
Secure implementations of typed channel abstractions
(Extended Abstract)

Michele Bugliesi Marco Giunti
Dipartimento di Informatica

Universit̀a Ca’ Foscari di Venezia

Abstract

The challenges hidden in the implementation of high-level process
calculi into low-level environments are well understood [1]. This
paper develops a secure implementation of a typed pi calculus, in
which type capabilities are employed to realize the policies for the
access to communication channels. Our implementation translates
the typed capabilities of the high-level calculi into corresponding
term capabilities protected by encryption keys only known to the
intended receivers. As such, the implementation is effective even
in the presence of open contexts for which no assumption on trust
and behavior may be made. Our technique and results draw on,
and extend, previous work [3] on secure implementation of chan-
nel abstractions in a dialect of the join calculus. In particular,
our translation preserves the forward secrecy of communications
in calculi which support the dynamic exchange of writeand/or
read access rights among processes. We establish the adequacy
and full abstraction of the implementation by contrasting the un-
typed equivalences of the low-level cryptographic calculus, with
the typed equivalences of the high-level source calculus.

1 Introduction

The use of types for resource access control is a long es-
tablished technique in the literature on process calculi [13],
and so is the application of typed equivalences to reason
on the behavior of typed processes [10, 14]. Resource con-
trol is achieved by predicating the access to communica-
tion channels to the possession of certain type capabilities,
and by having a static typing system ensure that the re-
sulting policies are complied with by well-typed processes.
Typed equational techniques, in turn, draw on judgments
of the form I |= P ∼= Q stating the indistinguishableness
(hence the equivalence) of two processes,P andQ, in en-
closing contexts that have access to the names in the type
environmentI via the type capabilities assigned to them by
I. Typed equations of this kind are very effective when-
ever we have control on the structure of the contexts ob-
serving our processes, i.e., whenever may assume that such

contexts are well-typed.
The question we address in this paper is whether the

same kind of reasoning can still be relied upon when we ex-
tend the class of observing contexts to arbitrary, potentially
ill-typed contexts. Stated more explicitly: can we deploy
our typed processes as low-level agents to run in distributed
environments, in a fully abstract manner, i.e. preserving the
typed behavioral congruences we have established? This
appears to be an important question, as it constitutes a fun-
damental prerequisite to the use of typed process calculi as
an abstract specification tool for concurrent computations in
distributed, open systems.

In [8] we argue that the desired correspondence may
hardly be achieved for high-level process calculi relying on
static typing alone. The solution we envision in that paper
is based on a new typing discipline that combines static and
dynamic typing. Specifically, we introduce a typed vari-
ant of the pi-calculus in which the output construct, noted
a〈v@T〉, uses type coercion to enforce the delivery ofv
at the typeT, regardless of the type of the communication
channela. A static typing system guarantees thatv has in-
deed the coercion typeT, while a mechanism of dynam-
ically typed synchronization guarantees thatv is received
only at supertypes ofT, so as to guarantee the type sound-
ness of each exchange

By breaking the dependency between the types of the trans-
mission channels and the types of the names transmitted,
distinctive of the traditional approaches to typing in the pi
and related calculi [13, 10], we can safely reduce the ca-
pability types to the simplest, flat structure that only ex-
hibits the read/write access rights on channels, regardless
of the types of the values transmitted. Furthermore, and
more interestingly for our present concerns, the combina-
tion of type coercion and dynamically typed synchroniza-
tion allow us to gain further control on the interactions
among processes and, consequently, on the interaction be-
tween processes and their enclosing context. Based on that
we are able to recover fully abstract implementations of the
high-level specifications, i.e. implementations for which the

1

typed congruences established for the specifications are true
of the low-level implementations. The basic idea is rather
simple, and suggested by the very structure of the types.
Briefly, we represent a channel with a pair of asymmetric
keys, an encryption key to transmit and a decryption key
to receive data, and establish the following correspondence
between the cryptographic keys and the type-level capabili-
ties: [[n@w]] = n+ and[[n@r]] = n−. Then, we rely on the
following variant of the standard representation of a com-
munication over a channel in terms of the exchange of en-
crypted packets over the public network.

[[n〈m@A〉]] = net〈{[[m@A]]}n+〉
[[n(x).P]] = net(y).decrypt y as {x}n+ with n− in [[P]]

While this representation is appealing in its simplicity, it
suffers from a number of shortcomings, first made explicit
by Abadi in [1]. In subsequent work [3], Abadi, Fournet and
Gonthier have shown how to counter these problems and
recover a full abstract implementation for the join calculus.

The fundamental obstacle against using the solution of [3]
for our purposes is related to the so called problem of
forward secrecy. To illustrate, we use following example
adapted from [1]. LetP andQ be the two processes below
(where we omit the type coercions whenever irrelevant):

P = (new n)(n〈m〉 |n(x).p〈n@r〉)
Q = (new n)(n〈m′〉 |n(x).p〈n@r〉)

It is not difficult to be convinced thatP and Q are be-
haviorally equivalent (essentially under any typing assump-
tion), asm and m′ are sent over a secret channel and no
high-level context may recover the content of messages
sent. On the other hand, a low-level context may tell[[P]]
from [[Q]] by buffering the message sent onn and then de-
ciphering it whenn− is published. In [3], this problem
is avoided altogether, as the join calculus does not allow
names to be communicated with read capabilities, a feature
that instead constitutes one of the fundamental ingredients
of our typed calculus. Hence, to recover forward secrecy,
we need a more structured representation of type capabili-
ties to make sure that distributing a read capability does not
correspond to leaking any decryption key. In the present
paper, we show how this can be done in a variant of the
applied pi-calculus [2].

