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We present a reconstruction of session types in a conventional pi calculus where types are qualified
as linear or unrestricted. Linearly typed communication channels are guaranteed to occur in exactly
one thread, possibly multiple times. We equip types with a constructor that denotes the two ends of
a same communication channel. In order to assess the flexibility of the new type system, we provide
three distinct encodings (from the linear lambda calculus, from the linear pi calculus, and from the
pi calculus with polarized variables) into our system. For each language we present operational and
typing correspondences, showing that our system effectively subsumes the linear pi calculus as well
as foregoing works on session types.

1 Introduction

Session types allow a concise description of protocols by detailing the sequence of messages involved
in each particular run of the protocol. Introduced for a dialect of the pi calculus [6, 14], the concept has
been transferred to different realms, including functional and object-oriented programming and operating
systems; refer to [2] for a recent overview.

By way of motivation, consider a service allowing to create online petitions. Petition creators receive
from the petition service a channel on which they provide the title of the petition, the petition text and
the due date. After the initial setup, the exact same channel is ready to be distributed among the client’s
acquaintances to collect thousands of signatures, but not without the creator signing the petition first.
The code for the creator can be written as follows,

petitionOnline(p).p〈title〉.p〈description〉.p〈dueDate〉.p〈signature〉.(a1〈p〉 | . . . | an〈p〉)

where x(y) denotes reading value y on channel x, x〈v〉 denotes sending value v on channel x, and the
vertical bar denotes parallel composition. Each of the acquaintances (not shown in the example), after
reading p on channel ai, can sign the petition and further distribute the channel at will.

The protocol for channel p can be concisely described by a type T of the form below, composed of
an initial linear part that becomes shared (or unrestricted) in the later part.

lin !String.lin !String.lin !Date.S where S = un !String.S

The final part is unrestricted because it is desiderable, but not absolutely necessary, that acquaintances
(including the petition creator) sign the petition; conversely, the initial part is linear because petitions
cannot be signed without first setting up the title, the description and the due date.

In the process above, each channel ai forwards p at type S. Such a channel may be given the type
lin!S.unend, if we require that acquaintances eventually receive the petition channel; the continuation
is unend (the type of a channel on which no further interaction is possible) allowing channel ai to be
discarded thereafter. Concentrating on the type of petitionOnline, we see that petition creators need it a
type S1 = un?T.S1 so that they may create as many petitions (of type T ) as required. It should be easy
to see that the service itself sees the same channel at the dual type S2 = un!T.S2. The whole system,
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composed by the service running in parallel with petition creators can be typed by reconciling the two
end point types S1 and S2 in a single, unordered, channel type of the form (S1,S2).

The language of the pi calculus, when considered in conjunction with a type system with session
types, is known to require a means to distinguish the two ends of a session channel (S1 and S2 above)
in order to preserve type soundness [3, 4, 18]. Alternative solutions not requiring such a distinction rely
on the restriction of channel passing to bound output. Such systems include the original formulation of
delegation in session types [6] as well as more recent works [1, 11].

Two approaches for distinguishing the ends of a channel are available in the literature: polarized
channel variables [4], and form of channel double binder [16]. In the pi calculus with polarities the
two ends of a channel x are distinguished by labelling each of its ends with a different label: x+ and x−

denote the two ends of channel x. Given that from a given channel name one may find its two ends, one
can restrict (the two ends of) a channel x with the usual pi calculus restriction operator (νx)P. Typing
contexts, however accept two different entries for the same channel, one labelled with +, the other with
−, as in the typing sequent below.

Γ,x+ : S1,x− : S2 ` x+〈v〉.P1 | x−(w).P2

A variant of the above work, [16], uses distinct variables to describe the two ends of a same channel.
In this case one cannot obtain the second end of a channel from the other end. It is restriction that
puts together the two channel ends, by binding them together, as in (νyz)P. The assumptions in typing
contexts are for simple variables, as in the example below where y and z denote the two ends of a same
channel.

Γ,y : S1,z : S2 ` y〈v〉.P1 | z(w).P2

The first work can be criticized for using non-conventional typing contexts, where typing information
of a same channel x is split among two different entries, x+ and x−. The second work uses standard
contexts but relies on a new scope restriction operator that binds two variables together. The goal of this
work is to equip types with a constructor able to denote the two ends of a same channel. We then have
the best of both worlds where we use the standard pi calculus (Milner et al. [9]) with standard typing
sequents.

We test the flexibility of our type system by embedding the pi calculus with polarities and session
types [4] (hence the conventional pi calculus [9]). We do the same for the linear pi calculus [7], and for
the linear (call by value) lambda calculus as in [17]. For each of these languages we prove an operational
and a typing correspondence result. From the two first embeddings we learn that our type system is an
extension of advanced type systems for pi calculi. The embedding of the linear lambda calculus crucially
takes linearity into consideration generating code accordingly (replicated or non replicated) for shared
and linear resources.

The outline of the paper is as follows. The next section recalls the pi calculus and introduces our type
system. Then, the subsequent three sections present the embeddings of the three languages mentioned
above: pi calculus with polarities, linear pi calculus and linear lambda calculus. The last section presents
some related as well as future work.

2 Pi Calculus

This section introduces the pi-calculus, its syntax and semantics, as well as our type system. The syntax
is in Figure 1. We rely on a set of variables, ranged over by x,y,z. Values include variables and the
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Syntax

b ::= Booleans: P ::= Processes:

true true x〈v〉.P output

false false x(x).P input

v ::= Values: P | P composition

b boolean value ifv thenPelseP conditional

x variable (νx)P restriction

!P replication

0 inaction
Rules for structural congruence

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) P | 0 ≡ P !P ≡ P |!P
(νx)P | Q ≡ (νx)(P | Q) (νx)0 ≡ 0 (νx)(νy)P ≡ (νy)(νx)P

Rules for reduction

x〈v〉.P | x(y).Q → P | Q[v/y] [R-COM]

if true thenPelseQ → P if false thenPelseQ → Q [R-IFT] [R-IFF]
P → Q

(νx)P → (νx)Q
P → Q

P | R → Q | R
P ≡ P′ P′ → Q′ Q′ ≡ Q

P → Q
[R-RES] [R-PAR] [R-STRUCT]

Figure 1: Pi calculus: Syntax and operational semantics

booleans true and false. For processes we have (synchronous, unary) output and input, in the forms
x〈v〉.P and x(y).P, as well as a parallel composition, conditional, scope restriction, replication and the
terminated process.

The binders for the language appear in parenthesis: x is bound in both y(x).P and (νx)P. Free
and bound variables in processes are defined accordingly, and so is alpha conversion, substitution of a
variable x by a value v in a process P, denoted P[v/x]. We follow Barendregt’s variable convention,
requiring bound variables to be distinct from free variables in any mathematical context.

Structural congruence is the smallest relation on processes including the rules in the same figure. The
first three rules say that parallel composition is commutative, associative and has 0 for neutral element.
The last rule on the first line captures the essence of replication as an unbounded number of identical
processes. The rules in the second line deal with scope restriction. The first, scope extrusion, allows the
scope of x to encompass Q; due to variable convention, x bound in (νx)P, cannot be free in Q. The other
two rules state that restricting over a terminated process has no effect, and allow exchanging the order of
restrictions.

The reduction reduction is the smallest relation on processes including the rules in Figure 1. The
[R-COM] rule communicates value v from an output prefixed one x〈v〉.P to an input prefixed process
x(y).Q; the result is the parallel composition of the continuation processes, where the bound variable y
is replaced by value v in the input process. The rules for the conditional are straightforward. The rules
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q ::= Qualifiers: a type variable

lin linear µa.S recursive type

un unrestricted T ::= Types:

p ::= Pre Types: bool boolean

?T.S receive S end point

!T.S send (S,S) channel

end termination Γ ::= Contexts:

S ::= End Point Types: /0 empty context

q p qualified channel Γ,x : T variable binding

Figure 2: Pi calculus: Types and typing contexts

in the last line allow reduction to happen underneath scope restriction and parallel composition, and
incorporate structural congruence into reduction.

The syntax of types is described in Figure 2. Types include the boolean type, end point types and
channel types. The novelty with respect linear and session-based systems for the pi calculus is the
introduction of a new type constructor to describe the two ends of a same channel, (S1,S2), where S1
details the behaviour of one end, whereas S2 details that of the other end. An end point type S can be
a pre type qualified with lin or un, a recursive type or a type variable. Each qualifier in a type controls
the number of times the channel can be used at that point: exactly once for lin; zero or more times for
un. A pre type of the form !T.S describes a channel end able to send a value of type T and to proceed
as prescribed by S. Similarly, pre type ?T.S describes a channel end able to receive a value of type T
and continue as S. Pre type end describes a channel end on which no further interaction is possible. For
recursive (end point) types we rely on a set of type variables, ranged over by a. Recursive types are
required to be contractive, that is, containing no subexpression of the form µa1 . . .µan.a1.

Type equality is not syntatic. Instead, we define it as the equality of regular infinite trees obtained
by the infinite unfolding of recursive types, modulo pair commutation. The formal definition, which we
omit, is co-inductive. In this way we use types (µa.lin!bool.lin?bool.a,unend) and (unend, lin!bool.µb.
lin?bool.lin!bool.b) interchangeably, in any mathematical context. This allows us never to consider a type
µa.S explicitly (or a for that matter). Instead, we pick another type in the same equivalence class, namely
S[µa.S/a]. If the result of the process turns out to start with a µ , we repeat the procedure. Unfolding is
bound to terminate due to contractiveness. In other words, we take an equi-recursive view of types [13].

