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Abstract contexts are well-typed.

The question we address in this paper is whether the
The challenges hidden in the implementation of high-level process same kind of reasoning can still be relied upon when we ex-
calculi into low-level environments are well understood [1]. This tend the class of observing contexts to arbitrary, potentially
paper develops a secure implementation of a typed pi calculus, injll-typed contexts. Stated more explicitly: can we deploy
which type capabilities are employed to realize the policies for the our typed processes as low-level agents to run in distributed
access to communication channels. Our implementation translatesnvironments, in a fully abstract manner, i.e. preserving the
the typed capabilities of the high-level calculi into corresponding typed behavioral congruences we have established? This
term capabilities protected by encryption keys only known to the appears to be an important question, as it constitutes a fun-
intended receivers. As such, the implementation is effective evendamental prerequisite to the use of typed process calculi as

in the presence of open contexts for which no assumption on trustan abstract specification tool for concurrent computations in
and behavior may be made. Our technique and results draw ondistributed, open systems.

and extend, previous work [3] on secure implementation of chan- |, [8] we argue that the desired correspondence may
nel abstractions in a dialect of the join calculus. In particular, hardly be achieved for high-level process calculi relying on
our translation preserves the forward secrecy of communicationsgtatic typing alone. The solution we envision in that paper
in calculi which support the dynamic exchange of wraed/or  j5 hased on a new typing discipline that combines static and
read access rights among processes. We establish the adequa@ynamiC typing. Specifically, we introduce a typed vari-
and full abstraction of the implementation by contrasting the un- gnt of the pi-calculus in which the output construct, noted
typed equivalences of the low-level cryptographic calculus, with a(v@T), uses type coercion to enforce the deliveryvof
the typed equivalences of the high-level source calculus. at the typeT, regardless of the type of the communication
channela. A static typing system guarantees thdtas in-
) deed the coercion typ&, while a mechanism of dynam-
1 Introduction ically typed synchronization guarantees thas received
only at supertypes of, so as to guarantee the type sound-
The use of types for resource access control is a long esness of each exchange
tablished technique in the literature on process calculi [13],
and so is the application of typed equivalences to reasonBy breaking the dependency between the types of the trans-
on the behavior of typed processes [10, 14]. Resource conimnission channels and the types of the names transmitted,
trol is achieved by predicating the access to communica-distinctive of the traditional approaches to typing in the pi
tion channels to the possession of certain type capabilities,and related calculi [13, 10], we can safely reduce the ca-
and by having a static typing system ensure that the re-pability types to the simplest, flat structure that only ex-
sulting policies are complied with by well-typed processes. hibits the read/write access rights on channels, regardless
Typed equational techniques, in turn, draw on judgments of the types of the values transmitted. Furthermore, and
of the form | = P = Q stating the indistinguishableness more interestingly for our present concerns, the combina-
(hence the equivalence) of two proces$esndQ, in en- tion of type coercion and dynamically typed synchroniza-
closing contexts that have access to the names in the typ¢ion allow us to gain further control on the interactions
environment via the type capabilities assigned to them by among processes and, consequently, on the interaction be-
I. Typed equations of this kind are very effective when- tween processes and their enclosing context. Based on that
ever we have control on the structure of the contexts ob-we are able to recover fully abstract implementations of the
serving our processes, i.e., whenever may assume that suchigh-level specifications, i.e. implementations for which the



typed congruences established for the specifications are tru@rivate queue; in the read protocol, the client sends a ses-
of the low-level implementations. The basic idea is rather sion key and the server returns data encrypted with that key.
simple, and suggested by the very structure of the types.Publishing a read/write capability on a channel corresponds
Briefly, we represent a channel with a pair of asymmetric to publishing the read/write encryption keys associated with

keys, an encryption key to transmit and a decryption key the channel.

to receive data, and establish the following correspondence i .
between the cryptographic keys and the type-level capabili- Under appropriate, mostly standard, hypothesis on the prop-
ties: [n@w] = n* and[n@r] = n~. Then, we rely on the erties of the underlying network we show that a translation

following variant of the standard representation of a com- Paséd on these ideas is sound. Full abstraction, instead, is
munication over a channel in terms of the exchange of en-harder to achieve as we need to build safeguards against at-
crypted packets over the public network. tacks that exploit malformed data or malicious channels that

intentionally leak their associated decryption keys. To ac-

[N(m@A) ] = net{({{m@A] }n+) count for that, we complement the translation with a proxy-

[n(X).P] = net(y).decrypt y as {X}+ with n~ in [P] service mechanism to ensure that all communication proto-
cols take place via system generated (hence secure) chan-

ffers f ber of sh ) f q lici nels. We devise a distributed implementation of the proxy
suffers from a number of shortcomings, first made explicit oo \ice for a variant of our high-level process calculus in

by Ab"’.‘d' in [1]. In subsequent work [3], Abadi, Fournet and which processes are assigned with different domains, each
Gonthier have shown'how to courjter these 'problems andone providing a local proxy. We prove that the resulting im-
recover a full abstract implementation for the join calculus. plementation is fully abstract, by showing that the untyped
The fundamental obstacle against using the solution of [3] equivalences of the low-level cryptographic calculus coin-
for our purposes is related to the so called problem of cide, via the translation, with the typed equivalences of the
forward secrecy To illustrate, we use following example high-level calculus. As a byproduct, since our high-level
adapted from [1]. LeP andQ be the two processes below process calculus is a conservative extension of the untyped
(where we omit the type coercions whenever irrelevant):  pi calculus, we also have a direct fully abstract implemen-

tation of the pi calculus.
P = (new n)(n{m) |n(x).p(n@r))

Q (new m(n(Tt) In(x).p(n@r)) Plan of the paper. 82 and§3 review our typed pi calcu-
It is not difficult to be convinced thaP and Q are be- lus and the applied pi calculus, respectivedy. details the
haviorally equivalent (essentially under any typing assump- implementation we have outlined and establishes the main
tion), asm andm’ are sent over a secret channel and no results.85 concludes with final remarks.
high-level context may recover the content of messages
sent. On the other hand, a low-level context may [tel]
from [Q] by buffering the message sent prand then de-
ciphering it whenn™ is published. In [3], this problem
is avoided altogether, as the join calculus does not allow Given the intended use of calculus as a specification lan-
names to be communicated with read capabilities, a featureguage for distributed system, we opt for an asynchronous
that instead constitutes one of the fundamental ingredientsversion of the calculus. However, the same results and tech-
of our typed calculus. Hence, to recover forward secrecy, nique would apply, mutatis mutandis, to the synchronous
we need a more structured representation of type capabili-case.
ties to make sure that distributing a read capability does not We presuppose countable sets of names and variables,
correspond to leaking any decryption key. In the presentranged over by —nandx,y,... respectively. We use,v to
paper, we show how this can be done in a variant of the range over names and variables, when the distinction does

While this representation is appealing in its simplicity, it

2 A picalculus with dynamic typing

applied pi-calculus [2]. not matter. The syntax of processes is given below.
The solution is based on the representation of a channel as AB = ch(rw) | ch(r) | ch(w) | T

a process that serves input and output requests, so that each )
exchange of messages is the result of two separate protocols PQ == 0 | P[Q [ (newn)P [ 1P pi calculus
with writer and reader clients. All channels are associated | [u=Vv]P;Q matching

with two separate key-pairs. The decryption keys are al- | u(V@A) type-coerced output
ways stored securely at the channel, and never leaked; the |  Uu(X@A).P typed input

encryption keys, in turn, are available to the clients that have
read and/or write access to the channel. In the write pro-The typesch(-) are the types of channels, built around the
tocol, the client sends data, and the channel buffers it oncapabilitiesr, w andrw which provideread, write andfull



fledgedaccess to the channel, respectively. To ease the notafless informative) than the information available to the sys-
tion, we henceforth denote channel types by only mention-tem. Thus, while the system processes may perform certain
ing the associated capabilities. is the type of all values  action because they posses the required (type) capabilities,
and may be used to provide no access to the channel. the same may not be true of the context. We formalize these
The subtyping relatior: is the lattice defined simply as  intuitions below, following [10].
follows (with A any type)rw <:r, rw <:w, A< T, . . :
and with join (1) and meetn operations arising as ex- G'\t/%? tW(')trt\)llpf er:jwroln n}%nl'sapdl_,vcxi/e sa}y thactjt'rls ??m'
pected. Type environments, ranged overrhi, are finite patible with! if and only if dom(I") = dom(l) andl" <:1.
mappings from names and variables, or names, {0 typespefinition 1. A type-indexed relatior? is a family of bi-

Following [10]'_ we e>_<tend typg environments by using the 5y relations between processes (hence closed) indexed by
meet operator [1u: A=T,u:A if u ¢ dom(I), other.- type environments. We writd= PZQ to mean that (i)P
wise ['1Tu: A =T" with I'" differing from I only at u: and Q are related byZ at | and (i) there exist™ and A

[(u) = T(u)MA. Subtyping is extended to type environ- - compatible witH such that” - P andA - Q. We often write
ments as expected. If(n) <:r, we say thaf "(n) is de- | = P%QasP %, Q.

fined, written"(n) |. '"(n) 7 indicates thaf (n) is un-
defined orl"(n) £: r. Dual notation is employed for the Definition 2 (Contextuality). A type-indexed relatiof? is
write capability. contextual whenever (i) PZQ impliesl,a: AF PZQ,
(i) 1 EPZQandl FRimplyl E P|RZQ|R, and (iii) |,a:
Typing System. The typing rules, in Table 1, are largely AF PZQimpliesl & (new a)PZ(new a)Q.
standard, but with important specificities. The typing of
matching is inherited directly from [10]: as in that case it Given a type environmerlt, and a closed proces® we
allows a more liberal typing of thtenbranch, based onthe  define the barb predicate relative to the environmeas
knowledge that the two values tested are indeed the same, } i ) (€)a(b@B) )
To illustrate, as a result of that rule, the following judgment follows. First defineP |5 iff P ——— and P |, iff
is derivable:a: r,b:w - [a=b]a();0. The rules forinput P = lTa* where= is thAe reflexive and transitive clo-
and output are distinctive of our typing system. In T-Out@ Sure of—. Then:IFP|a= 1(@)" | APla andl F P{a
the valuev, written at channe, is tagged with a typ®, = 1(@)" | APJa
with the intention to force its delivery at the tyBe(or at a
supertype). As we show below, dynamic type checks per-
formed upon synchronization ensure that values delivered
at a given type will only be received at the same or higher
types.