The solution is based on the representation of a channel as
a process that serves input and output requests, so that each
exchange of messages is the result of two separate protocols
with writer and reader clients. All channels are associated
with two separate key-pairs. The decryption keys are al-
ways stored securely at the channel, and never leaked; the
encryption keys, in turn, are available to the clients that have
read and/or write access to the channel. In the write pro-
tocol, the client sends data, and the channel buffers it on

private queue; in the read protocol, the client sends a ses-
sion key and the server returns data encrypted with that key.
Publishing a read/write capability on a channel corresponds
to publishing the read/write encryption keys associated with
the channel.

Under appropriate, mostly standard, hypothesis on the prop-
erties of the underlying network we show that a translation
based on these ideas is sound. Full abstraction, instead, is
harder to achieve as we need to build safeguards against at-
tacks that exploit malformed data or malicious channels that
intentionally leak their associated decryption keys. To ac-
count for that, we complement the translation with a proxy-
service mechanism to ensure that all communication proto-
cols take place via system generated (hence secure) chan-
nels. We devise a distributed implementation of the proxy
service for a variant of our high-level process calculus in
which processes are assigned with different domains, each
one providing a local proxy. We prove that the resulting im-
plementation is fully abstract, by showing that the untyped
equivalences of the low-level cryptographic calculus coin-
cide, via the translation, with the typed equivalences of the
high-level calculus. As a byproduct, since our high-level
process calculus is a conservative extension of the untyped
pi calculus, we also have a direct fully abstract implemen-
tation of the pi calculus.

Plan of the paper. §2 and§3 review our typed pi calcu-
lus and the applied pi calculus, respectively.§4 details the
implementation we have outlined and establishes the main
results.§5 concludes with final remarks.

2 A pi calculus with dynamic typing

Given the intended use of calculus as a specification lan-
guage for distributed system, we opt for an asynchronous
version of the calculus. However, the same results and tech-
nique would apply, mutatis mutandis, to the synchronous
case.

We presuppose countable sets of names and variables,
ranged over bya – n andx,y, . . . respectively. We useu,v to
range over names and variables, when the distinction does
not matter. The syntax of processes is given below.

A,B ::= ch(rw) | ch(r) | ch(w) | >
P,Q ::= 0 | P|Q | (new n)P | ! P pi calculus

| [u = v]P;Q matching
| u〈ṽ@Ã〉 type-coerced output
| u(x̃@Ã).P typed input

The typesch(·) are the types of channels, built around the
capabilitiesr, w andrw which provideread, write andfull

2

fledgedaccess to the channel, respectively. To ease the nota-
tion, we henceforth denote channel types by only mention-
ing the associated capabilities.> is the type of all values
and may be used to provide no access to the channel.

The subtyping relation<: is the lattice defined simply as
follows (with A any type)rw <: r, rw <: w, A <: >,
and with join (t) and meetu operations arising as ex-
pected. Type environments, ranged over byΓ,∆, are finite
mappings from names and variables, or names, to types.
Following [10], we extend type environments by using the
meet operator:Γu u : A = Γ,u : A if u 6∈ dom(Γ), other-
wise Γ u u : A = Γ′ with Γ′ differing from Γ only at u:
Γ′(u) = Γ(u)uA. Subtyping is extended to type environ-
ments as expected. IfΓ(n) <: r, we say thatΓr(n) is de-
fined, writtenΓr(n) ↓. Γr(n) ↑ indicates thatΓ(n) is un-
defined orΓ(n) 6<: r. Dual notation is employed for the
write capability.

Typing System. The typing rules, in Table 1, are largely
standard, but with important specificities. The typing of
matching is inherited directly from [10]: as in that case it
allows a more liberal typing of thethenbranch, based on the
knowledge that the two values tested are indeed the same.
To illustrate, as a result of that rule, the following judgment
is derivable:a : r,b : w ` [a = b]a〈〉;0. The rules for input
and output are distinctive of our typing system. In T-Out@
the valuev, written at channelu, is tagged with a typeB,
with the intention to force its delivery at the typeB (or at a
supertype). As we show below, dynamic type checks per-
formed upon synchronization ensure that values delivered
at a given type will only be received at the same or higher
types.

Operational Semantics. The dynamics of the calculus is
defined in terms of a labelled transition system built around
the actionsα ∈ {τ,u(ṽ@Ã),(c̃)u〈ṽ@Ã〉}. The output tran-
sition (c̃)u〈ṽ@Ã〉 carries a type tag along with the output
value: it represents the output of (a tuple, possibly includ-
ing fresh) values̃v at the typesÃ; dually, the input action
u(ṽ@Ã) represents input of̃v at the typesÃ. As promised
synchronization is dynamically typed: complementary la-
bels synchronize if the agree on the type of the value ex-
changed. As proved discussed in [8], the dynamic check
ensure that well-typing is preserved by reduction.

Observational Equivalence. The notion of observational
equivalence, based on weak bisimulation, is inherited al-
most directly from [10]. As usual in typed equivalences,
we observe the behavior of processes by means of contexts
that have a certain knowledge of the processes, represented
by a set of type assumptions contained in a type environ-
ment. However, following [10], we take the view that the
typing information available to the context may be different

(less informative) than the information available to the sys-
tem. Thus, while the system processes may perform certain
action because they posses the required (type) capabilities,
the same may not be true of the context. We formalize these
intuitions below, following [10].

Given two type environmentsΓ andI, we say thatΓ is com-
patible withI if and only if dom(Γ) = dom(I) andΓ <: I.

Definition 1. A type-indexed relationR is a family of bi-
nary relations between processes (hence closed) indexed by
type environments. We writeI |= PRQ to mean that (i)P
and Q are related byR at I and (ii) there existΓ and ∆
compatible withI such thatΓ `P and∆ `Q. We often write
I |= PRQ asP RI Q.

Definition 2 (Contextuality). A type-indexed relationR is
contextual whenever (i)I ² PRQ implies I,a : A ² PRQ,
(ii) I ² PRQ and I ` R imply I ² P|RRQ|R, and (iii) I,a :
A ² PRQ impliesI ² (new a)PR(new a)Q.