Type duality plays a central role in the theory of session types, ensuring that communication between
the two ends of a channel proceeds smoothly. Intuitively, the dual of output is input and the dual of input
is output. In particular if S2 is dual of S1, then q?T.S1 is dual of q!T.S2. Session type end is dual of itself.
Rather than providing a co-inductive definition of duality, we start by defining a function from end-point
channels into end-point channels as follows.

q?T.S = q !T.S q !T.S = q?T.S qend = qend µa.S = µa.S a = a

Then, to check that a given end point type S1 is dual of another type S2, we first build the dual of
S1 and then check that the thus obtained type is equivalent to S2. For example, to show that type
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Context splitting rules

/0 = /0 · /0
Γ = Γ1 ·Γ2 T = un p or (un p1,un p2)

Γ,x : T = (Γ1,x : T ) · (Γ2,x : T )
Γ = Γ1 ·Γ2 T = lin p or (lin p1, lin p2)

Γ,x : T = (Γ1,x : T ) ·Γ2

Γ = Γ1 ·Γ2 T = lin p or (lin p1, lin p2)
Γ,x : T = Γ1 · (Γ2,x : T )

Γ = Γ1 ·Γ2

Γ,x : (lin p1, lin p2) = (Γ1,x : lin p1) · (Γ2,x : lin p2)
Γ = Γ1 ·Γ2

Γ,x : (lin p1,un p2) = (Γ1,x : (lin p1,un p2)) · (Γ2,x : un p2)
Γ = Γ1 ·Γ2

Γ,x : (lin p1,un p2) = (Γ1,x : un p2) · (Γ2,x : (lin p1,un p2))

Typing rules for values

un(Γ)
Γ ` b : bool

un(Γ)
Γ,x : T ` x : T

Γ ` v : (S,un p)
Γ ` v : S

[T-BOOL] [T-VAR] [T-STRENGTH]

Typing rules for processes

un(Γ)
Γ ` 0

Γ1 ` P1 Γ2 ` P2

Γ1 ·Γ2 ` P1 | P2

Γ ` P un(Γ)
Γ ` ∗P

[T-INACT] [T-PAR] [T-REPL]

Γ1 ` v : bool Γ2 ` P1 Γ2 ` P2

Γ1 ·Γ2 ` ifv thenP1 elseP2

Γ,x : (S,S) ` P
Γ ` (νx)P

[T-IF] [T-RES]

Γ,x : S,y : T ` P (∗)
Γ,x : q?T.S ` x(y).P

Γ1 ` v : T Γ2,x : S ` P (∗∗)
Γ1 · (Γ2,x : q !T.S) ` x〈v〉.P

[T-IN],[T-OUT]

Γ,x : (S,S′),y : T ` P (∗)
Γ,x : (q?T.S,S′) ` x(y).P

Γ1 ` v : T Γ2,x : (S,S′) ` P (∗∗)
Γ1 · (Γ2,x : (q !T.S,S′)) ` x〈v〉.P

[T-INC],[T-OUTC]

(∗) q = un⇒ q?T.S = S (∗∗) q = un⇒ q!T.S = S

Figure 3: Pi calculus: Typing

µa.lin?bool.lin!bool.a is a dual of type lin!bool.µb.lin?bool.lin!bool.b, we build µa.lin?bool.lin!bool.a =
µa.lin!bool.lin?bool.a, and then show that µa.lin!bool.lin?bool.a = lin!bool.µb.lin?bool.!bool.b. Qualifiers
are important: S and S must be equally qualified so that a linear output process may find a linear input
process to embark in reduction.

Contexts, or type environments, are inductively defined in Figure 2. In a context Γ,x : T we assume
that x does not occur in Γ; we also assume the various variable bindings in Γ to be unordered. We define
predicate un to be true of a) the empty context, as well as of b) context Γ,x : bool, context Γ,x : un p, and
context Γ,x : (un p1,un p2), whenever un(Γ).

Typing relies on the context splitting operation described in Figure 3. It should be easy to under-
stand: unrestricted types are copied into both contexts, linear types are placed in one of the two resulting
contexts. The first four rules are standard [17], the last three rules are new to this work; the philosophy
however remains the same. We omit three rules, duals to the last three, obtained by interchanging the
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end point types in the channel type (e.g., (un p2, lin p1) in the last rule), for the effect can obtained by a
suitable choice of the type in its equivalence class (recall that pair types are unordered).

Equipped with the notions of type duality, unrestricted contexts, and context splitting we are ready
to introduce the typing rules in Figure 3. The first two typing rules for values are standard. Rule
[T-STRENGTH] is central to our system with channels described as pairs of types; we discuss it after
introducing the remaining typing rules.

For processes, rule [T-INACT] says that the terminated process can only be typed in an unrestricted
context, ensuring that linear channels are given a chance to be consumed. Rule [T-PAR] uses context
splitting to partition linearly typed variables between the two processes: the incoming context is split
into Γ1 and Γ2, and we use the former to type check process P1 and the latter to type check process P2.
Rule [T-REPL] for replication requires the typing context not to contain linear values, for P may be used
an unrestricted number of types. Rule [T-IF] for the conditional process splits the incoming context in
two parts: one used to check the condition, the other to check both branches. The same context for the
two branches is justified by the fact that only one of P1 or P2 will be executed. Rule [T-RES] allows
restricting channels whose end points are dual, making sure that communication on the channel happens
according to the plan. Allowing to restrict a end point type S type would not break type preservation,
Theorem 3.8, but we believe that such an alternative rule does not fit well in a linear system, where
we expect linear channels to be given an opportunity to be consumed. Even though unrestricted end
point types cannot be directly restricted, we can show that, for each derivation of Γ,x : S ` P, there is
a derivation of Γ,x : (S,un p) ` P, thus allowing to apply scope restriction to an otherwise unrestricted
channel end.

We have two rules for input, [T-IN] and [T-INC], depending on the type for channel x in the context.
Rule [T-IN] deals with end point types. If x is typed with q?T.S, we know that the bound variable y is
of type T , and we type check P under the extra assumption y : T . Equally important is the fact that the
continuation uses channel x at continuation type S, that is, process x(y).P uses channel x at type q?T.S
whereas P may use the same channel this time at type S. Finally, unrestricted channels, given that they
may be shared, must retain their behavior throughout computation, hence the side condition. A solution
to the equation in the side condition is µa?T.a for a not in T , which we abbreviate to ∗?T (and similarly
for output). Rule [T-INC] follows the same pattern, consuming one end point and keeping the other
unchanged. Similarly to input, we have two rules for output. Rule [T-OUT], splits the context in two
parts, one to check v and the other to check continuation P. Notice that the context in the conclusion,
Γ1 · (Γ2,x : q !T.S) allows to type process x〈x〉 with a context x : S with type S such that S = un!S.S.

Rule [T-STRENGTH] allows for a fine grained control of the channel ends of a given channel. A
process holding the two ends of a given channel x, say (∗!bool,∗?bool), may pass the output capability
only by using [T-VAR] followed by [T-STRENGTH] to obtain Γ,x : (∗!bool,∗?bool) ` x : ∗!bool and then
compose with rule [T-OUT] or [T-OUTC] in a process of the form y〈x〉.P. The rule is also fundamental
in establishing the main result of this section.

To lighten the syntax in examples, we omit all unrestricted qualifiers and only annotate linear types.
We also omit the trailing unend in types, as well as the trailing 0 in processes. As an example, consider
the type ?(lin!bool).S of an unrestricted channel that receives a linear channel capable of outputting a
boolean value. The following sequent is easy to establish,

x : ?(lin!bool).S ` x(z).z〈true〉 | x(w).w〈false〉

but only for an appropriate type S. Reading rule [T-IN], we realize that S must be equivalent to ?(lin!bool).S,
that is S must be (equivalent to) µa.?(lin!bool).a, abbreviated to ∗?(lin!bool). Continuing with the exam-
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ple, if P is the above process, then P | (νy)x〈y〉 is not typable, for the linear input capability of channel y
is never exercised. But P | (νy)(x〈y〉 | y(u)) is typable under context x : (∗?(lin!bool),∗!(lin?bool)).

Given that a type (un p1, lin p2) cannot possibly be restricted in a process (cf. rule [T-RES]), the reader
may wonder why we consider them at all. It turns out that free channel output may lead to situations
where a thread holds the two ends of a same channel [18]. For instance, process z〈x〉 | z(w).w(y).x〈true〉,
typable under context z : (∗?S,∗!S),x : (S,S) with S = lin?bool, reduces to process P = x(y).x〈true〉, which
we want to type under the same context. By applying rule [T-INC] to P we obtain a judgment with a
un-lin type, namely z : (∗?S,∗!S),x : (end, lin!bool) ` x〈true〉. A further application of rule [T-OUTC] gets
rid of the un-lin type, yielding z : (∗?S,∗!S),x : (end,end) ` 0 typable under rule [T-INACT].

3 Type preservation

We conclude the section with the main result of our system. Reduction preserves typability only for a
certain kind of contexts. To understand why reduction does not preserve typability in the presence of arbi-
trary contexts, take for P the process x(z).ifz then0else0 | (νy)x〈y〉. We can easily see that P is typable un-
der the (non balanced) context x : (lin!end.end, lin?bool.end). But P reduces to process (νy)ify then0else0
which is not typable. The whole purpose of balancing is to make sure that the type of y in the output is
that of z in the input.

We define predicate balanced to be true of a) the empty context, and b) context Γ,x : bool and context
Γ,x : S and Γ,x : (S,S) whenever Γ is balanced.

To prove subject reduction, we need to first ensure that substitution is type-preserving. To this aim,
we introduce preliminary results. The following structural property of the type system is useful in the
proof of preservation (Theorem 3.8).

Lemma 3.1 (Unrestricted weakening). The following hold.

1. If Γ ` v : T and x 6= v, then Γ,x : T ′ ` v : T , with T ′ = un p or T ′ = (un p1,un p2).

2. If Γ,v : S ` v : S then Γ,v : (S,un p) ` v : S

3. If Γ ` P, then Γ,x : T ` P, with T = un p or T = (un p1,un p2).

4. If Γ,x : S ` P, then Γ,x : (S,un p) ` P.

Proof. The proof is by induction on the structure of the derivation. To prove (1), we proceed by case
analysis on the three applicable typing rules. We draw the case for the strenghtening of unrestricted end
point type; the channel type case is analogous. In case [T-BOOL], we assume Γ ` b : bool with un(Γ).
From un(Γ,x : unp) we infer Γ,x : unp ` b : bool. In case [T-VAR], assume Γ,y : T ` y : T and un(Γ).
We have un(Γ,x : unp) and by [T-VAR] we infer Γ,x : unp,y : T ` y : T . In case [T-STRENGTH], assume
Γ ` v : S inferred from Γ ` v : (S,un p1). The inductive hypothesis is

Γ,x : unp2 ` v : (S,un p1)

We apply [T-STRENGTH] and infer the desired result, Γ,x : un p2 ` v : S. For part (2) the judgement
has been inferred by using [T-VAR]. Therefore Γ is unrestricted. We apply again [T-VAR] and infer
Γ,v : (S,un p) ` v : (S,un p). By [T-STRENGTH] we have Γ,v : (S,un p) ` v : S.

We now prove (3). The hypothesis un(Γ) in rule [T-INACT] establishes the base case since from
un(Γ,x : T ) we have Γ,x : T ` 0.
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In case [T-PAR] assume Γ ` P1 | P2 inferred from Γ1 ` P and Γ2 ` P2 with Γ = Γ1 ·Γ2. By induction
hypothesis we obtain

Γ1,x : T ` P1 and Γ2,x : T ` P2 .

We apply the second rule for context splitting obtaining Γ,x : T = (Γ1,x : U) · (Γ2,x : U). By applying
[T-PAR] we infer Γ,x : U ` P1 | P2

Now consider [T-IN]. We have Γ,z : q?T.S ` z(y).P inferred from Γ,z : S ` P. By induction hypoth-
esis we have

Γ,z : S,x : T ` P

We apply [T-IN] and obtain Γ1,x : T,z : : ?S.T ` z(y).P as requested.
In Case ([T-OUT]) we have Γ1 · (Γ2,y : q !T.S) ` y〈v〉.P inferred from Γ1 ` v : T and Γ2,y : S ` P. We

use (1) and induction and infer

Γ1,x : unp ` v : T Γ2,y : S,x : unp ` P .

Another application of [T-OUT] give us the expected result, (Γ1,x : un p) · (Γ2, ,x : un p,y : q !T.S) `
y〈v〉.P. The remaining cases are analogous.