Definition 3 (Typed behavioral equivalence). Typed be-
havioral equivalence, noteg&™, is the largest symmetric
and contextual type-indexed equivalence relati@nsuch

I = PZQ implies (i) if | £ P |, thenl E Qly, and (i) if
P P thenQ = Q and! = P ZQ for someQ

Operational Semantics. The dynamiCS of the calculus is A fundamental difference between our notion of equiva_
defined in terms of a Iatlelled tl’anSi~ti0n system built around lence and that of [10] arises as a conseqguence of the dif-
the actionsx € {1,u(V@A), (€)u(V@A)}. The output tran-  ferent typing disciplines. In our system, the rule for typed
sition (€) u(V@A) carries a type tag along with the output yajue exchange guarantees that the context obtains values
value: it represents the output of (a tuple, possibly includ- emitted on a public channel at the static type occurring in
ing fresh) values/ at the typesA; dually, the input action  the coercion associated with the output. Conversely, in [10],
u(V@A) represents input of at the typesA. As promised  the type at which the context acquires the new name is de-
synchronization is dynamically typed: complementary la- termined by the type information that the context has on
bels synchronize if the agree on the type of the value ex-the channel used for output: that, in turn, presupposes that
changed. As proved discussed in [8], the dynamic checkthe context “behaves” in that it will not try to acquire from
ensure that well-typing is preserved by reduction. the value emitted more than allowed by the read type of the

transmission channel. As a consequence, in [10] reasoning
Observational Equivalence. The notion of observational  on the access control policies can hardly be carried out with-
equivalence, based on weak bisimulation, is inherited al- out assuming that the context is well-typed, with the same
most directly from [10]. As usual in typed equivalences, type system. In our solution, instead, an appropriate use of
we observe the behavior of processes by means of contextsoercion may be put in place to prevent the context from ac-
that have a certain knowledge of the processes, representeduiring, upon output by the system, more information than
by a set of type assumptions contained in a type environ-it was intended to. A corresponding mechanism can be re-
ment. However, following [10], we take the view that the alized in terms of a low-level construction in the applied pi
typing information available to the context may be different calculus. We illustrate how this can be donesh



Table 1 Typing and Dynamics for the pi calculus

Typingrules The typing rules for name and variable projection, and for the process forms of parallel composition,
replication, restriction and nil are entirely standard cf. [13, 15]). The remaining rules are given below.

(T-Match) (T-Out@) (T-In@)
N-Q ru=A rvy=B ru:Bnv:ALP M| THY:B ] r,%:A-FP
r-[u=v|P,Q I - u(V@B) I - u(X@A).P

Labelled Transitions The transitions for matching, parallel composition, restriction and replication are standard.
The remaining transitions are given below.

(PI-OUuTPUT@) (PI-INPUT@)
~  al@s) ~ _ a(V@B)
a(i@B) —— 0 a(X@B).P ——— P{V/K%}
(PI-OPEN@) (P1-CLOSE@)
(€)a(v@B) . &)a(i@B V@B’ X on
P P b+ a, befn(V) p (©a(768) 24 Qﬂ Q B<:B &nQ =2
b, ¢)a(V@B T ~
(new b)p o227 o PIQ —— (new &)(P'| Q)
3 The applied pi calculus cesses are defined as follows:

The applied pi-calculus we use is an asynchronous version PQ == 0| M{N) | M_(X)'P | PIQ [ (newm)P |
of the original calculus of [2], in which we assume that de- P [ letx=EinPelse Q

structors are only used in let-expressions and may not occur . o ]

in arbitrary terms. This is becoming common practice in INPUt prefixing,let, and restriction are binder#(x).P and
the presentations of the applied pi calculus [5, 6, 4]. We et X = E in Prelse Q bind the variablex in P, (new n)P
review the core calculus here and defer the discussion orPinds the namen in P. The notions of free and bound

the full set of constructors and deconstructors used in theN@mes/variables arise as expected. The profkess =
translation tcg4. E in P else Q tries to evaluaté&; if that succeeds is bound

to the resulting term and the process continueP &with
As for the high-level calculus, we presuppose countable setshe substitution in place). Otherwise the process reduces to
of names and variables, under the same notational conveng. The evaluation of is governed by a set of definitions
tions. In addition the calculus is characterized by a finite setwhich give semantics to the destructor. Each definition has
of function symbols from which terms may be formed.As  the formd(M) = N where the term&! andN have no free
in [6], we distinguish constructors and destructors, and usenames andv(N) C fv(M). Thend(M) is defined only if
the former to build terms, the latter in let expressions to there is a definitiord(M’) = N and a substitutios such
take terms apart. Constructors are typically ranged over bythat M = M’c, in which cased(l\7|) evaluates to the term
f, destructors byl. Terms are built around variables and No = N*, notedd(M) — N*. Conversely, we notd(M)-4
constructors, expressions correspond to destructor applicawhenever there is ndi’c = M with a defining equation. We
tion: say that a constructdris one-wayif no destructor applica-
tion ever returns its argument(s).

M,N == ab,... channel names
XY, ... variables We always omit trailing nil processes and similarly write
f(Mg,...,Mp) constructor application let x=E in P instead oflet x = E in P else 0. We also use
E = d(l\7|) expression multiple let-bindings instead of writing the corresponding

nested definitions. Finally, we define:
A value is a term without variables. We always assume that
constructors are applied consistently with their arity. Pro-  recX.P £ (new a) (a() |'a().P{a()/X}) a¢ fn(P)



Our applied pi calculus includes destructors to project the Behavioural equivalence. As in Section 2, we rely on a

elements of tuples (noted, as well as two constructors for
lists, :: (cons) and (nil), together with the the standard
destructorshd andtl. In addition, we rely upon the con-
structorshash ek, dk, sk, pub, priv, sign andcipher, and
the destructorgquals decipher verify, defined by the fol-
lowing equations:

equalgx,x) =

deciphefcipher(x,ek(y)),dk(y)) =
deciphetcipher(x,sk(y)),sk(y))
)

verify(sign(x, priv(y)), pub(y

X X X X

The one-way unary constructbashgenerate a hash from
the seedM. The two unary one-way constructa@kanddk
generate encryption and decryption keysM) anddk(M)
from a seedM. We often abbreviatekM) to M* and
dk(M) to M~. A unary one-way constructek generates a
shared keysk(M) from the seedVl. The one-way construc-
tor pubgenerate a public kggub(M) from the seedi! while
priv generates a private kgyiv(M) from M. We often ab-
breviatepub(M) with M;p. Signatures are built using the
binary constructosign and checked by using the destruc-

notion of behavioral equivalence based on weak bisimula-
tion, and relative to contexts with a certain knowledge about
names and terms.

A term environmenp is a finite substitution from vari-
ables to values. We writén(p) to meanfn(Rangép)).
Substitutions may only be extended with new bindings for
fresh variables:p,M /x indicates the extension qf with

x ¢ dom(p). Given a term environment, we lete/(p) be
the analysis op, that is, the environment obtained by ex-
tendingp with new bindings for the terms resulting from
the application of destructors to the ranggpoformally:

Definition 4. The analysiseZ (p) of p is the smallest sub-
stitutiono extendingp that is closed by the following rule:

d(N) =N No C Rangéo) (z¢dom(o))

No/zco

Abusing the notation we often writé € .7 (p) to meanN €
Rang€.<7(p)). Given proces$ we say thap definesP,
writtenp F P, if fv(P) C dom(p) andfn(P) Nfn(p) = 0. We
use the same convention and notation for terms.

tor verify. Encrypted packets are formed around the binary pefinition 5 (Term-indexed relation). A term-indexed re-

constructorcipher, and taken apart by using the destructor
decipher We often use the conventional spi-calculus nota-
tion {M}y for the encrypted packetpher(M,N); we often
overload the notation and writ{elVI}p,iv(N) to indicate the
signed packesign(M, priv(N)). We define conditionals in
terms of lets an@quals(following [6])

A

if M =N then P else Q let Xx=equal§M,N) in P

else Q (x ¢ fv(P.Q))

Finally, we introduce an explicit form of decryption to bind
multiple variables as in the original spi-calculus:

decrypt M as {J}n in Pelse Q £
let x = deciphefM,N) in (x ¢ fv(P,Q))
let y1 =T4(X),...,Yn = Th(X) in Pelse Q

Operational semantics. The operational semantics is de-

fined in terms of labelled transitions. Following an increas-
ingly common practice [6, 4], it does not rely on active sub-
stitutions as in the original formulation. The labelled tran-
sitions, in Table 2 are standard.

Most of the transitions are standard. For simplicity, we

require that all synchronizations occur on channel names,

rather then arbitrary terms. The treatmentlafis taken
from [6]. The transitions are only defined over closed pro-
cesses (with no free variables). Given and such proegess

(Ma{M)

we defineP |, = P——, Pla2 P=]|a.

lation # is a family of binary relations between closed pro-
cesses indexed by term environments. We \prite PZQ
(or equivalentlyP %, Q) to mean thaP andQ are related
by # at p and that fr{P, Q) C fn(p).

We have a notion of contextuality corresponding to that
given in Def. 2. We note \ n the term environment re-
sulting from erasing all binding¥l /x such than € fn(M).

Definition 6 (Contextuality). A term-indexed relatiorZ
is contextual whenevey = PZQ implies (i) if p-R then
pPEP|RpZQ|Rp, (i) p,n/x |E PZQ with n & fn(p), and
(i) p\n = (new N)PZ(new n)Q.

The barb predicate is defined relative to a term-
environment, as expecteg:=P |, £ ac . (p)A Pla,
andp=Pla= ac #(p)A Pla.

Definition 7 (Behavioural equivalence).. Behavioural
equivalence, notee”™, is the largest symmetric and con-
textual term-indexed relatio# such thap = PZQ implies
(i) if p =P |nthenp = Qln, and (i) if P —— P’ then3Q.
Q= Q andp P ZQ.

