysis we easily infer that there is N closed by A(ρk) such
that N ′ = NA(ρk). By definition of analysis, we have that N ′ ∈ A(ρk). We ap-
ply Lemma 67 and infer that two cases arise: (a) N ′ ∈ A(ρ) or (b) N is closed
by A(ρ), {M}sk(k)/x,A(ρ), {n}n/x and N ′ = NA(ρ), {M}sk(k)/x. In case (a) from

A(ρ) ⊆ A(ρn) we trivially obtain the desired result, d(ÑA(ρn)) → NA(ρn). In
case (b) we apply Lemma 67 and infer that the entry N ′/z ∈ A(ρk) needs to
be matched in A(ρn) by the entry N(A(ρ), {n}n/x)/z. Therefore d(ÑA(ρn)) →
NA(ρ), {n}n/x, as desired. By induction we have M̃ = M̃ ′A(ρk) and R ≡ P ′A(ρk)

and P{NA(ρn)/y} (b̃)a〈M̃ ′A(ρn)〉−−−−−−−−−→ P ′A(ρn). We apply rule (LET) and infer (let y =

d(Ñ) in P else Q)A(ρn)
(b̃)a〈M̃ ′A(ρn)〉−−−−−−−−−→ P ′A(ρn), as desired.

(LET-ELSE) This case is the dual of the previous case. We proceed analogously
to that case by exploiting Lemma 67.

The remaining cases for New, Composition and Replication follow directly from
the inductive hypothesis. As an example, we draw the composition case.

(PAR) In this case the transition has the form (P |Q)A(ρk)
(b̃)a〈M̃〉−−−−−→ R and has

been inferred from P (ρk)
(b̃)a〈M̃〉−−−−−→ R. By inductive hypothesis there are M̃ ′, P ′ such

that M̃ = M̃ ′A(ρk) and R ≡ P ′A(ρk) and P (ρn)
(b̃′)a〈M̃ ′A(ρn)〉−−−−−−−−−−→ P ′A(ρn). We apply

(PAR) obtaining (P |Q)A(ρn)
(b̃′)a〈M̃ ′A(ρn)〉−−−−−−−−−−→ (P ′ |Q)A(ρn), as desired.

The proof of clause (b) follows the same rationale. The distinguishing case is
rule (IN).

(IN) In this case the transition has the form (u(x̃).P)A(ρk)
u(M̃)−−−→ P{M̃/x̃}. From

A(ρk) ` u(x̃).P we easily obtain A(ρk), M̃/x̃ ` P . From this we infer

(u(x̃).P)A(ρn)
u(M̃)−−−→ P{M̃/x̃}A(ρn), as desired.

Finally we prove clause (c). The distinguishing case is rule (CLOSE); the other
cases are analogous to the proof of clause (a).

(CLOSE) In this case the transition has the form (P |Q)A(ρk)
τ−−→ (new b̃)R′ |R′′

and has been inferred from PA(ρk)
(b̃)a〈M̃〉−−−−−→ R′ and QA(ρk)

a(M̃)−−−→ R′′. By clauses
(a) and (b) we know respectively that (a) there are M̃ ′ and P ′ such that

5.3. Lemmas on symmetric and asymmetric cryptographic schemes 115

M̃ = M̃ ′A(ρk) and R′ ≡ P ′A(ρk) and PA(ρn)
(b̃′)a〈M̃ ′A(ρn)〉−−−−−−−−−−→ P ′A(ρn) and (b)

R′′ ≡ Q′A(ρn) and QA(ρn)
a(M̃ ′A(ρn))−−−−−−−→ Q′A(ρn) . We apply (CLOSE) and infer

(P |Q)A(ρn)
τ−−→ (new b̃′)(P ′ |Q′)A(ρn), as desired.

Lemma 69 (Symmetric cryptography). For all ρ holds

ρ |= (new k)! net〈{M}sk(k)〉 ∼A (new n)! net〈{n}n〉 .

Proof. Let ρk = (ρ, {M}sk(k)/x) and ρn = (ρ, {n}n/x) and {n, k}∩ fn(ρ) = ∅. Let R
be the relation defined as ρ |= (new k)(C[! net〈x〉])A(ρk)R(new n)(C[! net〈x〉])A(ρn)
whenever C[−] ≡ (new c̃)R | − and A(ρk) ` R and A(ρn) ` R. We show that R is
included in ∼A. That R is a term-indexed relation follows from the hypothesis, by
Lemma 67 and by fn(A(ρ)) = fn(ρ).

Barb preservation Let ρ |= (new k)(C[! net〈x〉])A(ρk) ↓a. This implies that (i)
a = net or (ii) a 6= net ∧ ρ |= CA(ρk)↓a. In case (i) we easily match this move with

ρ |= ! net〈{n}n〉 ↓net. In case (ii) we infer that CA(ρk)
(d̃)a〈M̃〉−−−−−→ . By Lemma 68(a)

we have ρ |= CA(ρn) ↓a, as desired. The case ρ |= (new n)(C[! net〈x〉])A(ρn) ↓a is

analogous and exploits the vice versa direction of Lemma 68(a).

Reduction closure Let (new k)C[! net〈x〉]A(ρk)
τ−→ H. From Lemma 68(c) we

easily infer that there is R′ such that A(ρk) ` R′ and H ≡ (new k)C ′[! net〈x〉]A(ρk)
where C ′[−] ≡ (new c̃)R′ | −. Here R′A(ρk) may be obtained by (a) internal reduc-
tion of CA(ρk) or (b) by CA(ρk) receiving the packet {M}sk(k) on net. Again from

Lemma 68(c) we infer (new n)C[! net〈x〉]A(ρn)
τ−→ K , (new n)(C ′[! net〈x〉])A(ρn).

Here R′A(ρn) may be obtained (c) by internal reduction of CA(ρn) or (d) by CA(ρn)

receiving the packet {n}n on net. Suppose (new k)C[! net〈x〉]A(ρk)
A−→ H. In case

(a) we trivially infer (new n)C[! net〈x〉]A(ρn)
A−→ K. In case (b) we note that, since

both n and k are not in the free names of ρ, no filters are waiting for these packets and

in turn (new n)C[! net〈x〉]A(ρn)
A−→ K. The case (new k)C[! net〈x〉]A(ρk) −→ H is

analogous and leads to (new n)C[! net〈x〉]A(ρn) −→ K. From these results we infer
ρ |= HRK, as desired. The case (new n)C[! net〈x〉]A(ρn)

τ−→ K is done analogously
by exploiting the vice versa direction of Lemma 68(c).

Contextuality We have ρ |= (new k)(C[! net〈x〉])A(ρk)R(new n)(C[! net〈x〉])A(ρn).
Let ρ ` S. Notice that both ρ ⊆ A(ρk) and ρ ⊆ A(ρn). We let C ′[−] =

(new k)R |S | − with fn(S) ∩ (bn(C) ∪ {n, k}) = ∅ and we obtain
ρ |= (new k)(C ′[! net〈x〉])A(ρk)R(new n)(C ′[! net〈x〉])A(ρn), as desired.

The second clause requires ρ, n/x |= (new k)(C[! net〈x〉])A(ρk)R(new n)(C[! net〈x〉])A(ρn)
with n 6∈ fn(ρ) which actually holds as we don’t have any condition on ρ.

116 5. Proofs

Finally ρ\a |= (new a)(new k)(C[! net〈x〉])A(ρk)R(new a)(new n)(C[! net〈x〉])A(ρn)
holds by rearranging the context: C ′[−] ≡ (new a)C[−].

The following corollary of the previous Lemma analyze the behaviour of a process
that picks up a message from a protocol using a symmetric cryptoscheme.

Corollary 70. Assume k, n 6∈ fn(ρ, P) and ρ, {M}sk(k)/x ` C, ρ, {n}n/x ` C. We
have

ρ |= (new k)(C(ρ, {M}sk(k)/x) | ! net〈{M}sk(k)〉 | filter ỹ with sk(k) in P)

∼A (new n)C(ρ, {n}n/x) | ! net〈{n}n〉 | (new k)(! net〈{M}sk(k)〉
| filter ỹ with sk(k) in P) .

Proof. (Sketch) We analyze (informally) reduction clo-
sure of the relation ρ |= HRK such that (i) H ≡
(new k)(C(ρ, {M}sk(k)/x) | ! net〈{M}sk(k)〉 | filter ỹ with sk(k) in P) and K ≡
(new n)C(ρ, {n}n/x) | ! net〈{n}n〉 | (new k)(! net〈{M}sk(k)〉 | filter ỹ with sk(k) in P)
or (ii) H ≡ (new k)(C(ρ, {M}sk(k)/x) | ! net〈{M}sk(k)〉 |P{M/ỹ}) and K ≡
(new n)C(ρ, {n}n/x) | ! net〈{n}n〉 | (new k)(! net〈{M}sk(k)〉 |P{M/ỹ}) In the proof
of Lemma 69 we have seen that C(ρ, {M}sk(k)/x) behaves as C(ρ, {n}n/x) in con-
texts where k does not occur. Therefore to prove the corollary it is left to analyze
interactions of C(ρ, {M}sk(k)/x) with ! net〈{M}sk(k)〉 | filter ỹ with sk(k) in P).
Suppose that C(ρ, {M}sk(k)/x) receives a packet from ! net〈{M}sk(k)〉 and evolves
to C ′(ρ, {M}sk(k)/x): This move is matched by C(ρ, {n}n/x) by receiving a packet
from ! net〈{n}n〉 and evolving to C ′(ρ, {n}n/x). Now assume that C(ρ, {M}sk(k)/x)
sends the packet {M}sk(k) on the channel net to process filter ỹ with sk(k) in P and

evolves to C ′(ρ, {M}sk(k)/x). We have H
τ−→ H ′ where

H ′ ≡ (new k)(C ′(ρ, {M}sk(k)/x) | ! net〈{M}sk(k)〉 | filter {M}sk(k) with sk(k) in P)

Therefore C[−] ≡ C ′[net〈x〉 | −] and in turn

H ≡ (new k)(C ′(ρ, {M}sk(k)/x) | ! net〈{M}sk(k)〉 | filter ỹ with sk(k) in P)

K ≡ (new n)(C ′(ρ, {n}n/x) | ! net〈{n}sk(n)〉 | (new k)! net〈{M}sk(k)〉
| filter ỹ with sk(k) in P)

This let us infer H
A−→ H ′. We let K match this move with K

A−→ K ′ where

K ′ ≡ (new n)(C ′(ρ, {n}n/x) | ! net〈{n}n〉 | (new k)! net〈{M}sk(k)〉
| filter {M}sk(k) with sk(k) in P) .

Indeed it’s easy to see that filter {M}sk(k) with sk(k) in P ≡ P{M/ỹ} and for (ii)
we have ρ |= H ′RK ′.

5.3. Lemmas on symmetric and asymmetric cryptographic schemes 117

The next lemma says that packets encrypted with an asymmetric cryptoscheme
containing confounders are viewed as noise by the environment whenever it does not
know both the decryption key and the confounder. We introduce technical results
similar to the symmetric case that will be useful in the proof of the lemma.

Lemma 71. Let σ = (ρ, {M ′}ek(M)/x), ς = (ρ, {N ′}N/x) where ρ is a substitution
such that M, dk(M) 6∈ A(ρ) and fn(M ′) * fn(ρ)∧fn(N) * fn(ρ). We have that there

are M̃ closed by A(ρ), {M ′}ek(M)/x,A(ρ), {N ′}N/x such that A(σ) = A(ρ), Ñ/x̃ and

Ñ = M̃(A(ρ), {M ′}ek(M)/x) and A(ς) = A(ρ), Ñ ′/x̃ and Ñ ′ = M̃(A(ρ), {N ′}N/x).

Lemma 72. Let ρM = (ρ, {N, c}ek(M)/x) and ρn = (ρ, {N ′}n/x) where ρ is a sub-
stitution such that {n, c} ∩ fn(ρ) = ∅ and {M, dk(M)} 6⊆ A(ρ). Let A(ρM) ` P and
A(ρn) ` P . The following hold.

(a) If PA(ρM)
(b̃)a〈M̃〉−−−−−→ R then there are P ′ and M̃ ′ closed by A(ρM) such that

R ≡ P ′A(ρM) and M̃ = M̃ ′A(ρM) and PA(ρn)
(b̃′)a〈M̃ ′A(ρn)〉−−−−−−−−−−→ P ′A(ρn); the

symmetric result holds for the hypothesis PA(ρn)
(b̃)a〈M̃〉−−−−−→ R;

(b) If PA(ρM)
a(M̃)−−−→ R then there is P ′ closed by A(ρM , M̃/x̃) such that R ≡

P ′A(ρM , M̃/x̃) and PA(ρn)
a(M̃)−−−→ P ′A(ρn, M̃/x̃); the symmetric result holds

for the hypothesis PA(ρn)
a(M̃)−−−→ R;

(c) If PA(ρM)
τ−−→ R then there is P ′ closed by A(ρM) such that R ≡ P ′A(ρM)

and PA(ρn)
τ−−→ P ′A(ρn); the symmetric result holds for the hypothesis

PA(ρn)
τ−−→ R .

Proof. The proof follows the same rationale of Lemma 68, in this case using Lemma
72. As in Lemma 68 the decryption of the packet {N, c}ek(M) bound to x does not
apply here by the hypothesis {M, dk(M)} 6⊆ A(ρ). What is peculiar to asymmet-
ric cryptoscheme is the use of a fresh confounder to prevent cryptanalysis attacks.
Indeed the environment may try to comparing bit a bit a message built by itself
(notice ρ may know both N and ek(M)) with the asymmetric packet; the presence
of c prevents this attack. To prove the Lemma we analyze the application of equals
in (3.2). Indeed in such case the result does not follows directly from Lemma 72,
because the analysis is insensible to the adding of packet still in its range.

We draw the case let equals(N1, N2) in P else QA(ρM)
(b̃)a〈M̃〉−−−−−→ R; input and

silent actions cases are analogous. From the hypothesis above we know

equals(N1, N2)A(ρM) → N ′ and P{N ′/y} (b̃)a〈M̃〉−−−−−→ R. By the definition of anal-
ysis we easily infer that there is N closed by A(ρM) such that N ′ = NA(ρM).
From Lemma71 we know A(ρM) = A(ρ), M̃σ/x̃ where σ = A(ρ), {N, c}ek(M)/x and

118 5. Proofs

A(ρn) = A(ρ), M̃ς/x̃ where ς = A(ρ), {n}n/x. If both N1, N2 are closed by A(ρ)
we trivially infer equals(N1, N2)A(ρn) → NA(ρn). Similarly if both N1, N2 contain
some variable z in x̃ such that Mzσ is associated to z and c ∈ fn(Mzσ), we match
the evaluation with Mzς associated to z. Suppose N1 contain such z and N2 does
not. From this we easily infer c ∈ fn(N1A(ρM)) and c 6∈ fn(N2A(ρM)), contra-
diction, because we assumed equals(N1, N2)A(ρM) →. The latter sentence follows
from c 6∈ fn(ρ) an by the hypothesis To conclude, by inductive hypothesis we have

M̃ = M̃ ′A(ρM) and R ≡ P ′A(ρM) and P{NA(ρn)/y} (b̃)a〈M̃ ′A(ρn)〉−−−−−−−−−→ P ′A(ρn). We

apply rule (LET) and infer (let y = d(Ñ) in P else Q)A(ρn)
(b̃)a〈M̃ ′A(ρn)〉−−−−−−−−−→ P ′A(ρn),

as desired.

We introduce the following notation to represent the process reached by a channel
server that interact with the environment and execute administrative reductions.

Notation 1. Let Q be a process such that for some M1, . . . , Mn we have Chann
A

=⇒
net(M1)−−−−−→ · · · net(Mn)−−−−−→ A

=⇒ Q ≡ (new n◦, n∗)n∗〈N〉 |P |WSn |RSn and P =
P1 | · · ·
|Pn and fn(Pi) ∩ {n◦, n∗} 6= ∅. We indicate Q with Chann{N}[P].

The clause saying that threads of P cannot be rearranged outside the scope of n∗, n◦

let us discard messages wrongly picked by the server.

Lemma 73 (Asymmetric Cryptography). Let ρ be a substitution s.t. a ∈
fn(ρ) ∧ a, g(a), dk(g(a)) 6∈ A(ρ) where g ∈ {rd ,wr}. Let N = N ′ :: c :: N ′′ and
let d̃ ⊆ fn(M). We have

ρ |= W | (new c, d̃)Chana{N}[] | ! net〈{M, c}ek(g(a))〉 ≈A W | (new c)Chana{N}[] .

Proof. Let ρa = ρ, {M, c}f(a)/x and ρn = ρ, {n}n/x, where where f = ek ◦ g and ρ
satisfies the conditions of the statement.

We consider the relation R containing couples formed by the context representa-
tion of A(ρa) on the left and A(ρn) on the right respectively containing the channel
containing the nonce c and nonces and threads obtained by A(ρa) on the left and the
channel with the nonce c and nonces and threads obtained by A(ρn) on the right.
The definition of R is complex. We let

ϕ |= C ′[Wñ |Chana{N ′}[P ′]]R(new n)C ′′[Wñ |Chana{N ′′}[P ′′]]

5.3. Lemmas on symmetric and asymmetric cryptographic schemes 119

whenever

ϕ ⊆ ρ, b̃/x̃ ∧ b̃ ∩ fn(ρ) = ∅
ς ′ = A(ρa), b̃/x̃, σñ ς ′′ = A(ρn), b̃/x̃, σñ

C ′[−] = (new c, d̃, ã, ñ)(! net〈x〉 |R)ς ′ | −
C ′′[−] = (new ã, ñ)(! net〈x〉 |R)ς ′′ | −

Wñ = W | ! net〈{n1}n1〉 | · · · | ! net〈{nm}nm〉
N ′ = (N :: c :: N∗)ς ′ N ′′ = (N :: c :: N∗)ς ′′

P ′ = Pς ′ P ′′ = Pς ′′

where d̃ ⊆ fn(M) and σñ = {n1}n1/y1, · · · , {nm}nm/ym and R, N,N∗, P are closed
both by ς ′ and ς ′′ where fn(R, N, N∗) ⊆ ã and fn(P) ⊆ {ã, a◦, a∗}.

We give the intuitions of this definition. We illustrate the left side, the right
side is specular. That the index is a subset of ρ, b̃/x̃ is useful to prove contextuality;
b̃ typically are bindings introduced by weakening. The bindings ñ and the related
substitution σñ are obtained by W ≡ (new ñ)Wñ: indeed packets coming from the
noise process may be absorbed by the context. Therefore the context is built around
A(ρa), b̃/x̃ and σñ; since the context can send packets to the channel, also nonces and
messages in its queue are built around these substitutions plus names ã generated
by the context. Since c is not known to the context we explicit its presence in the
nonce list.