To prove (4) we proceed by induction on Γ,x : S ` P. Most cases are a straighforward consequence
of the induction hypothesis. In case [T-OUT] and [T-OUTC] we use (2). As an example, consider case
[T-OUT]: Γ,x : S ` y〈v〉.P. We know that there are Γ1,Γ2 such that Γ,x : S = Γ1 · (Γ2,y : q !T.S) with
Γ1 ` v : T Γ2,y : S ` P. The interesting case arises when x ∈ dom(Γ1); otherwise we proceed by
induction and we conclude. Assume Γ1 = Γ′,x : S; by (2) we have Γ′,x : (S,un p) ` v : T . Now two cases
could arise corresponding to (i) S = linp′ and x 6∈ dom(Γ2,y : S) or (ii) S = unp′ and Γ2,y : S = Γ3,x : S.
In case (i) we use (3) and infer Γ2,y : S,x : un p′ ` P. We apply [T-OUT] and we conclude. In case (ii) by
induction hypothesis we infer Γ3,x : (S,un p′) ` P. We apply [T-OUT] and we are done.

Lemma 3.2 (Strengthening). If Γ,x : T ` P and x 6∈ fv(P) then Γ ` P and T = un p or T = (un p1,un p2).

Lemma 3.3 (Substitution). Let Γ1,x : T ` P and assume Γ2 ` v : T . If Γ1 ·Γ2 is defined then Γ1 ·Γ2 `
P[v/x].

Sketch. The most interesting cases arise whenever T = qcT.S or T = (qcT.S,S′) where c ∈ {!,?}. For
instance, for the input case, assume Γ1,x : T ` P inferred from

Γ1,x : S ` P′ or Γ1,x : (S,S′) ` P′

with appropriate conditions on the continuation type S in case q = un. Let Γx indicate the context Γ′

whenever Γ = Γ′,x : S or Γ = Γ′,x : (S,S). In general, from Γ1 · Γ2 defined we could not infer that
Γ1 · (Γv

2,v : S) and Γ1 · (Γv
2,v : (S,S′)) are defined. For instance (Γ,v : linp) · (∆,v : lin?T.unp) is defined

for Γ ·∆ defined, while (Γ,v : linp) · (∆,v : unp) it is not.
When the environment Γ1 ·(Γv

2,v : S) is defined we proceed by induction on the lenght of the inference
Γ1,x : T ` P and let the inductive hypothesis be

Γ1 · (Γv
2,v : S) ` P′[v/x]

Otherwise whenever the splitting of Γ1 and (Γv
2,v : S) is not defined by exploiting Lemma 3.1 we infer

the judgement Γ′1,x : T ` P (∗) where (i) Γ′1 = (Γ1,v : T ) with T = un p or T = (un p1,un p2) and
v 6∈ dom(Γ1), or (ii) Γ′1 = (Γv

1,v : (S,un p)) and Γ1(v) = S.
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We proceed by induction on (*) and let the inductive hypothesis be

Γ
′
1 · (Γv

2,v : S) ` P′[v/x]

In both cases we conclude by applying [T-IN] or [T-INC] and show the expected result, Γ1 ·Γ2 ` P[v/x].

The proof is long and has many sub-cases. For the interested reader we outline all the details in the
Appendix.

The next lemma states that structural equivalent processes can be typed under the same balanced
contexts, and is used in the [R-STRUCT] case of the proof of preservation. We first introduce a useful
definition.

Definition 3.4 (Unrestricted Closure). Let Γ be a type environment. We let the unrestricted closure of Γ,
noted Γun, be the type environment defined as follows:

Γun = {x : unp | Γ(x) = unp or Γ(x) = (unp, linp)}
∪ {x : Γ(x) | Γ(x) = (unp1,unp2)} .

Proposition 3.5. Let Γ be a type environment. The following hold.

(i) dom(Γun)⊆ dom(Γ);

(ii) un(Γun);

(iii) if Γun is not empty then Γ ·Γun = Γ.

Proof. (i,ii) are by definition, (iii) is obtained by applying (i) and (ii).

Lemma 3.6 (Preservation for ≡). Let Γ ` P with Γ balanced. If P ≡ Q then Γ ` Q.

Proof. The proof is by a simple analysis of derivations for each member of each axiom. We use Weak-
ening, Strengthening, and Free variables (Lemmas 3.1, 3.2, and A.1), and must not forget to check the
two directions of each axiom. As an example, we draw the most interesting cases.

Case (!P ≡ P |!P). For the left to the right direction, assume Γ `!P. From [T-REPL] we know that
un(Γ),Γ ` P. Since whenever un(Γ) we have Γ ·Γ = Γ, we could apply [T-PAR] and infer Γ ` P |!P as
requested. Now assume Γ ` P |!P inferred from

Γ1 ` P Γ2 `!P Γ = Γ1 ·Γ2

From [T-REPL] we know that Γ2 ` P and un(Γ2). We show that Γ1 = Γ2 and in turn Γ2 = Γ, as requested.
Let x ∈ dom(Γ1) and assume Γ1(x) = T . Assume x ∈ fv(P); by Lemma A.1 we have x ∈ dom(Γ2).

Therefore (i) Γ2(x) = unp or (ii) Γ2(x) = (unp1,unp2). In case (i) we infer that Γ1(x) = unp = Γ2(x)
by exploting the balanced hypothesis for Γ. Indeed, the other rule applicable for splitting would permit
to assume Γ1(x) = (linp,unp). This is a contradiction, because this would imply that the channel type
Γ(x) = (linp,unp) is balanced, which is not true because the qualifiers of the end types are different. In
case (ii) we have Γ1(x) = T = Γ2(x), because the hypothesis of Γ1 ·Γ2 defined requires the same channel
type both for Γ1(x) and Γ2(x) in the case of unrestricted splitting.

Otherwise, assume x 6∈ fv(P). By Lemma 3.2 we infer Γ1(x) = unp or Γ1(x) = (unp1,unp2). Since
un(Γ2) and Γ1 ·Γ2 defined we infer that Γ1(x) = T = Γ2(x), as requested.
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Similarly, when x ∈ dom(Γ2) we have Γ2(x) = T and (i) T = unp or (ii) T = (unp1,unp2). If
Γ2(x) = unp we exploit Γ(x) balanced and infer the desired result, Γ1(x) = unp = Γ2(x). When Γ2(x) =
(unp1,unp2) we use the hypothesis Γ1 ·Γ2 defined and infer Γ1(x) = (unp1,unp2) = Γ2(x), as requested.

Case (P | 0 ≡ P). For the left to the right direction, assume Γ ` P | 0. We assume that the judgement
has been inferred by using [T-PAR] with the hypotheses: Γ1 ` P Γ2 ` 0 and Γ = Γ1 ·Γ2. From
[T-INACT] we infer un(Γ2). Therefore Γ1 ·Γ2 = Γ1, as requested.

For the right to the left direction, assume

Γ ` P (∗)

Assume that Γun is not empty. From Prop. 3.5(ii) we have un(Γun) and in turn from [T-INACT]

Γun ` 0 (∗∗)

From Prop. 3.5(iii) we know that Γ = Γ ·Γun. We apply [T-PAR] to (*) and (**) and infer the desired
result, Γ ` P | 0. Otherwise if Γun is empty we weaken Γ by applying Lemma 3.1 to (*) and infer

Γ
′ ` P Γ

′ = Γ,x : unp x 6∈ fv(P) (+)

Notice that by Prop. 3.5(ii) we have
Γ
′ ` 0 (++)

Since Γ′un = {x : unp} is not empty, by Prop. 3.5(iii) we have Γ′ = Γ′ ·Γ′un. We apply [T-PAR] to (+) and
(++) and infer

Γ
′ ` P | 0

Finally by using strenghtening or Lemma 3.2 we infer the desired result, Γ ` P | 0.

Lemma 3.7 (Subject reduction). Let Γ ` P with Γ balanced and assume P → P′. Then or (i) Γ ` P′ or
(ii) there is x ∈ dom(Γ) such that Γ = Γ′,x : (q?T.S,q!T.S) and Γ′,x : (S,S) ` P′ .

Proof. The proof is by induction on the reduction derivation, and uses Weakening and Substitution (Lem-
mas 3.1 and 3.3). The inductive cases are straightforward; we use Lemma 3.6 in case [R-STRUCT]. The
most interesting case is when the derivation of the reduction step ends with rule [R-COM].
Case ([R-COM]). Assume

x〈v〉.P | x(y).Q → P | Q[v/y]

and let Ω ` x〈v〉.P | x(y).Q. The judgement above has been inferred by using [T-PAR] because

Γ ` x〈v〉.P (1)

∆ ` x(y).Q (2)

Ω = Γ ·∆ (3)

First notice that Ω(x) is a channel type, because Ω types both the output and the input capability of x,
which in our system is possible only by using channel types of the form (T1,T2). We have sub-cases
corresponding of combination of use of rules [T-OUT] and [T-OUTC] to infer (1) and of rules [T-IN]
and [T-INC] to infer (2). Not all combinations are possible, because the hypothesis Ω balanced implies
that the channel type Ω(x) is balanced. More in detail, the following cases arise:

([T-OUT]− [T-IN]) Γ(x) = lin !T.S ∆(x) = lin?T.S

([T-OUTC]− [T-INC]) Γ(x) = (∗!T ,∗?T ) ∆(x) = (∗!T ,∗?T )
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([T-OUT]-[T-IN]) From (1) and [T-OUT] we infer Γ = Γ1 · (Γ2,x : lin !T.S) where we assume that Γ1 `
v : T and Γ2,x : S ` P. From (2) and [T-IN] we infer ∆ = ∆1,x : lin?T.S and

∆1,x : S,y : T ` P

To apply substitution, Lemma 3.3, we need to check wether Γ1 · (∆1,x : S) is defined. First notice
that x 6∈ dom(Γ1), for the hypothesis Γ1 · (Γ2,x : lin !T.S) defined. From this, from y 6∈ dom(Γ) (by
possibly renaming y in the input process) and from Γ ·∆ defined we infer that Γ1 ·∆1 is defined.
If S = linp we infer that Γ1 · (∆1,x : S) is defined. We apply the substitution Lemma and infer

Γ1 · (∆1,x : S) ` Q[v/x]

Similarly, we infer that (Γ2,x : S) ·(Γ1 ·(∆1,x : S) is defined and equal to Ω′ = (Γ1 ·Γ2 ·∆1),x : (S,S).
We therefore could apply [T-PAR] and infer

Ω
′ ` P | Q[v/x]

This is the desired result because we have Ω′ = Ωx,x : (S,S), i.e. case (ii) holds.
Otherwise assume S = unp. This implies S = unp′ for some p′. We apply weakening of values
(Lemma 3.1) to Γ1 ` v : T and infer

Γ1,x : (S,S) ` v : T

Then we apply Lemma 3.1 to ∆1,x : S,y : T ` P and infer

∆1,x : (S,S),y : T ` P

We apply the substitution Lemma and infer

(Γ1,x : (S,S)) · (∆1,x : (S,S)) ` Q[v/x] ($)

Notice that (Γ1,x : (S,S)) · (∆1,x : (S,S)) = (Γ1 ·∆1),x : (S,S).
We apply Lemma 3.1 to Γ2,x : S ` P and infer

Γ2,x : (S,S) ` P ($$)

Application of [T-PAR] to ($) and ($$) give us the expected result for case (ii):

(Γ1 ·Γ2 ·∆1),x : (S,S) ` P | Q[v/x]

Indeed Ωx = (Γ1 ·Γ2 ·∆1).