4 The implementation

Our assumptions about the low-level communication model
are the same as those of [3]. In particular, we presuppose a
Dolev-Yao network model, in which an intruder can inter-

pose a computer in all communication paths and thus alter



Table 2 Labelled transitions for the applied pi

(ouT) (IN) (OPE']EN)M
p O o c#a,cefn(M)
vy 2o 9. ™. by (B) alt)
aM) —— a(X).P —— P{M/X} (new C)P ’ P
(CL?SEz . (LET) (LET-ELSE)
®ah) a) o . a ) o
P Q Q  b¢Mm(Q d(M) =N P{N/x} — P/ dM)4 Q—Q
P\Q;(new b)(P'|Q) let x=d(M) in P else Q — P’ let x=d(M) in Pelse Q — Q'

or copy parts of messages, replay messages or forge newas follows: (Mg,M1,Mz,Cert(n)). We first ensure that
ones. We also assume that each principal has a secure envihe certificate corresponds to the correct identity by us-
ronment in which to compute and store private data. On theing the public key to verify the certificate and then match
other hand, we assume that the intruder cannot gain con+the first certified argument and the public key. Then one
trol of the whole network, and thus we do not guarantee may decide whether or ndfl; and M, are valid keys for
that it actually will intercept every message. Consequently, the identityMg by calculatinghasiiM;) andhasiM;) and
message delivery may always be achieved with an adequatdy checking whether équalghasiM3), hashiek(wr(n))))
degree of redundancy. All processes can send and receivandequalghasi{M,),hasiek(rd(n)))) reduce: in the for-
messages through a network interface consisting of a chanmer case we certify a write capability, in the latter a read
nelnet Typically all the exchanges over this channel net are capability.

encrypted. As [3] our results about the implementation rely
on the presence of noise to prevent traffic analysis. Given
the simple network interface, injecting noise into the net-

We henceforth leh note the representation oftogether
with the associated certificate:

work is simply accomplished by the process n = (pub(n),ekwr(n)),ek(rd(n)), Cert(n))
W £ I (new n)inet({n}y) and define the following naming convention for the compo-
: o : o nents:
which generates infinitely many copies of infinitely many
secret packets. nip = T(N), Ny = T2(n), N = 1(N), NcerT = Tu(N)
4.1 Data structures for names A corresponding naming scheme applies to variables,

namely: given a variablg, we write x for a tuple of vari-

The one-way constructored(n),wr(n) (read and write  ables (xip, X}, %", xcerT), S0 that
seeds associated iy are used to form the encryption keys N N
employed in the representation of names. Given a name XD = T&(X); Xy =TR(X), X~ = T(X), XcerT = Tu(X)
n, its representation as a fully-fledged channel includes the
name identity and two encryption keys corresponding to the
read and write capabilitiegpub(n), ek(wr(n)),ek(rd(n))).
The effect of casting a name at a higher type (i.e. as a
read/write only channel, or top) is realized by means of a
mechanism that masks away some, or all, of the encryption
keys corresponding to the high-level type capabilities. We
discuss how this is accomplished below.

Names come always equipped with self-signed certifi-
cates of the form

Cert(n) £ {pub(n), hast{ekwr(n))), hast{ek(rd(1))) }priv(n)

The certificates heIp determine the “type” of the names INotice the difference: in a term the subscript indicates the application
they are attached to. Suppose we receive a tuple formecbf a constructor, in a variable it does not and it's simply used as an index.

Based on these conventions, we introduce useful notation to
express various operations to manipulate the representation
of names. We lelet x=Typeofu) in P note the process that
verifies thatu represents a name certified byert, deter-
mines the true type af, and bind that type tg; in such case

we informally say thati has such type. The types from the
high-level calculus are represented in the implementation
in the simplest possible way, hamely: by means of nullary
constructorsrw, r,w for the corresponding channel types,
andT is for the typeT. We then letet x= Cas{u,T) in P

be a process that casts the typeaudbd T and binds the re-
sulting term and the certificate xan P. Finally, the process




let x=Meef(u,v)) in Pcomputes the meet afandv when- 4.3 First Translation

everucert = Vcert. in that case, it constructs a new tuple

representing the result of merging the capabilities and As the first step we give the representation of names, which
v binding it tox. arises as expected:

All these operations can be encoded with little effort by [u@rw]
nested applications of projection and equality destructors: [u@r]
we omit all details. We remark that casts and meets always [u@w]
applied to certified name representations. In fact, our proto- [u@T]
cols satisfy the following invariants: (i) whenever we evalu- . )

atelet x= Cas(u,T) in P, ucerr is indeed a certificate that  N€Xt, we detail the protocols for input/output.

certifies the remaining componentswpfand the type ofi Write protocol. On the client side, writing on channel is ac-

is S:> T (ii) whenever we evaluatet x = Mee{u,V) in P, complished by emitting a packet encrypted under the chan-
UcerT @andvcerT are the same certificate which certifies the nel's write encryption key. The message is replicated to
remaining components ofandyv at their respective types.  ensure that it is eventually delivered, and packaged with a
nonce to protect against replay attacks. The server, in turn,
uses the write decryption key to receive the message and
then stores it in a private queue. The server uses the nonce
to filter multiple copies of the message and stores them into

As in [3], our implementation relies on the ability of pro- & private queua’. It also filters based on the format of
cesses to filter replays of messages, based on nonces. wge messages received, requiring that they match the format
write if M ¢ Set, then P, for a process that addd to the ~ €xpected of the encoding of names.
set of messages on the channghnd, in casé/l does not  Read Protocol. On the client side, the reader process uses
belong to the set, continues Bs We omit the rather obvi-  the channel's read encryption key to send a read request to
ous details of how the testing procéSM ¢ N then Pelse Q the channel server: the request takes the form of an encryp-
can be implemented. tion key that will be used to exchange the message with the
server. The client then waits for a message from the server
if M ¢ Sep then P2 n(y).(if M gy then n(M ::y) | P else n(y) encrypted under the session key: upon receiving the packet,
it proceeds with its continuation. The server, in turn, uses
the channel’s read decryption key to receive a request from
the client. Each request is packaged with the channel’s read

encrypted with the write encryption key associated with ~ €NCryption key and comes as a triple that includes an en-

To ensure delivery, the emission is replicated, and packaged"YPtion key, the representation of a type together with a
with a fresh nonce to protect against replay attacks. ThenONCe: the server uses the type to select one of the message

nonce also acts as a confounder for cryptanalysis attacks. O™ its private queue and then packages the messages with
the key. To protect against replays, the server keeps track of

the nonces received on a private chamrighardly realistic,

of course, indeed, the solution from [3], based on challenge

) ] o response mechanisms can be employed here). The nonce
The input of a message relies on two filtering protocols. The .o pe spared on the actual message sent by the server as

first reads from theetand proceeds with the continuation if 4, key expires at the completion of the protocol (the server
the message is successfully decrypted; otherwise it re—emit§nay easily filter out replays of the session key).
the message and retries:

(Uip, Uy, U, UcERT)

(up, hashuy ), U, UucerT)

(U|D, U\,Jr\,7 hasf(u;r), UCERT)

(up, hashuy, ), hashu;"), ucer)

> 1> 1>

4.2 Message Filtering

The output of a messadd on channek is realized by a
simple protocol that emits (the translation M)on thenet

emit({m}x) £ (new n)!net/{m,n}y)

The definitions, in Table 3, formalize the intuitions given
above, and are applied implicitly only on well-typed pro-
cesses. We use the notatigh andny, to refer todk(rd(n))
anddk(wr(n)) respectively. The encoding of a restriction
generates a corresponding name and its associated channel.
As for matching, a name-equality test in the source calculus
is implemented as a corresponding test on the public keys
associated with the pi names. In addition, in case the test
L ] . . is successful, the continuation proc¢&y is given access
filter § from c@t in P = recX.C(X)N. . . to the new set of capabilities that corresponds to the meet
if WF(X,1) then (let § = Cas{(X,t)) in P) else (¢{X)|X)  of the two types associated with the pi names in the typing

filter Y with Nin P £
rec X.net(x).decrypt x as {J}n in P else (net(x) | X)

The second protocol filters messages based on their type
We writeif WF(X;t) then P else Q for the process that tests
whetherX is certified and has typg for somes <: t.



derivation of the pi process. Notice that the meet processTheorem 2. If {1} = E|[[P]] =A™ E|[[Q]], thenl = P="Q.
cannot be stuck, since (i) representatiansobtained from o

the translation are well-formed and (ii) representations The converse direction of The_orem 22 does not hold. In
obtained from the channels have been erased from poten{@Ct, @s we noted, the communication protocols presuppose
tial malformed terms, i.e. there are typ&sT’ such that ~ & Certain structure associated with names. Indeed, for the

u=[u@T],v=[v@T']. names thqt are statically shared_ with the context, t.his struc-
ture is easily enforced by allocating the corresponding chan-
nels as part of the encoding definition. However, the context
may dynamically generate new names that do not satisfy the
expected invariants. Notice, for instance, that the client of
a reader protocol presupposes a legitimate channel on the
other end of the protocol and is not protected against mal-
formed messages received by illegitimate channels: given
E’uat, it is easy to find a counter-example to full abstraction.
or instance, in the source calculus we have:

4.4 Soundness

The synchronization two protocols ensure the following
properties: (i) each message output by a writer will reach
at most one reader, and dually, (ii) a legitimate reader client
will complete the protocol provided that a type-compatible
message on the same channel has been output by a write
Thus, if we allocate channels for the free names of the high-

level processes, we can prove that any pi synchronization on ) T
a name is simulated by a corresponding reduction in the im- a:w = a(y@nw).y(x@rw).y(x@rw) =" a(y@rw)

plementation, and conversely that the synchronizations onyjs s an instance of the well-known asynchronous pi cal-
the channels queue of the implementation reflectrthe- culus lawa(x).a(x) 2 0, and holds in our pi calculus for

ductions of the source calculus. similar reasons. On the other hand, one easily sees that

Given atype environmeitwe define the term environment . AT
corresponding th, noted{ |} % /2 | Eil[aly@mw).y(x@rw).y(x@rw) ]| A" [[a(y@rw) ]
) ) In fact, a context may create the legitimate representation
{0} = {net/xo}, {la:A}={I},[a:A]/x of a full-fledged namé and exchange it oves; the sub-
sequent requesmit({sk(k),rw},:) made by the left pro-

wherex & dom({1[}). Then we define the computing en- _
cess can now be decrypted by the context, which pos-

vironment which includes the interface to the network, the he d ion Kk 4 th he | q
noise-generating process and channel support for the fre esses the decryption kdy', and thus the left reduct

names shared between the processes and the environmentbtr’é)é?;")'b<x@r"">]I can be distinguished from the null

Eil[-] = —|W| |_| Chan,
nedom(1) 4.5 A Fully Abstract Translation

We have finally all we need to establish the result of opera-

. To recover full abstraction, we must shield our translated
tional correspondence.

processes from such undesired interactions. That may be

Theorem 1 (Operational Correspondence). achieved by setting up the synchronization protocols so

. as to ensure that all the exchanges occur over system-

e If P— P'thenE|[[P]] == z{A,]} E[[P']]. generated, trusted channels whose decryption keys remain
secret.

o Conversely, leH ~4,, Ei[[P]]; if H —5 K then there

i The new translation introduces a separation between
existsP’ s.t. P = P’ andK z’{?‘”} E[[P]].

client namesused syntactically by context processes and
by translated processes to communicate, and corresponding
server namegenerated within the system and associated
with system generated channels to be employed in the ac-
tual protocols for communication.