We prove that R is an administrative equivalence up to expansion. Lemma 63
ensures that in this case R ⊆≈A. The expansion will be used in proving reduction
closure, particularly in the case of the channel receiving the packet {M, c}f(a). To
ease the notation we will write often H and K for the term respectively on the left
and on the right of R as in ϕ |= HRK.

Barb preservation Let ϕ |= H ↓b. Then by shape analysis of H it’s easy to see
that or n = net or the barb is inferred from ϕ |= CA(ρa) ↓b. The case b = net is

trivial. Otherwise C ′ (ã)b〈M̃〉−−−−−→ . By Lemma 72(a) we infer ϕ |= C ′′ ↓b and we are
done.

Reduction closure Let H
τ−−→ H ′. The following cases arise.

(Context Reduction) The move has been inferred from Rς ′
τ−−→ R′ς ′ and may be ad-

ministrative or not. We match this move with the move inferred from Rς ′′ −−→ R′ς ′′.
From Lemmas 71 and by definition of administrative reduction (Def. 22) we easily

infer that the last reduction is administrative if and only if Rς ′
A−−→ R′ς ′. Most cases

of Def. 22 can be easily tackled by shape analysis on the hypothesis Rς ′
A−−→ R′ς ′.

Clauses Def. 22(3,4) do not apply as neither {M, c}f(a) or {n}n are packet encrypted
with an symmetric crypto-scheme. (5) does not apply since there is not a type T

120 5. Proofs

“for” {M, c}f(a) or{n}n. In Def. 22(6) the variable x may occur in a nonce list
or in a nonce to be checked; in this case {M, c}f(a) and {n}n are used as nonces
respectively in Rς ′ and Rς ′′ and from c, n 6∈ fn(ρ) we infer that both reductions
are administrative. Similar in case Def. 22(7) the packets bound to x may be used
as seed indexes of a table and from c, n 6∈ fn(ρ) we infer that both reductions are
administrative.

(Channel Reduction) The move has been inferred from Chana{N ′}[P ′] τ−→ Q. If

Chana{N ′}[P ′] A−→ Q then we easily find N ′
1, P

′
1 closed by ς ′ with such that Q ≡

Chana{N ′
1}[P ′

1] where (i) N ′
1 = N ′ and P ′

1
d−→ P or (ii) N ′

1 = (N1 :: N :: c :: N∗)ς ′

and P ′
1 = (P1 |P)ς ′ with fn(N1) ⊆ ã and fn(P1) ⊆ {ã, a◦, a∗} This follows by noting

that Chana{N ′}[P ′] A−→ Q has been inferred or (i) from an unsuccessful synchro-
nization on a◦ (Def. 22(5)) or (ii) from a synchronization on a∗ (Def. 22(6)). We

match this move by building N ′′
1 , P ′′

1 specularly: Chan{N ′′}[P ′′] A−→ Chan{N ′′
1 }[P ′′

1].

Otherwise Chan{N ′}[P ′] n@T−→ Chan{N ′}[P ′
1] | ! net〈{n1⇑T}M ′

1
〉 for some n1,M1, T

and P ′
1 obtained by removing the synchronizing threads from P ′. Since P is built

around ς ′ we infer that there exists R′ closed by ς ′ and with fn(R′) ⊆ ã such

that R′ς ′ = ! net〈{n1⇑T}M1〉. We match this move with Chan{N ′′}[P ′′] n@T−→
Chan{N ′′}[P ′′

1] | ! net〈{n2⇑TM2}〉 where P ′′
1 is obtained by removing the syn-

chronizing threads from P ′′. We obtain that R′ς ′′ = ! net〈{n2⇑T}M2〉 and
we let C ′

1[−] = C ′[R′ | −] and C ′′
1 [−] = C ′′[R′ | −]. We conclude that ϕ |=

C ′
1[Wñ |Chana{N ′}[P ′

1]RC ′′
1 [Wñ |Chana{N ′′}[P ′′

1]].

(Communication) The case whether the context receives a packet from Wñ

|Chana{N ′}[P ′] is trivial as Chana{N ′}[P ′] does not have free outputs syntacti-
cally occurring in its definition. Thus the packet has been received from Wñ:

Rς ′ |Wñ

τ−−→ R1. We easily infer that (i) ∃R′ closed by ς ′ with fn(R′) ⊆ ã
such that R1 = R′ς ′ or (ii) ∃R′ closed by ς ′, σm with fn(R′) ⊆ ã such that

R1 = (new m)R′ς ′, σm. We match this move with Rς ′′ |Wñ

τ−−→ R2; a case analysis
on administrative reductions show that this move is administrative if and only if

Rς ′ |Wñ
A−→ R1. We easily infer that

(i) ϕ |= (new c, d̃, ã, ñ)! net〈{M, c}f(a)〉 |R1 |Wñ |Chana{N ′}[P ′]R

(new n, ã, ñ)! net〈{n}n〉R2 |Wñ |Chana{N ′′}[P ′′]]

(ii) ϕ |= (new c, d̃, ã, ñ,m)R1 |Wñ,m |Chana{N ′}[P ′]R

(new n, ã, ñ,m)R2 |Wñ,m |Chana{N ′′}[P ′′]] .

The remaining case arises when the reduction is inferred from the context sending
a packet to the channel:

Rς ′ |Chana{N ′}[P ′]
τ−−→ R′ς ′ |Chana{N ′}[P ′ |P ∗]

where (i) P ∗ = decrypt M as ({x̃, z}a−w in if z ∈
Seta∗ then a◦〈x̃〉) else net〈M〉 or (ii) P ∗ = decrypt M as {k, t, z}a−r in (if z ∈

5.3. Lemmas on symmetric and asymmetric cryptographic schemes 121

Seta∗ then filter x̃ from a◦@t in ! net〈{x̃}k〉) else net〈M〉. If the decryption is
unsuccessful both in (i) and (ii) we have that H ′ ≡ H and we have done. Otherwise
(i) M = {M̃, N}a+

w
and P ≡ if N ∈ Seta∗ then a◦〈M̃〉 or (ii) M = {M1, T,N}a+

r

and P ≡ if N ∈ Seta∗ then filter x̃ from a◦@T in ! net〈{x̃}M〉. We easily infer that
there are M̃∗, M∗

1 , N∗ closed by ς ′ and with free names in ã, d̃ such that M̃ = M̃∗ς ′,
M1 = M∗

1 ς ′, N = N∗ς ′. There are two cases corresponding to (a) N = c or (b) not.
In case (a) by hypothesis c 6∈ fn(ρ) we know that M = {M, c}f(a), i.e. the inferred
move is administrative. Indeed the presence of ! net〈M〉 let us rearrange the output
net〈M〉: !net〈M〉 | net〈M〉 ≡!net〈M〉.Finally the recursion on net of the receiving

filter let us apply Def. 22(2). From Chana{N ′}[P ′ |P ∗] A−→ Chana{N ′}[P ′] we infer
ϕ |= Chana{N ′}[P ′ |P ∗] ºA Chana{N ′}[P ′]. In this case we do not match this

move as H
A−→ H ′ and ϕ |= H ′ ºA HRK. If case (b) holds we match this move

with

Rς ′′ |Chana{N ′′}[P ′′]
τ−−→ R′ς ′′ |Chana{N ′′}[P ′′ |P ∗

1]

where the move is administrative if and only if H
A−→ H ′ and P ∗

1 is such that both
in case (i) and (ii) we may infer ρ |= H ′RK ′ where K ′ = (new n, ã, ñ)R′ς ′′ |Wñ

|Chana{N ′′}[P ′′ |P ∗
1]. We omit the details of the last inferences that are analogous

to those introduced above.

Contextuality Let ϕ |= HRK.

Let ϕ ` R′. We know ϕ ⊆ ρ and ρ ⊆ A(ρa) and ρ ⊆ A(ρn). We define
C ′

1[−] = (new ñ)(! net〈x〉 |R |R′)ς ′ | − and C ′′
1 [−] = (new ñ)(! net〈x〉 |R |R′)ς ′′ | −

with ñ, c, n not clashing with the bound names of R′. Finally we obtain ϕ |= H1RK1

where H1, K1 are respectively H with C ′
1[−] in place of C ′[−] and K with C ′′

1 [−] in
place of C ′′[−].

That ϕ\n |= (new n)HR(new n)K follows from ϕ ⊆ ρ and shape of C ′[−], C ′′[−].
For the last clause suppose n 6∈ fn(ϕ). By ϕ, n/x ⊆ ρ, b̃/x̃, n/x and n 6∈ fn(ρ, b̃/x̃)
we infer ϕ, n/x |= HRK. That n 6∈ fn(ρ, b̃/x̃) follows by R term indexed relation:
fn(C ′; C ′′) ⊆ fn(ρ). Since the free names of C ′ are those of ς ′ that are not bound by
C ′, and the free names o of C ′′ are those of ς ′′ not bound by C ′′, the result follows
by alpha-renaming n in case n ∈ bn(C ′, C ′′).

The following corollary of the previous Lemma analyze the behaviour of a context
that picks up a message from a protocol using an asymmetric cryptoscheme; it’s
proof is analogous to that of Corollary 70. The hypotheses on the thread P inside
the scope of the channel are necessary since the context can actually read from the
channel queue.

Corollary 74. Let ρ be a substitution such that a ∈ fn(ρ) ∧ a, g(a), dk(g(a)) 6∈
A(ρ) where g ∈ {rd ,wr}. Assume ρ, {M, c}f(g(a))/x ` C, ρ, {n}n/x ` C. For

122 5. Proofs

all processes P and terms M∗ such that c 6∈ fn(P) and P ≡ P ∗ | a◦〈M∗〉 implies
a, g(a), dk(g(a)) 6∈ A(ρ,M∗/x) we have

ρ |= (new c)(C(ρ, {M, c}N∗/x) | ! net〈{M, c}N∗〉 |Chana{N}[P])

≈A (new n)C(ρ, {n}n/x) | ! net〈{n}n〉 | ! net〈{M, c}N∗〉 |Chana{N}[P]) .

with N∗ = ek(g(a)) for some g ∈ {rd ,wr}.

The next Lemma says that we can remove the nonces from channels provided
they do not appear in the environment.

Lemma 75. ρ |= (new c)Chana{N :: c :: N ′}[] ≈A Chana{N :: N ′}[] .

Proof. Let ρ be a substitution such that c 6∈ fn(ρ). Let σ = A(ρ), b̃/x̃ where
fn(b̃) ∩ {fn(ρ), c} = ∅, and let ϕ ⊆ ρ, b̃/x̃. We define

ϕ |= C[(new c)Chana{N1}[P]]RC[(new c)Chana{N2}[P]]

where C[−] = (new ñ)Qσ | − and N1 = N∗σ :: N ′ :: c :: N ′′ and N2 = N∗σ :: N ′ ::
N ′′ and P = P ∗σ where σ ` N∗, P ∗ ∧ fn(N∗) ⊆ ñ ∧ fn(P ∗) ⊆ {ñ, a◦, a∗}.

We show that R is an administrative equivalence. Barb preservation of R is

straightforward. To see reduction closure, let C[(new c)Chana{N1}[P]]
τ−−→ H.

The following cases arise.

(Context Reduction) The move has been inferred from Qσ
τ−−→ Q′σ. We trivially

obtain C[(new c)Chana{N2}[P]]
τ−−→ K with ϕ |= HRK and the reduction admin-

istrative if and only Qσ
A−−→ Q′σ.

(Communication) The move has been inferred from

Qσ | (new c)Chana{N1}[P]
τ−−→ Q′σ | (new c)Chana{N1}[P |P ′] where P ′ is

closed by σ and fn(P ′) ⊆ {ñ, a◦, a∗}. We match this move with inferred from

Qσ | (new c)Chana{N2}[P]
τ−−→ Q′σ

| (new c)Chana{N2}[P |P ′].

(Channel reduction) The move has been inferred from Chana{N1}[P]
τ−−→ H∗. Two

cases arises. If the reduction is not administrative (i) then Chana{N1}[P]
a@T−−→ H∗

and H∗ ≡ Chana{N1}[P ′] | ! net〈{M̃}M〉 where P = P ′ |P ′′. We easily find Q′ closed
by σ and with fn(Q′) ⊆ ñ such that Q′σ = ! net〈{M̃}M〉. We match this move with

the move inferred from Chana{N2}[P]
a@T−−→ Chana{N2}[P ′] | ! net〈{M̃}M〉. Other-

wise (ii) suppose Chana{N1}[P]
τ−−→ H∗. This reduction may be inferred from a

deterministic reduction, from an unsuccessful synchronization on a◦, or from a syn-
chronization on a∗. The first two cases are trivial; the interesting one is the latter.
Indeed N1 contains the nonce c while N2 does not. However, from c 6∈ fn(ρ) and the

5.4. Operational correspondence 123

conditions on b̃ we infer c 6∈ fn(σ). Thus c 6∈ fn(P), and the same reduction can be
matched on the right side.

Finally that R is contextual follows as usual directly by the definition of the
base and context.

The next lemmas state results for the proxy analogous to that introduced above
for the channels.

Notation 2. Let Q be a process such that for some M1, . . . ,Mn we have that

Proxy
A

=⇒ net(M1)−−−−−→ · · · net(Mn)−−−−−→ A
=⇒ (new ñ)(Chan ñ{Ñ}[R] |Q) and Q ≡

(new t, t∗) P |Pt | t〈N〉 | t∗〈M〉 | and P = P1 | · · · |Pn and fn(Pi) ∩ {t, t∗} = ∅.
We indicate Q with ProxyN{M}[P] and write CE∗[−] to indicate the context C[−]
such that for terms Ñ , N,M and processes P,R holds C[−] = − |W | (new ñ)
(Chan ñ{Ñ}[R] |ProxyN{M}[P]).

Lemma 76. Let ρ be a substitution s.t. k ∈ fn(ρ)∧ k, dk(k) 6∈ A(ρ). Let N = N ′ ::
c :: N ′′. For all M we have

ρ |= W | (new c)ProxyM{N} | ! net〈{M̃, c}ek(k)〉 ≈A W | (new c)ProxyM{N} .

In the following corollary, unlike Corollary 74, we do not set conditions on the
thread P inside the scope of the Proxy; this is because the terms released by the
proxy to the environment are system generated encryption keys.

Corollary 77. Let ρ be a substitution such that k ∈ fn(ρ)∧k, dk(k) 6∈ A(ρ). Assume
ρ, {M, c}ek(k)/x ` C, ρ, {n}n/x ` C. For all P we have

ρ |= (new c)(C(ρ, {M, c}ek(k)/x) | ! net〈{M, c}ek(k)〉 |ProxyM{N}[P])

≈A (new n)C(ρ, {n}n/x) | ! net〈{n}n〉 | ! net〈{M, c}ek(k)〉 | |ProxyM{N}[P]) .

Lemma 78. Let c 6∈ fn(M, N,N ′). We have that for all ρ holds ρ |=
(new c)ProxyM{N :: c :: N ′} ≈A ProxyM{N :: N ′} .

5.4 Operational correspondence

In the proofs presented in this section, we will often abbreviate 〈〈Γ . P 〉〉 with 〈〈P 〉〉
whenever the type environment Γ is unnecessary. To ease the notations we redefine
the definition of {| I |} by letting the base index include the proxy key k+

P :

{| ∅ |} = {net/xo, k
+
P /xk}, {| I, a : A |} = {| I |}, a⇑A/x

where x 6∈ dom({| I |}).

124 5. Proofs

We first show that the translation is closed by substitution, in the sense made
precise below.

We let ≡{|Γ |} denotes a congruence relation that relates translated pi processes
that are structurally congruent up to type consistent substitutions of the form:
{vi⇑Ti/xi | Γ(vi) <: Ti <: Γ(xi)}.

Below we define the main axioms for ≡{|Γ |}; the remaining homeomorphic cases
arise as expected. We let C ≡{|Γ |} D whenever C [0] ≡{|Γ |} D [0] where C , D are full
contexts built around the grammar for processes plus the hole − .

〈〈Γ . u〈v@T 〉 〉〉 µ ≡{|Γ |} 〈〈Γ . x〈y@T 〉 〉〉 µ{u⇑A/x, v⇑S/y}
Γ(u) <: A <: w, Γ(v) <: S <: T

〈〈Γ . u(x@T).P 〉〉 µ ≡{|Γ |} (let ŵ = [[w]] µ in link (ẑ⇑r, y) in
(new k) emit({sk(k), T}y+

r
)){u⇑A/w}

| filter x with sk(k) in H

Γ(u) <: A <: r H ≡{|Γ |} 〈〈Γ, x : T . P 〉〉
〈〈Γ . [u = v] P ; Q 〉〉 µ ≡{|Γ |} if xID = y

ID
{u⇑A/x, v⇑B/y} then H else K

Γ(u) <: A, Γ(v) <: B,
H ≡{|Γ′ |} 〈〈Γ′ . P 〉〉 µ[u↔v] Γ′ = Γuv:Γ(u)uu:Γ(v)
K ≡{|Γ |} 〈〈Γ . Q 〉〉 µ

Lemma 79. Let Γ be a closed type environment such that Γ ` v : A. Then:

〈〈Γ, x:A . P 〉〉 {(v⇑A)/x} ≡{|Γ |} 〈〈Γ . P{v/x} 〉〉

Proof. By induction on the structure of the compiled process. We show that for a
full applied pi calculus context C that closes its hole with variables ỹ and an open
type environment Γ such that Γ = ∆, ỹ : T̃ for some closed environment ∆ and some
types T̃ , we have that

C [〈〈Γ, x:A . P 〉〉 {(v⇑A)/x}] ≡{|∆ |} C ′[〈〈Γ . P{v/x} 〉〉]

whenever C ′ ≡{|∆ |} C .

(T-In@) The judgment has the form Γ, x : A ` u(y@T).P with Γ(u) <: r and
Γ, x : A, y : T ` P . The case x 6= u follows directly by induction. Otherwise let
x = u; from this we infer A <: r. We have that

〈〈x(y@T).P 〉〉 µ , (let x̂ = Meet{w | µ ` x↔ w} in link (x̂⇑r, y) in

(new k) emit({sk(k), T}y+
r
)) | filter y with sk(k) in 〈〈Γ, y : T . P 〉〉 µ

By induction on Γ, y : T, x : A ` P we obtain that if D is a full context that
closes its hole with variables ỹ, y and D ′ is a full context such that D ′ ≡{|Γ |} D ,

and Γ = ∆, ỹ : T̃ with ∆ closed, we have that D [〈〈Γ, y : T . P 〉〉 µ{v⇑A/x}] ≡{|Γ |}

5.4. Operational correspondence 125

D ′[〈〈Γ, y : T . P{v/x} 〉〉 µ] . From A <: r and (Γ, x : A)(x) = A and induction we
infer the desired result,

C [Γ, x : A . 〈〈x(y@T).P 〉〉 µ{v⇑A/x}] ≡{|∆ |} C [Γ . 〈〈 v(y@T).P{v/x} 〉〉 µ]

(T-Out@) The judgment has the form Γ, x : A ` u〈w@T 〉 with Γ(u) <: w and
Γ(w) <: T . If x = u we infer A <: w; if x = w we infer A <: T . From these results,
assuming Γ = ∆, ỹ : T̃ with ∆ closed, we infer C [[[Γ, x : A . u〈w@T 〉]] {(v⇑A)/x}]
≡{|∆ |} C ′[[[Γ . u{v/x}〈w{v/x}@T 〉]]], as desired.