([T-OUTC]-[T-INC]) Let T1 = (∗?T ,∗!T ). From (1) and [T-OUTC] we infer Γ = Γ1 · (Γ2,x : T1) where
we assume that Γ1 ` v : T and Γ2,x : T1 ` P. From (2) and [T-IN] we infer ∆ = ∆1,x : T1 and

∆1,x : T1,y : T ` P

Because of Γ1(x) = T1 and Γ ·∆ defined by hypothesis we have that Γ1 · (∆1,x : T1) is defined. We
could apply the substitution lemma and infer

Γ1 · (∆1,x : T1) ` Q[v/x]

We apply [T-PAR] and infer

(Γ2,x : T1) ·Γ1 · (∆1,x : T1) ` P | Q[v/x]

We conclude since (Γ2,x : T1) ·Γ1 · (∆1,x : T1) = Ω, i.e. we are in case (i).
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Case ([R-PAR]). Assume P | R → Q | R and let Γ ` P | R with Γ balanced. Therefore rule [T-PAR] has
been applied with the following hypothesis

Γ1 ` P Γ2 ` R Γ = Γ1 ·Γ2

First, we note that Γ1,Γ2 are both balanced. Consider Γi(x) = T . If T = S then T is balanced since end
point types are balanced by definition. If T = (lin p1, lin p2) then Γ(x) = T and therefore T is balanced.
Lastly whenever T = (un p1,un p2) we have Γ1(x) = Γ(x) = Γ2(x). We let the reduction be inferred from
P → Q and assume by induction hypothesis that

Γ
′ ` P′

where or (iii) Γ′ = Γ1 or (iv) Γ′ = Γx
1,x : (S,S) with Γ1(x) = (q?T.S,q!T.S). In case (iii) we apply [T-PAR]

and infer the desired result, Γ′ ·Γ2 ` P | R.
In case (iv) we reason on q. If q = lin, we know that x 6∈ dom(Γ2). If S = linp we apply [T-PAR] and

infer Γ′ ·Γ2 ` P | R, otherwise whenever S = unp we weaken Γ2 ` R to

Γ2,x : (S,S) ` R

Then we apply [T-PAR] and infer
Γ
′ · (Γ2,x : (S,S)) ` P′ | R

We have done, because Γ′ · (Γ2,x : (S,S)) = Γx,x : (S,S).
Otherwise whenever q = un we know that un?T.S = S and un!T.S = S. Therefore Γ′ = Γ1 and we have
done.

Case ([T-RES]). Assume (νx)P → (νx)P′ and let Γ` (νx)P be inferred from Γ,x : (S,S)`P. Assume the
reduction above to have been inferred from P → P′. By induction hypothesis or (i) or Γ,x : (S,S) ` P′ or
(ii) there is Γ′ = (Γ,x : (S,S))y,y : (S1,S1) such that Γ′ `P′. Case (i) is obtained directly by using [T-RES].
In case (ii) if x 6= y we apply [T-RES] and obtain Γy,y : (S1,S1) ` (νx)P′, as requested. Otherwise if x = y
we obtain Γ ` (νx)P′, and have done.

Case ([R-STRUCT]). Assume P → P′ inferred from [R-STRUCT], and let Γ ` P with Γ balanced. We
infer that there are Q ≡ Q and Q′ s.t. Q → Q′ with Q′ ≡ P′. Since Γ is balanced, we could apply typing
preservation (Lemma 3.6) and infer Γ ` Q. The inductive hypothesis is that there exists a balanced
environment Γ′ such that

Γ
′ ` Q′

We apply again Lemma 3.6 and infer Γ′ ` P′, as requested.

We then prove the main result of this section, namely that the balanced typings are preserved.

Theorem 3.8 (Type Preservation). If Γ1 ` P1 with Γ1 balanced and P1 → P2, then Γ2 ` P2 with Γ2
balanced.

Proof. Assume Γ ` P with Γ balanced and let P → P′. By using Lemma 3.7 we infer that (i) Γ ` P′ or
(ii) there exists Γ′ such that Γ′ ` P′. Since in case (ii) such Γ′ is balanced, we have done.
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New syntactic forms

P ::= . . . Processes: µa.S recursive type

xp〈xp〉.P output S ::= Session types:

xp(x).P input end termination

T ::= Types: ?T.S receive

ˆT standard channel !T.S send

S session channel a type variable

a type variable µa.S recursive type

New reduction rules

xp〈zq〉.P | xp(y).Q →p P | Q[zq/y] [R-COM]

Context updating

Γ+ xp : S = Γ,xp : S if xp,x 6∈ dom(Γ) and S =?T.S, !T.S,end

Γ+ x : T = Γ,x : T if x,x+,x− 6∈ dom(Γ)
Γ,x : T + x : T = Γ,x : T if T = ˆT,bool

Typing rules

Γ completed
Γ `p 0

Γ `p P Γ unlimited
Γ `p ∗P

Γ,x : ˆT `p P
Γ `p (νx)P

Γ,x+ : S,x− : S `p P
Γ `p (νx)P

[T-INACT] [T-REPL] [T-NEW] [T-NEWS]
Γ1 `p P Γ2 `p Q

Γ1 +Γ2 `p P | Q
Γ,x : ˆT,y : T `p P
Γ,x : ˆT `p x(y).P

Γ,xp : S,y : T `p P
Γ,xp : ?T.S `p xp(y).P

[T-PAR] [T-IN] [T-INS]

Γ,x : ˆT `p P
(Γ,x : ˆT )+ yq : T `p x〈yq〉.P

Γ,xp : S `p P
(Γ,xp : !T.S)+ yq : T `p xp〈yq〉.P

[T-OUT] [T-OUTS]

Figure 4: Pi calculus with polarities

4 Embedding the Pi Calculus with Polarities

This section shows that our type system embeds the polarity system introduced by Gay and Hole [4].
Since Gay and Hole show that the pi calculus with polarities embeds the simply typed pi calculus; by
transitivity our language embeds the simply typed pi calculus as well.

In Figure 4 we present the branch-select free fragment of the pi calculus with polarities. Variables
may be polarized, occurring in processes as well as in typing contexts as x+ or x− or simply as x. We
write xp for a general polarized name, where p represents an optional polarity. Duality on polarities,
written p exchanges + and −. The new constructors of the language, input and output, are in Figure 4;
the remaining are taken from Figure 1; the syntactic category for values in Figure 1 does not contribute
to the language.

The reduction relation, denoted by →p, is defined inductively by the rules in Figure 1 with rule
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[R-COM] replaced by that in Figure 4. From the above description it should be obvious that the two
languages differ in the (optional) polarity annotation on (non-bound occurrences of) variables. We define
an erase function that removes from a polarized processes all occurrences of + and −, to yield a process
generated by the grammar in Figure 1. There is an obvious operational correspondence between the two
languages, stated in Theorem 4.1. The converse is clearly not true. Take for P the polarized process
x+〈〉 | x+(). Then erase(P) = x〈〉 | x() reduces while P does not.

The language of types includes a distinct category S for (linear) session types. Since we restrict
our language to the branch-select free fragment of [4], we ignore subtyping. Duality is defined as in
Section 2, with the appropriate changes which amount erasing the qualifiers. Typing contexts now gather
assumptions on polarized variables, in addition to simple variables as before. There is however one
restriction on the variables occurring in a context: x and x+ (or x−) cannot occur simultaneously in a
given context Γ, even though x+ and x− may. New assumptions are added to contexts by means of an
update operation +, defined in Figure 4. Context updating is different from splitting (in Figure 3) on what
concerns unrestricted types: /0 +(x : ˆT ) is defined, whereas /0 · (x : un p) is not. We say that a context is
unlimited if it contains no session types, and is completed if every session in it is end.

The typing relation is inductively defined by the rules in Figure 4. Rule [T-NEWS] requires the types
for the two channel end points to be of dual types; contrast with rule [T-RES] in Figure 3: our system
merges the two end points in a single variable and requires the two components of the channel type to be
of dual types. Rules [T-IN] and [T-INS] in Figure 4 have their counterpart in rules [T-IN] and [T-INC]
in Figure 3. The choice here is not based on whether the type for the input channel is an end point or a
channel type but rather on whether the qualifier is linear or unrestricted. The same can be said of rules
[T-OUT] and [T-OUTS].

From the above description it should be obvious that the two systems are quite close to each other.
In order to define the typing correspondence we need to translate types and contexts for the polarized
language (as in Figure 4) to those in our language (Figure 1). The definition is as follows; recall from
Section 2 that we use ∗?T as an abbreviation for µa.?T.a, for some a not in T . To translate typing
contexts we assume that if both x+ and x− are in Γ then they occur in contiguous positions (and in this
order). The translation of typing contexts is as follows, where the rules must be tried in the given order;
the first rule for mapping non-empty contexts is for polarized pairs while the second rule is for single
entries.

[[̂ T ]] = (∗?[[T ]],∗![[T ]]) [[end]] = unend [[ /0]] = /0

[[?T.S]] = lin?[[T ]].[[S]] [[a]] = a [[Γ,x+ : S,x− : S′]] = [[Γ]],x : ([[S]], [[S′]])
[[!T.S]] = lin![[T ]].[[S]] [[µa.S]] = µa.[[S]] [[Γ,xp : T ]] = [[Γ]],x : [[T ]]

[[µa.T ]] = µa.[[T ]]

We are now in a position to state the main result of this section.

Theorem 4.1 (Polarity-Pi To Pi Correspondence). The following hold.

1. If Γ `p P then [[Γ]] ` erase(P).

2. If P →p Q, then erase(P) → erase(Q).

Proof. (1). By a straightforward induction on the derivation of a reduction step →p. We omit the rather
obvious details. (2). The proof is by induction on the derivation of Γ `p P. We draw the most interesting
cases.
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For [T-INACT]p and [T-REPL]p we note that if Γ is completed or unlimited then [[Γ]] is unrestricted.
For [T-NEW]p we know by induction that [[Γ]],x : [[T ]] ` eraseP. Noting that [[̂ T ]] = (∗?[[T ]],∗![[T ]]) we
conclude the case by applying rule [T-RES], since ∗?[[T ]] is dual to ∗![[T ]]. The case for [T-NEWS] is
similar.

For [T-IN]p let Γ,x : ˆT `p x(y).P be inferred from Γ,x : ˆT,y : T `p P . By induction hypothesis
[[Γ,x : ˆT,y : T ]] ` erase(P) . We rewrite the judgement as

[[Γ]],x : (∗?[[T ]],∗![[T ]]),y : [[T ]] ` erase(P)

We apply [T-INC] and infer the desired result,

[[Γ]],x : (∗?[[T ]],∗![[T ]]) ` x(y).erase(P)

For [T-INS]p let Γ,xp : ?T.S `p x(y).P be inferred from Γ,xp : S,y : T `p P . Assume the induction
hypothesis be

[[Γ,xp : S,y : T ]] ` erase(P) (∗)

There are two cases corresponding to (i) Γ = Γ′,xp : S′ or (ii) xp 6∈ dom(Γ). In case (i) we rewrite (*) as

[[Γ′]],x : ([[S′]], [[S]]),y : [[T ]] ` erase(P) .