The preservation direction of this result is standard. On the
other hand, ‘the ‘reflection” direction is subtle, as the trans-
lation is not “prompt” [12]: in fact, it takes several steps for
E|[[P]] to be ready for the commit synchronization step on
the channel queue that corresponds to the high-level syn-A proxy server maintains an association map between client
chronization on the channel. As it turns out, however, theseand server names so as to preserve the expected interactions
steps are not observable and can be factored out in the proocdmong clients. The map is implemented as a set of entries of
by resorting to a suitable notion administrativeequiva- the form (pub(n), m), whose intended invariant is thatis

lence (noted~} in the statement of Theorem 1) included the server counterpart of the client nameWwe callpub(n)

in %Q" (see the Appendix for details). Because of this in- the index of the entry, anahthe target The proxy map is set
clusion, the soundness of the translation is a a direct conseup to ensure that each index has exactly one target. We rep-
guence of Theorem 1. resent the public keys used by the proxy service by letting



Table 3 First Translation

Channels
WS

RS, £ [!filter (y,t,2) with n; in if Z¢ Set then filter X from n°@t in ! net({x}y)
Chary, £ (new n*,n°) n*(0) |RS,|WS,

Hilter (X,2) with ny, in if Z¢ Sef« then N°(x)

Clients — The clauses for composition and replication are defined homomorphifBI@] = [P] |[Q]. ['P] =![P].

[uv@T)] = emit({[v@T]})
[ux@T).P] £ (newk) emit({sk(k), T} ) |[filter X with sk(k) in [P]
[(newn)P] = (new n)(Chan,|[P])
[lu=Vv]P;Q] £ ifup =Vp then (lett=Mee(u,v) in [P{t/u,t/v}]) else [Q] t & fn(P)

ks = ek(k) andky £ dk(k), with k a seed not known to the  choice has no consequences in the centralized translation, it
environment. does create a problem in the distributed implementation (see

The read/write protocols follow the same rationale as in the Section 4.6: in that case, “_“atCh'”g should test names linked
on the same proxy and this creates a technical problem as

previous translation, with the difference that now the clients . ;
must first obtain the access to the system channel by conl1ames are k[‘ own at dn‘fgrent proxies).
tacting the proxy server. The interaction between clients We write let y =2, 2) in P for the process that extracts
and proxy is as follows: the client presents a name to thethe targey associated tap in zand continues 8.

proxy and the proxy replies with the corresponding server

name cast at the (true) type of the name sent by the clientFull Abstraction Having set up the underlying infrastruc-

In case the name received is new, the proxy returns a freshure, we now have the expected protection against hostile
server name for which it also allocates a system channel.contexts. We may therefore strengthen the result of Theo-
On the client side, the protocol is implemented as shownrem 22 as desired, provided that we plug our processes in
below: the appropriate computing environment. We first define

link (uy) inP £ CE[-] = —|W/|Proxy
(new h)emit({sk(h), u, }k;) |filter y with sk(h) in P
. o . and let the low-level term environments corresponding to
For the proxy side, the deﬁmyqn is found in Table 4. The the high-level type environment be extended with a new
only subtlety is that upon receiving a name that does not Oc'binding expressing the knowledge of the public proxy en-

cur in the association map, the proxy allocates twq 'ndexescryption keyk; needed to interact with the proxy. Then we
for the same target: one index is the name received from ave:

the client, the other is the public key of the target itself.

This second association is needed to make linking idempo-Theorem 3. | = P="Q <= {I |,k /y=CE[(P)|=*"CE[(Q)).

tent, so that linking a server name always returns the same

name. One may wonder how a client could possibly end 4.6 A Distributed Implementation

up requesting a link for a server name as (i) server names

originate from the proxy, anc_l (i) are never pass_eq on anyywhile the use of the proxy server to protect against misbe-
gxchange by the cllgnts. NOt'Cef however, that this '.nva”amhaved channels is effective in achieving full abstraction, it
IS only_true of thg C"ef“s that arise from the translation, not is clear that a centralized implementation as the one we just
for arbitrary applied pi processes of the context. described in hardly realistic. In this section, we discuss a
Having given the intuitions, the definitions in Table 4 should new, distributed implementation that distributes the proxy
be easily understood. Notice that the clause for restrictionservices among different servers. The new solution is based
is defined homomorphically in this translation, as the cre- is based on the idea of partitioning the network in domains
ation of the channel is delegated entirely to the proxy server.each of which administrated by a proxy server.

In the translation of the matching construct, we could test To model this partitioning of the network, we extend
matching on linked names (which would make the transla- our high level calculus with the syntactic category of nets,
tion more uniform), rather than on client names. While this which are simply processes labelled with a domain label.



Table 4 Fully Abstract Translation

Proxy server
R

Hilter (K,X,y) with Ky in if y  Set- then let s= Typeof(x) in
t(z).let Y =2(Xip,2) in t(2) | let Z= Cas{(y,s) in Inet{{Z}x)
else (new n)Cham, | t(z:: (xip;n) :: (Nip;n)) |let Z= Casi(n,s) in Inet{{Z}x)
Proxy £ (newt,t*) R [t(D)|t*(0)
Channels— The definition ofChan, is unchanged from Table 3

Clients — The clauses for composition and replication are defined homomorphi¢RIR) = (P) | (Q), (! P) =!(P).

(uv@T)) = link (uU,x) in emit({|[v@T]|}Xx)
(ux@T).P) = link (u,y) in (new k) emit({sk(k), T} )|filter x with sk(k) in (P)
(lu=Vv]P;Q) = ifup =vp then (lett =Mee{(u,v) in (P{t/u,t/v})) else (Q) t ¢ fin(P)

{((newn)P) = (new n)(P)

Nets are composed according to the following syntax: This is ensured by the side condititt{U) C fd(S T) defi-
- nition below, and constitutes the key assumption for our dis-
ST = 8{P} | S|T | (newn)S | stop tributed implementation, namely, we do not trust domains

and proxy servers generated by the environment. While this

merable set of labels, disjoint from the set of names and the'S @ somewhat s.trc_mg asgumptlon, on the other hand it ap-
pears to be realistic: notice, in fact, that the procedure of

set of variables. We Idt(S) be the set of domain labels in . . , ;

S We emphasize that labels are not names, and are neve?dqmg a dqmam toa n_etvx{ork in real world scenarios re-

exchanged over channels. The typing and dynamics of netduires physical authentication, rather than network proto-

arise in the simples possible way from the corresponding cols.

notions defined for processes: Definition 8 (Contextuality for Nets). A type-indexed re-
lation Z over nets is contextual whenever

o | FSZT impliesl,a: AE SZT andl E S|UZT |U for
all U such that U and fdU) C fd(ST);

r+8{P} 3{P} - 3{Q} e l,a: Ak SZT impliesl E (new a)SZ(new a)T

As aresult, domains have no impact on the dynamics and/orThe definition of behavioural equivalence for nets, noted
the typing of the high-level calculus: indeed, they serve again =™, arises now as expected, as the largest type-
a different purpose, namely to help devise the associationindexed equivalence relation which is contextual (in the
of processes to proxies in the implementation. Notice, in sense above), barb preserving and reduction closed.
particular, that the same (channel) name may be known at
different domains: in the implementation, this will corre- The new implementation Each domain in the high-level
spond to the name being represented by different channelsgpecification corresponds to a domain manager, which pro-
located at the different domains at which the name is knOWn.VideS the proxy service to clients and manages the channels
Also, notice that the same domain may have multiple oc- it has created; processes within a domain, in turn, are in-
currences, as iB{P.}|3{P.}: based on the notion of dy-  structed to send their requests to the proxy associated with
namics introduced above, this net may be rewritten equiva-their enclosing domain. Since different proxies may have
lently asd{P. |P.}. Similarly, (new n)3{P} is the same as (jfferent entries for the same client name (remember that a
d{(new n)P}. name is possibly known in more domains), in the distributed
implementation more channels servers may correspond to
Observational Equivalence The definition of observa- a pi calculus name. The domain managers must therefore
tional equivalence for nets is inherited from that of pro- provide a further service, to manage the queues located at
cesses. There is an important difference, however, in the nothe distributed channels associated to the same client name.
tion of contextuality, in that a context may not include new This, in turn, is based on further, domain, service to gain
domains, but only processes belonging to existing domains.access to fellows proxies.

Domain names, ranged over Byare drawn from a denu-

(TYPING) (DYNAMICS)
rep P, Q

10



Table 5 Distributed Translation

Proxy Service

o)
Pat

>

Hilter (k,X,y) with 8, in if y & Set- then let s= Typeofx) in
t(2).let y=2(Xip,Y) in t(2) |let Z= Cas(¥,s) in !net({Z}x)
else (new n)Cham[q(X).(q(X) [ Mzex! filter W from N°@T in emit({Xip,W}k;))]
| t(z:: (xip;n) :: (Np;n)) |let Z= Casi(n,s) in Inet({Z}x)
Queue Service

O
Qat

>

Hilter (,s,y) with &y in if y & Sely thent(2).(1(2) |
let § =2(x,2) in emit({s}; ) else
(new M)n() |q(X).(a(X) [ Migexn()-emit({X, S}k;)) )
Domain Service

d
Dq,

(1>

emit({3] }sikp)) | filter X, c with sk(kp) in if ¢ ¢ Sef: then q(y).q(y.x)
Proxy Manager
M5

(1>

(new t,t*,q,0%, 1) Pgy|Q§¢D§ 1(0) [t*(0) [a(@) |a*(0) [1*(0)
Translation of nets: — the clauses for parallel composition and restriction are homomorphic
(3{P}) = M°|(P)s
Channels— The definition ofChan, is unchanged from Table 3
Clients — The clauses for matching, new, composition, replication are unchanged from Tab. 4
(uv@T))s = link® (u,x) in emit({[v@T] },)
(u(x@T).P)s = link® (u,y) in (new k) emit({k, T } ) [filter X with kiin (P)5