(T-Match@) The judgment has the form Γ, x : A ` [u = w] P ; Q and has been
inferred from Γ, x : A ` u : S and from Γ, x : A ` w : T , and from (Γ, x : A) u u :
T u w : S ` P , and from Γ, x : A ` Q. Let Γ = ∆, ỹ : T̃ with ∆ closed.

Let ∆′ = ∆ u u : T u w : S if u,w are names else ∆′ = ∆ u u : T if u is a name and
w is a variable else ∆′ = ∆ u w : S if w is a name and u is a variable else ∆′ = ∆.
Assume that D is a full context that closes its hole with variables ỹ and D ′ is a full
context such that D ′ ≡{|∆′ |} D .

By induction we have that D [〈〈 (Γ, x : A) u u : T u w : S . P 〉〉 µ{v⇑A/x}] ≡{|∆′ |}
D ′[〈〈 ((Γ, x : A) u u : T u v : S) \ x . P{v/x} 〉〉 µ] and that
D [〈〈Γ, x : A . Q 〉〉 µ{v⇑A/x}] ≡{|∆ |} D ′[〈〈Γ . Q{v/x} 〉〉 µ]. Particularly, the equation
above holds for types S, T such that S = (Γ, x : A)(u) and T = (Γ, x : A)(w); this
follows from the hypotheses Γ, x : A ` u : S and Γ, x : A ` w : T , and subsumption.
From this we infer the desired result,

C [〈〈Γ, x:A . [u = w] P ; Q 〉〉 {(v⇑A)/x}]
≡{|∆ |} C ′[〈〈Γ . [u{v/x} = w{v/x}] P{v/x}; Q{v/x} 〉〉] .

Lemma 80 (Substitution Closure). Let Γ be a closed type environment such that
Γ ` v : A. Then:

〈〈Γ, x:A . P 〉〉 {(v⇑A)/x} ≈A
{|Γ |} 〈〈Γ . P{v/x} 〉〉

Proof. It follows from Lemma 79 and by observing that ≡{|Γ |} is finer than ≈A, i.e.
〈〈Γ . P 〉〉 ≡{|Γ |} 〈〈Γ . Q 〉〉 implies 〈〈Γ . P 〉〉 ≈A

{|Γ |} 〈〈Γ . Q 〉〉 . The proof of this result is
by coinduction and relies on the observation that processes equated by ≡{|Γ |} exhibit
the same labels. We omit the rather obvious, but long, details.

Next, we introduce a lemma saying that secret channels are not visible up to
strong administrative equivalence.

Lemma 81. Let N = (N1, s) :: (sID, s) :: N∗. We have that ρ |= (new s)Chans

|ProxyN{C} ≈A ProxyN∗{C}.

126 5. Proofs

Proof. Let σ |= C[P]RC[Q] whenever there is S such that s 6∈ fn(S) and such that
P = (new s)Chans |ProxyM{D}[S] and Q = ProxyM∗{C}{D}[S] and M = M1 ::
N and M∗ = M1 :: N∗ and whenever σ = ρ \ c̃ and C[−] = (new c̃)Rρ | − ∧ρ ` R.
We prove that R= is a weak administrative equivalence up to expansion: Lemma
63 ensures that this implies R ⊆≈A. We prove reduction closure, barb preservation
and contextuality are straightforward.

Let C[P]
τ−−→ H. The following cases arise.

(Context out - Process in). We have C
(ẽ)net〈M〉−−−−−−→ C ′ and P

net(M)−−−−→ P , H ≡
(new ẽ)C ′[P ′]. A case analysis shows that the free inputs of P are inputs on
the free name net corresponding to (a) the proxy filter on k−P and (b) corre-

sponding to the s channel filter on s−w , s−r . Suppose that C[P]
τ−−→ H has been

inferred from a synchronization due to case (b); the channel rejects the packet
M since it is not encrypted under the key s+

w or s+
r . Therefore by Def.22(3)

we infer that C[P]
A−→ H. By application of let and let-else axioms of struc-

tural congruence we have that P ′ ≡ (new s)Chan ′s | net〈M〉 |ProxyM{D}[S]
where Chan ′s = (new s∗, s◦) s∗〈∅〉 |RS s |WS s | (new r)r〈〉 | !r().R where R is
filterr (x, z) with s−w in if z 6∈ Sets∗ then s◦〈x〉 or filter (y, t, z) with s−r in
if z 6∈ Sets∗ then filter x from s◦@t in ! net〈{x}y〉. It easy to see that for any ζ we
have ζ |= Chan ′s ºA Chans. From this we infer σ |= H ºA C[P]. We do not

match this move as C[P]
A−→ºA

σ C[P] and σ |= C[P]RC[Q]. Suppose C[P]
τ−−→ H

has been inferred from a synchronization due to case (a). There are two sub-cases
corresponding to (i) M = {M̃}k+

P
and M̃ has arity consistent with the proxy filter

or (ii) not. Sub-case (ii) is analogous to case (a): we infer that C[P]
A−→ H and

H ºA
σ C[P]. Suppose sub-case (i) holds. The packet is a valid proxy request. By

application of let and let-else axioms of structural congruence we easily find T in
the scope of t∗ such that P ′ ≡ ProxyM{D}[S |T]. We match this move by letting
C send packet M to the Proxy inside Q:

C[Q]
τ−→ K , C ′[ProxyM∗{D}[S |T]]

Clearly C[P]
A−→ H iff C[Q]

A−→ K; we are done since σ |= HRK.

(Process reduction). This is the case whether C[P]
τ−−→ H is inferred from P

τ−→ P ′

and H ≡ C[P ′]. This case is trivial as a case analysis shows that there is P1

such that ProxyN{C}
τ−−→ P1 and P ′ ≡ (new s)Chans |P1; this is due to the fact

that Chans does not reduce and does not interact with the Proxy. A case analysis
shows that the following cases arise for P1: (a) P1 ≡ ProxyN1::N{C}[S1] or (b)
ProxyN{C1 :: C}[S1] or (c) ProxyN{C}[S1] or (d) ProxyN{C}[S1] | !net〈M〉. We

match this move with C[Q]
τ−−→ K where in case (a) K ≡ ProxyN1::N∗{C}[S1] or

(b) K ≡ C[Q]
τ−−→ ProxyN∗{C1 :: C}[S1] or (c) K ≡ C[Q]

τ−−→ ProxyN∗{C}[S1]

or (d) K ≡ C[Q]
τ−−→ ProxyN∗{C}[S1] | !net〈M〉. A case analysis shows that in

5.4. Operational correspondence 127

cases (a,b,c) we have C[P]
A−→ H ∧ C[Q]

A−→ K while in case (d) C[P] −→ H ∧
C[Q] −→ K. Since for all cases (a,b,c,d) we have σ |= HRK, we are done.

(Context reduction). Trivial.

Now let C[Q]
τ−−→ K. The case whether the reduction is inferred from Q re-

ceiving a packet from the context is analogous to case (Context out - Process in)

in the sub case whether C[P]
τ−−→ H has been inferred from a synchronization due

to case (a). We omit the details that are very similar to that case. The remaining

cases whether K ≡ C[Q′] and Q
τ−−→ Q′ or whether K ≡ C ′[Q] and C

τ−−→ C ′ are
specular to their respective cases above.

The next lemma says that typed processes are implementable with the low-level
capabilities corresponding to the high level type environment.

Lemma 82. Let Γ ` P . There exists R closed by {|Γ |} such that 〈〈P 〉〉 ≡{| I |} R{|Γ |}.
Proof. Suppose Γ ` P . We let ∆ = {xa : Γ(a) : a ∈ Γ} be the environment formed
by variables indexed by names in Γ having the type of the names of Γ. By the sub-
stitution Lemma we have that ∆ ` P{x̃fn(P)/fn(P)} where P{x̃n1,...,nm/n1, . . . , nm}
is a shorthand for P{xn1/n1, . . . , xnm/nm}. We apply Lemma 80 and infer
〈〈 (P{x̃fn(P)/fn(P)}){dom(Γ)/x̃Γ} 〉〉 ≡{| I |} 〈〈 (P{x̃fn(P)/fn(P)}) 〉〉 {|Γ |}. It’s easy to

see that P{x̃fn(P)/fn(P)}){dom(Γ)/x̃Γ} = P . We have thus found R ,
〈〈 (P{x̃fn(P)/fn(P)}) 〉〉 that proves the claim, and we are done.

The following notation will be useful to indicate a successful synchronization on
a channel queue; this case is the dual of Def.22(4).

Notation 3. Let P
τ−→ P ′. Whenever P ≡

C[(new n◦)Q | filter ỹ from n◦@T in P |n◦〈M〉] and P ′ ≡
C[(new n◦)Q | filter M from n◦@T in P] and M has type S <: T we say that

P successfully synchronizes to P ′ on n◦@T , written P
n◦@T−→ P ′.

We are ready to prove that the encoding 〈〈 · 〉〉 preserve the high level executions
steps.

Proposition 83 (Preservation of execution steps). Let Γ be a closed type

environment such that Γ ` P . If P
τ−→ P ′ then CE[〈〈Γ . P 〉〉] A

=⇒−→≈A
{|Γ |}

CE[〈〈Γ . P ′ 〉〉].
Proof. We proceed by induction on the derivation of P

τ−→ P ′.

(PI-CLOSE@) The process of interest is P |Q where P
(c̃:C̃)a〈b@B〉−−−−−−−−→ P ′ and

Q
a(b@B′)−−−−−→ Q′ and B <: B′ and c̃ ∩ fn(Q) = ∅ and P |Q τ−−→ (new c̃ : C̃)(P ′ |Q′).

128 5. Proofs

Let Γ ` P . From P
(c̃:C̃)a〈b@B〉−−−−−−−−→ P ′ we infer P ≡ (new c̃ : C̃)P ′ | a〈b@B〉; from

Q
a(b@B′)−−−−−→ Q′ we infer Q ≡ (new ã : Ã)a(x@B′).Q1 |Q′′ and Q′ ≡ (new ã :

Ã)Q1{b/x} |Q′′. By definition of 〈〈 · 〉〉 we have 〈〈P 〉〉 = (new c̃ : C̃) 〈〈P ′ 〉〉 | 〈〈 a〈b@B〉 〉〉
and 〈〈Q 〉〉 = (new ã) 〈〈 a(x@B′).Q1 〉〉 | 〈〈Q′′ 〉〉 .

From the semantics of the applied calculus and from the definition of adminis-
trative reduction we infer the following reductions:

CE[〈〈P 〉〉 | 〈〈Q 〉〉] A
=⇒ H , W | (new ã, c̃, a1, c, d, e, f, k, h1, h2)Chana1{c :: d}[G]

|ProxyN{e :: f} | (filter x from sk(k) in 〈〈Γ, ã : Ã, x : B′ . Q1 〉〉) | | 〈〈Q′′ 〉〉 | 〈〈P ′ 〉〉
|L(c, d, e, f, h1, h2)

where G = a◦1〈b@B〉 | filter y from a◦1@B′ in ! net〈{y}sk(k)〉 and

L(c, d, e, f, h1, h2) =!net〈{a⇑r, sk(h1), e}k+
P
〉 | !net〈{a⇑w, sk(h2), f}k+

P
〉

| !net〈{a1⇑r}sk(h1)〉 | !net〈{a1⇑w}sk(h2)〉 | !net〈{B′, sk(k), d}a+
1r
| !net〈{b⇑B, c}a+

1w
〉〉

We illustrate the process L(c, d, e, f, h1, h2). The first emission on the left of the
definition is the request to the proxy for the read capability linked to a; the second
is the analogous request for the write capability linked to a. The third and the fourth
emission are the proxy’s answer respectively to the read and write proxy request.
The fifth emission is the read request to the channel server linked to a while the
sixth is the write request to the same channel server.

We let H
a@B′−→ and we complete the protocol with the administrative reductions

by which the filter receives the answer ! net〈{b⇑B′}sk(k)〉:

H
a◦1@B′−→ K0

A
=⇒ K , W | (new ã, c̃, a1, c, d, e, f, k, h1, h2)Chana1{c :: d}

|ProxyN{e :: f} | 〈〈Γ, ã : Ã, x : B′ . Q1 〉〉 {b⇑B′/x} | | 〈〈Q′′ 〉〉 | 〈〈P ′ 〉〉 |R
| !net〈{b⇑B′}sk(k)〉 |L(c, d, e, f, h1, h2)

where R = (new r)!r.filterr x with sk(k) in 〈〈Γ, ã : Ã, x : B′ . Q1 〉〉 and
filtern ỹ with M in P
, net(x).decrypt x as {ỹ}M in P else (net〈x〉 |n〈〉).

First note that from closure of ≈A under administrative reductions (Corollary
66) we have {|Γ |} |= K0 ≈A K. Next we discard R by noting that for any ρ holds
ρ |= R ∼A 0. This is indeed a variant of the well known pi calculus equation
(new a)a.P ∼ 0 and holds for strong administrative equivalence as well; we omit the
proof details that are rather obvious. Let ρ be a substitution such that {|Γ |} ⊆ ρ
and such that ρ is sufficient to build K from a process closed by ρ. By contextuality
of ∼A we infer

ρ |= K ∼A W | (new ã, c̃, a1, c, d, e, f, k, h1, h2)Chana1{c :: d} |ProxyN{e :: f} |
〈〈Γ, ã : Ã, x : B′ . Q1 〉〉 {b⇑B′/x} | | 〈〈Q′′ 〉〉 | 〈〈P ′ 〉〉 |0 | !net〈{b⇑B′}sk(k)〉
|L(c, d, e, f, h1, h2)

5.4. Operational correspondence 129

We use Lemma 80 to bring the floating substitution {b⇑B′/x} inside the translation.
Indeed from the hypotheses Γ ` P |Q and P ≡ (new c̃ : C̃)P ′ | a〈b@B〉 we infer
Γ, c̃ : C̃ ` b : B. From the hypothesis B <: B′ and subsumption we deduce
Γ, c̃ : C̃ ` b : B′. We use weakening of Prop. 4 and Proposition 7 and we infer
respectively Γ, c̃ : C̃, ã : Ã ` b : B′ and Γ, c̃ : C̃, ã : Ã, x : B′ ` Q1. We apply Lemma
80 and obtain:

ρ |= 〈〈Γ, c̃ : C̃, ã : Ã, x : B′ . Q1 〉〉 {b⇑B′/x} ≈A 〈〈Γ, c̃ : C̃, ã : Ã . Q1{b/x} 〉〉
Next, we apply Proposition 41 to erase bindings in ρ \ {|Γ |} and infer

{|Γ |} |= K ∼A W | (new ã, c̃, a1, c, d, e, f, k, h1, h2)Chana1{c :: d} |ProxyN{e :: f}
| 〈〈Γ, c̃ : C̃, ã : Ã . Q1{b/x} 〉〉 | | 〈〈Q′′ 〉〉 | 〈〈P ′ 〉〉 | !net〈{b⇑B′}sk(k)〉 |L(c, d, e, f, h1, h2)

where we used the axiom of structural congruence for the null process and ≡⊆∼A.
Next we use Lemma 69 to remove emissions encrypted under a session key not

known to the environment:

ρ |= W | (new h1, h2, k)!net〈{a1⇑r}sk(h1)〉 | !net〈{a1⇑w}sk(h2)〉 | !net〈{b⇑B′}sk(k)〉 ∼A W

As above the procedure is to consider a base ρ larger than {|Γ |} that can build K, to
exploit contextuality of ∼A, and then to erase unuseful terms. We omit the details
and directly provide the following the following equation where we use the previous
equation and transitivity of ∼A:

{|Γ |} |= K ∼A W | (new ã, c̃, a1, c, d, e, f, k, h1, h2)Chana1{c :: d} |ProxyN{e :: f}
| 〈〈Q1{b/x} 〉〉 | | 〈〈Q′′ 〉〉 | 〈〈P ′ 〉〉 |L(c, d, e, f)

where L(c, d, e, f) is L(c, d, e, f, h1, h2) without the emissions encrypted with sym-
metric keys.

Next we apply Lemma 73 and Lemma 76 to remove emissions that have been
accepted respectively by Chana1{c :: d} and ProxyN{e :: f}. We assume that the
ρ above satisfies the requirements of both Lemma and that is sufficient to build
〈〈Q1{b/x 〉〉 | 〈〈Q′′ 〉〉 | 〈〈P ′ 〉〉 .

ρ |= W | (new , c, d, e, f, h1, h2) |Chana1{c :: d} |ProxyN{e :: f} ≈A

(new c, d, e, f, h1, h2)L(c, d, e, f) |Chana1{c :: d} |ProxyN{e :: f}
We use ∼A⊆≈A and proceed as in previous steps to obtain:

{|Γ |} |= K ≈A W | (new ã, c̃, a1, c, d, e, f, k, h1, h2)Chana1{c :: d} |ProxyN{e :: f}
| 〈〈Q1{b/x} 〉〉 | | 〈〈Q′′ 〉〉 | 〈〈P ′ 〉〉

Next we remove nonces both from the channel and from the proxy by using respec-
tively Lemma 75 and Lemma 78:

ρ |= (new a1, c, d, e, f)Chana1{c :: d} |ProxyN{e :: f} ≈A (new a1)Chana1 |ProxyN

130 5. Proofs

We remove the channel for a′ and the entries in the proxy by using Lemma 81:

ρ |= (new a1)Chana1 |ProxyN ∼A (new a1)Proxy

We obtain that

{|Γ |} |= K ≈A W | (new ã, c̃, a1, k, h1, h2)Proxy | 〈〈Q1{b/x} 〉〉 | 〈〈Q′′ 〉〉 | 〈〈P ′ 〉〉

Summing up, by removing restriction on names a1, k, h1, h2 not occurring elsewhere
by using the axiom of structural congruence for new, we obtain :

{|Γ |} |= K ≈A W | (new ã, c̃) | 〈〈Q1{b/x} 〉〉 | 〈〈Q′′ 〉〉 | 〈〈P ′ 〉〉 |Proxy

With minor structural rearrangements we obtain

{|Γ |} |= K ≈A W |Proxy | 〈〈 (new c̃ : C̃)(P ′ | (new ã : Ã)(Q′′ |Q1{b/x})) 〉〉 .