Given a type environmentI, and a closed processP, we
define the barb predicate relative to the environmentI as

follows. First defineP ↓a iff P
(c̃)a〈b̃@B̃〉
−−−−−−→ and P⇓a iff

P ==⇒ ↓a, where=⇒ is the reflexive and transitive clo-
sure of

τ−→. Then: I ² P↓a , I(a)r ↓ ∧ P↓a, andI ² P⇓a

, I(a)r ↓ ∧ P⇓a.

Definition 3 (Typed behavioral equivalence).Typed be-
havioral equivalence, noted∼=π, is the largest symmetric
and contextual type-indexed equivalence relationR such
I |= PRQ implies (i) if I ² P↓n then I ² Q⇓n, and (ii) if

P
τ−→ P′ thenQ =⇒Q′ andI |= P′RQ′ for someQ′

A fundamental difference between our notion of equiva-
lence and that of [10] arises as a consequence of the dif-
ferent typing disciplines. In our system, the rule for typed
value exchange guarantees that the context obtains values
emitted on a public channel at the static type occurring in
the coercion associated with the output. Conversely, in [10],
the type at which the context acquires the new name is de-
termined by the type information that the context has on
the channel used for output: that, in turn, presupposes that
the context “behaves” in that it will not try to acquire from
the value emitted more than allowed by the read type of the
transmission channel. As a consequence, in [10] reasoning
on the access control policies can hardly be carried out with-
out assuming that the context is well-typed, with the same
type system. In our solution, instead, an appropriate use of
coercion may be put in place to prevent the context from ac-
quiring, upon output by the system, more information than
it was intended to. A corresponding mechanism can be re-
alized in terms of a low-level construction in the applied pi
calculus. We illustrate how this can be done in§4.

3

Table 1Typing and Dynamics for the pi calculus

Typing rules The typing rules for name and variable projection, and for the process forms of parallel composition,
replication, restriction and nil are entirely standard cf. [13, 15]). The remaining rules are given below.

(T-Match) (T-Out@) (T-In@)

Γ `Q Γ(u) = A Γ(v) = B Γuu : Buv : A` P
Γ ` [u = v]P;Q

Γw(u) ↓ Γ ` ṽ : B̃

Γ ` u〈ṽ@B̃〉
Γr(u) ↓ Γ, x̃ : Ã` P

Γ ` u(x̃@Ã).P

Labelled Transitions The transitions for matching, parallel composition, restriction and replication are standard.
The remaining transitions are given below.

(PI-OUTPUT@)

a〈ṽ@B̃〉
a〈ṽ@B̃〉
−−−−→ 0

(PI-INPUT@)

a(x̃@B̃).P
a(ṽ@B̃)
−−−−→ P{ṽ/x̃}

(PI-OPEN@)

P
(c̃)a〈ṽ@B̃〉
−−−−−−→ P′ b 6= a, b∈ fn(ṽ)

(new b)P
(b, c̃)a〈ṽ@B̃〉
−−−−−−−−→ P′

(PI-CLOSE@)

P
(c̃)a〈ṽ@B̃〉
−−−−−−→ P′ Q

a(ṽ@B̃′)
−−−−−→ Q′ B̃ <: B̃′ c̃∩ fn(Q) =∅

P|Q τ−−→ (new c̃)(P′ |Q′)

3 The applied pi calculus

The applied pi-calculus we use is an asynchronous version
of the original calculus of [2], in which we assume that de-
structors are only used in let-expressions and may not occur
in arbitrary terms. This is becoming common practice in
the presentations of the applied pi calculus [5, 6, 4]. We
review the core calculus here and defer the discussion on
the full set of constructors and deconstructors used in the
translation to§4.

As for the high-level calculus, we presuppose countable sets
of names and variables, under the same notational conven-
tions. In addition the calculus is characterized by a finite set
of function symbolsΣ from which terms may be formed.As
in [6], we distinguish constructors and destructors, and use
the former to build terms, the latter in let expressions to
take terms apart. Constructors are typically ranged over by
f , destructors byd. Terms are built around variables and
constructors, expressions correspond to destructor applica-
tion:

M,N ::= a,b, ... channel names
x,y, ... variables
f (M1, ...,Mn) constructor application

E ::= d(M̃) expression

A value is a term without variables. We always assume that
constructors are applied consistently with their arity. Pro-

cesses are defined as follows:

P,Q, ::= 0 | M〈Ñ〉 | M(x̃).P | P|Q | (new n)P |
! P | let x = E in P else Q

Input prefixing,let, and restriction are binders:M(x).P and
let x = E in P else Q bind the variablex in P, (new n)P
binds the namen in P. The notions of free and bound
names/variables arise as expected. The processlet x =
E in P else Q tries to evaluateE; if that succeedsx is bound
to the resulting term and the process continues asP (with
the substitution in place). Otherwise the process reduces to
Q. The evaluation ofE is governed by a set of definitions
which give semantics to the destructor. Each definition has
the formd(M̃) .= N where the terms̃M andN have no free
names andfv(N) ⊆ fv(M̃). Thend(M̃) is defined only if
there is a definitiond(M̃′) .= N and a substitutionσ such
that M̃ = M̃′σ, in which cased(M̃) evaluates to the term
Nσ = N∗, notedd(M̃)→ N∗. Conversely, we noted(M̃)6→
whenever there is nõM′σ = M̃ with a defining equation. We
say that a constructorf is one-wayif no destructor applica-
tion ever returns its argument(s).