We represent public keys used by the proxy service updating this queue and for publishing the public queue key
by using the one-way functiop(x) and by Iettingéfjr = of the proxy associate to the doman
ek(p(d)) andd, £ dk(p(n)); these keys corresponds to the _
keysks . ks utilized in the centralized translation. We use 1€ Proxy and the queue service also share the table
an one-way functiomy() to represent the public keys used of binding client and server names stored on the private
by the queue serviced; 2 ek(q(3)) and5; 2 dk(q(3)) channelt. The new definition of the proxy service ex-

q — q ' i i ' iti

We assume that domain managers are connected via secuf§nds the one given in Table 4, with the addition of a
links, represented by a shared keitkp) generated from repllcgted read rgquest into the new channel created when
the private naméo. Finally, we introduce the following € client name is not present in the proxy's table. The
two bits of new notation. Char{P] indicates the process '€ad request is composed by several requests which re-
(new n*,n°) n*(0) |RS,| WS, |P. The definition of links is peatedly extract messages from the channel queue chan-

extended as expected, with a parameter corresponding tiel; such requests are directed to all the domains known

the assigned proxy: at the time the channel was created. The extracted mes-

sage and the client name index associated to the chan-

link® (U,y) in P2 (new k)emit({sk(k),u, }5: ) nel are then safely sent to the given queue managers en-
T |fi|terywi;h sl?(k) P crypted under their public queue key. We call the repli-

cated read requestilter w from n°@T in emit({M,W}ag)

The new implementation is given in Table 5. Each proxy a forwarderto the domaird. The queue servic@gt waits

has three threadsit, Qg’t, DSJ responsible for the proxy, for the packets sent by the forwarders and by other domain
gueue and domain services, respectively. The three threadsmanagers. The server retrieves the name index and checks
share a channelcollecting the public keys giving access to if the entry is associated to a channel. Ifitis, the message is
fellow proxies. The domain servid?@gI is responsible for  sent to the queue of the associated channel. Otherwise both
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the name index and the message are non-deterministicallyon relays among the pairs components. By composing the
sent to a manager of some known domain. encodings [9],[3] one can securely implement the untyped
The translation of nets is compositional, and does not rely bt calculus W'thO.Ut ”_‘at_c.h'”g in ajoin (_:a_lculus equipped

with cryptographic primitives. However, it is not clear how

on any pre-existing infrastructure for communications, as, . . . X
now the proxies are dynamically generated within the trans-tO implement matching following this approach. In fact, as
noted in [15], the ability of test syntactic equality on hames

lation; as in previous implementations we assume the pres- . . 2. .
. ST invalidates the semantic equalities on names provided by
ence of noise on the communication interface. We extend

the low-level term environment corresponding to the high- the equators [11] used in [9] to merge internal and external

. X ; . names.
level type environment with the public encryption keys of

the proxy managers corresponding to the high-level free do-Acknowledgments.The name representation based on
mains:{31,...,8} £ {815 /X....,8, /Z}. We finally ob-  self-signed certificates was suggested to us by Cedric Four-
tain: net. We would like to thank him for his insightful comments

Theorem 4. I=S~T if and only if {1}, {fd(ST)} = and constructive criticism on a previous draft of the paper.

W] (new kp)(S) ’EA"W\ (new kp)(T).
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A Proofs

The appendix is structured as follows. We first define administrative reductions and equivalence and we show that adminis-
trative reductions are closed under administrative equivalence and that administrative equivalence is contained in behavioural
equivalence. Next we state a number of lemmas which ensure that the leftover of the communications of the protocol are
invisible to the context (cf [3]). Subsequently we sketch the proofs of the soundness and completeness of the centralized
encoding(-). We omit the proofs of full abstraction of the distributed encoding which follow the same rationale.

Administrative reductions and equivalence As we introduced ir§4, our encodings are not prompt [12], i€E[(P)] does

several steps to be ready to execute the commit synchronization step on the channel queue that corresponds to the high-leve
synchronization on the channel. Such reductions have the following properties: each reduction conducing to a commit (i)
does not preclude any other reduction and (ii) is invisible to the context. As we will show later, these reductions preserve
behavioural equivalence.

Based on these intuitions, in the following we introduce the notion of administrative reduction. A reduction is administra-
tive whenever satisfies one of the clauses of the Definition 9 introduced some lines below; we assume that the processes of
interest use a public interface for communications. The first clause is clear. The second clause describes a protocol that uses
a symmetric cryptoscheme and that is formed by a recursive filter meta-process waiting for packets on the public interface
and a replicated public emission of the packet waited by the filter; the reduction involving the filter receiving the packet
is administrative whenever the content of the packet has the correct arity and there not exists another packet with different
content that could be accepted by the filter.

The third clause describes a similar protocol involving a recursive filter and a public output and says that a reduction is
administrative whenever is inferred from the filter receiving a wrong packet (i.e., encrypted with a different key or containing
terms mismatching the expected arity). The fourth clause describes the behaviour of a filter bfoy@eprivate channel
n° which receives a term which represents a t@ibat is not a sub-type of. The fifth clause describes the behaviour of
a process which receives a set carried on by a private ontglt) and then tests if a terfN belong to the set and if yes
continue a%®); the reduction is administrative whenever the existence in the scopeobh testing process on the same term
N and continuing a§’ implies thatQ = Q'.

The sixth clause says that the deterministic reduction which “unbloekX.P is administrative. The last clause describes
a protocol where a table set carried on a private channel is managed in a way similar to that of our Proxy server (see Tab.
4). The managing of the table is done by a meta-protgé®) defined around; hereQ is a process with free variables
that will be closed iy (Q). The reduction under analysis is the one whEf€Q) receives a table set from a private output
t(M). Next the continuation ofy(Q) tests ifM contains an index foN;p (and in case binding the associated entry to the
free variables oR): if yes the process continue &) | Q otherwise it creates a channel for the fresh naneutputs ort
the updated :: (Nip;n) :: (nip; n) and execute® with n binding the free variables @.

In the following, for termdM, N we writeM = N to indicate thaM is syntactically equal t&l; we write|M| to refer to the
dimension ofM.

Definition 9 (Administrative reduction). Letnete fn(P) and suppos® P We say thaP -1, P is an administrative
reduction, notedP A, P, whenP |4 P’ |5 and one of the following cases holds:

1. the reduction is inferred from a synchronization among a replicated inpueband a replicated output onet

2. P = Cffiltery § with sk(N) in P|!net({M}gn))] and P’ = C[filterz;{M}sk(N) ¥ with sk(N) in P|!net({M}gn))] and
IM| = [§] andVC',M" : P=C'[net{M'}gn)]AIM|=19] . M=M
wherefilter; X with N in P is the process reached after unblocking the recursion guafdtef X with N in P by means

N . . .. o . . . oM
of a deterministic reduction anfidtero X with N in P is the proces§) s.t. filtery X with N in P — Q;

3. P=Clfiltery § with SkN) in P|net(M)] and P’ = Cffiltera;v § with Sk(N) in P} and—~(M = {M’}gn) A [M'| = [§]);

4. P = Cl(new n°)Q|filtery § from n°@T in P|n°(M)] and P’ = C[(new n°)Q|filteroy ¥ from n°@T in P] and M
has typeS £: T wherefilter; X from c@T in P is the process reached after unblocking the recursion guard of

filter X from c@T in P by means of a deterministic reduction afilleroy X from c@T in P is the process) s.t.
c(M)
filtery X from c@T in P — Q;
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5. P = C[(new n*)n*(N)|iciif N & Set- then Q] and P = C[(new n)(if Nj € N then n"(N :
Nj) [Qj else n*(N)) i\ jif Ni & Sek then Q] andVi,j el . (Ni=Nj) = (Q =Q

6. P=recX.QandP = C|(new n)!n(x).Q{n()/X}| Q{n()/X}];

7.P = Cl(new t)t(M)|icTn(Qi)] and P" = Cl[(new t)let § =2Njip,M) in t(M)|Q; else
((new n)Cham, [t(M.(Njip;n).(nip;n)) |Q{n/¥}) lien j Tn (Q1))]
whereTy(Q) =t(2).let §=2(Nip,2) in t(2) | Q else (new n)Cham, |t(z.(Nip;n).(nip;n)) |Q{n/¥} and Q) =¥;

wherel =1,...,n. We let=2 be the reflexive and transitive closure-&.
T A
We set—= — \ —.
Based on this we have the following notion of equivalence that ignore administrative reductions.

Definition 10 (Administrative equivalence). Administrative equivalence, notecﬁ, is the largest symmetric and contextual
term-indexed relatioZ such thatp = HZK implies:

o ifpl=H|nthenp =K |y

o« H A H imply K 2. K’ for someK’ such thaip = H'zZK’

e H— H implyK A, A K’ for someK’ such thapp E H'ZK’ .
A simple, but important property oéé is that it is contained iﬁé,’j‘". More precisely:
Lemma 5. If p = H ~a K thenp = H =ATK.

Proof. Letp E PZQ whenevep = P~ Q. The contextuality of# follows directly from the definitions (which is the same
for both relations). To see that preserve barbs, suppgsé= P ,; by definition ofz’p* we havep = Qlaandinturnp = Qlla,

A
as requested. To see reduction closurel?letr—> P’. In caseP —— P’ we infer that3Q’ s.t. Q A, QandpEP =~ Q.
We have thus foun®@ s.t. Q = Q andp = P#ZQ. In caseP —— P’ we infer that3Q' s.t. Q A A Q and
pEP ~a Q. ThusQ == Q andp £ P ZQ.

We easily obtain thabg\ is coarser than:ﬁ".

Lemma 6. If p = H ~A"K thenp = H ~* K.

The key property of administrative reductions is that they are closed under administrative equivalence, in the following
sense.

Proposition 7. Letp be a term environment s.t.(id,K) C fn(p). IfH £, K, thenp EHxAK.

Proof. (Sketch) We define an asymmetric version:cﬁf, the administrative expansion, not)gré‘. Administrative expansion
is the largest relation which is strong barb preserving, contextual, and s.t.IWIjgrQ andP LN P’ orQ — Q we have

the same clauses eai’g, while whenQ A, Q' we have thaP AP with Q E’S P’. Then we prove that administrative
equivalence up-to administrative expansion, which is defined as the relédtishich have the same clausesm@ but s.t.

the relation reached by reducts>_i§~§<é, is contained mw’g

We Letp = C[H]ZC[K] whenever{ | [ \ fi C p andC[—] = (new fi,€)Rp| — Ap - RandH £, K. We show thatz U .7 ,
where .# is the identity relation, is an administrative equivalence up-to administrative expansion.