Summing up we have that

CE[〈〈P |Q 〉〉] A
=⇒−→≈A

{|Γ |} K ≈A
{|Γ |} CE[〈〈 (new c̃ : C̃)(P ′ |Q′) 〉〉]

and by transitivity of ≈A we have done.

(PI-MATCH) The process of interest is [u = v] P ; Q and [u = v] P ; Q
τ−−→ R may

be inferred from (a) P
τ−−→ R or (b) Q

τ−−→ R. Suppose case (a) holds. Since
[u = v] P ; Q is closed, it must be that u = a = v for some name a in I (re-
member that if P is compatible with I then fn(P) ⊆ dom(I)). The I.H. is that

∃K such that CE[〈〈Γ . P 〉〉] A
=⇒−→ K and K ≈A

{|Γ |} CE[〈〈Γ . R 〉〉]. By definition

〈〈Γ . [a = a] P ; Q 〉〉 µ , if aID = aID then 〈〈Γua:Γ(a)ua:Γ(a) . P 〉〉 µelse 〈〈Γ . Q 〉〉 µ;
notice that we do not add to µ the unuseful binding a↔a. By using
the let axiom of structural congruence and Γua:Γ(a)ua:Γ(a) = Γ we infer
〈〈Γ . [a = a] P ; Q 〉〉 µ ≡ 〈〈Γ . P 〉〉 µ. We use the induction hypothesis and infer

CE[〈〈Γ . [a = a] P ; Q 〉〉]µ A
=⇒−→ K, as desired. In case (b) we proceed similarly

and by exploiting the let else axiom of structural congruence and induction we infer
the desired result.

(PI-PAR) The process of interest is P |Q; the transition under analysis is

P |Q τ−−→ S. By the (PI-PAR) rule in Tab. 2.2 we infer that or (a) ∃P ′.P
τ−−→ P ′

and S ≡ P ′ |Q or (b) ∃Q′.Q
τ−−→ Q′ and S ≡ P |Q′. We draw the case (a);

the case (b) is specular. Suppose case (a) holds. By the inductive hypothe-

sis we have that there exists K such that CE[〈〈P 〉〉] A
=⇒−→ A

=⇒ K and K ≈A
{|Γ |}

CE[〈〈P ′ 〉〉]. By the operational semantics of the applied pi calculus, particularly
from rule (PAR), and by definition of administrative equivalence, we easily infer that

〈〈Q 〉〉 |CE[〈〈P 〉〉] A
=⇒−→ A

=⇒ 〈〈Q 〉〉 |K. From Γ ` P |Q and (T-PAR) we infer Γ ` Q.

5.4. Operational correspondence 131

From Lemma 82 we infer that there is R closed by {|Γ |} such that 〈〈Q 〉〉 ≡{| I |} R{|Γ |}.
From the contextuality of ≈A we infer {|Γ |} |= R{|Γ |} |K ≈A CE[〈〈P ′ 〉〉] |R{|Γ |} and
in turn {|Γ |} |= 〈〈Q 〉〉 |K ≈A 〈〈Q 〉〉 |CE[〈〈P ′ 〉〉], because ≡{| I |} is finer than ≈A (see
Lemma 80). By using axioms of structural congruence for parallel reordering we
obtain {|Γ |} |= 〈〈Q 〉〉 |K ≈A CE[〈〈P ′ |Q 〉〉], as desired.

(PI-RES) The process of interest is (new a)P ; the transition under analysis is

(new a)P
τ−−→ (new a : A)P ′. From the typing system we infer Γ, a : A ` P . By the

(PI-RES) rule in Tab. 2.2 we infer that P
τ−−→ P ′; the inductive hypothesis is that

there exists K such that CE[〈〈P 〉〉] A
=⇒−→ K and {|Γ, a : A |} |= K ≈A CE[〈〈P ′ 〉〉].

By the (RES) rule of the applied pi calculus semantics and by definition of ad-

ministrative equivalence we infer that (new a)CE[〈〈P 〉〉] A
=⇒−→ (new a)K. From

contextuality of ≈A and the I.H. we infer that {|Γ, a : A |} \ a |= (new a)K ≈A

(new a)CE[〈〈P ′ 〉〉]. It’s easy to see that {|Γ, a : A |} \a = {|Γ |}; by using the axiom of
structural congruence for New with a 6∈ fn(CE[〈〈P ′ 〉〉]) we infer {|Γ |} |= (new a)K ≈A

CE[〈〈 (new a)P ′ 〉〉], as desired.

(PI-REPL) Analogous to case (PI-PAR).

The reverse direction of operational correspondence is subtler, as the encoding is
not prompt. We therefore need a generalization of the standard reflection result,
based on the relation ≈A. First we introduce useful notation and terminology and

then state a few preliminary lemmas. Let P
A

=⇒ P ′ −→ Q. We call the reduction

sequence
A

=⇒ canonical, and write it as in
pAq
=⇒, if it only includes the administrative

steps from P required to enable the synchronization in P ′ (as stated, this is loose,
but can be made precise, as we know exactly which are those steps).

Lemma 84. The following hold.

1. ρ |= ProxyN ::M{C}[P] ∼A ProxyM ::N{C}[P]

2. ρ |= ProxyN{C :: D}[P] ∼A ProxyN{D :: C}[P]

3. ρ |= Chana{N :: M}[P] ∼A Chana{M :: N}[P].

Lemma 85. Let CE[〈〈Γ . P 〉〉] A
=⇒ H −→ K. Then there exists H ′ such that

CE[〈〈Γ . P 〉〉] pAq
=⇒ H ′ −→≈A

ρ K.

Proof. Let CE[〈〈P 〉〉] A
=⇒ H −→ K. A case analysis shows that H

n@t−→ K. To

see that H −→ K implies H
n@t−→ K, first consider that the names occurring in

inputs and outputs of H are net, ñ◦, ñ∗ and “recursion” names r̃ used by processes
rec X.P . A case analysis shows that: (i) H’s outputs on net are under replication
while its inputs on net are under replication or under recursion: reductions involving
replicated input and replicated output satisfy Def. 22(1) while reductions involving

132 5. Proofs

recursive input and replicated output satisfy Def. 22(2) or Def. 22(3) since such
inputs are filters waiting for a term M encrypted under a session key sk(N) and
no other terms M ′ 6= M are encrypted under sk(N) in H; (ii) reductions on n◦

or satisfy Def. 22(4) or are (n, t) synchronizations for some t; (iii) reductions on
n∗ satisfy Def. 22(5) since translated processes never associate the same nonce to
different packets; (iv) reductions on t∗ satisfy Def. 22(6); (v) reductions on recursion
channels satisfy Def. 22(7).

As canonical sequence we choose the one composed by the minimal completion
of the write protocol (which is asynchronous) followed by the minimal sequence to
complete the asynchronous part of the read protocol. The read protocol actually
completes when, after a (n, t)-synchronization, the reply is received by the input con-
tinuation. The completion of the write protocol arises in two steps. The first step is
the reduction inferred from !filter (x, z) with n−w in if z 6∈ Setn∗ then n◦〈x〉 synchroniz-
ing with emit({M}n+

w
); the second step is inferred from the continuation of the filter

synchronizing with n◦〈M〉. Whenever Q
τ−→ Q′ τ−→ Q′′ we write Q

W1−→ Q′ W2−→ Q′′

if Q
τ−→ Q′ is inferred from the first step of the write protocol and Q′ τ−→ Q′′ is in-

ferred from the second part of the write protocol. Specularly, the completion of the
asynchronous part of the read protocol arises in two steps. The first step is inferred
from ! filter (y, t, z) with n−r in if z 6∈ Setn∗ then filter x from n◦@t in ! net〈{x}y〉
synchronizing with emit({M}n+

r
); the second step is inferred from the continuation

of the filter synchronizing with n◦〈M〉. former. Whenever Q
τ−→ Q′ τ−→ Q′′ we

write Q
R1−→ Q′ R2−→ Q′′ to indicate that Q

τ−→ Q′ is inferred from the first step
of the read protocol and Q′ τ−→ Q′′ is inferred from the second part of the read
protocol.

We are ready to find H ′ such that CE[〈〈P 〉〉] pAq
=⇒ H ′ −→≈A

ρ K; we proceed
as follows. We first move the reduction inferred from the first step of the write
protocol backwards; next we roll back the reduction inferred from the second step
of the write protocol. Then we do the same procedure for the asynchronous part
of the read protocol. Finally we roll back the (n, t) synchronization, and we show
that the process reached with the (n,t) synchronization is administrative equivalent
to K, as desired.

(Write protocol - First step) Let CE[〈〈P 〉〉] A
=⇒ H

n@t−→ K we know that there

exists Q1, Q2 such that CE[〈〈P 〉〉] A
=⇒ Q1

W1−→ Q2
A

=⇒ H; this is due to the fact
that the write protocol and the asynchronous part of the read protocol must be
completed for H be ready to commit. If CE[〈〈P 〉〉] = Q1 then we go can jump to
the paragraph above describing the proof for the second step of the write protocol.

Otherwise suppose CE[〈〈P 〉〉] A
=⇒ Q0

A−→ Q1
W1−→ Q2

A
=⇒ H. Since Q1

W1−→ Q2

has been inferred from a replicated input and a replicated output that are present
in CE[〈〈P 〉〉], we infer that these two threads are ready to synchronize even in Q0:

∃H . CE[〈〈P 〉〉] A
=⇒ Q0

W1−→ H
A−→ Q2. By repeating the procedure for all reductions

CE[〈〈P 〉〉] A
=⇒ Q0 we infer that there is J such that CE[〈〈P 〉〉] W1−→ J

A
=⇒ H.

5.4. Operational correspondence 133

(Write protocol - Second step) In the previous step we have obtained CE[〈〈P 〉〉] W1−→
J

A
=⇒ H. Now there must exists Q1, Q2 such that CE[〈〈P 〉〉] W1−→ J

A
=⇒ Q1

W2−→
Q2

A
=⇒ H. If J = Q1 we jump to the paragraph above involving the first step of the

read protocol. Otherwise there is Q0 such that CE[〈〈P 〉〉] W1−→ J
A

=⇒ Q0
A−→ Q1

W2−→
Q2

A
=⇒ H. We know that Q0

W2−→ Q1 has been inferred from the continuation
of the filter on n−w receiving a nonce list on the private channel n∗. We analyze

possible cases for the reduction Q0
A−→ Q1. The following cases arise: the reduction

is inferred from (a) a recursion reduction which unblocks the filter on n−w or (b)
a reduction on n∗ or (c) else. In case (a) we know that there is Q ≡ Q1 such

that CE[〈〈P 〉〉] W1−→ J
A

=⇒ Q
A−→ Q0

A−→ Q1
W2−→ Q2

A
=⇒ H. From Proposition

55 we infer CE[〈〈P 〉〉] W1−→ J
A

=⇒ Q
W2−→ Q2

A
=⇒ H. In case (b) we infer that

CE[〈〈P 〉〉] W1−→ J
A

=⇒ Q0
W2−→ A−→∼A

ρ Q2 ∧Q2
A

=⇒ H. Indeed we may execute action
(b) after the second step of write protocol and what we obtain is a reordering
of the list of nonces; Lemma 84 ensures that such reordering is not visible up to
strong administrative equivalence. Notice indeed that the nonces exchanged in these
reductions are different; if not we have a contradiction since by hypothesis the

write protocol is completed due to Q1
W2−→ Q1. In case (c) we easily infer that

CE[〈〈P 〉〉] W1−→ J
A

=⇒ Q0
W2−→ A−→ Q2. By repeating the procedure for all reductions

(a) J
A

=⇒ Q or (b,c) J
A

=⇒ Q0 and by transitivity of ∼A we find Y such that

CE[〈〈P 〉〉] W1−→ J
W2−→ Y

A
=⇒∼A

ρ H.

(Read protocol - First step) In the previous step we obtained that CE[〈〈P 〉〉] W1−→
J

W2−→ Y
A

=⇒ X for some X ∼A
ρ H. We proceed analogously to the first step of write

protocol and find G such that CE[〈〈P 〉〉] W1−→ J
W2−→ Y

R1−→ G
A

=⇒ X.

(Read protocol - Second step) CE[〈〈P 〉〉] W1−→ J
W2−→ Y

A
=⇒ X∧X ∼A

ρ H. We proceed
analogously to the second step of write protocol and fin Z such that

CE[〈〈P 〉〉] W1−→ W2−→ R1−→ R2−→ A
=⇒ Z and Z ∼A

ρ X. By Z ∼A
ρ H and chasing diagrams

argument we easily have that there is K∗ such that CE[〈〈P 〉〉] W1−→ W2−→ R1−→ R2−→ A
=⇒

Z −→ K∗ ∧K∗ ∼A
ρ K. A case analysis shows that Z

n@t−→ K∗.

((n,t) step) In previous steps we obtained that there is K ′ such that

CE[〈〈P 〉〉] W1−→ W2−→ R1−→ R2−→ K ′ A
=⇒ Z

n@t−→ K∗ and K∗ ∼A
ρ K. In case K ′ = Z

we are done as CE[〈〈P 〉〉] pAq
=⇒ K ′ n@t−→ K∗ and K∗ ∼A

ρ K. From ∼A⊆≈A we obtain

the claim. Otherwise we have that there is Q1 such that CE[〈〈P 〉〉] pAq
=⇒ H ′ A

=⇒
Q1

A−→ Z
n@t−→ K∗. Three cases arise for Q1

A−→ Z corresponding to (a) the reduc-
tion involves the output on n◦ or (b) the reduction occurs on a recursion channel
and unblocks the input on n◦ or (c) else. In case (a) we infer that there is G such

that CE[〈〈P 〉〉] pAq
=⇒ H ′ A

=⇒ Q1
n@t−→ G ≈A

ρ K∗. Indeed in G the output on n◦ is

not more available; since in Q1
A−→ Z such packet was picked up from a recur-

134 5. Proofs

sive filter, we have that in Z there is a non-prompt filter on n◦, hence the use of
≈A

ρ to make the filter prompt as it was in Q1. In case (b) we infer that there is

Q ≡ Z such that CE[〈〈P 〉〉] pAq
=⇒ H ′ A

=⇒ Q
A−→ Q1

A−→ Z
n@t−→ K∗. From Propo-

sition 55 we infer CE[〈〈P 〉〉] pAq
=⇒ H ′ A

=⇒ Q
n@t−→ K∗. In case (c) we easily infer

CE[〈〈P 〉〉] pAq
=⇒ H ′ A

=⇒ Q1
n@t−→ A−→ K∗. By repeating the procedure for all reduc-

tions (a,c) H ′ A
=⇒ Q1 or (b) H ′ A

=⇒ Q and by transitivity of ≈A we find T such

that CE[〈〈P 〉〉] pAq
=⇒ H ′ n@t−→ T ≈A

ρ K∗. From K∗ ∼A
ρ K and ∼A⊆≈A we infer that

CE[〈〈P 〉〉] pAq
=⇒ H ′ −→≈A

ρ K, as requested.

The following Lemma is the key to prove that the encoding reflects high level
execution steps.

Lemma 86. Suppose CE[〈〈Γ . P 〉〉] pAq
=⇒ H −→ K. Then there exists P ′ such that

P
τ−→ P ′ and {|Γ |} |= K ≈A CE[〈〈Γ . P ′ 〉〉].

Proof. From the hypothesis of the Lemma we infer the shape of P and in turn the

shape of H. First from CE[〈〈P 〉〉] pAq
=⇒ H −→ K we infer CE[〈〈P 〉〉] pAq

=⇒ H
a@B′−→ K, for

some name a and type B′ (see the proof of Lemma 85). Next a case analysis shows
that P ≡ C[a〈b@B〉 | a(x@B′).Q] where B <: B′. Similarly to the (Pi-Close) case
of the proof of preservation of execution steps (Prop. 83) we infer the shape of H.
The presence of the context is easily tackled by noting that 〈〈C[P] 〉〉 = 〈〈C 〉〉 [〈〈P 〉〉].
As in that case we let K to complete the read protocol by inferring the administrative
reductions that let the continuation 〈〈Q 〉〉 receive the terms b⇑B′. Finally we discard
emissions encrypted under symmetric keys by using Lemma 69, we ignore emissions
encrypted under asymmetric keys by using Lemmas 73,76, we remove nonces from
channels and proxy by using Lemmas 75, 78, and we remove both the entries in the
proxy for a and the channel linked to those entries by using Lemma 81. Finally
we use Lemma 80 to bring b⇑B′ inside 〈〈Q 〉〉 , and by P ′ ≡ C[Q{b/x}] and minor
structural rearrangements we obtain that there is K∗ such that:

CE[〈〈P 〉〉] pAq
=⇒ H

a@B′−→ K
A

=⇒ K∗ ∧ {|Γ |} |= K∗ ≈A CE[〈〈P ′ 〉〉]

From closure of ≈A under administrative reductions (Corollary 66) we infer {|Γ |} |=
K ≈A K∗; by transitivity of ≈A we infer {|Γ |} |= K ≈A CE[〈〈P ′ 〉〉], as desired.

Proposition 87 (Reflection of execution steps). Assume {|Γ |} |= H ≈A

CE[〈〈Γ . P 〉〉] and H
τ−→ K. Then either {|Γ |} |= H ≈A K or there exists P ′

such that P
τ−→ P ′ and {|Γ |} |= K ≈A CE[〈〈Γ . P ′ 〉〉]].

Proof. Let H
τ−→ K. If H

A−→ K, we apply Proposition 65 and we obtain {|Γ |} |=
H ≈A K, as desired. Otherwise we have that H −→ K, and by {|Γ |} |= H ≈A

CE[〈〈P 〉〉] we infer that there are J, Z s.t. CE[〈〈P 〉〉] A
=⇒−→ J

A
=⇒ Z and {| I |} |=

K ≈A Z. We apply Lemma 85 and we infer that there is Q s.t. CE[〈〈P 〉〉] pAq
=⇒−→ Q

5.4. Operational correspondence 135

and {|Γ |} |= Q ≈A J . We apply Lemma 86 ad we obtain that there is P ′ s.t.

P
τ−→ P ′ and {|Γ |} |= Q ≈A CE[〈〈P ′ 〉〉]. From J

A
=⇒ Z and Corollary 66 we deduce

{|Γ |} |= J ≈A Z. Summing up we have the chain: {|Γ |} |= K ≈A Z ≈A J ≈A Q ≈A

CE[〈〈P ′ 〉〉]. We use the transitivity of ≈A and we infer {|Γ |} |= K ≈A CE[〈〈P ′ 〉〉], as
desired.

To prove the operational correspondence of the encoding we need a technical
lemma.

Lemma 88. If {|Γ |} |= P ≈A Q and Γ <: I then {| I |} |= P ≈A Q.