We always omit trailing nil processes and similarly write
let x = E in P instead oflet x = E in P else 0. We also use
multiple let-bindings instead of writing the corresponding
nested definitions. Finally, we define:

recX.P , (new a) (a〈〉 | !a().P{a〈〉/X}) a 6∈ fn(P)

4

Our applied pi calculus includes destructors to project the
elements of tuples (notedπi , as well as two constructors for
lists, :: (cons) and/0 (nil), together with the the standard
destructorshd and tl. In addition, we rely upon the con-
structorshash, ek, dk, sk, pub, priv, sign, andcipher, and
the destructorsequals, decipher, verify, defined by the fol-
lowing equations:

equals(x,x) .= x
decipher(cipher(x,ek(y)),dk(y)) .= x
decipher(cipher(x,sk(y)),sk(y)) .= x

verify(sign(x,priv(y)),pub(y)) .= x

The one-way unary constructorhashgenerate a hash from
the seedM. The two unary one-way constructorsekanddk
generate encryption and decryption keysek(M) anddk(M)
from a seedM. We often abbreviateek(M) to M+ and
dk(M) to M−. A unary one-way constructorskgenerates a
shared keysk(M) from the seedM. The one-way construc-
tor pubgenerate a public keypub(M) from the seedM while
priv generates a private keypriv(M) from M. We often ab-
breviatepub(M) with MID . Signatures are built using the
binary constructorsign and checked by using the destruc-
tor verify. Encrypted packets are formed around the binary
constructorcipher, and taken apart by using the destructor
decipher. We often use the conventional spi-calculus nota-
tion {M̃}N for the encrypted packetcipher(M̃,N); we often
overload the notation and write{M̃}priv(N) to indicate the
signed packetsign(M̃,priv(N)). We define conditionals in
terms of lets andequals(following [6])

if M = N then P else Q , let x = equals(M,N) in P

else Q (x 6∈ fv(P,Q))

Finally, we introduce an explicit form of decryption to bind
multiple variables as in the original spi-calculus:

decrypt M as {ỹ}N in P else Q ,
let x = decipher(M,N) in (x 6∈ fv(P,Q))

let y1 = π1(x), . . . ,yn = πn(x) in P else Q

Operational semantics. The operational semantics is de-
fined in terms of labelled transitions. Following an increas-
ingly common practice [6, 4], it does not rely on active sub-
stitutions as in the original formulation. The labelled tran-
sitions, in Table 2 are standard.
Most of the transitions are standard. For simplicity, we
require that all synchronizations occur on channel names,
rather then arbitrary terms. The treatment oflet is taken
from [6]. The transitions are only defined over closed pro-
cesses (with no free variables). Given and such processP,

we define:P↓a , P
(ñ)a〈M̃〉
−−−−→ , P⇓a , P =⇒↓a.

Behavioural equivalence. As in Section 2, we rely on a
notion of behavioral equivalence based on weak bisimula-
tion, and relative to contexts with a certain knowledge about
names and terms.

A term environmentρ is a finite substitution from vari-
ables to values. We writefn(ρ) to meanfn(Range(ρ)).
Substitutions may only be extended with new bindings for
fresh variables:ρ,M/x indicates the extension ofρ with
x 6∈ dom(ρ). Given a term environmentρ, we letA (ρ) be
the analysis ofρ, that is, the environment obtained by ex-
tendingρ with new bindings for the terms resulting from
the application of destructors to the range ofρ. Formally:

Definition 4. The analysisA (ρ) of ρ is the smallest sub-
stitutionσ extendingρ that is closed by the following rule:

d(Ñ) .= N Ñσ⊆ Range(σ) (z 6∈ dom(σ))
Nσ/z∈ σ

Abusing the notation we often writeN∈A (ρ) to meanN∈
Range(A (ρ)). Given processP we say thatρ definesP,
writtenρ ` P, if fv(P)⊆ dom(ρ) andfn(P)∩ fn(ρ) = /0. We
use the same convention and notation for terms.

Definition 5 (Term-indexed relation). A term-indexed re-
lation R is a family of binary relations between closed pro-
cesses indexed by term environments. We writeρ |= PRQ
(or equivalentlyP Rρ Q) to mean thatP andQ are related
byR at ρ and that fn(P,Q)⊆ fn(ρ).

We have a notion of contextuality corresponding to that
given in Def. 2. We noteρ \ n the term environment re-
sulting from erasing all bindingsM/x such thatn∈ fn(M).

Definition 6 (Contextuality). A term-indexed relationR
is contextual wheneverρ |= PRQ implies (i) if ρ`R then
ρ|=P|RρRQ|Rρ, (ii) ρ,n/x |= PRQ with n 6∈ fn(ρ), and
(iii) ρ\n |= (new n)PR(new n)Q.

The barb predicate is defined relative to a term-
environment, as expected:ρ |= P↓a , a ∈ A (ρ)∧ P↓a,
andρ |= P⇓a , a∈A (ρ)∧ P⇓a.

Definition 7 (Behavioural equivalence). . Behavioural
equivalence, noted∼=Aπ, is the largest symmetric and con-
textual term-indexed relationR such thatρ |= PRQ implies

(i) if ρ |= P↓n thenρ |= Q⇓n, and (ii) if P
τ−→ P′ then∃Q′.

Q =⇒Q′ andρ |= P′RQ′.

4 The implementation

Our assumptions about the low-level communication model
are the same as those of [3]. In particular, we presuppose a
Dolev-Yao network model, in which an intruder can inter-
pose a computer in all communication paths and thus alter

5

Table 2Labelled transitions for the applied pi

(OUT)

a〈M̃〉
a〈M̃〉
−−−→ 0

(IN)

a(x̃).P
a(M̃)
−−−→ P{M̃/x̃}

(OPEN)

P
(b̃)a〈M̃〉
−−−−−→ P′ c 6= a, c∈ fn(M̃)

(new c)P
(b̃,c) a〈M̃〉
−−−−−−→ P′

(CLOSE)

P
(b̃)a〈M̃〉
−−−−−→ P′ Q

a(M̃)
−−−→ Q′ b̃ 6∈ fn(Q)

P|Q τ−−→ (new b̃)(P′ |Q′)

(LET)

d(M̃)→ N P{N/x} α−−→ P′

let x = d(M̃) in P else Q
α−→ P′

(LET-ELSE)

d(M̃) 6→ Q
α−−→ Q′

let x = d(M̃) in P else Q
α−→Q′

or copy parts of messages, replay messages or forge new
ones. We also assume that each principal has a secure envi-
ronment in which to compute and store private data. On the
other hand, we assume that the intruder cannot gain con-
trol of the whole network, and thus we do not guarantee
that it actually will intercept every message. Consequently,
message delivery may always be achieved with an adequate
degree of redundancy. All processes can send and receive
messages through a network interface consisting of a chan-
nelnet. Typically all the exchanges over this channel net are
encrypted. As [3] our results about the implementation rely
on the presence of noise to prevent traffic analysis. Given
the simple network interface, injecting noise into the net-
work is simply accomplished by the process

W , ! (new n)! net〈{n}n〉

which generates infinitely many copies of infinitely many
secret packets.