We appply [T-INC] and infer [[Γ′]],x : ([[S′]], lin?[[T ]].[[S]]),y : [[T ]] ` erase(P) as required. In case (ii) we
rewrite (*) as

[[Γ]],x : [[S]],y : [[T ]] ` erase(P) .

We apply [T-IN] and infer [[Γ]],x : lin?[[T ]].[[S]] ` x(y).erase(P) .
For [T-OUT]p, let (Γ,x : ˆT )+yq : T `p x〈yq〉.P be inferred from Γ,x : ˆT `p P. Assume the inductive

hypothesis be
[[Γ,x : ˆT ]] ` erase(P) (∗)

We reason on T to infer the shape of Γ.
Assume x 6= y. When T =?T.S,=!T.S,= end, we could have (i) Γ = Γ′,yp : T ′ or (ii) yp 6∈ dom(Γ).

Otherwise when T = ˆT ′,= bool we could have (iii) Γ = Γ′,y : T or (iv) y 6∈ dom(Γ).
Sub-case (i). We rewrite (*) as

[[Γ′]],x : (∗?[[T ]],∗![[T ]]),y : [[T ′]] ` erase(P) (∗∗)

When T ′ =?T.S,=!T.S, we apply [T-INC] to y : [[T ]] ` y : [[T ]] and (**) and infer the desired result,

(y : [[T ]]) · ([[Γ′]],x : (∗?[[T ]],∗![[T ]]),y : [[T ′]]) ` x〈y〉.erase(P)

for the environment (y : [[T ]]) ·([[Γ′]],x : (∗?[[T ]],∗![[T ]]),y : [[T ′]]) equal to [[(Γ,x : ˆT )+ yq : T ]]. Otherwise
it could be T ′ = end. In such case we proceed as above by applying [T-INC] to y : ([[T ]],end) ` y : [[T ]]
and (**) .
Sub-case (ii). We rewrite (*) as

[[Γ]],x : (∗?[[T ]],∗![[T ]]) ` erase(P) (∗∗∗)

When T =?T.S,=!T.S we apply [T-INC] to y : [[T ]] ` y : [[T ]] and (***) and infer the desired result. When
T = end we weaken (***) to

[[Γ]],x : (∗?[[T ]],∗![[T ]]),y : end ` erase(P) (∗∗∗∗)
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and infer the desired result by applying [T-INC] to y : [[T ]] ` y : [[T ]] and (****).
Sub-case (iii).By applying [T-INC] to (*) and y : [[T ]] ` y : [[T ]].
Sub-case (iv). By weakening (*) to

[[Γ]],x : (∗?[[T ]],∗![[T ]]),y : [[T ]] ` erase(P) (∗∗∗∗∗)

and applying [T-INC] to (*****) and y : [[T ]] ` y : [[T ]].
Consider now the case x = y. We infer that T is equivalent toˆT . We apply [T-INC] to x : [[T ]]` x : [[T ]]

and (*) and infer the desired result:

(x : [[̂ T ]]) · [[Γ,x : ˆT ]] ` x〈x〉.erase(P)

for the environment (x : [[̂ T ]]) · [[Γ,x : ˆT ]] equivalent to [[(Γ,x : ˆT )+ x : ˆT ]].
For [T-OUTS]p, the proof is very similar to that of case [T-OUT]p. The interesting part is whenever

x = y. In such case the judgement is

(Γ,xp : !T.S)+ xq : T `p xp〈xq〉.P (∗)

By definition of + this implies that q = p, T =!T.S,=?T.S,= end and x 6∈ dom(Γ). We let (*) be inferred
from (Γ,xp : S) `p P and assume the inductive hypothesis be

[[Γ,xp : S]] `p erase(P)

We rewrite the judgement as
[[Γ]],x : [[S]] `p erase(P) (∗∗)

When T =!T.S,=?T.S we apply [T-IN] to x : [[T ]] ` x : [[T ]] and (**) and infer the desired result,

(x : [[T ]]) · ([[Γ]],x : lin![[T ]].[[S]]) ` x〈x〉.erase(P)

When T = end we weaken (**) to

[[Γ]],x : ([[S]],end) `p erase(P) (∗∗∗)

and apply [T-INC] to x : [[T ]] ` x : [[T ]] and (***) infer the desired result,

(x : end) · ([[Γ]],x : (lin!end.[[S]],end)) ` x〈x〉.erase(P) .

5 Embedding the Linear Pi Calculus

In this section we analyse (a synchronous variant of) the linear pi calculus [7] and provide a typing-
preserving encoding into our system.

The syntax of linear pi processes and the reduction relation are described in Figure 1. Figure 5
defines the syntax of types and the typing rules for processes. Types have now the form qcT where c is
a capability formally defined as one of the following sets.

i = {i} o = {o} io = {i,o}
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New syntactic forms

c ::= Capabilities: T ::= Types:

i input qcT channel

o output bool boolean

io input and output

Combination of types

bool+bool = bool unc1 T +unc2 T = un(c1∪ c2)T lin iT + linoT = lin io T

Combination of contexts

(Γ1 +Γ2)(x) =


Γ1(x)+Γ2(x) if x ∈ dom(Γ1)∩dom(Γ2)
Γ1(x) if x ∈ dom(Γ1) and x 6∈ dom(Γ2)
Γ2(x) if x ∈ dom(Γ2) and x 6∈ dom(Γ1)

Typing rules for processes

Γ `l P1 Γ `l P2

Γ+ v : bool `l ifv thenP1 elseP2

Γ,x : q io T `l P
Γ `l (νx)P

[T-IF] [T-RES]

Γ,y : T `l P
Γ+ x : q iT `l x(y).P

Γ `l P
Γ+ x : qoT + v : T `l x〈v〉.P

[T-IN] [T-OUT]

Figure 5: Linear pi calculus

The linear discipline is imposed by way of a + combination operation over types, defined in Figure 5.
The operator is extended point-wise to typing contexts. Notice that context combination is different from
the context splitting operation defined in Figure 3 when in the presence of unrestricted types: context
splitting does not allow composing (Γ1,x : uncT ) with Γ2 whenever x 6∈ dom(Γ2) or when Γ2(x) 6= uncT .

The typing system for the linear pi-calculus is defined by the rules in Figure 3 together with rules
[T-INACT], [T-REPL] and [T-PAR] in Figure 4. Rule [T-OUT] is an adaptation of that in [7] to the
synchronous setting: we let the continuation be typed with context Γ while in the original paper the
premise to the rule is un(Γ) since the (absent) continuation behaves as 0. We also adapt rule [T-RES]
to require that the restricted channel uses both capabilities; the original system allows processes of the
form (νx)x〈true〉 to be typed by assigning to channel x type linobool; cf. discussion around rule [T-RES]
in Section 2.

The compositional encoding of linear types is defined below and is useful to understand the recon-
struction of session types introduced in Section 2. A linear input (output) type is embedded as a linear
input (output) type whose continuation is unend, meaning that the continuation process cannot further use
the channel. Unrestricted input (output) types are mapped into unrestricted recursive input (output) types.
For instance, the type lin i(lin io(un iobool)) is mapped into the type lin?(lin !T.unend, lin?T.unend).unend
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where T = (∗!bool,∗?bool).

[[lin iT ]] = lin?[[T ]].unend [[linoT ]] = lin![[T ]].unend

[[un iT ]] = ∗?[[T ]] [[unoT ]] = ∗![[T ]]
[[q ioT ]] = ([[q iT ]], [[qoT ]]) [[bool]] = bool

The main result of this section establishes the correspondence between the two systems.

Theorem 5.1 (Linear-Pi To Pi Correspondence). If Γ `l P then [[Γ]] ` P.

Proof. We proceed by induction on the typing derivation. Case ([T-IN]). Assume

Γ+ x : q iS `l x(y).P (∗)

We let (*) be inferred fromΓ,y : S `l P and assume the inductive hypothesis to be

[[Γ,y : S]] ` P

There are four cases

Γ(x) = qoS q = lin (4)

x 6∈ dom(Γ(x)) q = lin (5)

Γ(x) = qcS q = un (6)

x 6∈ dom(Γ(x)) q = un (7)

Sub-case (4). We know that [[Γ]] = [[Γx]],x : lin![[S]].end. We use Lemma 3.1 and infer [[Γx]],x : (lin![[S]].end,end),y :
[[S]] ` P. We apply [T-INC] and infer

[[Γx]],x : (lin![[S]].end, lin?[[S]].end) ` x(y).P

We have done since [[Γx]],x : (lin![[S]].end, lin?[[S]].end) = [[Γ+ x : lin iS]].
Sub-case (5). Analogous to the previous case but that we apply [T-IN] instead of [T-INC].
Sub-case (6). If c = io we know that [[Γ]] = [[Γx]],x : (∗![[S]],∗?[[S]]). We apply [T-INC] and we infer the
expected result, [[Γ]] ` x(y).P. If c = o we apply Lemma 3.1 to (**) and infer [[Γx]],x : (∗![[S]],∗?[[S]]),y :
[[S]] ` P We apply [T-INC] and and obtain

[[Γx]],x : (∗![[S]],∗?[[S]]) ` x(y).P

This is the expected result because of [[Γx]],x : (∗![[S]],∗?[[S]]) = [[Γ+un iS]]. Finally when c = i we apply
[T-IN] to (**) and infer

[[Γx]],x : ∗?[[S]] ` x(y).P

as requested, for [[Γx]],x : ∗?[[S]] = [[Γ+un iS]].
Sub-case (7). We apply weakening to (**) and infer [[Γ,y : S]],x : ∗?[[S]] ` P. We apply [T-IN] and
conclude.

Case ([T-OUT]). Assume
Γ+ x : qoS + v : S `l x〈v〉.P (∗)

and let (*) be inferred from
Γ `l P (∗∗)



M. Giunti and V.T. Vasconcelos 19

By induction hypothesis we have
[[Γ]] ` P (∗∗∗)

The interesting part is the sent channel.
Sub-case (S = lincT ). We have Γ(v) = lincT or v 6∈ dom(Γ). In both cases we infer

v : [[S]] ` v : [[S]] (∗∗∗∗)

If Γ(x) = unoS, or Γ(x) = un ioS we weaken (****) to

{v : [[S]],x : Γ(x)} ` v : [[S]] (∗∗∗∗∗)

and apply respectively [T-OUT] and [T-OUTC] to (***) and (*****) and infer the desired result,

{v : [[S]],x : Γ(x)} · [[Γ+unoS]] ` x〈v〉.P

When Γ(x) = un iS we weaken (***) to [[Γx]],x : (un?[[S]],un![[S]]) ` P and apply [T-OUTC] and infer

{v : [[S]],x : (un?[[S]],un![[S]])} · [[Γ+unoS]] ` x〈v〉.P

When Γ(x) = lin iS we weaken (***) to [[Γx]],x : (lin?[[S]],unend) ` P and apply [T-OUTC] to infer

{v : [[S]],x : unend} · [[Γ+ linoS]] ` x〈v〉.P

Finally when x 6∈ domΓ we weaken (***) to [[Γx]],x : unend ` P and apply [T-OUTC] to infer

{v : [[S]],x : unend} · [[Γ+ linoS]],x : unend ` x〈v〉.P

Sub-case (S = uncT ). The proof does not change that much for the previous case, but that in order the
splitting operation to be defined in [T-OUT] or [T-OUTC] we have to choose an appropriate enviroment
Γ1 such that Γ1 ` v : [[S]]. Indeed the following cases arise: (i) Γ(v) = uncT or (ii) v 6∈ dom(Γ). When
v ∈ dom(Γ) by using weakening of values we infer

v : [[Γ(v)]] ` v : [[S]]

and then proceed as above by applying rule [T-OUT] or [T-OUTC] Otherwise we weaken (***) by adding
the entry v : [[S]] and proceed as above.