Proof. Let {|Γ |} |= P ≈A Q and Γ <: I. Assume Γ = ã : Ã, I = ã : B̃. We use the
notation ñ⇑T̃ to indicate the tuples n1⇑T1, . . . , nm⇑Tm. We have that {|Γ |} = ã⇑Ã
and {| I |} = ã⇑B̃. Consider a tuple a⇑A ∈ {|Γ |} and assume a⇑A = M1,M2, M3,M4.
Let a⇑B be the correspondent tuple in ã⇑B̃ and assume a⇑B = N1, N2, N3, N4.
From Γ <: I we easily infer A <: B. A case analysis on the encoding of values shows
that M1 = N1 and M4 = N4 and M2 6= N2 implies N2 = > and M3 6= N3 implies
N3 = >.

Let M̃/x̃ be the set of substitutions in {|Γ |} such that for each M/x ∈ M̃/x̃ with
M 6= > holds that >/x ∈ {| I |}. We apply Proposition 41 to {|Γ |} |= P ≈A Q and
remove bindings M̃/x̃ obtaining {|Γ |} \ M̃/x̃ |= P ≈A Q. Then we build {| I |} by
adding bindings >̃/x̃ to {|Γ |}\M̃ as in: ({|Γ |}\M̃/x̃), >̃/x̃ = {| I |}. Since fn(>) = ∅,
we apply Proposition 40 to {|Γ |} \ M̃/x̃ |= P ≈A Q and infer {| I |} |= P ≈A Q, as
desired.

We have all the ingredients to prove the operation correspondence of the
encoding 〈〈 · 〉〉 .

Theorem 89 (Operational Correspondence). Let Γ, I be closed type environ-
ment such that Γ ` P and Γ <: I. The following hold.

1. If P
τ−→ P ′ then CE[〈〈Γ . P 〉〉] A

=⇒−→≈A
{| I |} CE[〈〈Γ . P ′ 〉〉];

2. If {| I |} |= H ≈A CE[〈〈Γ . P 〉〉] and H −→ K then there exists P ′ such that
P

τ−→ P ′ and {| I |} |= K ≈A CE[〈〈Γ . P ′ 〉〉]].

Proof. Apply Propositions 83,87 and Lemma 88.

The following corollaries establish a weak version of operational correspondence.

Corollary 90. Let Γ, I be closed type environment such that Γ ` P and Γ <: I.
If CE[〈〈Γ . P 〉〉] =⇒ H then there exists P ′ such that P =⇒ P ′ and {| I |} |= H ≈A

CE[〈〈Γ . P ′ 〉〉].

136 5. Proofs

Proof. By hypothesis there is n ≥ 0 such that CE[〈〈P 〉〉](A
=⇒−→)n A

=⇒ H. We
proceed by induction on n. If n = 0 then by Corollary 66 we have that {| I |} |=
CE[〈〈P 〉〉] ≈A H. We have thus found P ′ such that P =⇒ P ′ satisfying the equation

above. Otherwise assume CE[〈〈P 〉〉](A
=⇒−→)n A

=⇒ K
A

=⇒−→ A
=⇒ H. By inductive

hypothesis we have that there is Q such that P =⇒ Q and {|Γ |} |= K ≈A CE[〈〈Q 〉〉].
Let X, Y be such that K

A
=⇒ X −→ Y

A
=⇒ H. From Corollary 66 we infer

{|Γ |} |= K ≈A X and by transitivity of ≈A we obtain {|Γ |} |= X ≈A CE[〈〈Q 〉〉].
We apply Theorem 89(2) to {|Γ |} |= X ≈A CE[〈〈Q 〉〉] ∧X −→ Y and we infer that

there exists P ′ such that Q
τ−−→ P ′ and {|Γ |} |= Y ≈A CE[〈〈P ′ 〉〉]. By closure of

≈A under administrative reductions we infer {|Γ |} |= Y ≈A H. Therefore we have
the chain: {|Γ |} |= H ≈A Y ≈A CE[〈〈P ′ 〉〉]. From this equation we infer {|Γ |} |=
H ≈A CE[〈〈P ′ 〉〉]. From the hypothesis CE[〈〈P 〉〉](A

=⇒−→)n A
=⇒ K

A
=⇒−→ A

=⇒ H
we infer the weaker CE[〈〈P 〉〉] =⇒ H. From P =⇒ P ′ and {|Γ |} |= H ≈A CE[〈〈P ′ 〉〉]
we obtain the proof of the corollary.

Corollary 91. Let Γ, I be closed type environment such that Γ ` P and Γ <: I. If
P =⇒ P ′ then CE[〈〈Γ . P 〉〉] =⇒ ≈A

{| I |} CE[〈〈Γ . P ′ 〉〉].
Proof. Standard, by induction on the length n of the derivation P =⇒ P ′.

The last result we need before proving the soundness of the translation is preser-
vation and reflection of high level barbs. Given a type environment I, we define
testing processes of the form

T n = link (n⇑r, y) in (new k)emit({sk(k),>}y+
r
) | filter x̃ with sk(k) in ω〈〉

We assume ω 6∈ fn({| I |}). The following barb predicate I |= P ⇓n+
w
, (n+

r ∈ A({| I |}) ∧
{| I |}, ω/x |= (T n |P) ⇓ω correspond to pi calculus barb I |= P ⇓n, in the following
sense.

Proposition 92. The following hold.

1. I |= P ↓a implies I |= CE[〈〈Γ . P 〉〉]⇓a+
w

2. I |= CE[〈〈Γ . P 〉〉]⇓a+
w

implies I |= P ⇓a.

Proof. We first prove (1). By I |= P ↓a we infer that (a) I ` a : r and (b) P ≡
C[a〈b@B〉] for some name b, type B and context C that does not binds a. From
(a) we deduce a+

r ∈ A({| I |}). From (b), similarly to the proof of of Proposition 83
(case (Pi-Close@)) we infer that there are H, D such that T a |CE[〈〈P 〉〉] =⇒ H
and H ≡ D[! net〈{b⇑>}sk(k)〉 | filter x with sk(k) in ω〈〉] where D does not bind ω.

We therefore obtain H
ω〈〉

==⇒ and in turn {| I |}, ω/x |= CE[〈〈P 〉〉]⇓ω, as desired.
To see (2), suppose I |= CE[〈〈P 〉〉] ⇓a+

w
. By definition we have that (a) a+

r ∈
A({| I |} and (b) {| I |}, ω/x |= (T a |CE[〈〈P 〉〉]) ⇓ω. From fn(P) ⊆ dom(I) we infer

5.4. Operational correspondence 137

fn(P) ⊆ dom({| I |}). From ω 6∈ fn({| I |}) and the result above we conclude that
ω 6∈ fn(CE[〈〈P 〉〉]). Therefore the barb on ω comes from T a and it is easy to see that
the barb is unblocked iff the filter receives a packet ! net〈{M}sk(k)〉 with M having
consistent arity and k being the fresh name generated by T a itself. A case analysis
shows that such packet must be generated by the channel server a′ linked to a upon
a (a′,>) synchronization. Since such synchronization may occur iff a proxy write
request on a is followed by a write request on a′, we infer that P =⇒ C[a〈b@B〉]
for some name b, type B and context C that does not binds a. From (a) we infer
I ` a : r. We glue the results and infer I |= P ⇓a, as desired.

The next Theorem ensures that the translation equates only high level equivalent
processes.

Theorem 93 (Soundness). Let Γ, ∆ and I be closed type environments s.t. Γ, ∆ <:
I. We have that {| I |} |= CE[〈〈Γ . P 〉〉] ∼=Aπ CE[〈〈∆ . Q 〉〉] implies I |= P ∼=π Q.

Proof. We consider the relation defined as I ² PRQ whenever {| I |} |=
CE[〈〈P 〉〉]] ∼=Aπ CE[〈〈Q 〉〉], and we prove that R is a typed behavioural equivalence.
Suppose I ² PRQ. We first prove that R is reduction closed by using the opera-

tional correspondence of the encoding (see Theorem 89). Let P
τ−−→ P ′. We apply

Theorem 89(1) and find K s.t. CE[〈〈 〈〈P 〉〉 〉〉] A
=⇒−→ K and {| I |} |= K ≈A CE[〈〈P ′ 〉〉].

From ≈A⊆∼=Aπ (see Cor. 62) we have {| I |} |= K ∼=Aπ CE[〈〈P ′ 〉〉]. By definition of
R we deduce that there exists H s.t. CE[〈〈Q 〉〉] =⇒ H and {| I |} |= K ∼=Aπ H.
We apply Corollary 90 to the last weak transition and we obtain that there ex-
ists Q′ s.t. Q ==⇒ Q′ and {| I |} |= H ≈A CE[〈〈Q′ 〉〉]. By ≈A⊆∼=Aπ we have
{| I |} |= H ∼=Aπ CE[〈〈Q′ 〉〉].
From the results above we build the following chain: {| I |} |= CE[〈〈P ′ 〉〉] ∼=Aπ K ∼=Aπ

H ∼=Aπ CE[〈〈Q′ 〉〉]. From transitivity of ∼=Aπ
{| I |} (Prop. 34) we conclude that {| I |} |=

CE[〈〈P ′ 〉〉] ∼=Aπ CE[〈〈Q′ 〉〉], which in turn implies I |= P ′RQ′, as needed.

Barb preservation is obtained directly by using Proposition 92. Let I |= P ↓a;
thus I(a) <: r and in turn a+

r ∈ Range({| I |}). By the contextuality of ∼=Aπ, we
find ω 6∈ fn({| I |}) s.t. {| I |}, ω/x |= CE[〈〈P 〉〉] ∼=Aπ CE[〈〈Q 〉〉]. Now we easily find T
s.t. {| I |}, ω/x ` T and T a ≡ T ({| I |}, ω/x). By closure under parallel composition of
∼=Aπ we infer {| I |}, ω/x |= CE[〈〈P 〉〉] |T a ∼=Aπ CE[〈〈Q 〉〉] |T a. By Proposition 92(1) we
have I |= CE[〈〈P 〉〉]⇓a+

w
, that is {| I |}, ω/x |= (CE[〈〈P 〉〉] |T a)⇓ω. By definition of R

we have that {| I |}, ω/x |= (CE[〈〈Q 〉〉] |T a)⇓ω. This together with a+
r ∈ Range({| I |})

let us infer I |= CE[〈〈Q 〉〉] ⇓a+
w
. We apply Prop. 92(2) and we obtain I |= Q ⇓a, as

needed.

Finally we show that R is contextual. Let I, a : A |= PRQ and let
Γ ` P, ∆ ` Q, where Γ <: I, a : A and ∆ <: I, a : A. We need to prove
that I |= (new a : A)PR(new a : A)Q. By definition of R we have that
{| I, a : A |} \ a |= (new a)CE[〈〈P 〉〉]] ∼=Aπ (new a)CE[〈〈Q 〉〉]. It is easy to see that

138 5. Proofs

{| I, a : A |} \ a = {| I |}. By using new axiom of structural congruence and the defini-
tion 〈〈 (new a : T)P 〉〉 = (new a) 〈〈P 〉〉 we infer {| I |} \ a |= CE[〈〈 (new a : A)P 〉〉]] ∼=Aπ

CE[〈〈 (new a : A)Q 〉〉]. We conclude that I |= (new a : A)PR(new a : A)Q, as desired.
For the second clause, let I |= PRQ and let I ` R. We need to show that
I |= P |RRQ |R. From Lemma 82 we infer that there exists R∗ closed by {| I |} such
that 〈〈R 〉〉 ≡{| I |} R∗{| I |} and in turn ρ |= 〈〈R 〉〉 ∼=Aπ R∗{| I |} (from ≡{| I |}⊆≈A⊆∼=Aπ).
From contextuality of ∼=Aπ we infer {| I |} |= CE[〈〈P 〉〉] |R∗{| I |} ∼=Aπ CE[〈〈Q 〉〉] |R∗{| I |}
and with minor structural rearrangements we obtain {| I |} |= CE[〈〈P |R 〉〉] ∼=Aπ

CE[〈〈Q |R 〉〉]. Therefore I |= P |RRQ |R, as desired.
The last clause requires that I |= PRQ and a 6∈ fn(I) implies I, a : A |= PRQ. By
definition of R and contextuality of ∼=Aπ we have that {| I |}, a/x |= CE[〈〈P 〉〉] ∼=Aπ

CE[〈〈Q 〉〉]. We add entries a⇑A/x to the environment by using Proposition 40. We
obtain: {| I |}, a/x, a⇑A/x |= CE[〈〈P 〉〉] ∼=Aπ CE[〈〈Q 〉〉]. We remove the entry a/x by
using Proposition 41: {| I |}, a⇑A/x |= CE[〈〈P 〉〉] ∼=Aπ CE[〈〈Q 〉〉]. These results let
us deduce {| I, a : A |} |= CE[〈〈P 〉〉] ∼=Aπ CE[〈〈Q 〉〉] and in turn I, a : A |= PRQ, as
needed.

5.5 Full abstraction theorem

We introduce a encoding which extends 〈〈 · 〉〉 by considering arbitrary representations
of term capabilities of a given type. To motivate, notice that the environment can
legitimately create terms capabilities that are not encryption keys and send it to
system processes. However, the implementation uses these terms only as a token
to receive system generated encryption keys. At the high level we represent term
capabilities with typings and we keep the association among them with an injective
function β = {(a : A,N), . . . } from typings to terms such that the type of N is A
and such that the domain of β is a type environment. The encoding of values uβ

maps values u such that u : A is in the domain of β to the image of u : A in β:

uβ =

{
β(u : A) u : A ∈ dom(β)
u else

The definition of 〈〈Γ . P 〉〉 β is obtained by substituting the encoding of values
v arising in the definition 〈〈Γ . P 〉〉 with vβ. In the following we will abbreviate
〈〈Γ . P 〉〉 β with 〈〈P 〉〉 β whenever the environment Γ is unnecessary.

We first introduce a lemma useful to prove the theorem of completeness.

Lemma 94. Let ρ be an environment such that kp, k
−
p 6∈ A(ρ) and assume ρ ` C.

Suppose CE[〈〈P 〉〉 β]
A

=⇒ H and C[H]
τ−→ K is inferred from C

a(M)−−−→ C ′{M/x} and

H
(c̃)a〈M〉−−−−−→ H ′ and K ≡ (new c̃)C ′{M/x}[H ′]. Then we have:

ρ |= K ≈A (new n)! net〈{n}n〉 |C ′{{n}n/x}[H] .

5.5. Full abstraction theorem 139

Proof. By case analysis on H
(c̃)a〈M〉−−−−−→ H ′. By syntactic analysis of the encoding

〈〈 · 〉〉 β, we infer that this interaction has occurred on the channel net, which is the
only free name used as channel in the encoding 〈〈 · 〉〉 β. A case analysis on 〈〈 · 〉〉 β shows
that there is an environment configuration CE∗[−] and a process P ∗ such that such
that

H ≡ (new ∆, c̃)CE∗[(P ∗ | ! net〈M〉)] H ′ ≡ (new ∆, c̃)CE∗[P ∗ | ! net〈M〉]

Here ∆ are the system-generated names used to build trusted channel servers and
CE∗, P ∗ are obtained by interactions of 〈〈P 〉〉 β with CE. Moreover, a case analysis
shows that all emissions on net occurring in the encoding are encrypted by using
symmetric or asymmetric schemes with the following properties: symmetric keys
are generated around fresh names, asymmetric packets contain a fresh nonce. This
let us infer that two cases arise for M :

1. M = {Ñ}sk(k) and k ∈ c̃

2. M = {Ñ , c}ek(N) and c ∈ c̃ and {dk(N), N} ∩ A(ρ) = ∅

Case (1) says that the session key used for symmetric encryption is fresh. Case (2)
says that the nonce is fresh and that the environment does not knows the terms
dk(N), N that could be used to open the crypto-packet. To see that, notice that
ek(N) or is built around the proxy public key as in N = kP , or is built around a
system-generated seed as in wr(n), rd(n) with n ∈ ∆.

In case (1) we use Corollary 70 and we infer the stronger ρ |= K ∼A (new n)
C ′{{n}n/x}[H]. In case (2), we infer that there are a process Q and a term T such
that (a) exists n ∈ ∆ such that N = rd(n),wr(n) and CE∗[−] contains Chann{T}[Q]
and Q satisfies the conditions of Corollary 74 or (b) N = kp and CE∗[−] contains
ProxyN{T}[Q]. In sub-case (a) we use Corollary 74 and infer the desired result,
ρ |= K ≈A (new n)! net〈{n}n〉 |C ′{{n}n/x}[H]. In sub-case (b) we use Corollary
77 and we infer the desired result.

The following theorem ensures that the forward direction of Theorem 46 actually
holds for the particular β = ∅.
Theorem 95 (Completeness). Let Γ, ∆ and I be closed type environment such that
Γ, ∆ <: I. Assume dom(β) ⊆ I. Then I ² P ∼= Q implies {| I |} |= CE[〈〈Γ . P 〉〉 β] ∼=Aπ

CE[〈〈∆ . Q 〉〉 β].

Proof. To build our candidate relation, we consider computing environments of the
form

CE∗[−] , − |W |Chan∆{Ñ}[S] |ProxyM̃ ;∆{M}[T]

The proxy configuration ProxyM̃ ;∆{M}[T] associates client terms in M̃ to their
server counter-part ∆ and contains proxy requests T of the context. Formally the

140 5. Proofs

proxy map contains entries of the form (MID, n) where n ∈ ∆ and M ∈ M̃ . Notice
that the scope of ∆ is outside this definition: the context may have indeed received
capabilities built around ∆ due to a linking request. The channel servers Chan∆

created by the proxy contain processes S generated by read/write requests submitted
by the context and their administrative redexes.

In the candidate relation the computing environment is surrounded by a context
representing the low-level knowledge of I and containing the capabilities generated
apart ∆ sended by the proxy. As usual, we augment {| I |} with fresh names b̃ and
we let the index of the relation to be a subset of this base to ensure closure under
weakening. We require that names b̃ do not clash with the free names of P, Q.

Finally encoded processes up to β are immersed in the computing environment.
We will use the β clause in the sub-case whether the context send a packet to a
process (see the intrusion paragraph).

Given these intuitions, we let the candidate relation R be defined as:

ρ |= C[CE∗[〈〈P 〉〉 β]]RC[CE∗[〈〈Q 〉〉 β]])

whenever

1. I |= P ∼= Q

2. (a : A) ∈ dom(β) implies I(a) <: A

3. ρ ⊆ ({| I |}, b̃/x̃) ∧ b̃ ∩ fn({|Γ |}) = ∅ where Γ = I ∩ fn(P, Q)

4. C[−] = (new ∆, c̃)(R({| I, ∆ |}, b̃/x̃) | −) and ({| I, ∆ |}, b̃/x̃) ` R

5. CE∗[−] = − |W |Chan∆{Ñ}[S] |ProxyM̃{M}[T]

We prove that R is a weak equivalence up to administrative equivalence. We use
the following naming conventions: C[−] is the context, CE∗[−] is the environment,
what fills the hole of the environment is the process. We let H = C[CE∗[〈〈P 〉〉 β]]
and K = C[CE∗[〈〈Q 〉〉 β]].