4.1 Data structures for names

The one-way constructorsrd(n),wr(n) (read and write
seeds associated ton) are used to form the encryption keys
employed in the representation of names. Given a name
n, its representation as a fully-fledged channel includes the
name identity and two encryption keys corresponding to the
read and write capabilities:(pub(n),ek(wr(n)),ek(rd(n))).
The effect of casting a name at a higher type (i.e. as a
read/write only channel, or top) is realized by means of a
mechanism that masks away some, or all, of the encryption
keys corresponding to the high-level type capabilities. We
discuss how this is accomplished below.

Names come always equipped with self-signed certifi-
cates of the form

Cert(n), {pub(n),hash(ek(wr(n))),hash(ek(rd(n)))}priv(n)

The certificates help determine the “type” of the names
they are attached to. Suppose we receive a tuple formed

as follows: (M0,M1,M2,Cert(n)). We first ensure that
the certificate corresponds to the correct identity by us-
ing the public key to verify the certificate and then match
the first certified argument and the public key. Then one
may decide whether or notM1 andM2 are valid keys for
the identityM0 by calculatinghash(M1) andhash(M2) and
by checking whether ifequals(hash(M1),hash(ek(wr(n))))
andequals(hash(M2),hash(ek(rd(n)))) reduce: in the for-
mer case we certify a write capability, in the latter a read
capability.

We henceforth letn note the representation ofn together
with the associated certificate:

n = (pub(n),ek(wr(n)),ek(rd(n)),Cert(n))

and define the following naming convention for the compo-
nents:

nID = π1(n), n+
w = π2(n), n+

r = π3(n), nCERT = π4(n)

A corresponding naming scheme applies to variables,
namely: given a variablex, we writex for a tuple of vari-
ables1 (xID ,x+

w ,x+
r ,xCERT), so that

xID = π1(x), x+
w = π2(x), x+

r = π3(x), xCERT = π4(x)

Based on these conventions, we introduce useful notation to
express various operations to manipulate the representation
of names. We letlet x= Typeof(u) in P note the process that
verifies thatu represents a name certified byuCERT, deter-
mines the true type ofu, and bind that type tox; in such case
we informally say thatu has such type. The types from the
high-level calculus are represented in the implementation
in the simplest possible way, namely: by means of nullary
constructors:rw, r,w for the corresponding channel types,
and> is for the type>. We then letlet x = Cast(u,T) in P
be a process that casts the type ofu to T and binds the re-
sulting term and the certificate tox in P. Finally, the process

1Notice the difference: in a term the subscript indicates the application
of a constructor, in a variable it does not and it’s simply used as an index.

6

let x= Meet((u,v)) in Pcomputes the meet ofuandvwhen-
everuCERT = vCERT: in that case, it constructs a new tuple
representing the result of merging the capabilities inu and
v binding it tox.

All these operations can be encoded with little effort by
nested applications of projection and equality destructors:
we omit all details. We remark that casts and meets always
applied to certified name representations. In fact, our proto-
cols satisfy the following invariants: (i) whenever we evalu-
atelet x = Cast(u,T) in P, uCERT is indeed a certificate that
certifies the remaining components ofu, and the type ofu
is S:> T (ii) whenever we evaluatelet x = Meet(u,v) in P,
uCERT andvCERT are the same certificate which certifies the
remaining components ofu andv at their respective types.

4.2 Message Filtering

As in [3], our implementation relies on the ability of pro-
cesses to filter replays of messages, based on nonces. We
write if M 6∈ Setn then P, for a process that addsM to the
set of messages on the channeln, and, in caseM does not
belong to the set, continues asP . We omit the rather obvi-
ous details of how the testing processif M 6∈N then P else Q
can be implemented.

if M 6∈Setn then P, n(y).(if M 6∈ y then n〈M :: y〉 |P else n〈y〉

The output of a messageM on channelc is realized by a
simple protocol that emits (the translation of)M on thenet
encrypted with the write encryption key associated withc.
To ensure delivery, the emission is replicated, and packaged
with a fresh nonce to protect against replay attacks. The
nonce also acts as a confounder for cryptanalysis attacks.

emit({m}k) , (new n)! net〈{m,n}k〉

The input of a message relies on two filtering protocols. The
first reads from thenetand proceeds with the continuation if
the message is successfully decrypted; otherwise it re-emits
the message and retries:

filter ỹ with N in P ,
recX.net(x).decrypt x as {ỹ}N in P else (net〈x〉 |X)

The second protocol filters messages based on their types.
We write if WF(x̃, t) then P else Q for the process that tests
whetherx̃ is certified and has types, for somes<: t.

filter ỹ from c@t in P , recX.c(x̃).
if WF(x̃, t) then (let ỹ = Cast((x̃, t)) in P) else (c〈x̃〉 |X)

4.3 First Translation

As the first step we give the representation of names, which
arises as expected:

[[u@rw]] , (uID ,u+
w ,u+

r ,uCERT)
[[u@r]] , (uID ,hash(u+

w),u+
r ,uCERT)

[[u@w]] , (uID ,u+
w ,hash(u+

r),uCERT)
[[u@>]] = (uID ,hash(u+

w),hash(u+
r),uCERT)

Next, we detail the protocols for input/output.

