
GoPi: Compiling linear and static channels in Go

Marco Giunti

NOVA LINCS, NOVA School of Science and Technology, Portugal

Coordination, June 17 2020

Motivation
The GoPi compiler

Thanks

Background
Disallowing forwarding to enhance security

Channels and programming languages

I Support for communication channels in programming
languages is increasing (XC, Go, Crystal, Flix, Kotlin, ...)

I tour.golang.org: sum of numbers in a slice by 2 goroutines

1 func sum(s [] i n t , c chan i n t) {
2 sum := 0
3 f o r , v := range s { sum += v }
4 c ← sum // send sum to c
5 }
6
7 func c a l c (c chan i n t) {
8 s := gene ra teRandomSl i c e (1000)
9 go sum(s [: l e n (s) / 2] , c) // con cu r r e n t g o r o u t i n e

10 go sum(s [l e n (s) / 2 :] , c) // con cu r r e n t g o r o u t i n e
11 x , y := ←c , ←c // r e c e i v e from c
12 fmt . P r i n t f (”The sum o f the s l i c e i s %d” , x + y)
13 }

Marco Giunti GoPi: Compiling linear and static channels in Go

tour.golang.org

Motivation
The GoPi compiler

Thanks

Background
Disallowing forwarding to enhance security

Channel forwarding

I Channels can be sent over channels, allowing to dynamically
extend their scope

I In some situations this is too liberal, e.g., function sum should
not need to distribute the communication channel c

1 func sum(s [] i n t , c chan i n t) {
2 go func (){ pub ← c } () // c i s f o rwarded −− backdoor ?
3 . . .
4 c ← sum // send sum to c
5 }
6
7 func () {
8 c := make (chan i n t)
9 c a l c (c)

10 } () // scope o f c
11
12 go func () { x := ←pub ; x ← 0 } () // a t t a c k e r open ing scope

Marco Giunti GoPi: Compiling linear and static channels in Go

Motivation
The GoPi compiler

Thanks

Background
Disallowing forwarding to enhance security

Designing protocols with no-forwarding

I Some apps as instant messengers already provide protection
against message forwarding in order to strengthen secrecy

I To offer such protection, channel-based languages should
feature a command to create static channels having a scope
that cannot be extruded

1 func sum(s [] i n t , c chan i n t) {
2 go func (){ pub ← c } () // c i s f o rwarded −− backdoor ?
3 . . .
4 }
5
6 func () {
7 c := s t a t i c make (chan i n t) // p r o po s a l : Go 2
8 c a l c (c)
9 } () // scope o f c

10
11 go func () { x := ←pub ; x ← 0 } () // a t t a c k e r open ing scope

Marco Giunti GoPi: Compiling linear and static channels in Go

Motivation
The GoPi compiler

Thanks

Background
Disallowing forwarding to enhance security

Compile-time detection of scope extrusion

I Programs that at runtime can extrude the scope of a static
channel should be rejected at compile-time

1 func sum(s [] i n t , c chan i n t) {
2 go func (){ pub ← c } () // c i s f o rwarded −− backdoor ?
3 }
4
5 func () {
6 c := s t a t i c make (chan i n t) // p r o po s a l : Go 2
7 c a l c (c)
8 } () // scope o f c
9

10 go func () { x := ←pub ; x ← 0 } () // a t t a c k e r open ing scope

I Code rejected by the compiler

sum.go:10:22: static channel may cross its boundary

Marco Giunti GoPi: Compiling linear and static channels in Go

Motivation
The GoPi compiler

Thanks

Compiling high-level programs in Go
LSpi language
Chat example
Static analysis
Go code generation

GoPi

I In this talk, we present the GoPi compiler
I GoPi compiles high-level programs featuring linear and static

channels into executable Go programs

INPUT let Sumi = · · · in let Calc = (new s1, s2)(Slice |
Sum1 | Sum2) | Print in [hide c][Calc] | For

OUTPUT ************************** GOPI **************************

TYPE-CHECKED -- MAX ORDER: 2

GENERATING GO FILE gopiProcess.go

RUNNING THE PROCESS (go run gopiProcess.go)

**********Init*********

Waiting for value on for3 Waiting for value on c ...

Retrieved s1 from for1 Retrieved s2 from for3 ...

Waiting for value on r1 Retrieved r1 from for2 ...

Retrieved slice2 from s2 Retrieved slice1 from s1 ...

Waiting for value on c Retrieved slice1 from r1 ...

Retrieved res1 from c Retrieved res2 from c ...