Barb preservation. Let ρ |= H ↓a. If this barb is inferred from ρ |=
CE∗[〈〈P 〉〉 β] ↓a, a case analysis shows that a = net. We match this barb with
ρ |= K ⇓a inferred from ρ |= W ↓net. Otherwise ρ |= C ↓a and we trivially have
ρ |= K⇓a.

Reduction Closure We need to check the cases H
A

=⇒ H ′ and H
A

=⇒−→ A
=⇒ H ′

of the definition of equivalence up to administrative equivalence.

Let H
A

=⇒ H ′. By Proposition 65 we have {| I |} |= H ≈A H ′ and we have done since
ρ |= H ′ ≈A HRK.

5.5. Full abstraction theorem 141

Otherwise let H
A

=⇒ Y −→ Y ′ A
=⇒ H ′. We find K ′ s.t. K =⇒ K ′ and

ρ |= Y ′ ≈A R ≈A K ′. The desired result, ρ |= H ′ ≈A R ≈A K ′, will follow since ≈A

is closed under administrative reductions and is transitive.

Consider H
A

=⇒ Y −→ Y ′. Then there is a canonical sequence to Y ∗ such that

H
pAq
=⇒ Y ∗ −→ A

=⇒ Y ′. We let
H

pA∗q
=⇒ J

be obtained by replacing in H
pAq
=⇒ Y ∗ any reduction inferred from the environ-

ment receiving a packet from the process, with a reduction inferred by the envi-

ronment receiving a packet from the noise. To illustrate, assume H
pAq
=⇒ H∗ A−→

H∗
1

A
=⇒ Y ∗ and H∗ A−→ H∗

1 is obtained by the hypothesis above. We have that
for some processes E,R and term M holds H∗ ≡ E[W | !net〈M〉 |net(x).R] and

H∗
1 ≡ E[W | !net〈M〉 |R{M/x}]. In such case we find H∗

2 such that H∗
1

A−→
E[W | !net〈M〉 | (new n)! net〈{n}n〉 |R{{n}n/x}]. Notice that the process’s output
is inaffected by this operation, because is replicated. By repeated applications of
Lemma 94 we obtain that ρ |= J ≈A Y ∗. From this we infer that there is J ′ such

that J −→ J ′ A
=⇒∼A Y ′. Also notice that no interactions among the context and

the process arise in H
pA∗q
=⇒ J . Indeed the canonical sequence does not contain re-

ductions inferred from the context sending terms to the process, i.e. this reduction
is not canonical for any J ′ such that J −→ J ′. This holds since the free outputs
occurring in the translation are non-blocking and since the free inputs are those of
filter processes that wait packets encrypted under a session key not known to the
context.

We proceed by analysis of possible cases of interaction of J −→ J ′.

(Context - Process). This is the case whether J −→ J ′ is inferred from (a) the
context receiving a term from the process or (b) the process receiving a term from the
context. By syntactic analysis of the encoding 〈〈 · 〉〉 β, we infer that this interaction
has occurred on the channel net, which is the only free name used as channel in the
encoding.

We first analyze case (a). We have that there is CE∗1 such that J ≡ C ′[net(x).R
| (new b̃)CE∗1[P

∗ | ! net〈M〉]] and J ′ ≡ C ′[(new b̃)R{M/x} | CE∗1[P
∗ | ! net〈M〉]].

As shown in Lemma 94, all outputs coming out from the translation are emis-
sions of packets (a) encrypted under fresh symmetric keys or (b) encrypted
with asymmetric keys and containing a fresh nonce; therefore these packets are
seen as noise by the context. We apply the Lemma and obtain ρ |= J ′ ≈A

C ′[(new n)! net〈{n}n〉 |R{{n}n/x} | (new b̃)CE∗1[P
∗ | ! net〈M〉]]. Next, we unroll

canonical administrative interactions among 〈〈P 〉〉 and CE. There is CE∗0 obtained
by interactions of CE with C such that

H
pAq
=⇒ C ′[net(x).R |CE∗0[〈〈P 〉〉 β]] −→
C ′[(new n)! net〈{n}n〉 |R{{n}n/x} |CE∗0[〈〈P 〉〉 β]]

A
=⇒ J ′

142 5. Proofs

We match this move with

K =⇒ C ′[net(x).R |CE∗0[〈〈Q 〉〉 β]]
τ−→ C ′[(new n)! net〈{n}n〉 |R{{n}n/x} |CE∗0[〈〈Q 〉〉 β]]

By using closure of administrative equivalence under administrative reductions
we glue the results obtaining:

ρ |= Y ′ ≈A J ′ ≈A C ′[(new n)! net〈{n}n〉 |R{{n}n/x} |CE∗0[〈〈P 〉〉 β]]

R C ′[(new n)! net〈{n}n〉 |R{{n}n/x} |CE∗0[〈〈Q 〉〉 β]]

Now suppose case (b) holds. A case analysis shows that all input on net of the
translation of P occur in processes filtering packet under a session key not known
to the context. We have that there is CE∗1 such that J ≡ C ′[net〈M〉 |CE∗1[(new k)P ∗

| filter x̃ with sk(k) in P]] and J ′ ≡ C ′[CE∗1[(new k)P ∗ | filter M with sk(k) in P]. We

easily obtain J ′ A−→ J by rolling back the filter to its initial state. Next, we unroll
canonical administrative interactions among 〈〈P 〉〉 and CE: there is CE∗0 obtained by
interactions of CE with C such that:

H
pAq
=⇒ C ′[net〈M〉 |CE∗0[〈〈P 〉〉 β]]

A
=⇒ J

We match this move with

K =⇒ C ′[net〈M〉 |CE∗0[〈〈Q 〉〉 β]]

We obtain :

ρ |= Y ′ ≈A J ′ ≈A J ≈A C ′[net〈M〉 |CE∗0[〈〈P 〉〉 β]]RC ′[net〈M〉 |CE∗0[〈〈Q 〉〉 β]] .

(Context - Environment). This is the case whether J −→ J ′ is inferred from (i)
the context sending a packet to the environment on the channel net or (ii) the
context receiving a packet from the noise generator W . To see that no other cases
are possible, notice that, as we have seen in the proof for barb preservation, the
environment does not contain free outputs but the noise. We stress that an emission
containing capabilities generated by the proxy is considered part of the context
when the request is due to the context, and part of the process when the answer is
generated upon a process’s request.

We first analyze case (i). We have that there is CE∗1 such that J ≡
C ′[net〈M〉 |CE∗1[P

∗]] and J ′ ≡ C ′[CE∗1,M[P ∗]] where CE∗1
net(M)−−−−→ CE∗1,M. Next, we

unroll canonical administrative interactions among 〈〈P 〉〉 and CE. There is CE∗0
obtained by interactions of CE with C such that

H
pAq
=⇒ C ′[net〈M〉 |CE∗0[〈〈P 〉〉 β]] −→ C ′[CE∗0,M[〈〈P 〉〉 β]]

A
=⇒ J ′

where CE∗0
net(M)−−−−→ CE∗0,M.

5.5. Full abstraction theorem 143

We match this move with

K =⇒ C ′[net〈M〉 |CE∗0[〈〈P 〉〉 β]]
τ−→ C ′[CE∗0,M[〈〈Q 〉〉 β]]

By using closure of administrative equivalence under administrative reductions
we glue the results obtaining:

ρ |= Y ′ ≈A J ′ ≈A C ′[CE∗0,M[〈〈P 〉〉 β]]RC ′[CE∗0,M[〈〈Q 〉〉 β]] .

In case (ii) we infer that there is CE∗0 obtained by interactions of CE with C such
that J ≡ C ′[net(x).R |CE∗0[〈〈P 〉〉 β]] and J ′ ≡ C ′[(new n)! net〈{n}n〉 |R{{n}n/x}
|CE∗0[〈〈P 〉〉 β]]. We match this reduction with

K =⇒ C ′[net(x).R |CE∗0[〈〈Q 〉〉 β]]
τ−→ C ′[(new n)! net〈{n}n〉 |R{{n}n/x} |CE∗0[〈〈Q 〉〉 β]]]

We obtain:

ρ |= Y ′ ≈A J ′ ≡ C ′[(new n)! net〈{n}n〉 |R{{n}n/x} |CE∗0[〈〈P 〉〉 β]]

RC ′[(new n)! net〈{n}n〉 |R{{n}n/x} |CE∗0[〈〈Q 〉〉 β]]

Process reduction. This is the case whether we have J
n@t−→ J ′ and the reduction

is inferred from a read request and a write request of the process. In such case no
previous interaction with the context is needed. We have that there is CE∗1 such

that J ≡ C[(new c̃)CE∗1[P
∗] n@t−→ J ′. We apply reflection of execution steps (in the

canonical form of Lemma 86) to H
pAq
=⇒ J

n@t−→ J ′ and we infer that there is a pi
calculus process P ′ such P

τ−→ P ′ and ρ |= J ′ ≈A C[CE∗[〈〈P ′ 〉〉 β]]. We exploit
the hypothesis I |= P ∼= Q to infer that there is Q′ such that Q ==⇒ Q′ with
I |= P ′ ∼= Q′. We use preservation of execution steps (Corollary 91) and infer that
there is K ′ such that K =⇒ K ′ and ρ |= K ′ ≈A C[CE∗[〈〈Q′ 〉〉 β]]. We have done as

ρ |= Y ′ ≈A J ′ ≈A C[CE∗[〈〈P ′ 〉〉 β]]RC[CE∗[〈〈Q′ 〉〉 β]] ≈A K ′ .

Intrusion. This is the case whereas the encoding of P receives a term from the
environment and this term was inserted in the queue of a channel by the context. We
have P ≡ (new b̃)P2 | a(y@T).P1 and I ` a : w. Moreover, the intrusion hypothesis
let us infer that there is CE∗1 such that

J ≡ C ′[(new b̃, c̃)CE∗1[〈〈P2 〉〉 |P ∗ | filter ỹ with sk(k) in 〈〈P1 〉〉 β

CE∗1[−] ≡ − |W |Chan∆′{Ñ}[R | filter ỹ from a◦1@T in ! net〈{ỹ}sk(k)〉
| a◦1〈N〉] |ProxyM̃ ;∆{M}[R]

Here a1 is the server counterpart of a, and the “type ” of N is some S such that
S <: T . The bindings c̃ are formed by the seed k of the shared key sk(k) and the

144 5. Proofs

nonce c contained in the input request of the encoding of a(x@T); P ∗ is the leftover
of this request.

Process J ′ is obtained by the (successful) synchronization of the two threads in
the environment; this is because of the hypothesis S <: T . We let the environment
CE∗0,c differ from CE∗ in that the nonce c is stored and the name a is registered (it
may be registered as well in CE∗).

J
a1@T−→ J ′ ≡ C ′[(new b̃, c̃)CE∗0c[〈〈P2 〉〉 |P ∗ | ! net〈{N⇑T}sk(k)〉

| filter ỹ with sk(k) in 〈〈P1 〉〉 β

By letting the continuation of P to receive the emission received from the channel
and by removing the leftover of the communication with Lemmas 69,73,75,78 we
obtain:

J ′ A
=⇒≈A

ρ C ′[CE∗0[(new b̃) 〈〈P2 〉〉 β | 〈〈P1 〉〉 β{N⇑T/ỹ}

The environment CE∗0 differs from CE∗0c in that the nonce c is not saved.
Now two cases arise corresponding to (i) N = a⇑T ′ for some a in I or (ii) not.

We let β′ = β in case (i), else β, = β, (n : S, N) with n 6∈ dom(I). We use Lemma 80
and closure of administrative equivalence under administrative reductions and infer

ρ |= J ′ ≈A C ′[CE∗0[〈〈 (new b̃)P2 |P1{n/y} 〉〉 β′]]

By the hypothesis I |= P ∼= Q we infer that (i) if n ∈ dom(I) then
I |= a〈n@S〉 |P ∼= a〈n@S〉 |Q else (ii) I, n : rw |= a〈n@S〉 |P ∼= a〈n@S〉 |Q.
Since a〈n@S〉 |P τ−→ P ′ , (new b̃)P2 |P1{n/x}, by hypothesis there is Q′ s.t.
a〈n@S〉 |Q =⇒ Q′ and (i) I |= P ′ ∼= Q′ or (ii) I, n : rw |= P ′ ∼= Q′. We ap-
ply preservation of execution steps (Corollary 91) to the process 〈〈 a〈n@S〉 |Q 〉〉 β′

immersed in C ′[CE∗0[−]] and obtain that there is K∗ such that

C ′[CE∗0[〈〈 a〈n@S〉 |Q 〉〉 β′]] =⇒ K∗ (5.1)

and ρ |= K∗ ≈A C ′[CE∗0[〈〈Q′ 〉〉 β′]].

Given H
pA∗q
=⇒ J , and that J contains the message a〈nβ′⇑S〉 that by hypothesis

has not been inserted by the encoding of P , we infer that the same message a〈nβ′⇑S〉
can be produced on the right side. With some calculations we infer that:

K ≡ C[CE∗[〈〈Q 〉〉 β]]
A

=⇒≈A
ρ

A⇐= C ′[CE∗0[〈〈 a〈n@S〉 |Q 〉〉 β′]]

Administrative equivalence is used to remove the leftover of the process write re-
quest, as usual. Therefore by closure of ≈A under administrative reductions we
obtain

C[CE∗[〈〈Q 〉〉 β]] ≈A
ρ C ′[CE∗0[〈〈 a〈n@S〉 |Q 〉〉 β′]]

5.5. Full abstraction theorem 145

This together with equation (5.1) let us infer that there is K ′ such that

K =⇒ K ′ ≈A
ρ K∗

We finally obtain:

ρ |= Y ′ ≈A J ′ ≈A C ′[CE∗0[〈〈P ′ 〉〉 β′]]RC ′[CE∗0[〈〈Q′ 〉〉 β′]] ≈A K∗ ≈A K ′

Extrusion. This is the case whether the process sends capabilities to the environment
and the contexts pick up such capabilities. We have P ≡ (new b̃ : B̃)P ′ | a〈n@S〉
and I ` a : r.

The extrusion hypothesis let us infer that there is CE∗1 such that :

J ≡ C ′[(new b̃, c̃)CE∗1[〈〈P ′ 〉〉 β |P ∗]]

CE∗1[−] ≡ W |Chan∆′{Ñ}[S | filter ỹ from a◦1@T in ! net〈{ỹ}sk(N)〉
| a◦1〈nβ⇑S〉] |ProxyM̃ ;∆{M}[R]

Here a1 is the server counterpart of a and S <: T .

Process J ′ is obtained by letting the threads synchronizing:

J
a1@T−→ J ′ ≡ C ′[(new b̃, c̃)! net〈{nβ⇑T}sk(N)〉 |CE∗0,c[〈〈P ′ 〉〉 β |P ∗]

The environment CE∗0,c differs from CE∗ in that the nonce c is stored and the name
a is registered (it may be registered as well in CE∗). Here we also used the trivial
result (M⇑A)⇑B = M⇑B whenever A <: B.

By removing the leftover of the communication with Lemmas 69,73,75,78 we
obtain:

J ′ ≈A
ρ C ′[(new b̃)! net〈{nβ⇑T}sk(N)〉 |CE∗0[〈〈P ′ 〉〉 β]]

The environment CE∗0 differs from CE∗0,c in that the nonce c is not saved.

We exploit the characterization of ∼=Aπ in terms of typed bisimulation presented

in Chapter 2 and we infer that: I ² P ∼= Q and I . P
(b̃)a〈n@T 〉−−−−−−→ Iun : T . P ′ implies

that there is Q′ such that

I . Q
(b̃)a〈n@T 〉

=======⇒ I u n : T . Q′

and I u n : T |= P ′ ∼= Q′. From this we infer that there exists Q0, s.t.

Q ==⇒ Q0

I . Q0

(b̃)a〈n@T 〉−−−−−−→ I u n : T . Q′
0

Q′
0 ==⇒ Q′

146 5. Proofs

From these results we infer that Q0 has the following shape: Q0 ≡
(new b̃)Q′

0 | a〈n@T 〉.
We apply preservation of execution steps (Corollary 91) to Q ==⇒ Q0 and infer

K ≡ C[CE∗[〈〈Q 〉〉 β]] =⇒≈A
ρ C[CE∗[〈〈Q0 〉〉 β]]

From H
pA∗q
=⇒ J , and that J contains the read request

filter ỹ from a◦1@T in ! net〈{ỹ}sk(N)〉 that by hypothesis has not been inserted
by the encoding of P , we infer that the request can be produced on the right side.
From J containing the write request a◦1〈nβ⇑S〉 and from shape of Q0, we infer
that the message in the context CE∗1[−] can be produced administratively from Q0.
These results let us infer:

C[CE∗[〈〈Q0 〉〉 β]]
A

=⇒≈A C ′[(new b̃)CE∗1[〈〈Q′
0 〉〉 β]] .

We conclude that

C[CE∗[〈〈Q0 〉〉 β]] ≈A C ′[(new b̃)CE∗1[〈〈Q′
0 〉〉 β]] .

Now we let the synchronization occur inside the environment CE∗1[−]:

C ′[(new b̃)CE∗1[〈〈Q′
0 〉〉 β]]

a1@T−→ C ′[(new b̃)! net〈{nβ⇑T}sk(N)〉 |CE∗0[〈〈Q′
0 〉〉 β]] .

Last we apply preservation of execution steps to Q′
0 =⇒ Q′ and we obtain that

there is K∗ such that

C ′[(new b̃)! net〈{nβ⇑T}sk(N)〉 |CE∗0[〈〈Q′
0 〉〉 β]] =⇒ K∗

and ρ |= K∗ ≈A C ′[(new b̃)! net〈{nβ⇑T}sk(N)〉 |CE∗0[〈〈Q′ 〉〉 β]].

Summing up, the last two results says that:

C ′[(new b̃)CE∗1[〈〈Q′
0 〉〉 β]] ==⇒ K∗ (5.2)

We glue the results K =⇒ C[CE∗[〈〈Q0 〉〉 β]], C[CE∗[〈〈Q0 〉〉 β]] ≈A

C ′[(new b̃)CE∗1[〈〈Q′
0 〉〉 β]], and of equation (5.2), and we infer that there is K ′

such that
K =⇒ K ′ ∧ K ′ ≈A

ρ K∗

Finally from I u n : T |= P ′ ∼=π Q′, and from the facts that the context
C ′[(new b̃)! net〈{nβ⇑T}sk(N)〉 | −] (i) both can be built around {| I u n : T, ∆ |}, b̃/ỹ
(the term N actually was received by the context), and (ii) satisfies the definition
required by R, we obtain the desired result,

ρ |= Y ′ ≈A J ′ ≈A C ′[(new b̃)! net〈{nβ⇑T}skN〉 |CE∗0[〈〈P ′ 〉〉 β]]

R C ′[(new b̃)! net〈{nβ⇑T}sk(N)〉 |CE∗0[〈〈Q′ 〉〉 β]] ≈A K∗ ≈A K ′ .