The following corollary can be proved easily by induction on the number of transitidns

Corollary 8. Letp be aterm environment s.t.(#d,K) C fn(p). If H £k, thenp = H ~" K.
The following lemma can be easily proved by chasing-diagrams arguments.
Lemma 9. zé", zﬁ and %ﬁ” are equivalence relations.
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Protocol Properties Next we need lemmas similar to [3] to ensure that the leftover of the communications of the
protocol are invisible to the context; we omit the proofs that are very similar to [3]. We use the following nota-
tions. We letCham{N}[Q] indicate the procesgnew n*,n°) n*(N)|Q|RS|WS, wheneverQ = Py|---|Py and for

net(M;) net(M;) ~
all B there existsM; s.t. W§ —— W8P or R§ —— RS|R.  We write Proxy(M;3){C}[§ for the process
(new t) R[S|t(0.(Mup;S1).(Sup;S1)- - - - -(MmiD; Sm)-(Smip; Sm)) [t*(C) wheneverM = My,....My, §=s;,...,5y and

net(M;)

(
S=P|---|P, and for all P there existsM; s.t. R —— R|R. We write M ¢ Chany{N}[P] to mean that ifP =

a’(My,...,f(M),...,Mp))| P’ thenf is a one-way function. We say theit — K is an(n,t)-synchronization if tha step
: (e (M) n°(M) , ~ ~
H — K derives fromH’ —— K’, H” —— K", with H = (new d)H’|H”, K = (new c,d)(K’|K”) andM has typet.

Typically we note the synchronization ste'é@. We let strong behavioural equivalence, noﬁ@', be the largest symmetric
and contextual term-indexed relatighwhich satisfies the strong version of the clauses of Definition 7.

The first lemma says that a ciphertext cannot be distinguished from noise without knowledge of the symmetric decryp-
tion key. Notice that a packdin}, has no associated destructors, since for symmetric decryption we use the destructor

deciphefciphen(x,sk(y)),sk(y)) = x.
Lemma 10. For all p holdsp = (new K)! net({M} ) ~*™ (new n)! net({n}n).

The next lemma says that the channels do not accept packets with non-fresh nonces and that the ambient see these packets
noise.

Lemma 11. Let p be a substitution s.ta,a,, ¢ A(p) and leta # c. For all processP,Q s.t. p+ Q andc ¢ fn(Q) and
a,a,, ¢ Charp{N}[P] we have

p = W[ (new c)Qp|Chary{N.c}[P]|! net({M,c},;) ~"W | (new ¢)Qp|Chary{N.c}[P] .
The next Lemma says that we can remove the nonces from the channel provided they do not appear in the environment.

Lemma 12. For all processe®,Q s.t.p+ Qandc ¢ fn(P, Q) hold

p = (new ¢)Qp|Chany{N.c}[P] ~"" (new c)Qp|Cham{N}[P] .

We use a similar Lemma to remove nonces from the Proxy.

Lemma 13. Letp be a substitution s.k, ks & A(p) and supposéc,k} N§= 0. For all processS,Q s.t.p+ Qandc ¢ fn(Q)
we have

p = (new ¢)Qp |W | Proxy(M;3){N.c}[S | !net({N,c}k;> ~? (new ¢)Qp |W | Proxy(M;3){N.c}[S
The next lemma says that secret channels are not visible up-to strong barbed congruence.
Lemma 14. For all p holds ifs ¢ fn(S) thenp = (new s)Chan| Proxy(B, B; § 5){C}[S ~"" Proxy(B;$){C}[S .
Operational Correspondence In this section we establish that the operational correspondence of the centralized encoding
(-). The operational correspondence]of (Theorem 1) is easier and can be obtained with minor rearrangements. To ease

the notation, we lef 0} = net/x,k /y, i.e. , for eacH we have thaRangé{ | [}) contains the proxy kel . We say that an
environment is compatible with a pi calculus proceBsf there existA <: | s.t. A+ P.

We first need a Lemma saying th@} is closed under substitution, in the following sense.
Lemma 15. (P{v/x}) = (P){[v@A] /x}.

Lemma 16 (Preservation of execution steps)Let| be compatible wittP. If P—— P’ thenCE[(P)] é—w’m CE[(P')].

Proof. (Sketch). By induction on the derivation & — P’. We sketch the base case (PI-CLOSE@). We prove that
IK s.t. CE[(P)] AN m/m CE[(P’)] which actually proves the claim &2 is not administrative. We prove that

K z{A”} CE[{P’)] by using the lemmas introduced to remove the left over of the communici8arMore in detail, we first
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use Lemma 15 to move inside the encoding the capabilities exchangeéi%itmext we use Lemma 10 artelmgz'{m

(Lemma 6 to remove the leftover of the communications protected under a session key. Lemma 11 permit us to remove
communications protected under encryption keys possibly known to the context; here we exploit that the protocol always
insert a fresh nonce in such packets to prevent cryptanalysis attacks. We apply Lemma 12 to remove nonces from the channel
used for matching the pi calculus reduction, i.e. the channel pr@tess,. Finally we use Lemma 14 to remove the channel

and its entry in the table.

The reverse direction of operational correspondence is subtler, as the encodingrsnmat We therefore need a general-
ization of the standard reflection result, based on the relatignFirst we introduce useful notation and terminology and

then state few preliminary lemmas. Let=2> H' — K. We call the reduction sequeneé canonical and write is as in

r:Al, if it only includes the administrative steps fratrequired to enable the synchronizatiorHh (as stated, this is loose,
but can be made precise, as we know exactly which are those steps).

Lemma 17. If CE[(P)] == H — K then there existsl’ such thatCE[(P)] =25 H' — e =25 K.

Proof. (Sketch) We first show by case analysis tHal® K. To see thaH — K impliesH nex, K, consider that: (iH’s
outputs on net are under replication, while its inputs on net may be under replication, or recursive filters: in the last case they
are waiting for termdvl encrypted under a session kelfN) and no other term®’ # M are encrypted undesk(N); (ii)
reductions om® or satisfies the expected type or not; (iii) reductionsigi* are all administrative since translated processes
never associate the same nonce to different packets; (iv) reductions on the table tbatisii the last clause of Def. 9 for
the proces® = let Z= Cas{(n,t) in ! {Z}y.

Since the names dfl arenet, A°,A*,t,t* and “recursion” names used by processasc X.P (which satisfies condition

Def. 9(6)), we infer thaH — K must be inferred frontd @ . Next we show that &n,t)-reduction must be preceded
by the completion of the write protocol and of the completion of the first part of the read protocol (the asynchronous part).
Finally we prove that administrative reductions which are not subsequent (this is the case whenever the first admin. reduction
unblocks the next admin. red.) can be “rearranged”.

O

Lemma 18. Let| be compatible witlP and suppos€E[(P)] 22 H — K. Then there exist®’ such thatP - P’ and
{1} =K ~a CE[(P')].

Proof. (Sketch) The lemma follows by exhibiting the canonical administrative post-sequenceKframa then by using
Lemmas 10,11,12,14 to remove the leftover of the protocol session. O

Lemma 19 (Reflection of execution steps)Assume] | [} = H ~4 CE[(P)] andH — K. Then either| 1} = H ~a K or
there exist$ such that — P’ and {1} = H ~a CE[(P')].

Proof. LetH - K. If H -2 K, we apply Proposition 7 and we obtafi [} = H ~a K. OtherwiseH — K and by
{1} = H ~a CE[(P)] we infer that there exist& s.t. {1} |= CE[(P)] 25— Zo == Z and {1 } |= K ~a Z. We apply
Lemma 17 and we infer that there@ss.t. CE[{P))] A Q A, Zo. We apply Lemma 18 ad we obtain that ther@is.t.

P P and{! | = Q~A CE[(P)]. FromQ =2 Zy == Z and Corollary 8 we deducgl |} = Q ~* Z, and by transitivity
of ~* (Lemma 9) we obtaif | } = Z ~* CE[(P')]. We use this result and the hypothe§lg} = K ~a Z and transitivity of
~Atoinfer { I} = K ~a CE[(P")], and we are done.

The following corollary of Lemma 19 will be used to prove the soundness of the translation.

Corollary 20. If CE[{P)] = H then there exist®’ such thatP —> P’ and{ | [} =H = CE[{P'}].

Given a type environmenit to prove preservation and reflection of barbs we define testing contexts of thelfbrm
link (n,y) in (new K)emit({sk(k), T} ) [filter X with sk(k) in w() wherew ¢ fn({1[). The following barb predicate=
Plle= (0 e A1) A {1}, w/x = (T"|P) |, correspond to pi calculus bafty= P |, in the following sense.

Proposition 21. The following hold.
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1. | =Plaimplies] = CE[((P}]iL&x
2. | = CE[(P)] U, impliesl = Pla.

By using the operational correspondence we prove the only if direction of Theorem 3 and establish the soundness of the
translation.

Theorem 22 (Soundness){ | [ =CE[(P)]]=A™CE[(Q)] implies| =P="Q.

Proof Sketch.We consider the relation defined bis PZQ whenever{ | | = CE[(P)]] =™ CE[(Q)], and we prove tha®
is a typed behavioural equivalence. We prove ##ds reduction closed by using Lemma 16 and Corollary 20 (cf. [7]). Let

P, P’; we apply Lemma 16 and finld s.t. CE[{(P))] L KL K and{I} = K ~* CE[(P')] By Lemma 5 we

have{ | } = K =ATCE[(P'})]. By reduction closure cffzm we easily deduce that there existss.t. CE[(Q)] ==>— H and
{1} =K =ATH. We apply Corollary 20 to the last weak transition and we obtain that there &ist$. Q = Q and

{I'} EH ~ACE[(Q)]. By Lemma5we havd| |} = H =ATCE[(Q')]; by the results above and transitivity%% (Lemma
9) we conclude tha§ | |} = CE[(P")] =A™ CE[(Q')], which in turn implied = P'ZQ’, as needed.

Barb preservation is obtained directly by using Proposition 211 keP | 5; thusl(a) <:rand in turna” € Rangé{ | }).
By the contextuality ofém, we findw ¢ fn(J1}) s.t. {1}, w0/x = CE[(P)] =A™ CE[(Q)]. Now we easily findT s.t.
{1},0/xFT andT2=T({I},w/x). By closure under parallel compositon®af™ we infer {| | |, w/x = CE[(P)]| Ta =A™
CE[(Q)]|T?. By Proposition 21(1) we have= CE[(P)] |, ; by barb preservation @Em it easily followsl = CE[{Q) ]!} -
We apply Prop. 21(2) and we obtdif= QJ4, as needed.

Finally we show thatZ is contextual. Closure undeew follows straightforwardly from the closure undesw of %fm
and by((new n)P) = (new n)(P). Closure under processBs.t. | - Rfollows by noting that{R) can be built around I [}.
To see that = PZQ impliesl,a: A = PZQ, we use the contextuality @E{A}T} to infer {1 |,a/x |= CE[(P)] =A™ CE[(Q)].