6 Embedding the Linear Lambda Calculus

This section shows that the call-by-value linear lambda calculus can be faithfully encoded in our lan-
guage. We follow the presentation of Walker [17], except that we use an implicitly typed language.

The syntax of the language is in Figure 6; we rely on the set of variables introduced in Section 2
for the pi calculus; the missing non-terminal symbols, q, b and so on, are in Figure 1. Values are quali-
fied, linear or unrestricted, and include boolean values and abstractions. Terms are variables, values, and
applications and are evaluated in an abstract machine with an explicit store. The store is a sequence of
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Syntax

v ::= Values: p ::= Pretypes:

q b boolean bool boolean

q λx.M abstraction T → T function

M ::= Terms: T ::= Types:

x variable q p qualified pretype

v value S ::= Stores:

MM application /0 empty store

S,x 7→ v store binding

Store deallocation

(S1,x 7→ v,S2)
lin∼ x = S1,S2 S un∼ x = S

Evaluation

(S;v)→λ (S,x 7→ v;x)
S(x1) = qλy.M

(S;x1x2)→λ (S
q∼ x1;M[x2/y])

[E-VAL] [E-APP]

(S;M1)→λ (S′;M′
1)

(S;M1M2)→λ (S′;M′
1M2)

(S;M)→λ (S′;M′)
(S;xM)→λ (S′;xM′)

[E-FUN] [E-ARG]

Typing

un(Γ)
Γ,x : T `λ x : T

un(Γ)
Γ `λ qb : qbool

[T-VAR] [T-BOOL]

Γ,x : T1 `λ M : T2 q(Γ)
Γ `λ qλx.M : qT1 → T2

Γ1 `λ M1 : qT1 → T2 Γ2 `λ M2 : T1

Γ1 ·Γ2 `λ M1M2 : T2
[T-ABS] [T-APP]

Figure 6: Linear lambda calculus

variable-value pairs, treated as a map from variables into values. To simplify the presentation of the eval-
uation relation, we use an auxiliary function, S

q∼ x that deallocates the value associated with variable x
in S when the qualifier q is lin, and leaves S unchanged otherwise. The evaluation reduction copies values
into the store, associating them with a fresh variable (rule [E-VAL]). For function application the value
associated with the function is looked upon in the store; if linear it is then deallocated (rule [E-APP]).
The remaining two rules implement the call-by-value strategy. We denote by →λ the reduction relation
in Figure 6.

For typing, rule [T-VAR] is that of the pi-calculus (Figure 3). Rule [T-BOOL] contrasts with its
homonymous in Figure 3 in that values in the linear lambda calculus are qualified, the type of a value
inheriting the qualifier of the value. The remaining two rules, for abstraction and application, are standard
in the linear lambda calculus; notice the q(Γ) in rule [T-ABS] requiring an unrestricted function to contain
only unrestricted free variables (un(Γ) is defined in Section 2; lin(Γ) is true).

For the translation we rely on a polyadic variant of the pi language, allowing channels to carry an
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arbitrary (but fixed) number of values. The extension is straightforward to incorporate: for processes
we need polyadic output and input, x(~x).P and x〈~v〉.P; for types (pre types, rather) we need ?〈~T 〉.S and
!〈~T 〉.S. The extension can be incorporated in the base theory or added as an encoding [16].

On what concerns the translation of types below, the interesting cases are the two forms of arrow
types. An unrestricted T1 → T2 type is translated as a pair of types: the ∗?X part caters for the resource
(the function proper) and the ∗!X for its clients. Channels describing functions carry a pair X of values:
the first element in the pair is the argument to the function ([[T1]] in X); the second is a channel that will
convey the result and that will be used exactly once (a linear channel of type lin![[T2]].unend). The type
for linear resources is similar, only that they are linear, rather than unrestricted. The translation of terms
follows that of Milner [10] with two exceptions. On the one hand, the value qualifiers are taken into
consideration in the translation: a linear value is translated into a simple output (in the case of a boolean
value) or a simple input (in the case of an abstraction); only for unrestricted values replication is used.
On the other hand, applications of the form xM are partially evaluated, allowing for a simple operational
correspondence (cf. [15]).

[[q bool]] = q bool [[x]]p = p〈x〉
[[un T1 → T2]] = (∗?X ,∗!X) [[v]]p = (νx)([[x 7→ v]] | p〈x〉)
[[lin T1 → T2]] = (lin?X .unend, lin!X .unend) [[xM]]p = (νr)([[M]]r | r(y).x〈yp〉)

where X = 〈[[T1]], lin![[T2]].unend〉 [[MN]]p = (νs)([[M]]s | s(x).(νr)(
[[ /0]] = 0 [[N]]r | r(y).x〈yp〉))

[[S,x 7→ v]] = [[S]] | [[x 7→ v]] [[S;M]]p = (ν dom(S))([[S]] | [[M]]p)
[[x 7→ q b]] = [[q]]x〈b〉 [[un]] = ∗

[[x 7→ qλyM]] = [[q]]x(yp).[[M]]p [[lin]] = the empty string

We are now in a position to state the main result of this section.encoding preserves substitution, in the
following sense. We first need to ensure that the

Lemma 6.1. [[M]]{[x/y]}= [[M{[x/y]}]].
Let →∗ be the reflexive and transitive closure of the reduction relation → defined in Figure 1.

Theorem 6.2 (Linear-Lambda to Pi Correspondence). The following hold.

1. If Γ `λ M : T , then [[Γ]], p : lin![[T ]].un end ` [[M]]p.

2. If (S;M)→λ (S′;M′), then [[S;M]]p →∗ [[S′;M′]]p.

Proof. (1). By induction on the lenght of the typing. (2). A straightforward induction on reduction,
taking advantage of the partial evaluation when reduction ends with rule [E-ARG]. The interesting case
happens when reduction ends with [E-APP]. We distinguish two cases: q is lin, and q is un. In the first
case we crucially take into account that store entries are translated an simple (non-replicated) inputs,
hence consumed by pi-reduction, as prescribed by rule [E-APP].

([E-ARG]) Assume (S;xM)→λ (S′;xM′) inferred from (S;M)→λ (S′;M′). Consider

[[S;xM]] = (ν dom(S))[[S]] | (νr)([[M]]r | r(y).x〈yp〉)

By I.H there is n ≥ 0 such that

(ν dom(S))[[S]] | [[M]]r →n (ν dom(S′))[[S′]] | [[M′]]r
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We assume that r 6∈ dom(S′) (eventually by alpha-renaming). By using [R-PAR] it’s easy to show
that

(ν dom(S))[[S]] | [[M]]r | r(y).x〈yp〉 →n (ν dom(S′))[[S′]] | [[M′]]r | r(y).x〈yp〉
Similarly by using [R-RES] and [R-STRUCT] we obtain

(νr,dom(S))[[S]] | [[M]]r | r(y).x〈yp〉 →n (ν dom(S′))[[S′]] | (νr)([[M′]]r | r(y).x〈yp〉)

Since the redex on the right is equal to [[S′;xM′]], we have done.

([E-FUN]) Assume (S;MN)→λ (S′;M′N) inferred from (S;M)→λ (S′;M′). We have

[[S;MN]] = (ν dom(S))[[S]] | (νs)([[M]]s | s(x).N̂)

where we let N̂ = (νr)([[N]]r | r(y).x〈yp〉). By I.H there is n ≥ 0 such that

(ν dom(S))[[S]] | [[M]]s →n (ν dom(S′))[[S′]] | [[M′]]s

We assume that s 6∈ dom(S′) (eventually by alpha-renaming). By using [R-PAR] we could infer
that

(ν dom(S))[[S]] | [[M]]s | s(x).N̂ →n (ν dom(S′))[[S′]] | [[M′]]s | s(x).N̂

Similarly from [R-RES],[R-STRUCT] we have

(νs,dom(S))[[S]] | [[M]]s | s(x).N̂ →n (ν dom(S′))[[S′]] | (νs)([[M′]]s | s(x).N̂)

as requested for the redex equal to [[S′;M′N]].

[E-APP] We have (S;x1x2)→λ (S
q∼ x1;M[x2/y]) since S = S′,x 7→ qλy.M.

By definition

[[(S;x1x2)]] = (ν dom(S))[[S′]] | [[x1 7→ qλy.M]] | (νs)(s〈x1〉 | s(x).(νr)(r〈x2〉 | r(y).x〈yp〉))

Assume q = lin; in such case S lin∼ x1 = S′. From [R-COM],[R-STRUCT] we have

[[(S;x1x2)]]→ P = (ν dom(S))[[S′]] | x1(yp).[[M]]p | (νr)(r〈x2〉 | r(y).x1〈yp〉))

Another application of [R-COM] and [R-STRUCT] give us

P → P′ = (ν dom(S))[[S′]] | x1(yp).[[M]]p | x1〈x2 p〉

By [R-COM], [R-STRUCT]

P′ → (ν dom(S′))[[S′]] | [[M]]p{[x2/y]}

We apply Lemma 6.1 and we have done since the redex on the right it is equal to [[(S′;M[x2/y])]].

Now assume q = un; we have S un∼ x1 = S. We have

[[(S;x1x2)]]→ P = (ν dom(S))[[S′]] | ∗x1(yp).[[M]]p | (νr)(r〈x2〉 | r(y).x1〈yp〉))

By applications of [R-COM] and [R-STRUCT] we infer

P →n (ν dom(S))[[S′]] | ∗x1(yp).[[M]]p | [[M]]p{[x2/y]}

By Lemma 6.1 the redex on the right is equal to [[(S;M[x2/y])]], as requested.
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7 Conclusion

As mentioned in the introduction, the pi calculus equipped with a polarity-based typing system [4] and
the (double binder) pi calculus equipped with a conventional typing system [16] are the works closest
to ours. Here we try to obtain the same results, relying on the traditional pi calculus equipped with a
conventional type system. Towards this end we introduce an unordered pair constructor denoting, at
type level, the two ends of a same channel. In order to distinguish linear from unrestricted variables
we use type qualifiers applied to pre types, inspired by Walker’s presentation of substructural type sys-
tems [17]. We also borrow from [17] the idea of splitting contexts in typing. While this approach is clear
and concise, the inherent non-determinism contained in its formulation makes a direct implementation
infeasible. To resolve this problem, in [5] one of the authors has developed a split-free algorithm where
typing returns in output a context where the consumed linear capabilities are marked as unusable.