Print res1 + res2

Marco Giunti GoPi: Compiling linear and static channels in Go

Motivation
The GoPi compiler

Thanks

Compiling high-level programs in Go
LSpi language
Chat example
Static analysis
Go code generation

Protocol specification and execution

I Aims:

1. design
2. analysis
3. execution in channel-based runtime system

of message-passing protocols featuring
I channel-over-channel passing
I linear channels
I static channels

I Guidelines:
I avoid annotations
I fully-automatic compilation of well-behaved source

specifications into executable target programs

Marco Giunti GoPi: Compiling linear and static channels in Go

Motivation
The GoPi compiler

Thanks

Compiling high-level programs in Go
LSpi language
Chat example
Static analysis
Go code generation

Main features

I Language
I compile-time detection of extrusion of the scope of channels

declared as static with the [hide x][P] construct
I compile-time detection of deadlocks on channels declared as

linear with the 〈a, . . . , z〉P construct

I Runtime system
I realistic non-deterministic synchronizations
I race-freedom

Marco Giunti GoPi: Compiling linear and static channels in Go

Motivation
The GoPi compiler

Thanks

Compiling high-level programs in Go
LSpi language
Chat example
Static analysis
Go code generation

Example: Secret Chat protocol

I Aim: design an app (instance) offering protection against
message forwarding

I Alice, Bob and Carl share an hidden chat channel with static
scope including

1. the users
2. the board
3. a setup process that distributes the channel to the users

I the scope of the channel should never be enlarged

Marco Giunti GoPi: Compiling linear and static channels in Go

Motivation
The GoPi compiler

Thanks

Compiling high-level programs in Go
LSpi language
Chat example
Static analysis
Go code generation

Secret Chat in LSpi

I !, ?, . , ∗, |, indicate output, input, sequence, loop and parallel
execution, respectively

let Alice = priv?(c).c!helloAlice in

let Bob = priv?(c).c!helloBob.pub!priv in

let Carl = pub?(p).p?(c).c!helloCarl in

let Board = ∗chat?(message).print ::message in

let Setup = ∗priv!chat in

let Chat =

[hide chat][Board | (new priv)(Setup | Alice | Bob) | Carl] in Chat

I Specification is suspicious since the distribution channel priv
is sent on public channel pub

Marco Giunti GoPi: Compiling linear and static channels in Go

Motivation
The GoPi compiler

Thanks

Compiling high-level programs in Go
LSpi language
Chat example
Static analysis
Go code generation

Secret Chat: semantics

I Concrete:
I compile Chat into an executable Go program and run it

I Abstract:
I translate Chat into a (typed) pi calculus process
I hide is mapped into new and has standard semantics
I linear declarations separated from processes and used in the

static analysis

[[Chat]] →∗(new chat)(Board | (new priv)(pub!priv | Setup) |
chat!helloAlice) | print ::helloBob | Carl

I Soundness: processes that extrude static channels must be
rejected

Γ 0 [[[hide c][a!c] | a?(x).P]]

Marco Giunti GoPi: Compiling linear and static channels in Go

Motivation
The GoPi compiler

Thanks

Compiling high-level programs in Go
LSpi language
Chat example
Static analysis
Go code generation

Stand-alone and contextual analysis

I GoPi offers two levels of analysis

[hide chat][Board | (new priv)(Setup | Alice | Bob) | Carl]

1. Stand-alone. Chat will not be composed with other processes
I safe: all processes are included in the static scope of chat

2. Contextual. Chat will be composed with other processes
I unsafe: there exists a “well-behaved” process that can open

the scope of the static channel when ran in parallel with Chat
I Process pub?(xpriv).xpriv?(xchat).Q is one of such processes

Marco Giunti GoPi: Compiling linear and static channels in Go

Motivation
The GoPi compiler

Thanks

Compiling high-level programs in Go
LSpi language
Chat example
Static analysis
Go code generation

Linear channels

I To recover the protocol, we resort to linear channels that are
used once in input and once in output (noted 〈·〉)

〈pub〉[hide chat][Board | (new priv)(Setup | Alice | Bob) | Carl]

I the process above is contextually safe
I we assume that composed processes running in parallel respect

the linearity assumptions

I safety established by resolving SMT-LIB constraint system
automatically generated from process and catalyser

;; DATATYPES

(declare-datatypes () ((Scope static dynamic)))

;; i/o capabilities: 2 is used , 1 is used once , 0 is unused

(declare-datatypes () ((Chantype top

(channel (scope Scope) (payload Chantype) (id Int) (i Int) (o Int) (ord Int)))))

Marco Giunti GoPi: Compiling linear and static channels in Go

Motivation
The GoPi compiler

Thanks

Compiling high-level programs in Go
LSpi language
Chat example
Static analysis
Go code generation

Deadlock detection

I Deadlocks that may arise on linear channels are detected
(some limitation on delegation)

let Bob = priv?(c).c!helloBob.pub!priv.ack!ok in

let Carl = ack?(x).confirm!x .pub?(p).p?(c).c!helloCarl in · · · in
let ChatAck = 〈ack, pub〉Chat in ChatAck

Assertions for linear channels ack and pub
(assert (! (=> (isLinear ack) (< (ord pub) (ord ack))) :named A67))