5.5. Full abstraction theorem 147

Contextuality Follows straightforwardly from the definition of R. Let ρ |=
HRK. For the first clause, let ρ ` S. By ρ ⊆ ({| I |}, b̃/x̃) we have ρ |= C[Sρ
|CE∗[〈〈P 〉〉 β]]RC[Sρ |CE∗[〈〈Q 〉〉 β]]) where fn(Sρ)∩bn(C) = ∅. For the second clause,
let n 6∈ fn(ρ). Since ρ ⊆ {| I |}, b̃/x̃, we have ρ, n/x ⊆ {| I |}, b̃/x̃, n/x. From R term
indexed relation we infer that fn(〈〈P 〉〉 , 〈〈Q 〉〉) ⊆ fn(ρ) and thus n 6∈ fn({| fn(P,Q) |}).
From this we infer that ρ, n/x satisfies the conditions for the base of R and in turn
since C = C{n/x} (notice C is closed) we obtain ρ |= HRK, as desired. Last, we an-
alyze the third clause. From ρ\n ⊆ ({| I |}, b̃/x̃) we infer ρ\n |= (new n)HR(new n)K
as (new n)C[−] satisfies the definition required in R by the hypothesis on C[−].

148 5. Proofs

6
A distributed implementation

The main drawback of the implementation devised in Chapter 4 is that all clients
forward requests towards a centralized proxy manager. Clearly, this solution is
hardly realistic and may compromise the scalability of the system, because the
increase of clients’ requests can quickly turn the proxy manager into a bottleneck.
In this chapter, we discuss a new implementation that distributes the proxy services
among different servers. The new solution is based on the idea of partitioning the
network in domains each of which administrated by a proxy server.

6.1 An api@ calculus with domains

To model the partitioning of the network in domains, we extend our high level
calculus with the syntactic category of nets, representing compositions of processes
labelled by domains labels, and defined by the following productions:

S, T ::= δ{P} | S |T | (new n : A)S | stop

Domain labels, ranged over by δ are drawn from a denumerable set disjoint from
the set of names and the set of variables. We let fd(S) be the set of domain labels
in S. We emphasize that domain labels are not names, and are never exchanged
over channels, nor are they created dynamically by a restriction. The typing and
dynamics of nets arise in the simplest possible way from the corresponding notions
defined for processes. The two core rules are as follows:

(Typing)

Γ ` P

Γ ` δ{P}

(Dynamics)

P
α−→ Q

δ{P} α−→ δ{Q}
As a result, domains have no impact on the dynamics and/or the typing of the
high-level calculus: indeed, they serve a different purpose, namely to help devise the
association of processes to proxies in the implementation. Notice, in particular, that
the same (channel) name may be known at different domains: in the implementation,
this will correspond to the name being represented by different channels, located at
the different domains at which the name is known.

150 6. A distributed implementation

Observational Equivalence

The definition of observational equivalence for nets is inherited from that of pro-
cesses. There is an important difference, however, in the notion of contextuality,
in that a context may not include new domains, but only processes belonging to
existing domains. This is ensured by the side condition fd(U) ⊆ fd(S, T) in the
definition below, and constitutes the key assumption for our distributed implemen-
tation: namely, we do not trust domains and proxy servers generated by the envi-
ronment. While this is a somewhat strong assumption, on the other hand it appears
to be realistic: notice, in fact, that the procedure of adding a domain to a network
in real-world scenarios requires physical authentication, rather than network proto-
cols. More in detail, we are modeling subsystems that represent physical locations
with the need for asynchronous communications in-between, rather than subsys-
tems representing units of trust or principals. Indeed, the latter notion of locality
in distributed systems requires mutual distrust among principals and defensive im-
plementations, while we assume that all the proxies participate and fully trust each
other.

Definition 28 (Contextuality for Nets). A type-indexed relation R over nets is
contextual whenever

• I ² SRT and I ` U and fd(U) ⊆ fd(S, T) implies I ² (S |U)R(T |U)

• I ² SRT implies I, a : A ² SRT

• I, a : A ² SRT implies I ² ((new a : A)S)R((new a : A)T)

The definition of behavioral equivalence for nets, noted again ∼=π, arises now as
expected.

Definition 29 (Typed behavioral equivalence). Typed behavioral equivalence,
noted ∼=π, is the largest symmetric and contextual type-indexed relation R over nets
such I |= SRT implies

(i) if I ² S ↓n then I ² T ⇓n

(ii) if S
τ−→ S ′ then T =⇒ T ′ and I |= S ′RT ′ for some T ′ .

6.2 A compositional implementation using do-

main authorities

Each domain of a high-level net corresponds to a domain manager, which manages
the channels it has created and acts as a proxy for the processes of the domain; the
processes of a domain, in turn, are instructed to send their requests to the proxy
associated with their domain. Since different proxies may have different entries for
the same client name (remember that a name is possibly known in more domains),

6.2. A compositional implementation using domain authorities 151

more channels servers may correspond to the same pi calculus name. The domain
managers must therefore mask the presence of multiple queues located at the dis-
tributed channels associated to the same client name. This, in turn, is based on a
further service to gain access to fellow proxies.

We represent public keys used to support the proxy service in each domain
manager by means of a one-way constructor p, and define δ+

p , ek(p(δ)) and

δ−p , dk(p(δ)); these keys corresponds to the keys k+
P , k−P utilized in the central-

ized translation. Further, we use an one-way constructor q to represent the public
keys used by the queue service for a domain δ: δ+

q , ek(q(δ)) and δ−q , dk(q(δ)).
We assume that domain managers are connected via secure links, represented by a
shared key sk(kD) generated from the private name kD. Finally, we introduce the
following two bits of new notation:

• Chann[P] indicates the process (new n∗, n◦) n∗〈∅〉 |RSn |WSn |P , that is
Chann augmented with a further process P

• the notation for links is extended as expected, with a parameter corresponding
to the assigned proxy:

linkδ (M, y) in P ,
(new k)emit({sk(k),M}δ+

p
) | filter y with sk(k) in P

The new implementation is given in Table 6.1. For each domain δ, the domain
manager consists of three threads P δ

q,t, Qδ
q,t, Dδ

q,l responsible for the proxy, queue
and domain services, respectively. The three threads share a channel q collecting the
public keys that grant access to fellow proxies. The domain service Dδ

q,l is responsible
for updating this queue with newly acquired domain identities, and for publishing
the public queue key of the proxy associate to the domain δ.

The proxy and the queue service also share the table of binding client and server
names stored on the private channel t. The new definition of the proxy service
extends the one given in Table 4.2, by including a collection of forwarders. Each of
the forwarders, tries to extract a message from the channel queue n◦ and sends it
off to one of the domain managers known at the time the channel n was created.

The queue service Qδ
q,t waits for the packets sent by the forwarders and by other

domain managers. The server retrieves the name index and checks if the entry is
associated to a channel. If it is, the message is sent to the queue of the associated
channel. Otherwise both the name index and the message are non-deterministically
sent to some of the known domain managers. The non-deterministic choice
Choosek∈X in P may be implemented in the standard way, namely in terms of a
non-deterministic synchronization on a private name: (new n)n〈〉 |Πk∈Xn().P .

The translation of nets is compositional, and does not rely on any pre-existing
infrastructure for communications, as now the domain managers are dynamically
generated within the translation; as in previous implementations we assume the

152 6. A distributed implementation

Table 6.1 Distributed Translation

Proxy Service

P δ
q,t , ! filter (k, x, y) with δ−p in if y 6∈ Set t∗ then

let s = Typeof (x) in

t(z).(let ỹ =?(xID , y) in t〈z〉 | ! net〈{y⇑ s}k〉
else (new n) t〈z.(xID ; n).(nID ; n)〉 | ! net〈{n⇑ s}k〉
|Chann[q(X).(q〈X〉 |Πkδ∈X !n◦(w).emit({xID , w}kδ

))])
Queue Service

Qδ
q,t , ! filter (x, s, y) with δ−q in if y 6∈ Set q∗ then

t(z).(t〈z〉 | let ỹ =?(x, z) in emit({s}y+
w
) else

q(X).(q〈X〉 |Choosekδ∈X in emit({x, s}kδ
))

Domain Service

Dδ
q,l , ! filter (x, c) with sk(kD) in if c 6∈ Set l∗ then q(y).q〈y :: x〉

| emit({δ+
q }sk(kD))

Domain Manager

M δ , (new t, t∗, q, q∗, l∗)
P δ

q,t |Qδ
q,t |Dδ

q,l | t〈∅〉 | t∗〈∅〉 | q〈∅〉 | q∗〈∅〉 | l∗〈∅〉
Translation of nets

((Γ . δ{P})) µ , M δ | 〈〈Γ . P 〉〉 δ
µ

((Γ . S |T)) µ , ((Γ . S)) µ | ((Γ . T)) µ

((Γ . (new n : A)S)) µ , (new n) ((Γ, n : A . S)) µ

((Γ . stop)) µ , 0

Channels – as in Table 4.2

Clients – as in Table 4.2, with all definitions now parametrized on δ.

Top−level translation ((Γ . S)) , ((Γ . S)) ∅

6.2. A compositional implementation using domain authorities 153

presence of noise on the communication interface. In the top-level translation of
nets we tacitly assume that each domain label occurs at most once. This represents
no loss of generality, as the dynamics of the net δ{P1} | δ{P2} is just the same as that
of the net δ{P1 |P2}. Similarly, (new n : A)δ{P} is the same as δ{(new n : A)P}.

We extend the low-level term environment with the public encryption keys of
the proxy managers corresponding to the high-level free domains:

{| δ1, . . . , δn |} , {δ1
+
p /x, . . . , δn

+
p /z}

We finally obtain:

Theorem 96. Let Γ, ∆ and I be closed type environment such that Γ, ∆ <: I. Then:
I|=S∼=πT if and only if {| I |}, {| fd(S, T) |} |= W | (new kD) ((Γ . S)) ∼=Aπ W | (new kD)
((∆ . T)) .

Proof. The soundness result is based on the fact that the interactions introduced by
the distributed protocol w.r.t. the centralized implementation are “administrative”.
More in detail, once extended the definition of administrative reduction (Definition
22) so to include the reductions introduced by the distributed implementation, the
proof follows the schema outlined in Section 5.1, crucially relying on the fact that
Proposition 65 still holds when the definition of administrative reduction is extended.
The proof of completeness follows the same schema of Theorem 95, namely by con-
sidering a relation containing computing environments that include the context, and
by proving that the relation is a weak equivalence up to administrative equivalence.
As in Theorem 95 the most delicate clause to analyze is reduction closure and follows
by a case analysis of the possible interactions. The interaction among the context
and the computing environment containing the encoded processes is treated as in
Theorem 95, particularly by analyzing which outputs and inputs are available both
for the context and the process. In the case whether the context receives an output,
we apply Lemma 94 to the fact that all outputs coming out from the translation are
emissions of packets (a) encrypted under fresh symmetric keys or (b) encrypted with
asymmetric keys and containing a fresh nonce or (c) encrypted under the symmetric
key kD that is known only to proxies and containing a fresh nonce, in order to infer
that these packets are seen as noise by the context. Particularly encoded processes
now encrypt linking requests by using the keys δ+

ip (rather than by using k+
p), and

the low-level term-environment does not contain neither the related decryption keys
δ−ip, nor the seeds δi (see Lemma 94). In the case whether the context sends an
output, we use the fact that distributed proxies use the filtering mechanism intro-
duced by the first translation; therefore in case a proxy receives a wrong message,
it rolls back to the initial state and releases the packet absorbed on the net, which
are sufficient conditions for reduction closure. The intrusion, extrusion and process
reduction cases are analogous, since the commit reduction occurs in the queue of a
channel manager, as in Theorem 95.

There is a new case that arises when a message in a queue of a channel is
moved to a queue of another channel; this gives raise to a configuration evolving to

154 6. A distributed implementation

another configuration. More in detail, the first reduction on the channel’s queue is
treated similarly to the process reduction case, as this move needs to be strongly
matched by the related process; however the same message is available on the related
process since we consider the same configuration on both sides. After the internal
synchronization, the packet released by the channel is absorbed administratively by
the queue manager, that in turn forwards the packet to some channel manager (after
an administrative reduction on the queue channel) that receives it administratively.
As in Theorem 95 the use of the up to technique permits to ignore all such subsequent
administrative reductions, and to consider the updated configuration in order to gain
reduction closure.

Conclusions

We have developed a secure implementation of a typed pi calculus, in which the
access to communication channels is regulated by capability types. The implemen-
tation is effective even when the low-level compiled principals are deployed in open
contexts, for which no assumption on trust and behavior may be made. The im-
plementation draws on a representation of the typed capabilities in the high-level
calculus as term capabilities protected by encryption keys only known to the in-
tended receivers. Our full abstraction results rely on a proxy service to protect
against malformed messages from the environment. This is achieved by generating
certified names (and associated channels) to represent the context-generated names
within the system.

Our implementation results show that the dynamic management of capabilities
enforced at the high level by using a global type system, can be effectively enforced
in untyped, open, distributed environments by using cryptography without any as-
sumption on the behavior or trust of the low-level contexts. To the best of our
knowledge, this is the first result of this kind for typed process calculi.

As a by-product, since our high-level process calculus is a conservative extension
of the untyped pi calculus, we provided a direct secure implementation of the pi cal-
culus with matching. This resolves the problem of preserving the forward secrecy of
communications in implementations of calculi which support the dynamic exchange
of write and/or read access rights among processes.

We have also developed a distributed implementation in which the certification
service is implemented by a set of distributed proxies. Being fully compositional,
the distributed implementation appears to be adequate for open-ended networks.
The only limitation in this respect is represented by our current assumption that
all proxies that participate in the synchronization protocols be fully trusted; ba-
sically we concern with distributed subsystems that represent physical locations
and communicate asynchronously trusting each other. While a certain degree of
trust appears necessary to achieve a secure implementation, it would be desirable to
have some form of guarantees also in the presence of malicious proxies. This would
model distributed subsystems representing unit of trusts or principals, with the need
for mutual distrust and defensive implementations. Achieving that seems feasible
with our implementation by strengthening the protocols that govern the interactions
among proxies; for instance we may admit self-organized generation and distribution
of keys, and key-authentication based on chains of certificates (c.f. [34]). We leave
this to our plans of future work.

Our full abstraction results rely on the presence of a generator of noise in the
network interface that of course is hardly realistic. Moreover, pragmatically the

156 Conclusions

presence of some background traffic rarely prevents information leaks trough traffic
analysis (due to message sizes, addresses). The use of noise could be avoided by
considering semantic equations that hold with a certain degree of probability, e.g.
[63, 77]. More realistic features as timeouts, expiration of keys should be consid-
ered. The resulting implementation, interestingly, would be very close to the actual
distributed scenarios; this represents a challenging area of research that we plan to
investigate.

Another interesting area of research consists in devise cryptographically sound
implementations for the type-based management of capabilities we have presented
in this thesis, in the spirit of [14, 6]. The approach followed in that papers maps high
level processes into a computational setting, rather than in an algebraic framework;
high-level functionalities of pi calculi are implemented by using concrete cryptog-
raphy based on probabilistic algorithms that operate on bitstrings (although [6]
considers an intermediate language inspired by the spi calculus that reflects low-
level implementation constraints of the cryptographic library). This is in contrast
with the algebraic view of cryptographic protocols followed in this thesis and in
other recent works, e.g. [10, 8]. This would bring the implementation more close to
the reality, and represents a perfect complementation of the results of this thesis.

Bibliography

[1] Mart́ın Abadi. Protection in programming-language translations. In Interna-
tional Colloquium on Automata, Languages and Programming (ICALP), pages
868–883, 1998. 1, 1, 1.1, 2, 3.3, 4, 4.1, 4.5

[2] Mart́ın Abadi. Secrecy by typing in security protocols. J. ACM, 46(5):749–786,
1999. 2.6

[3] Mart́ın. Abadi. Logic in access control. In Proc. of the Eighteenth Annual
IEEE Symposium on Logic in Computer Science (LICS ’03), pages 228–233.
IEEE Computer Society, 2003. 2.6

[4] Mart́ın Abadi and Bruno Blanchet. Analyzing security protocols with secrecy
types and logic programs. J. ACM, 52(1):102–146, 2005. 3.3, 4.2

[5] Mart́ın. Abadi, Michael Burrows, Butler W. Lampson, and Gordon D. Plotkin.
A calculus for access control in distributed systems. ACM Transactions on
Programming Languages and Systems, 15(4):706–734, Semptember 1993. 2.6

[6] Mart́ın Abadi, Ricardo Corin, and Cédric Fournet. Computational secrecy by
typing for the pi calculus. In APLAS, pages 253–269, 2006. 6.2

[7] Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure
communication. In Proc. of the 28th ACM Symposium on Principles of Pro-
gramming Languages (POPL ’01), pages 104–115. ACM Press, 2001. 1.2, 3,
3.1, 3.3

[8] Mart́ın Abadi, Cédric Fournet, and George Gonthier. Secure implementation
of channel abstractions. Information and Computation, 174(1):37–83, April
2002. (document), 1, 1.1, 2, 4.1, 4.2, 4.2, 4.3, 4.3, 4.5, 5, 6.2

[9] Mart́ın Abadi, Cédric Fournet, and Georges Gonthier. Secure communications
processing for distributed languages. In IEEE Symposium on Security and
Privacy, pages 74–88, 1999. 4.5

[10] Mart́ın Abadi, Cédric Fournet, and Georges Gonthier. Authentication primi-
tives and their compilation. In POPL, pages 302–315, 2000. 4.5, 6.2

[11] Mart́ın Abadi and Andrew D. Gordon. A bisimulation method for crypto-
graphic protocols. Nord. J. Comput., 5(4):267–, 1998. 3.3

158 Bibliography

[12] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols:
The spi calculus. Information and Computation, 148(1):1–70, Jan 1999. 3.3,
4.5

[13] Luca Aceto and Andrew D. Gordon, editors. Algebraic Process Calculi: The
First Twenty Five Years and Beyond (PA’05), 2005.