Write protocol. On the client side, writing on channel is ac-
complished by emitting a packet encrypted under the chan-
nel’s write encryption key. The message is replicated to
ensure that it is eventually delivered, and packaged with a
nonce to protect against replay attacks. The server, in turn,
uses the write decryption key to receive the message and
then stores it in a private queue. The server uses the nonce
to filter multiple copies of the message and stores them into
a private queuen◦. It also filters based on the format of
the messages received, requiring that they match the format
expected of the encoding of names.

Read Protocol. On the client side, the reader process uses
the channel’s read encryption key to send a read request to
the channel server: the request takes the form of an encryp-
tion key that will be used to exchange the message with the
server. The client then waits for a message from the server
encrypted under the session key: upon receiving the packet,
it proceeds with its continuation. The server, in turn, uses
the channel’s read decryption key to receive a request from
the client. Each request is packaged with the channel’s read
encryption key and comes as a triple that includes an en-
cryption key, the representation of a type together with a
nonce: the server uses the type to select one of the message
from its private queue and then packages the messages with
the key. To protect against replays, the server keeps track of
the nonces received on a private channeln∗ (hardly realistic,
of course, indeed, the solution from [3], based on challenge
response mechanisms can be employed here). The nonce
can be spared on the actual message sent by the server as
the key expires at the completion of the protocol (the server
may easily filter out replays of the session key).

The definitions, in Table 3, formalize the intuitions given
above, and are applied implicitly only on well-typed pro-
cesses. We use the notationn−r andn−w to refer todk(rd(n))
anddk(wr(n)) respectively. The encoding of a restriction
generates a corresponding name and its associated channel.
As for matching, a name-equality test in the source calculus
is implemented as a corresponding test on the public keys
associated with the pi names. In addition, in case the test
is successful, the continuation process[[P]] is given access
to the new set of capabilities that corresponds to the meet
of the two types associated with the pi names in the typing

7

derivation of the pi process. Notice that the meet process
cannot be stuck, since (i) representationsu,v obtained from
the translation are well-formed and (ii) representationsu,v
obtained from the channels have been erased from poten-
tial malformed terms, i.e. there are typesT,T ′ such that
u = [[u@T]] ,v = [[v@T ′]] .

4.4 Soundness

The synchronization two protocols ensure the following
properties: (i) each message output by a writer will reach
at most one reader, and dually, (ii) a legitimate reader client
will complete the protocol provided that a type-compatible
message on the same channel has been output by a writer.
Thus, if we allocate channels for the free names of the high-
level processes, we can prove that any pi synchronization on
a name is simulated by a corresponding reduction in the im-
plementation, and conversely that the synchronizations on
the channels queue of the implementation reflect theτ re-
ductions of the source calculus.

Given a type environmentI, we define the term environment
corresponding toI, noted{| I |}:

{| /0 |}= {net/xo}, {| I,a : A|}= {| I |}, [[a : A]]/x

wherex 6∈ dom({| I |}). Then we define the computing en-
vironment which includes the interface to the network, the
noise-generating process and channel support for the free
names shared between the processes and the environment.

EI [−] = −| W | ∏
n∈dom(I)

Chann

We have finally all we need to establish the result of opera-
tional correspondence.

Theorem 1 (Operational Correspondence).

• If P
τ−→ P′ thenEI [[[P]]] ==⇒ ≈A

{| I |} EI [[[P′]]].

• Conversely, letH ≈A
{| I |} EI [[[P]]]; if H

τ−→ K then there

existsP′ s.t. P ==⇒ P′ andK ≈A
{| I |} EI [[[P′]]].

The preservation direction of this result is standard. On the
other hand, ‘the ‘reflection” direction is subtle, as the trans-
lation is not “prompt” [12]: in fact, it takes several steps for
EI [[[P]]] to be ready for the commit synchronization step on
the channel queue that corresponds to the high-level syn-
chronization on the channel. As it turns out, however, these
steps are not observable and can be factored out in the proof
by resorting to a suitable notion ofadministrativeequiva-
lence (noted≈A

ρ in the statement of Theorem 1) included
in ∼=Aπ

ρ (see the Appendix for details). Because of this in-
clusion, the soundness of the translation is a a direct conse-
quence of Theorem 1.

Theorem 2. If {| I |} |= EI [[[P]]]∼=Aπ EI [[[Q]]], thenI |= P∼=π Q.

The converse direction of Theorem 22 does not hold. In
fact, as we noted, the communication protocols presuppose
a certain structure associated with names. Indeed, for the
names that are statically shared with the context, this struc-
ture is easily enforced by allocating the corresponding chan-
nels as part of the encoding definition. However, the context
may dynamically generate new names that do not satisfy the
expected invariants. Notice, for instance, that the client of
a reader protocol presupposes a legitimate channel on the
other end of the protocol and is not protected against mal-
formed messages received by illegitimate channels: given
that, it is easy to find a counter-example to full abstraction.
For instance, in the source calculus we have:

a : w |= a(y@rw).y(x@rw).y〈x@rw〉 ∼=π a(y@rw)

This is an instance of the well-known asynchronous pi cal-
culus lawa(x).a〈x〉 ∼= 0, and holds in our pi calculus for
similar reasons. On the other hand, one easily sees that

a+
w/z 6|= EI [[[a(y@rw).y(x@rw).y〈x@rw〉]]]∼=Aπ EI [[[a(y@rw)]]]

In fact, a context may create the legitimate representation
of a full-fledged nameb and exchange it overa; the sub-
sequent requestemit({sk(k), rw}b+

r
) made by the left pro-

cess can now be decrypted by the context, which pos-
sesses the decryption keyb−r , and thus the left reduct
[[b(x@rw).b〈x@rw〉]] can be distinguished from the null
process.