(assert (! (=> (isLinear pub) (< (ord ack) (ord pub))) :named A96))

(assert (! (isLinear ack) :named A111))

(assert (! (isLinear pub) :named A112))

(assert (! (=> (isLinear ack) (and (= (o ack) 1) (= (o ack) (+ 1 0))))

:named A113))

(assert (! (=> (isLinear ack) (and (= (i ack) 1) (= (i ack) (+ 1 0))))

:named A114))

(assert (! (=> (isLinear pub) (and (= (o pub) 1) (= (o pub) (+ 1 0))))

:named A137))

(assert (! (=> (isLinear pub) (and (= (i pub) 1) (= (i pub) (+ 1 0))))

:named A138))

Marco Giunti GoPi: Compiling linear and static channels in Go

Motivation
The GoPi compiler

Thanks

Compiling high-level programs in Go
LSpi language
Chat example
Static analysis
Go code generation

Generating typed Go code

I SMT-LIB channel types mapped into Go types by ignoring all
fields but the payload

I Implementation of processes not straigthforward
I Mapping send/receive processes directly into send/receive

primitives breaks semantics of processes
I In practice, non-determinism is almost eliminated

I Solution relies on structured communication protocol based
on randomized message queues

Marco Giunti GoPi: Compiling linear and static channels in Go

Motivation
The GoPi compiler

Thanks

Compiling high-level programs in Go
LSpi language
Chat example
Static analysis
Go code generation

Naive implementation in Go (Carl = pub?(p).p?(c).c!helloCarl)

I Rationale: LSpi processes are mapped directly in Go primitives
I Problems:

1. 90% of executions bind p to priv (line 9): should be 50%
2. channels have no name associated: “Retrieved:0xc000022060”

1 var pub chan chan chan base
2 //Chat p r o c e s s − non− l i n e a r v e r s i o n
3 func (){
4 chat := make (chan base) ; . . .
5 func (){ . . .
6 p r i v := make (chan chan base) ; . . .
7 go func (){ . . . ; pub ← p r i v } () //Bob
8 } ()
9 go func (){ p := ←pub ; fmt . P r i n t (” R e t r i e v e d : ” , p)

10 c := ←p ; fmt . P r i n t . . . ; c ← ” H e l l o C a r l ” } () // Ca r l
11 } ()
12 // P a r a l l e l p r o c e s s
13 go func (){ a := make (chan chan base) ; pub ← a } ()

Marco Giunti GoPi: Compiling linear and static channels in Go

Motivation
The GoPi compiler

Thanks

Compiling high-level programs in Go
LSpi language
Chat example
Static analysis
Go code generation

GoPi’s approach

I Channel servers

1. take care of input and output requests of client processes
2. internally manage non-deterministic synchronizations and the

naming of channels

I Access to channel servers regulated by an API for
communication

I API implemented as methods of type environment
infrastructure

Marco Giunti GoPi: Compiling linear and static channels in Go

Motivation
The GoPi compiler

Thanks

Compiling high-level programs in Go
LSpi language
Chat example
Static analysis
Go code generation

Code generated by GoPi (Carl = pub?(p).p?(c).c!helloCarl)

1 type typeEnv s t r u c t {
2 ord0 s t r u c t { . . . }
3 ord1 s t r u c t {
4 t oS t r map [chan1] s t r i n g // ma r s h a l l i n g
5 f romSt r map [s t r i n g] chan1 // unma r s h a l l i n g
6 queue map [chan1] queueChan0
7 dequeue map [chan1] func () // i n s t a n t i a t e d at r e g i s t r a t i o n
8 mux sync . Mutex } . . .
9 } ; var Gamma typeEnv . . .

10 func (){ . . .
11 Gamma. r e g i s t e r (” chat ” + counte r , ”0”)
12 chat := Gamma. chanOf (” chat ” + coun t e r) . (chan0)
13 go func () { . . . } () //Board . . . // Setup , A l i c e , Bob
14 go func () {
15 Gamma. dequeue (pub) ; p := ←pub
16 Gamma. dequeue (p) ; c := ←p
17 cRep ly4 := make (chan boo l)
18 Gamma. queue (c , h e l l o C a r l , cRep ly4)
19 =←cRep ly4 ; done ← t rue } () // Ca r l . . . } ()

Marco Giunti GoPi: Compiling linear and static channels in Go

Motivation
The GoPi compiler

Thanks
Try GoPi!

Thanks!

https://github.com/marcogiunti/gopi

Marco Giunti GoPi: Compiling linear and static channels in Go

https://github.com/marcogiunti/gopi

	Motivation
	Background
	Disallowing forwarding to enhance security

	The GoPi compiler
	Compiling high-level programs in Go
	LSpi language
	Chat example
	Static analysis
	Go code generation

	Thanks
	Try GoPi!