It should be noted that the choice of representing computations with a channel type representing the
two ends of the communication rules out some process that could be interesting. A process that we are
not able to type check is below.

!x(y).(νa)(y〈a〉.a(title).a(date).(!a(date) | a〈22March〉)

The process consists in a modified version of the poll service where the service itself proposes a date
for the meeting. The algorithm does not accept this process because in the (unrestricted) continuation
type both capabilities would be needed. While we do not envisage difficulties in introduce subtyping
for unrestricted types à la [12], this seems to go on the opposite direction of the idea of channel types.
We therefore need to investigate subtyping solutions which take into account the channel type construct.
Particularly promising is the Fo (“F-pop”) system by Maruzak et al. [8], where a kinding system, instead
of type qualifiers, simplifies the use of linearity in functional programming languages, including a novel
form of subtyping between linear and unrestricted kinds, which we would like to explore.
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A Proof of Substitution Lemma

The following result relates judgments Γ ` P and the free variables of P.

Lemma A.1 (Coverage). If Γ ` P and x ∈ fv(P) then x ∈ dom(Γ).

Proof of Lemma 3.3 The proof is by induction on the typing derivation and uses Strengthening and
Weakening and Free variables (3.1, 3.2, and A.1).

For the base case (rule [T-INACT]), we know that un(Γ1). The result follows by Strengthening and
Weakening. In case [T-IN] we have two cases correspoding to whether the input variable is the subject
of the substitution or not. We draw the first case, the second is easier.Assume

Γ,x : q?T.S ` x(y).P (∗)

Consider ∆ ` v : q?T.S with Γ ·∆ defined and y 6∈ dom(∆),y 6= v (possibly by renaming y in x(y).P). The
defined hypothesis comports the following cases:

Γ(v) = linp ∆(v) = lin?T.S (8)

Γ(v) = (linp,un?T.S) ∆(v) = un?T.S (9)

Γ(v) = un p ∆(v) = (lin?T.S,un p) (10)

v 6∈ dom(Γ) ∆(v) = lin?T.S (11)

Γ(v) = ∆(v) ∆(v) = un?T.S,∆(v) = (un?T.S,unp) (12)

Case (8). If S = linp′ we assume (*) has been inferred from Γ,x : S,y : T ` P. Because ∆v,v : S ` v : S,
we could apply the induction hypothesis to this judgement and infer (Γ,y : T ) · (∆v,v : S) ` P[v/x]. We
rewrite the judgement as

(Γv ·∆v),v : (linp,S),y : T ` P[v/x]

We apply [T-INC] and infer (Γv ·∆v),v : (linp, lin?T.S) ` v(y).P[v/x]. This is the expected result because
of (Γv ·∆v),v : (linp, lin?T.S) = Γ ·∆.
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Otherwise if S = unp′ we use Lemma 3.1 to weaken Γ,x : q?T.S ` x(y).P to

Γ,v : (linp,S),x : q?T.S ` x(y).P (∗∗)

We therefore proceed by induction on (**) to show the expected result, Γ ·∆ ` v(y).P[v/y].
Indeed, assume (**) has been inferred by using [T-IN] from Γ,v : (linp,S),x : S,y : T ` P. By induction
hypothesis we infer (Γ,v : (linp,S),y : T ) · (∆v,v : S) ` P[v/x]. We rewrite this judgement as

(Γ ·∆v),v : (linp,S),y : T ` P[v/x]

We apply [T-INC] and infer (Γ ·∆v),v : (linp, lin?T.S) ` v(y).P[v/x], as requested, for the environment
(Γ ·∆v),v : (linp, lin?T.S) equivalent to Γ ·∆.

Case (9). We know that un?T.S = S. We assume (*) has been inferred from Γ,x : S,y : T ` P and apply
the induction hypothesis to this judgement and infer

(Γ,y : T ) ·∆ ` P[v/x]

Application of [T-INC] give us the expected result, Γ ·∆ ` v(y).P[v/x].

Case (10). If S = linp′ we assume (*) has been inferred from Γ,x : S,y : T `P. Since ∆v,v : (S,unp)` v : S,
we apply the induction hypothesis to the judgement and infer (Γ,y : T ) · (∆v,v : (S,unp)) ` P[v/x]. We
rewrite the judgement as

(Γv ·∆v)v : (S,unp),y : T ` P[v/x]

We apply [T-INC] and infer the expected result, (Γv ·∆v),v : (lin?T.S,unp) ` lin(v).yP[v/x].
Otherwise assume S = unp′. We use Lemma 3.1 to weaken Γ,x : q?T.S ` x(y).P to

Γ
v,v : (unp,S),x : q?T.S ` x(y).P (∗∗∗)

We therefore proceed by induction on (***) to show the expected result, Γ ·∆ ` v(y).P[v/y]. Indeed
assume (***) to be inferred from Γv,v : (unp,S),x : S,y : T ` P. From ∆v,v : (unp,S) ` v : S and the
induction hypothesis we infer (Γv,v : (unp,S),y : T ) ·(∆v,v : (unp,S))`P[v/x]. We rewrite the judgement
as

(Γv ·∆v),v : (unp,S)),y : T ` P[v/x]

We apply [T-INC] and infer (Γv · ∆v),v : (unp, lin?T.S)) ` v(y).P[v/x], as requested, for (Γv · ∆v),v :
(unp, lin?T.S)) equal to Γ ·∆.

Case (11). If S = linp′ we assume (*) has been inferred from Γ,x : S,y : T ` P. We apply the induction
hypothesis to the judgement and infer (Γ,y : T ) · (∆,v : S) ` P[v/x]. Finally we proceed as in case (8)
with S linearized; we omit the details.

Otherwise if S = unp′ we apply Lemma 3.1 to (*) and infer

Γ,v : S,x : lin?T.S ` x(y).P (∗∗∗∗)

We proceed by induction on (****) to show the expected result, Γ ·∆ ` v(y).P[v/y].
Assume (****) has been inferred by using [T-IN] from Γ,v : S,x : S,y : T ` P. We apply the induction
hypothesis to the judgement and infer (Γ,y : T,v : S) · (∆v,v : S) ` P[v/x]. We rewrite this judgement as

(Γ ·∆v),v : S,y : T ` P[v/x]
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We apply [T-IN] and deduce (Γ ·∆v),v : lin?T.S ` v(y).P[v/x] as required, for the environment (Γ ·∆v),v :
lin?T.S equivalent to Γ ·∆.

Case (12). We assume (*) has been inferred from Γ,x : S,y : T ` P and that un?T.S = S. Since ∆ ` v : S,
we apply the induction hypothesis to the judgement and infer

(Γ,y : T ) ·∆ ` P[v/x]

Another application of [T-IN] or [T-INC] give us the expected result, Γ ·∆ ` v(y).P[v/x].

For case [T-INC] assume
Γ,x : (q?T.S,S′) ` x(y).P (∗)

and let Γ · (∆,v : (q?T.S,S′)) defined with y 6∈ dom(∆),y 6= v. We have the following cases:

Γ(v) = S′ q = lin S′ = unp (13)

Γ(v) = (q?T.S,S′) q = un S′ = unp (14)

v 6∈ dom(Γ) q = lin S′ = linp (15)

Case (13). If S = linp′ we assume that (*) has been inferred from Γ,x : (S,S′),y : T ` P. By induction
hypothesis we have that (Γ,y : T ) · (∆,v : (S,S′)) ` P[v/x]. We rewrite this judgement as

(Γ ·∆),v : (S,S′),y : T ` P[v/x]

We apply [T-INC] and infer (Γ·∆),v : (q? .T S,S′)` v(y).P[v/x]. We have done since (Γ·∆),v : (q? .T S,S′)
is equivalent to Γ · (∆,v : (q? .T S,S′)).

If S = unp′ we apply Lemma 3.1 to (*) and infer

Γ,v : (S,S′),x : (q?T.S,S′) ` x(y).P (∗∗)

We proceed by induction on (**) to show the expected result, Γ ·(∆,v : (q?T.S,S′))` v(y).P[v/x]. Assume
(**) has been inferred from Γ,v : (S,S′),x : (S,S′),y : T ` P. We apply the induction hypothesis to the
judgement and infer (Γ,v : (S,S′),y : T ) · (∆,v : (S,S′)) ` P[v/x]. We rewrite the judgement as

(Γ ·∆),v : (S,S′),y : T ` P[v/x]

We apply [T-INC] and infer (Γx ·∆),v : (q?T.S,S′) ` v(y).P[v/x]. From (Γx ·∆),v : (q?T.S,S′) equivalent
to (Γ · (∆,v : (q?T.S,S′)) we conclude.

Case (14). We assume (*) has been inferred from Γ,x : (S,S′),y : T ` P and that q?T.S = S. By induction
hypothesis we infer (Γ,y : T ) · (∆,v : (S,S′)) ` P[v/x] which we rewrite as

(Γ ·∆),v : (S,S′),y : T ` P[v/x]

We apply [T-INC] and infer (Γ ·∆),v : (q?T.S,S′) ` v(y).P[v/x]. From (Γ ·∆),v : (q?T.S,S′) equivalent
to Γ · (∆,v : (q?T.S,S′)) we conclude.

Case (15). The interesting case arises whenever S = unp′. We apply Lemma 3.1 to (*) and infer

Γ,v : S,x : (q?T.S,S′) ` x(y).P (∗∗∗)
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We proceed by induction on (***) to show that Γ · (∆,v : (q?T.S,S′)) ` v(y).P[v/x]. Assume (***) has
been inferred from Γ,v : S,x : (S,S′),y : T `P. By induction hypothesis we have that (Γ,v : S,y : T ) ·(∆,v :
(S,S′)) ` P[v/x]. This is equivalent to

(Γ ·∆),v : (S,S′),y : T ` P[v/x]

We aplly [T-INC] and we have done.

Consider now the case for the typing rules for output, [T-OUT] and [T-OUTC]. We tackle the two
rules in a single paragraph, because many sub-cases do not take advantage of the substituted variable to
have a channel type or an end point type.

Assume
Γ1 · (Γ2,y : q !T.S) ` y〈x〉.P (∗)

Let Γ = Γ1 · (Γ2,y : q !T.S), Γ(x) = T ′ and ∆ ` v : T ′. Assume Γx ·∆ defined. Notice that this implies
un(∆v).

Assume x 6= y and let (*) inferred from Γ1 ` x : T and Γ2,y : S ` P and q = un ⇒ q!T.S = S. The
following cases arise for Γ2(x),T and T ′:

Γ2(x) = T ′ T ′ = unp,T ′ = (unp1,unp2) T = T ′ (16)

Γ2(x) = T T ′ = (unp1, linp2) T = unp1 (17)

Γ2(x) = T ′ T ′ = (unp1, linp2) T = unp1 (18)

Γ2(x) = linp1 T ′ = (linp1, linp2) T = linp2 (19)

x 6∈ dom(Γ2) T ′ = linp,T ′ = (linp1, linp2) T = T ′ (20)

T = T ′ (21)

First, from un(∆v) we infer
Γ

x
1 ·∆v = Γ

x
1 ($)

To see that, first notice that un(Γx
1). Then notice that dom(Γx

1) = dom(∆v). Indeed if z ∈ dom(Γx) then
z ∈ dom(Γx

1), because of un(Γx
1). Let Γx

1(z) = T1 and Γx(z) = T2. The case T1 = T2 is clear. Otherwise if
T1 = unp and T2 = (unp1, linp2) we know that ∆v(z) = T1 because of un(∆v); we therefore infer ($).