4.5 A Fully Abstract Translation

To recover full abstraction, we must shield our translated
processes from such undesired interactions. That may be
achieved by setting up the synchronization protocols so
as to ensure that all the exchanges occur over system-
generated, trusted channels whose decryption keys remain
secret.

The new translation introduces a separation between
client names, used syntactically by context processes and
by translated processes to communicate, and corresponding
server namesgenerated within the system and associated
with system generated channels to be employed in the ac-
tual protocols for communication.

A proxy server maintains an association map between client
and server names so as to preserve the expected interactions
among clients. The map is implemented as a set of entries of
the form(pub(n),m), whose intended invariant is thatm is
the server counterpart of the client namen. We callpub(n)
the index of the entry, andm the target The proxy map is set
up to ensure that each index has exactly one target. We rep-
resent the public keys used by the proxy service by letting

8

Table 3First Translation

Channels
WSn , ! filter (x,z) with n−w in if z 6∈ Setn∗ then n◦〈x〉
RSn , ! filter (y, t,z) with n−r in if z 6∈ Setn∗ then filter x from n◦@t in ! net〈{x}y〉

Chann , (new n∗,n◦) n∗〈 /0〉 |RSn |WSn

Clients – The clauses for composition and replication are defined homomorphically:[[P|Q]] = [[P]] | [[Q]] , [[! P]] = ! [[P]] .

[[u〈v@T〉]] , emit({[[v@T]]}u+
w
)

[[u(x@T).P]] , (new k)emit({sk(k),T}u+
r
) |filter x with sk(k) in [[P]]

[[(new n)P]] , (new n)(Chann | [[P]])
[[[u = v]P;Q]] , if uID = vID then (let t = Meet(u,v) in [[P{t/u, t/v}]]) else [[Q]] t 6∈ fn(P)

k+
P , ek(k) andk−p , dk(k), with k a seed not known to the

environment.

The read/write protocols follow the same rationale as in the
previous translation, with the difference that now the clients
must first obtain the access to the system channel by con-
tacting the proxy server. The interaction between clients
and proxy is as follows: the client presents a name to the
proxy and the proxy replies with the corresponding server
name cast at the (true) type of the name sent by the client.
In case the name received is new, the proxy returns a fresh
server name for which it also allocates a system channel.
On the client side, the protocol is implemented as shown
below:

link (u,y) in P ,
(new h)emit({sk(h),u,}k+

p
) |filter y with sk(h) in P

For the proxy side, the definition is found in Table 4. The
only subtlety is that upon receiving a name that does not oc-
cur in the association map, the proxy allocates two indexes
for the same target: one index is the name received from
the client, the other is the public key of the target itself.
This second association is needed to make linking idempo-
tent, so that linking a server name always returns the same
name. One may wonder how a client could possibly end
up requesting a link for a server name as (i) server names
originate from the proxy, and (ii) are never passed on any
exchange by the clients. Notice however, that this invariant
is only true of the clients that arise from the translation, not
for arbitrary applied pi processes of the context.

Having given the intuitions, the definitions in Table 4 should
be easily understood. Notice that the clause for restriction
is defined homomorphically in this translation, as the cre-
ation of the channel is delegated entirely to the proxy server.
In the translation of the matching construct, we could test
matching on linked names (which would make the transla-
tion more uniform), rather than on client names. While this

choice has no consequences in the centralized translation, it
does create a problem in the distributed implementation (see
Section 4.6: in that case, matching should test names linked
on the same proxy and this creates a technical problem as
names are known at different proxies).
We write let ỹ =?(xID ,z) in P for the process that extracts
the target̃y associated toxID in z and continues asP.

Full Abstraction Having set up the underlying infrastruc-
ture, we now have the expected protection against hostile
contexts. We may therefore strengthen the result of Theo-
rem 22 as desired, provided that we plug our processes in
the appropriate computing environment. We first define

CE[−] = −|W |Proxy

and let the low-level term environments corresponding to
the high-level type environment be extended with a new
binding expressing the knowledge of the public proxy en-
cryption keyk+

P needed to interact with the proxy. Then we
have:

Theorem 3. I |= P∼=πQ⇐⇒ {| I |},k+
P /y|=CE[〈〈P〉〉]∼=AπCE[〈〈Q〉〉].

4.6 A Distributed Implementation

While the use of the proxy server to protect against misbe-
haved channels is effective in achieving full abstraction, it
is clear that a centralized implementation as the one we just
described in hardly realistic. In this section, we discuss a
new, distributed implementation that distributes the proxy
services among different servers. The new solution is based
is based on the idea of partitioning the network in domains
each of which administrated by a proxy server.

To model this partitioning of the network, we extend
our high level calculus with the syntactic category of nets,
which are simply processes labelled with a domain label.

9

Table 4Fully Abstract Translation

Proxy server

Pt , ! filter (k,x,y) with k−p in if y 6∈ Sett∗ then let s= Typeof(x) in
t(z).let ỹ =?(xID ,z) in t〈z〉 | let z̃= Cast(ỹ,s) in !net〈{z̃}k〉

else (new n)Chann | t〈z :: (xID ;n) :: (nID ;n)〉 | let z̃= Cast(n,s) in !net〈{z̃}k〉
Proxy , (new t, t∗) Pt | t〈 /0〉 | t∗〈 /0〉

Channels– The definition ofChann is unchanged from Table 3

Clients – The clauses for composition and replication are defined homomorphically:〈〈P|Q〉〉 = 〈〈P〉〉 | 〈〈Q〉〉 , 〈〈 ! P〉〉 = ! 〈〈P〉〉 .
〈〈u〈v@T〉〉〉 = link (u,x) in emit({[[v@T]]}x+

w
)

〈〈u(x@T).P〉〉 = link (u,y) in (new k)emit({sk(k),T}y+
r
) |filter x with sk(k) in 〈〈P〉〉