Then to add entriega: A] /x to the environment, we use a “weakening” lemma statingghiaM andp = P =A™ Q implies
p,M/x = P =ATQ. These results let us dedufe a: A} = CE[(P)] A" CE[(Q)] and in turnl,a: A = P ~™Q, as needed.
[

Completeness We introduce a encoding which exterfd) by allowing encryption keys to be formed around terms. To
motivate, notice that both the cryptosystem and the certificates can be instantiated with terms; while client processes build
keys and certificates around names, the environment can legitimately create valid encryption keys and certificates around
terms.

We extend the encoding of values to arbitrary terms.

[N@rw] = (Nip, Ny, N/, NceRT) [N@r] £ (Nip,hash{N,)),N;", Ncerr)
|[N@W]| (h(N),F,'k(WI'(N)),T)(MD,N\ﬂv“,han'(NrJr),NCERT) I[N@T]I = (N|D,han{W),haS"(NrJr),NCERT)

We let (P)g, where = {(n,N),...} is a partial injective function from names to terms (we reserve the rfamoe
this function), be defined agu(v@T))p n) = (new k)emit({sk(k),g,}k;)|fi|ter y with sk(k) in emit({[N@T] },..) and
(u(v@at))p = (u(v@T)) wheneverv ¢ dom(). We let ((new n)P)B = (new n){(P)g with n ¢ dom(B). The remaining
clauses are the same ¢f). We write p - {B,(n,N)} whenever existdN’ s.t. p- N AN = N'p, andp I B. We define
{La:Thg@n =} [N@T]/xand{l,a: T [}z = {I g, [a: T]/x wheneveia ¢ dom(B).

The encoding-) g is closed under substitution.

Lemma 23. Letl',x: A-Pandl I v:A. The following hold.
1. (P{v/x}t)g.wn) = (Phpwn {IN@A] /x}
2. if v¢ dom(B) then(P{v/x})p = (P)p{[V@A] /x}

Preservation of execution steps extend straightforward{y)te.

ey
ey

Lemma 24 (Preservation of execution steps)Let | be compatible withP, and suppos€]l} - B. If P . P1 then
A
CE[(P)g] :>*>Qj?l]} CE[(P1)p] -
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We present now the Theorem that prove that the transl4tjgyis complete. We introduce an up-to technique for behavioural
equivalence useful to prove the Theorem.

Lemma 25 (Weak equivalence up-to administrative equivalence)Let%Z be a symmetric indexed relation, contextual and
such thaipp = HZK implies:

o if pl=H |ythenp =Kn
o« H2 impliesK 2. K’ for someK’ such thatp = H' ~A #Z ~A K’

o H2 A impliesk = K’ for someK’ such thatp = H' ~A % ~A K’ .
Thenz C=4,

Theorem 26 (Full Abstraction). Assumedom(B) C dom(l) and {I} - B. | EP=Qif and only if {1 } = CE[(P)g] ="
CE[(Q)gl-

Proof Sketch.Theorem 22 directly provides the if direction. We therefore prove the only if case.

To ease the notation used in the definition of the candidate relation we consider computing environments of the form
CE*aAl-] = W |Proxy,_| Charj, representingonfigurationsof the proxy, whered C I. The proxy configuratiorProxy,_
associates client namesanto their server counter-paft; modulof3 and contains proxy requests of the context. Formally
the proxy map contains entries of the foip,Vs) where orN =v e AAv ¢ dom(B) or B(v) = N. The scope ofs is
outside this definition since the context may have received these names due to a linking request. The chani@hasgvers
created by the proxy contain in their queue both read/write requests submitted by the context and intermediate steps . The
computing environment is surrounded by a context representing the low-level knowleldge aftroduced the context may
even contain proxy answers containing capabiliigsWe abuse the notation and writAs] to indicate the server counter-
part of the capabilitiefA]g. To ensure closure under weakening, we augrfjéfitwith fresh names and we let the index
of the relation to be a subset of this base.

Given these intuitions, we Igt = C[CE*A[(P)g]]ZC[CE*A[{Q)g]]) whenever

1. IEP~QandAC |

2. pC ({1}, b/%) AbNn({1]}) = 0 anddom(B) C dom(I) A {1} - B

3. C[] = (new s, &)(R({|1 }p, b/%, [] /9) | —) and ({1 [}, B/% [2s] /9) F R .
We prove thatZ is a weak equivalence up-to administrative equivalence. We use the following naming conveditigris:
the contextCE*a[—] is the environment{P); is the process. For the sake of readability we omit the environddrim

the definition of CE*A[—] whenever no ambiguity may arise. Liet=2> H' — K. We call the reduction sequeneé

canonical and write is as in2=s, if it only includes the administrative steps frdfrequired to enable the synchronization
in H' (as stated, this is loose, but can be made precise, as we know exactly which are those steps).

Barb preservation. Letp |= C[CE*[(P)g]] la. If this barb is inferred fronp = CE*[(P)g] |a, a case analysis shows that
a= net We match this barb witp = C[CE*[(Q)g]] la inferred fromp =W |net. Otherwisep = C |5 and we trivially have

p = CICE*[(Q)pl] Ve

Reduction Closure We need to check the casess and=2 =2 of the definition of equivalence up-to administrative
equivalence.

Let C[CE*[(P)g]] A K. By Proposition 7 we havd| |} = C[CE*[(P)g]] #* K and we have done singe = K ~*
C[CE"A[{P)p]]ZC[CE"A[{Q)p]])-
Otherwise leC[CE*[(P)g]] == H — H’ =2+ K. We have to foundi” s.t. C[CE*[(Q)a]] = H” andp = H' ~* % ~A

H”. By closure of~* under administrative reductions and transitivity:fqﬁi this impliesp = K ~* 2 ~A H", as requested.
The following cases of interaction arise fdr— H’.
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(Context - Environment). We prove that there is a minimal sequen:reg and a processip s.t. C[CE*[(P)gl]] A
C1[CE;[(P)g]] — Ho 2. H andHg = C2[CE3[(P)gl]], for some configuratio£E5[—] and contexC,[—| satisfying the
definition of Z. The intuition is that no prior interaction with the process is needeld-if—+ H’ occurred by a communication

among the context and the environment. We match this move@{EE*[(Q)g]] N C1[CET[{Q)g]] — C2[CE5[{Q)pl]-

Next we need to ensure th@g[—] is a context valid forZ. If the synchronization is obtained by the context sending a
packet to the environment this clearly holds by the initial hypothesiS[es). Otherwise the context receives a packet from

the environment; a case analysis shows that such packet is a proxy answer containing linked capabilities. Since translated
processes do not move, it follows that such request was sended by the context, i.e. fhareliE such that the context

knows[N@T ] . From the hypothesis on the shapes6f-| and fromC[—] £ Ci1[—] and from the communication hypothesis
we infer that there iR = net(x).R'|R" closed by{ | [}g,b/X, [As] /¥ such that

(new As, €)Re{ 1 |3, b/%, [As] /9] — )
= (new As,Ns, &) (R{{[Ns@T ] }m/x} IR ({1 g, b/ [As] /9)| —
x ¢ dom({1[}) U{X,y}

whereNs is the name indicating the server counterpart of the tarriThree cases arise: (§ = v for somev € dom(l) and

v ¢ dom(B) or (ii)3v . B(v) = N and (i) N € dom(l) . In case (i) ifv € A we have done; otherwise we considles= A,v: T
and we obtairCy[—] = (new I's,&)(R'|R*) ({1 }g,b/X [As] /% [Ns@T] /x)| —, as requested. In case (s = vs and we
proceed as above and check whetherA or not; remember indeed that in this cdse@T ] is the server counterpart of
[N@T]. In case (iii) we choose a namefresh tol andb and associate it tbl in B,(v,N). Indeed by weakening closure
of =™ we havel,v: rw |= P =™Q. We obtainC;[—] = (new I's,&)(R |R*)({1,v: rw[},b/X [As] /X, [vs@T] /) | — where
F=A,v:rw Cl,v:rw. Finally fromp C {1 },b/Xwe obtainp C {I,v:rw]},b/X.

Ci—
Co[—

We use the results above and closure &f* under admin. reductions to conclude = H' ~A

C2[CE3[(P) g]] ZC2[ CE5[(Q)g]]-

(Context - ProcessBy syntactic analysis of the encodirfg) g, we infer that this interaction has occurred on the chanet!

which is the only free channel used by)g. We first analyze the case whether the context inputs a term from the process. We
rearrange the administrative reductisgti€E*[(P)g]] LA H by choosing the minimal sequence which let first the context
move and then the process move; the remaining moves are matched with the after-sbké]ueAﬁcld’:

CICE*[{P)g]] 222 Cynet(x).R| CE* [{PYg] 225 Ho — Hj =25 H'

whereHo = Cy[net(x).R| (new b)CE;[P* |net(M)]] andH}, = Cy[(new b)R{M/x} | CE%[P*]]. Here the configuration is possi-
bly evolved toCE;[—] as the packet received by the context may be a linked emission, that is the proxy could have generated
a new channel and association due to a linking request of the process.

A case analysis off-)g shows thatP* |[netfM) = P*; this holds since all outputs pet syntactically occurring in the
encoding are under replication.

We exploit the following fact. Two cases arise fdr

1. M = {N}s andk € b
2. M = {N,c}exn) andc € band{dk(N),N} NA(p) = 0

In case (1), we use a Lemma saying thatan be treated as noise whenekeioes not occur in the free names of the context
(see the Example in Secti@?) and we infep |= H) ~A"Cy[(new n)R{{n}n/x} | (new b)CE;[P*]]. Indeedk € b implies that
k& fn(R), i.e. this is a afresh name coming out from the translation. From the hypotheses on the reductions above and from

P*|netM) = P* we obtainCy [(new n)R{{n}n/x} | CE*[(P)g]] N Ci[(new N)R{{n}n/x} | (new b)CE}[P*]] . We use these

re_sullts and plosure of_ admin. reduct@ons mﬁi‘gzé to inferH/ mé H zé Ci[(new n)R{{n}n/x} | CE*[(P)g]] . We match
this interaction by lettingnet(x).R receive a term from the noise proc&¥s

CICE'[{Q)pll =& Calnet(x).R|CE*[{Q)g]]
— Ca[(new mR{{n}n/x} | CE*[(Q)gl] -
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By p = H' & H{ " Cy[(new n)R{{n}n/x} | CE*[(P)p]]ZCy[(new n)R{{n}n/x} | CE*[{Q)g]] we obtain reduction closure.