Case (16). From the defined hypothesis we infer Γ(v) = ∆(v) and in turn Γ2(v) = ∆(v) = Γ1(v). We
apply the I.H to (*) and infer

(Γx
2,y : S) ·∆ ` P[v/x]

We rewrite the judgement above as
(Γx

2,y : S) ·∆ ` P[v/x]

From ($) we infer Γ∗1 ·∆ ` v : T . By applying [T-OUT] we obtain

(Γx
1 ·∆) · (Γx

2,y : q !T.S) ·∆ ` y〈v〉.P[v/x]

This is the expected result because (Γx
1 ·∆) · (Γx

2,y : q !T.S) ·∆ = Γx ·∆.

Case (17). From the defined hypothesis we infer Γ(v) = T ; therefore Γ1(v) = T = Γ2(v). Since by
hypothesis Γ2(x) = T and ∆ ` v : T , we apply the I.H to (*) and infer

(Γx
2,y : S) ·∆ ` P[v/x]
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From ($) we infer Γ∗1 · (∆v,v : T ) ` v : T . By applying [T-OUT] we obtain

(Γx
1 · (∆v,v : T )) · (Γx

2,y : q !T.S) ·∆ ` y〈v〉.P[v/x]

This is the expected result since (Γx
1 · (∆v,v : T )) · (Γx

2,y : q !T.S) ·∆ = Γx ·∆.

Case (18). Analogous to case (17). Γ1(v) = T = Γ2(v).

Case (19). We have v 6∈ dom(Γ). We apply the I.H to (*) and infer

(Γx
2,y : S) · (∆v,v : linp1) ` P[v/x]

From ($) we infer
Γ

x
1 · (∆v,v : T ) ` v : T

We apply [T-OUT] and infer

(Γx
1 · (∆v,v : T )) · (Γx

2,y : q, !T.S) · (∆v,v : linp1) ` y〈v〉.P[v/x]

This is the expected result because (Γx
1 · (∆v,v : T )) · (Γx

2,y : q, !T.S) · (∆v,v : linp1) = Γx ·∆.
Case (20). We weaken (*) by using Lemma 3.1 and infer

(Γx
2,y : S) ·∆v ` P

From ($) we infer
Γ

x
1 ·∆ ` v : T

We apply [T-OUT] and infer

Γ
x
1 ·∆ · (Γx

2,y : q, !T.S) ·∆v ` y〈v〉.P[v/x]

as requested for Γx
1 ·∆ · (Γx

2,y : q, !T.S) ·∆v = Γx ·∆.

Consider now the case x = y and let

Γ1 · (Γ2,x : q !T.S) ` x〈x〉.P (+)

be inferred from Γ1 ` x : T and Γ2,x : S ` P and q = un⇒ q!T.S = S. The following cases arise:

T ′ = un !T.S T = T ′ (22)

T ′ = (lin !T.S,T ) T = linp (23)

T ′ = (lin !T.S,T ) T = unp (24)

T ′ = (un !T.S,T ) T = linp (25)

T ′ = (un !T.S,T ) T = unp (26)

Case (22) is easy because T ′ = S = T implies ∆` v : S and the result follows from the inductive hypothesis
and [T-OUT].

Case (23). We know v 6∈ dom(Γ). If S = linp′ we apply the induction hypothesis to (+) and infer

Γ2 · (∆v,v : S) ` P[v/x]



M. Giunti and V.T. Vasconcelos 29

From ($) we infer
Γ

x
1 · (∆v,v : T ) ` v : T

We apply [T-OUT] and we conclude.
Otherwise if S = unp′ we apply Lemma 3.1 to (+) and infer

Γ,v : S ` x〈x〉.P (++)

We proceed by induction on (++) and infer the inductive hypothesis

Γ2,v : S · (∆v,v : S) ` P[v/x]

From ($) we infer
(Γx

1,v : S) · (∆v,v : (S,T )) ` v : T

We apply [T-OUT] and we conclude.

Case (24). We know Γ(v) = T = Γ1(v) = Γ2(v). If S = linp′ we apply the inductive hypothesis to (*) and
infer

Γ2 · (∆v,v : (S,T )) ` P[v/x]

From ($) we infer
Γ

x
1 · (∆v,v : T ) ` v : T

We apply [T-OUT] and we conclude.
If S = unp′ we apply Lemma 3.1 to (+) and infer

Γ
v,v : (S,T ) ` x〈x〉.P (++)

We proceed by induction on (++) and let the indutive hypothesis be

(Γv
2,v : (S,T )) ·∆′ ` P[v/x]

with ∆′ = ∆v,v : (S,T ). From ($) and [T-PROJR] we infer

(Γxv
1 ·∆′) ` v : T

We apply [T-OUT] and we conclude.

Case (25). We have Γ(v) = un?T.S = Γ1(v) = Γ2(v). Moreover un?T.S = S. We apply the inductive
hypothesis to (*) and infer

Γ2 · (∆v,v : S) ` P[v/x]

From ($) and [T-PROJR] we infer
Γ

x
1 · (∆v,v : (S,T )) ` v : T

We apply [T-OUT] and we conclude.

Case (26). We have Γ(v) = T ′ = Γ1(v) = Γ2(v). Moreover un?T.S = S. Since by [T-PROJR] we have
∆ ` v : S, we could apply the inductive hypothesis to (*) and infer

Γ2 ·∆ ` P[v/x]

From ($) and [T-PROJR] we infer
Γ

x
1 ·∆ ` v : T
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We apply [T-OUT] and we conclude.

In case Lemma 3.1, assume
Γ,y : (S,unp) ` P (∗)

First consider whenever x = y, i.e. the variable to be substituted is the weakened one. In such case we
let ∆ ` v : (S,unp) and assume Γ ·∆ defined. We have v ∈ dom(Γ) because or (i) Γ(v) = unp whenever
S = linp′ or (ii) Γ(v) = ∆(v) whenever S = unp′. We let (*) been inferred from Γ,x : S ` P. Since by
hypothesis ∆(v) = (S,un p), by using [T-PROJL] we infer ∆ ` v : S. We apply the inductive hypothesis
and obtain Γ ·∆ ` P[v/x] as requested.

Otherwise assume x 6= y. Let Γ(x) = T , ∆ ` v : T , and assume (Γ,y : (S,unp))x ·∆ defined. Since
x 6= y, this means that (Γx,y : (S,unp)) ·∆ is defined. Therefore or (iii) ∆(y) = (S,unp) with S = unp′ or
(iv) ∆(y) = unp with S = linp′. We let (*) been inferred from Γ,y : S ` P and and apply the inductive
hypothesis to the judgement. In case (iii) from (∆y,y : S) ` v : T we infer

(Γx,y : S) · (∆y,y : S) ` P[v/x]

In case (iv) from ∆y ` v : T we infer

(Γx,y : S) ·∆y ` P[v/x]

In both cases another application of Lemma 3.1 give us the expected result,

(Γx,y : (S,unp)) ·∆ ` P[v/x]

For parallel processes, rule [T-PAR], assume

Γ ` P1 | P2 (∗)

inferred from
Γ1 ` P1 Γ2 ` P2 Γ = Γ1 ·Γ2

and let Γ(x) = T . Assume ∆ ` v : T and Γx ·∆ defined.

Cases T = (unp1,unp2), T = unp1. We have Γ(v) = ∆(v) = Γ1(v) = Γ2(v). By induction hypothesis
from (*) we infer

Γ
x
1 ·∆ ` P1[v/x] Γ

x
2 ·∆ ` P2[v/x]

We apply [T-PAR] and infer
(Γx

1 ·∆) · (Γx
2 ·∆) ` P1[v/x] | P2[v/x]

From (Γx
1 ·∆) · (Γx

2 ·∆) = Γx ·∆ we conclude.

Case T = linp. Let Γ1(x) = T , x 6∈ dom(Γ2) (the other case is analogous). We have two sub-cases
corresponding to (i) ∆(v) = linp or to (ii) ∆(v) = (linp,unp′).

In sub-case (i) we know that v 6∈ dom(Γ). We apply the I.H. to Γ1 ` P1 and infer

Γ
x
1 ·∆ ` P1[v/x]

Since Γ2 ·∆v = Γ2 we have
Γ2 ·∆v ` P2
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We apply [T-PAR] and conclude

(Γx
1 ·∆) · (Γ2 ·∆v) ` P1[v/x] | P2

The judgement is the expected result, because (Γx
1 ·∆) · (Γ2 ·∆v) = Γx ·∆ and P1[v/x] | P2 = (P1 | P2)[v/x]

for x 6∈ fv(P2).
In sub-case (ii) we know that Γ(v) = unp′ = Γ1(v) = Γ2(v). By induction we have

Γ
x
1 ·∆ ` P1[v/x]

We have Γ2 · (∆v,v : unp′) = Γ2 By [T-PAR] we have

(Γx
1 ·∆) · (Γ2 · (∆v,v : unp′)) ` P1[v/x] | P2

and we have done because (Γx
1 ·∆) · (Γ2 · (∆v,v : unp′)) = Γx ·∆.

Case T = (linp, linp′). We know ∆(v) = T and v 6∈ dom(Γ). If Γ1(v) = T and v 6∈ dom(Γ2) we proceed
as in sub-case (i). The same happens whenever Γ2(v) = T and v 6∈ dom(Γ1). The interesting case is
Γ1(v) = linp and Γ2(v) = linp′. By induction hypothesis from (*) we infer

Γ
x
1 · (∆v,v : linp) ` P1[v/x] Γ

x
2 · (∆v,v : linp′) ` P2[v/x]

We apply [T-PAR] and infer the expected result,

(Γx
1 · (∆v,v : linp)) · (Γx

2 · (∆v,v : linp′)) ` P1[v/x] | P2[v/x]

because of (Γx
1 · (∆v,v : linp)) · (Γx

2 · (∆v,v : linp′)) = Γx ·∆.

Case T = (linp,unp′). We have ∆(v) = T and Γ(v) = unp′. We proceed as in sub-case (ii).

For the restriction case, [T-RES], assume

Γ,x : T ` (νy)P (∗)

Let ∆` v : T where y 6∈ dom(∆), and assume Γ ·∆ defined. Assume (*) inferred from Γ,x : T,y : (S,S)`P.
We proceed by induction on (*) and let the inductive hypothesis be (Γ,y : (S,S)) ·∆ ` P[v/x]. Since
y 6∈ dom(∆) and in turn y 6= v, we could rewrite the judgement as

(Γ ·∆),y : (S,S)) ` P[v/x]

We apply [T-RES] and conclude the desired result, Γ ·∆ ` (νy)P[v/x].
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