[14] Pedro Adão and Cédric Fournet. Cryptographically sound implementations
for communicating processes. In ICALP (2), pages 83–94, 2006. 4.5, 6.2

[15] Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimulations
for the asynchronous pi-calculus. Theor. Comput. Sci., 195(2):291–324, 1998.
2.4, 2.6

[16] Michael Baldamus, Joachim Parrow, and Björn Victor. Spi calculus trans-
lated to pi-calculus preserving may-testing. In Proceedings of the 19th IEEE
Symposium on Logic in Computer Science (LICS ’04), pages 22–31, 2004. 4.5

[17] Michael Baldamus, Joachim Parrow, and Björn Victor. A fully abstract encod-
ing of the π-calculus with data terms. In Proc. of ICALP ’05, pages 1202–1213,
2005. 3.1, 3.2, 3.3, 4.5

[18] David E. Bell and Len La Padula. Secure computer system: Unified exposition
and multics interpretation,. Technical Report MTR-2997, MITRE Corpora-
tion, Bedford, MA 01730, March 1976. 1

[19] Bruno Blanchet. From Secrecy to Authenticity in Security Protocols. In
Manuel Hermenegildo and Germán Puebla, editors, 9th International Static
Analysis Symposium (SAS’02), volume 2477 of Lecture Notes on Computer
Science, pages 342–359, Madrid, Spain, September 2002. Springer Verlag. 3.1,
3.1, 3.3, 4.2

[20] Bruno Blanchet. Automatic Proof of Strong Secrecy for Security Protocols. In
IEEE Symposium on Security and Privacy, pages 86–100, Oakland, California,
May 2004. 3.1, 3.1, 3.2, 3.3

[21] Michele Boreale. On the expressiveness of internal mobility in name-passing
calculi. Theor. Comput. Sci., 195(2):205–226, 1998. 4, 4.3, 4.5, 5.1, 5.1

[22] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Proof techniques for
cryptographic processes. SIAM Journal on Computing, 31(3):947–986, 2001.
3, 3.2, 3.3

[23] Michele Boreale and Davide Sangiorgi. Bisimulation in name-passing calculi
without matching. In Proc. of 13th IEEE Symposium on Logic in Computer
Science (LICS ’98). IEEE Computer Society Press, 1998. 1, 2.3, 2.6, 3.3

Bibliography 159

[24] Johannes Borgström, Sébastien Briais, and Uwe Nestmann. Symbolic bisimu-
lation in the spi calculus. In CONCUR, pages 161–176, 2004. 3.3

[25] Johannes Borgström and Uwe Nestmann. On bisimulations for the spi calculus.
Mathematical Structures in Computer Science, 15(3):487–552, 2005. 3.3

[26] Gérard Boudol. Asynchrony and the π-calculus. Research Report 1702, IN-
RIA, http://www.inria.fr/rrrt/rr-1702.html. Also available from http://www-
sop.inria.fr/mimosa/personnel/Gerard.Boudol.html, 1992. 1, 2.6

[27] Gérard Boudol. The pi-calculus in direct style. In POPL, pages 228–241, 1997.
4.5

[28] Michele Bugliesi, Dario Colazzo, and Silvia Crafa. Type based discretionary
access control. In Philippa Gardner and Nobuko Yoshida, editors, Proc. of
CONCUR ’04, volume 3170 of LNCS, pages 225–239, 2004. 2.6

[29] Michele Bugliesi and Marco Giunti. Typed processes in untyped contexts. In
Rocco De Nicola and Davide Sangiorgi, editors, Proc. of TGC 2005, Sym-
posium on Trustworthy Global Computing, volume 3705 of Lecture Notes on
Computer Science, pages 19–32. Springer-Verlag, 2005. 1.1, 1.2, 2

[30] Michele Bugliesi and Marco Giunti. Secure implementations of typed channel
abstractions. In Proc. of the 34th ACM Symposium on Principles of Program-
ming Languages (POPL’07). ACM Press, 2007. 1.1, 1.2

[31] Michele Bugliesi and Sabina Rossi. Non-interference proof techniques for the
analysis of cryptographic protocols. Journal of Computer Security, 13(1):87–
113, 2005. 2.6

[32] Nadia Busi, Maurizio Gabbrielli, and Gianluigi Zavattaro. Replication vs.
recursive definitions in channel based calculi. In ICALP, pages 133–144, 2003.
4.5

[33] Diletta Cacciagrano and Flavio Corradini. On synchronous and asynchronous
communication paradigms. In Proc. of the 7th Italian Conference of Theo-
retical Computer Science (ICTCS 2001), volume 2202. Springer-Verlag, 2001.
4.5

[34] Srdjan Capkun, Levente Buttyán, and Jean-Pierre Hubaux. Self-organized
public-key management for mobile ad hoc networks. IEEE Trans. Mob. Com-
put., 2(1):52–64, 2003. 6.2

[35] Marco Carbone and Sergio Maffeis. On the expressive power of polyadic syn-
chronisation in pi-calculus. Nordic Journal Of Computing, 10(2):70–98, 2003.
4.5

160 Bibliography

[36] Luca Cardelli. Type systems. ACM Comput. Surv., 28(1):263–264, 1996. 1

[37] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Secrecy and group
creation. Inf. Comput., 196(2):127–155, 2005. 2.6

[38] Ilaria Castellani and Matthew Hennessy. Testing theories for asynchronous
languages. In Vikraman Arvind and R. Ramanujam, editors, Proc. of
Foundations of Software Technology and Theoretical Computer Science 1998
(FSTTCS ’98), volume 1530 of Lecture Notes in Computer Science, pages
90–101. Springer, 1998. 2.6

[39] Konstantinos Chatzikokolakis and Catuscia Palamidessi. A framework for
analyzing probabilistic protocols and its application to the partial secrets ex-
change. In Proc. of TGC’05, pages 146–162, 2005. 4.1

[40] Mario Coppo, Federico Cozzi, Mariangiola Dezani-Ciancaglini, Elio Giovan-
netti, and Rosario Pugliese. A mobility calculus with local and dependent
types. In Processes, Terms and Cycles, pages 404–444, 2005. 2.6

[41] Mario Coppo, Mariangiola Dezani-Ciancaglini, Elio Giovannetti, and Rosario
Pugliese. Dynamic and local typing for mobile ambients. In IFIP TCS, pages
577–590, 2004. 2.6

[42] Silvia Crafa and Sabina Rossi. A theory of noninterference for the pi-calculus.
In Proc. of TGC’05, pages 2–18, 2005. 2.6

[43] Rocco De Nicola, Gianluigi Ferrari, and Rosario Pugliese. KLAIM: A Kernel
Language for Agents Interaction and Mobility. IEEE Transactions on Software
Engineering, 24(5):315–330, 1998. 2.6

[44] Rocco De Nicola, Gianluigi Ferrari, Rosario Pugliese, and Betti Venneri. Types
for access control. Theoretical Computer Science, 240(1):215–254, 2000. 2.6

[45] Rocco De Nicola and Matthew Hennessy. Testing equivalences for processes.
Theoretical Computer Science, 34:83–133, 1984. 1

[46] Yuxin Deng and Davide Sangiorgi. Towards an algebraic theory of typed
mobile processes. Theor. Comput. Sci., 350(2-3):188–212, 2006. 2.3, 2.6

[47] Danny Dolev and Andrew Chi-Chih Yao. On the security of public key pro-
tocols. IEEE Transactions on Information Theory, 29(2):198–207, 1983. 3.3

[48] Uffe .H. Engberg and Morgen Nielsen. A calculus of communicating systems
with labels passing - Ten years after. In Proof, language, and interaction:
essays in honour of Robin Milner, Foundations of Computing, pages 599–622.
MIT Press, 2000.

Bibliography 161

[49] Riccardo Focardi and Roberto Gorrieri. Classification of Security Properties
(Part I: Information Flow). In R. Focardi and R. Gorrieri, editors, Proc. of
Foundations of Security Analysis and Design (FOSAD’01), volume 2171 of
Lecture Notes in Computer Science, pages 331–396. Springer-Verlag, 2001. 2.6

[50] Cédric Fournet. The Join-Calculus: a Calculus for Distributed Mobile Pro-
gramming. PhD thesis, Ecole Polytechnique, Palaiseau., November 1998. Also
published by INRIA, TU-0556. 4.1, 5.1

[51] Cédric Fournet and Georges Gonthier. The reflexive cham and the join-
calculus. In POPL’96, pages 372–385, 1996. 1.1, 4.5

[52] Cédric Fournet and Georges Gonthier. A hierarchy of equivalences for asyn-
chronous calculi. J. Log. Algebr. Program., 63(1), 2005. 2.6

[53] Cédric Fournet and Cosimo Laneve. Bisimulations in the join-calculus. Theor.
Comput. Sci., 266:569–603, 2001. 4.5

[54] Philippa Gardner, Cosimo Laneve, and Lucian Wischik. Linear forwarders. In
Proc. of CONCUR’03, pages 408–422, 2003. 4.5

[55] Daniele Gorla. Semantic Approaches to Global Computing Systems. PhD
thesis, Dip. Sistemi ed Informatica, Univ. di Firenze, 2004. 5.2

[56] Daniele Gorla and Rosario Pugliese. Resource access and mobility control with
dynamic privileges acquisition. In ICALP, pages 119–132, 2003. 2.6

[57] Joseph Y. Halpern and Vicky Weissman. Using first-order logic to reason
about policies. In Proc. of the 16th IEEE Computer Security Foundations
Workshop (CSFW ’03), pages 187–201, 2003. 2.6

[58] Matthew Hennessy. The security pi-calculus and non-interference. J. Log.
Algebr. Program., 63(1):3–34, 2005. 2.6

[59] Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and
concurrency. J. ACM, 32(1):137–161, 1985.

[60] Matthew Hennessy and James Rathke. Typed behavioural equivalences for
processes in the presence of subtyping. Mathematical Structures in Computer
Science, 14(5):651–684, 2003. 1, 1, 1.2, 2, 2, 2, 2.1, 2.3, 2.3, 2.4, 2.4, 2.5, 2.5,
2.5, 2.5, 2.6

[61] Matthew Hennessy and James Riely. Information flow vs resource access in
the asynchronous π-calculus. ACM Transactions on Programming Languages
and Systems, 24(5):566–591, 2002. 2.6

162 Bibliography

[62] Matthew Hennessy and James Riely. Resource access control in systems of
mobile agents. Information and Computation, 173:82–120, 2002. 2.6

[63] Oltea Mihaela Herescu and Catuscia Palamidessi. Probabilistic asynchronous
pi-calculus. In FoSSaCS, pages 146–160, 2000. 4.1, 6.2

[64] Kohei Honda and Mario Tokoro. An object calculus for asynchronous com-
munication. In ECOOP, pages 133–147, 1991. 2.6

[65] Kohei Honda and Nobuko Yoshida. On reduction-based process semantics.
Theor. Comput. Sci., 151(2):437–486, 1995. 1, 2.6, 4.5

[66] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and
the pi-calculus. ACM Trans. Program. Lang. Syst., 21(5):914–947, 1999. 2.6

[67] Butler W. Lampson. Protection. ACM Operating Systems Rev., 8(1):18–24,
Jan. 1974. 1

[68] Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography. CRC Press, 1997. 4.1

[69] Massimo Merro. Locality in the π-calculus and applications to distributed ob-
jects. PhD thesis, École de Mines de Paris, October 2000. 4.5

[70] Massimo Merro and Davide Sangiorgi. On asynchrony in name-passing calculi.
Mathematical Structures in Computer Science, 14(5):715–767, 2004. 2.6

[71] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989. 4.1

[72] Robin Milner. The polyadic π-calculus: a tutorial. Technical Report ECS–
LFCS–91–180, Laboratory for Foundations of Computer Science, Department
of Computer Science, University of Edinburgh, UK, October 1991. Appeared
in Proceedings of the International Summer School on Logic and Algebra of
Specification, Marktoberdorf, August 1991. Reprinted in Logic and Algebra of
Specification, ed. F. L. Bauer, W. Brauer, and H. Schwichtenberg, Springer-
Verlag, 1993. 2

[73] Robin Milner. Communicating and mobile systems: the π-calculus. Cambridge,
1999. 2

[74] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile pro-
cesses, Parts I and II. Information and Computation, 100:1–77, September
1992. 1, 1, 2

[75] Robin Milner, Joachim Parrow, and David Walker. Modal logics for mobile
processes. Theor. Comput. Sci., 114(1):149–171, 1993.

Bibliography 163

[76] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In International
Colloquium on Automata, Languages and Programming (ICALP), pages 685–
695, 1992. 1

[77] John C. Mitchell, Ajith Ramanathan, Andre Scedrov, and Vanessa Teague. A
probabilistic polynomial-time process calculus for the analysis of cryptographic
protocols. Theor. Comput. Sci., 353(1-3):118–164, 2006. 4.1, 6.2

[78] Andrew C. Myers. Mostly Static Decentralized Information Flow Control. PhD
thesis, MIT, Jan 1999. 2.6

[79] Andrew C. Myers and Barbara Liskov. Complete, safe information flow with
decentralized labels. In Proceedings of the IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, 1998. 2.6

[80] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decen-
tralized label model. ACM Trans. Softw. Eng. Methodol., 9(4):410–442, 2000.
2.6

[81] Andrew C. Myers and Andrei Sabelfeld. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, special issue
on Formal Methods for Security, 21(1):5–19, January 2003. 2.6

[82] George C. Necula. Proof carrying code. In 24th Ann. ACM Symp. on Princi-
ples of Programming Languages. ACM Press, 1997. 1

[83] Roger M. Needham and Michael D. Schroeder. Using encryption for authenti-
cation in large networks of computers. Commun. ACM, 21(12):993–999, 1978.
4.2

[84] Uwe Nestmann and Benjamin C. Pierce. Decoding choice encodings. Inf.
Comput., 163(1):1–59, 2000. 1.2, 2.6, 4, 4.3, 4.5, 5.1

[85] Catuscia Palamidessi. Comparing the expressive power of the synchronous
and asynchronous pi-calculi. Mathematical Structures in Computer Science,
13(5):685–719, 2003. 2.6, 4.5

[86] Joachim Parrow and Björn Victor. The fusion calculus: Expressiveness and
symmetry in mobile processes. In LICS, pages 176–185, 1998. 4.5

[87] Anna Philippou and David Walker. On confluence in the pi-calculus. In
ICALP, pages 314–324, 1997.

[88] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile
processes. Mathematical Structures in Computer Science, 6(5), 1996. 1, 1, 2,
2, 2, 2, 2.3, 2.6

164 Bibliography

[89] Benjamin C. Pierce. Foundational Calculi for Programming Languages, chap-
ter 139. CRC Press, 1996.

[90] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002. 1

[91] Benjamin C. Pierce and Davide Sangiorgi. Behavioral equivalence in the poly-
morphic pi-calculus. J. ACM, 47(3):531–584, 2000. 1, 2.3, 2.6

[92] Benjamin C. Pierce and David N. Turner. Pict: A programming language
based on the pi-calculus. In Gordon Plotkin, Colin Stirling, and Mads Tofte,
editors, Proof, Language and Interaction: Essays in Honour of Robin Milner,
pages 455–494. MIT Press, 2000. 2.6

[93] Benjamin C. Pierce and David N. Turner. The Pict programming language,
2001. http://www.cis.upenn.edu/ bcpierce/papers/pict/Html/Pict.html.

[94] Damien Pous. Up-to techniques for weak bisimulation. In ICALP, pages
730–741, 2005. 5.2

[95] Rosario Pugliese. Semantic Theories for Asynchronous Languages. PhD
thesis, Dipartimento di Scienze dell’Informazione - Universita’ di Roma “La
Sapienza”, 1996. 2.6

[96] Ajith Ramanathan, John C. Mitchell, Andre Scedrov, and Vanessa Teague.
Probabilistic bisimulation and equivalence for security analysis of network pro-
tocols. In FoSSaCS, pages 468–483, 2004. 4.1

[97] James Riely and Matthew Hennessy. A typed language for distributed mobile
processes. In Proceedings of POPL’98, pages 378–390. ACM Press, 1998. 2.6

[98] Pierangela Samarati and Sabrina De Capitani di Vimercati. Access control:
Policies, models, and mechanisms. In R. Focardi and R. Gorrieri, editors,
Foundations of Security Analysis and Design, LNCS 2171. Springer-Verlag,
2001.

[99] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-Order and
Higher-Order Paradigms. PhD thesis CST–99–93, Department of Computer
Science, University of Edinburgh, 1992. 2.3, 4.5

[100] Davide Sangiorgi. An interpretation of typed objects into typed pi-calculus.
Inf. Comput., 143(1):34–73, 1998.

[101] Davide Sangiorgi. On the bisimulation proof method. Mathematical Structures
in Computer Science, 8(5):447–480, 1998. 5.2

[102] Davide Sangiorgi. The name discipline of uniform receptiveness. Theoretical
Computer Science, 221(1–2):457–493, 1999.

Bibliography 165

[103] Davide Sangiorgi and Robin Milner. The problem of “weak bisimulation up
to”. In Proceedings of CONCUR 1992, pages 32–46, 1992. 2.4, 5.1, 5.2, 5.2

[104] Davide Sangiorgi and David Walker. The π-calculus A theory of mobile pro-
cesses. Cambridge, 2001. 2, 2.1, 2.1, 18, 3.2, 4.5

[105] Peter Selinger. First-order axioms for asynchrony. In Proc. of CONCUR 1997,
pages 376–390, 1997. 2.6

[106] Peter Sewell. On implementations and semantics of a concurrent programming
language. In CONCUR, pages 391–405, 1997.

[107] Vincent van Oostrom. Confluence by decreasing diagrams. Theor. Comput.
Sci., 126(2):259–280, 1994. 5.1

[108] Lucian Wischik and Philippa Gardner. Explicit fusions. Theor. Comput. Sci.,
340(3):606–630, 2005. 4.5

166 Bibliography

List of PhD Thesis

TD-2004-1 Moreno Marzolla
”Simulation-Based Performance Modeling of UML Software Architectures”

TD-2004-2 Paolo Palmerini
”On performance of data mining: from algorithms to management systems for
data exploration”

TD-2005-1 Chiara Braghin
”Static Analysis of Security Properties in Mobile Ambients”

TD-2006-1 Fabrizio Furano
”Large scale data access: architectures and performance”

TD-2006-2 Damiano Macedonio
”Logics for Distributed Resources”

TD-2006-3 Matteo Maffei
”Dynamic Typing for Security Protocols”

TD-2006-4 Claudio Silvestri
”Distributed and Stream Data Mining Algorithms for Frequent Pattern Dis-
covery”

TD-2007-1 Marco Giunti
”Secure Implementations of Typed Channel Abstractions”

TD-2007-2 Francesco Lelli
”Bringing Instruments to a Service-Oriented Interactive Grid”

TD-2007-3 Matteo Mordacchini
”Grid and Peer-to-Peer Resource Discovery Systems”