In case (2) we use a Lemma which says that if the confoundenot in the free names & and both the decryption key
dk(N) and the seetll are not known to context (formallyfdk(N),N} NA(p) = 0) thenp |= Hj ~* Cy[(new n)R{{n}n/x}
| (new b)CE;[P*]]. HereR seesM as noise because it has no access to the confounaled cannot destruddl both by
knowing or constructing the kegk(N); however it can administratively forward the packet to the legitimate receiver. This
intuition motivates the use of” in place of the stronger”™. As in case (1) we match this interaction by lettingf(x).R
receive a term from the noise proc&¥s

CICE'[(Q)gl] =2 Culnet(x).R|CE*[{Q)gl]
—  Cy[(new mR{{n}n/x}[CE*[(Q)g]] -
We obtain reduction closure with the same equations of case (1).

We now analyze the case whether the process receives a term from the context. We have
CICE*[{P)g]] 222 CylnetiM) | CE*[ (P} g 225 Ho — HY =25 H/

whereHo = Cy[net(x).R| (new b)CE;[P* [filtery X with N in P]] andH} = Cy[(new b) CE;[P*|filterom X with N in P]] where
these filters are those introduced in Definition 9.

A case analysis shows that all input et of the translation oP are recursive filters under fresh session keys not known
to C[—], i.e. N = sk(k) with k € b. We easily obtairH) = Cy[net{M) | (new b)CE;[P*|filter X with N in P]], i.e. Hj reach
deterministically in one steHo, and in turn from Def. 9(1) and closure sf* under admin. reductions we obtgir= Hj ~*

Ho. We re-apply closure of*and obtain bottp = Ho ~* C[CE*[{P)g]] andp |= H’ ~* H. By applying transitivity of~

to the results above we hape= H’ ~* C[CE*[(P)g]]. Summing upC[CE*[(P)g]] A Ay :zé C[CE*[(P)g]]. We do

not need to match these moves sipde: H' ~* C[CE*[(P)]] ZC[CE*[(Q)g]].

(Environment - Process).here are many cases.

Environment reductionn this case
* TA] * A
CICE*[{P)g]] = C[CE][(P)g]] — Ho = H’
A case analysis shows that the synchronization has been inferred GfGE{[(P)g]] ner Hy and in turn andH) =
CI'{IN@T] }m|CE5[(P)g]] for someCE3[—] and N. Indeed the environmer@E;[—| clearly changes it's state since
it looses two messages in the queuecbfinne}. Since the translated process does not move the capabjIRi@aT |
come out from the context and in tu@[! {[N@T ] }m|—] satifies the definition ofZ. We match this move with

C[CE*[{Q)pl] = CICE; [{Qpll — C[! {[N@T }m| CE3[(Q)pll asp = H' ~AC[! {[N@T ] }m | CE3[ (P}
CIH{IN@T] }m | CE5[(Q)g]]-
Process reductionn this case
CICE*[(P)g]] 25 Hy &5 H/
and the synchronization has been inferred from a read and write requBst \&fe use a minor variant of reflection of

execution steps that consider arbitrary environméi§[—| and bindingsp to infer that there i’ s.t. P P and

p |= Ho ~* C[CE*[(P')g]]. We exploit the hypothesis|= P = Q to infer thatQ = Q' with | = P’ =~ Q. Now we
use a variant of preservation of execution steps similar to that above to infer that th€fesieh thalC[CE*[(Q)p]] =
H” ~f C[CE*[(Q)g]]. From closure of* under admin. reductions and transitivitysf and the results above we obtain
p = H' &" Ho ~" C[CE*[(P')p]] ZC[CE*[(Q ) g]] #* H” and we are done.

Context out - Process in (intrusion).This is the case whereas the encodingPofeceives a term from the context
trough the queue of a channel in the actual configuration. We Rawe(new b)P,|a(x@T).P, and|l +a: w and
CE*[—-] = CEj[—|a;(N)|aj([N@S] )] with S<: T andais linked toa;. We have the following canonical sequence:

CICE*[(P)p]] A C[(new b, €)CE5[(P2) g | P* [filter x with sk(K) in (Py)g]]

A
— Hy=H’
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Here € is formed by the seed of the shared kegk(k) and the nonce contained in the input request of the encoding
of a(x@T); P* is the leftover of this request. We hat#;[—] = CE*yc[filter X with a{@T in !nef{X}syk))] where the
definition if CE*1c is the same o€E] but containing the noncein the nonce list as im;(c:: N). Finally we haveH| =
C[(new €)CE}[(new b)<<P2>>B [P*|! {|[N@T]|}Sk(k |filter x with sk(K) in (Py)g]].

By letting the continuation oP to receive the packef N@T | }sik) and by removing the leftover of the communication
we obtain

@i if (wN) € B or N =v for some v € doml) then Hy :A>av/3 C[CE;[(new B)<<P2>>B | (PL{v/x})gl]
CICE{[{(new B)P2 | P1{v/x}}p]]

(i) else there isv s.t. ﬂl v:S} F B,(wN) and H :Am:é C[CE][(new B)<<P2>>B | (PL{V/x}) g vy ]
C[CE;[((new b)P, | PL{v/x})g,wn)l] With v & n(P).
By the hypothesis$ = P = Q we infer that in case (i) = a(v@S) |P = a(v@S) | Q and in case (ii),v: Sk a(v@S) |P =

a(v@s) | Q. Sincea(v@S) |P —— P’ £ (new b)P, | Pi{v/x}, by hypothesis there i§ s.t. a(v@S) | Q = Q and (i)l = P’ =
Q or (i) I,v: SEP =2 Q. We apply preservation of execution steps to proegs@S) | Q immerged in the environment

CEj[—], i.e. the environment not containing the messag& @T ), and obtain
() CICE;[(a(v@s) |Q)pl]l =~ CICE;[(Q')g]]
(i)  CICE[{a(v@S)|Q)p,un))] =5 CICEI Q) pun]

It's easy to see that in case (i)C[CE;[{(a(v@S)|Q')g]] :A>z§ C[CE*[(Q)g]] and in case (i)

CICE; [(a(v@S) | Q' )g,wn)]] :>~A CICE*[{Q)p,nl; In these results we use” to discard unuseful leftoftvers of
the write request.

In case (i) from closure of£” under administrative reductions we infer

C[CE;[(a(v@S) | Q') g]] ~f C[CE*[{Q')g]] and in turn from the results above

CICE*[{Q')p]] == H" ~{ C[CET[(Q)p]] -
Similarly in case (ii) we deduce that thereH$ such that
CICE*[{Q)p,wn))] == H" ~ C[CE; [{Q)p,un)]] -

From closure of* under admin. reductions we infer @)= H’ ~* C[CE;[(P')g]] or (i) p = H’ ~* C[CE;[(P >>B.,(\/.,N)]]-
We have done as in case (i) we have= H' ~* C[CE;[(P') pl]ZCICEI[(Q')p]] = A H” and in case (ii) we have = H' ~

CICET[{P") g, ] ZC[CET[{Q) g, cvn) ] ~ ~AH". In (i) notice thatp = g,b/% ando C {I,v: S|} have been deduced from the
hypothesisy C {]I I

Context in - Process out (extrusiorin this case the process sends capabilities to the context trough the environment. We
haveP = (new b: B)P'|a(v@S) andl - a: r andCE[—| = (new &)CEj[a;j(N) |filter X with a]@T in !net({X}m)] whereais
linked toa; andS<: T. We have the following canonical sequence:

CICE*[{P)g]] 225 C[(new b, &)CE*1c[as ([N@S]) | (/)| P*]] — Hp == H’

whereP* is the leftover of the communication to send the output request containing the mentandCE*1¢[—] is defined
as CE*1[—] but containsc in the nonce list andv,N) € B. The caseN = v € dom(l) is simpler and we omit it. The
synchronization involves the filter receiving the padke@S] onaj. By removing the leftover we have

Hy ~f Cl(new b)!net({[N@T] }um) | CE5[(P'}p]] -

We exploit the characterization e!A" in terms of typed bisimulation presented in Chafeand we infer thatl E P = Q,

(b)a(v@rt)
P <—V> INv: TP, implies that thre i€ such thalt>-Q :>> INv: TeQ with INv: T EP 2 Q. Thus exist®o,
(b)a(var)
s.t.Q = Qoandl>Qy ——— IMv: TrQjandQ, == Q. From these results we infer th@g = (new b)Q0 |a(v@T).
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We apply preservation of execution steps and itf&rE*[(Q) g]] :>zﬁ

C[CE*[{Qo)p]]. From the shape @@, and by following the same steps we did in showing ®&E"[(P) g]] A Cl(new b, &)
CE*1c[(P1)p | P*]] we infer

CICE*[{Qo)p]] =2 Cl(new b, &)CE*1c[(Qb) | P]] -

Notice indeed that both the leftover and the environmertE*;c[-] are determined by the (encoding afv@T) which
is the same for both processes (up-to alpha-renaming of bindirys Now we let the synchronization occur inside the
environmenCE*1¢[—] and we remove the leftover:

Cl(new b, €)CE"1c[(Qo) g |P*]] — K1
~p C[(new b)Inet({[N@T ] }m) | CE3[(Qp)gl] -

Finally we apply preservation of execution steps and reduction closue® ahd obtain
Ky = K" ~f C|(new b)!net({[N@T ] }m) | CE3[(Q')g]l -
Summing up we have:
CICE"[{Q)p]] = K"~ Cl(new D)!net({[N@T] }m) | CE5[(Q)p | P

By definiton of Z we have thatC[-] = (new &R({!}p.b/% [As]/§)|— where ({1}, b/%[As]/§) - R No-
tice that the bindingsC may contain names inl that do not occur in the base. We defif@[—] =
(new b)CIR ({ITTV: T [,b/% [As] /9) | =] where({1Tv: T [ig,b/X,[As] /§) - Ru. It's easy to findRy s.t.

Cl(new b)!net{[N@T] }m) = D[-]. Indeed we have what we need to build the t§@T |, andM was previously used
by the environment.

SincelNMv: T =P =2 Q and(v,N) € B we have

p = H" ~" Ho ~" DICE3[(P') 6] ZD[CE3 [(Q)g]] = H”

as desired.

Contextuality Let p |= C[CE*[(P)g]]ZC[CE*[(Q)g]]). For the first clause, lep - S. By p C ({!I },b/%) we have
p = C[So| CE*[(P)g]lZC[Sp| CE*[{Q)g]]) where fn(Sp) nbn(C) = 0. For the second clause, letZ fn(p). Since
p C {I},b/%, we havep,n/x C {I},b/% n/x providedn ¢ b.. We havep,n/x |= C[CE*[(P)g]|ZCICE*[{Q)g]]) as
C = C{n/x} holds sinceC has not free variables. Last, we analyze the third clause. romc ({I},b/%X) we infer
p\n k= (new n)C[CE*[(P)p]|Z(new n)C[CE*[{Q)g]]) as(new n)C[—] satisfies the definition required i by the hypothe-
sis onC[—].

O
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