〈〈 [u = v]P;Q〉〉 = if uID = vID then (let t = Meet((u,v) in 〈〈P{t/u, t/v}〉〉) else 〈〈Q〉〉 t 6∈ fn(P)

〈〈(new n)P〉〉 = (new n)〈〈P〉〉

Nets are composed according to the following syntax:

S,T ::= δ{P} | S|T | (new n)S | stop

Domain names, ranged over byδ are drawn from a denu-
merable set of labels, disjoint from the set of names and the
set of variables. We letfd(S) be the set of domain labels in
S. We emphasize that labels are not names, and are never
exchanged over channels. The typing and dynamics of nets
arise in the simples possible way from the corresponding
notions defined for processes:

(TYPING)
Γ ` P

Γ ` δ{P}

(DYNAMICS)

P
α−→Q

δ{P} α−→ δ{Q}
As a result, domains have no impact on the dynamics and/or
the typing of the high-level calculus: indeed, they serve
a different purpose, namely to help devise the association
of processes to proxies in the implementation. Notice, in
particular, that the same (channel) name may be known at
different domains: in the implementation, this will corre-
spond to the name being represented by different channels,
located at the different domains at which the name is known.
Also, notice that the same domain may have multiple oc-
currences, as inδ{P1}|δ{P2}: based on the notion of dy-
namics introduced above, this net may be rewritten equiva-
lently asδ{P1 |P2}. Similarly, (new n)δ{P} is the same as
δ{(new n)P}.

Observational Equivalence The definition of observa-
tional equivalence for nets is inherited from that of pro-
cesses. There is an important difference, however, in the no-
tion of contextuality, in that a context may not include new
domains, but only processes belonging to existing domains.

This is ensured by the side conditionfd(U)⊆ fd(S,T) defi-
nition below, and constitutes the key assumption for our dis-
tributed implementation, namely, we do not trust domains
and proxy servers generated by the environment. While this
is a somewhat strong assumption, on the other hand it ap-
pears to be realistic: notice, in fact, that the procedure of
adding a domain to a network in real world scenarios re-
quires physical authentication, rather than network proto-
cols.

Definition 8 (Contextuality for Nets). A type-indexed re-
lation R over nets is contextual whenever

• I ² SRT impliesI,a : A² SRT andI ² S|URT |U for
all U such thatI `U and fd(U)⊆ fd(S,T);

• I,a : A ² SRT impliesI ² (new a)SR(new a)T

The definition of behavioural equivalence for nets, noted
again∼=π, arises now as expected, as the largest type-
indexed equivalence relation which is contextual (in the
sense above), barb preserving and reduction closed.

The new implementation Each domain in the high-level
specification corresponds to a domain manager, which pro-
vides the proxy service to clients and manages the channels
it has created; processes within a domain, in turn, are in-
structed to send their requests to the proxy associated with
their enclosing domain. Since different proxies may have
different entries for the same client name (remember that a
name is possibly known in more domains), in the distributed
implementation more channels servers may correspond to
a pi calculus name. The domain managers must therefore
provide a further service, to manage the queues located at
the distributed channels associated to the same client name.
This, in turn, is based on further, domain, service to gain
access to fellows proxies.

10

Table 5Distributed Translation

Proxy Service

Pδ
q,t , ! filter (k,x,y) with δ−p in if y 6∈ Sett∗ then let s= Typeof(x) in

t(z).let ỹ =?(xID ,y) in t〈z〉 | let z̃= Cast(ỹ,s) in !net〈{z̃}k〉
else (new n)Chann[q(X).(q〈X〉 |Πkδ∈X! filter w from n◦@> in emit({xID ,w}kδ))]

| t〈z :: (xID ;n) :: (nID ;n)〉 | let z̃= Cast(n,s) in !net〈{z̃}k〉
Queue Service

Qδ
q,t , ! filter (x,s,y) with δ−q in if y 6∈ Setq∗ then t(z).(t〈z〉 |

let ỹ =?(x,z) in emit({s}y+
w
) else

(new n)n〈〉 |q(X).(q〈X〉 |Πkδ∈Xn().emit({x,s}kδ)))

Domain Service

Dδ
q,l , emit({δ+

q }sk(kD)) | ! filter x,c with sk(kD) in if c 6∈ Setl∗ then q(y).q〈y.x〉
Proxy Manager

Mδ , (new t, t∗,q,q∗, l∗) Pδ
q,t |Qδ

q,t |Dδ
q,l | t〈 /0〉 | t∗〈 /0〉 |q〈 /0〉 |q∗〈 /0〉 | l∗〈 /0〉

Translation of nets: – the clauses for parallel composition and restriction are homomorphic

((δ{P})) = Mδ | 〈〈P〉〉 δ

Channels– The definition ofChann is unchanged from Table 3

Clients – The clauses for matching, new, composition, replication are unchanged from Tab. 4

〈〈u〈v@T〉〉〉δ = linkδ (u,x) in emit({[[v@T]]}x+
w
)

〈〈u(x@T).P〉〉δ = linkδ (u,y) in (new k)emit({k,T}y+
r
) |filter x with k in 〈〈P〉〉 δ

We represent public keys used by the proxy service
by using the one-way functionp(x) and by lettingδ+

p ,
ek(p(δ)) andδ−p , dk(p(n)); these keys corresponds to the
keysk+

P ,k−P utilized in the centralized translation. We use
an one-way functionq(x) to represent the public keys used
by the queue service:δ+

q , ek(q(δ)) and δ−q , dk(q(δ)).
We assume that domain managers are connected via secure
links, represented by a shared keysk(kD) generated from
the private namekD. Finally, we introduce the following
two bits of new notation. Chan[P] indicates the process
(new n∗,n◦) n∗〈 /0〉 |RSn |WSn |P. The definition of links is
extended as expected, with a parameter corresponding to
the assigned proxy:

linkδ (u,y) in P , (new k)emit({sk(k),u,}δ+
p
)

|filter y with sk(k) in P

The new implementation is given in Table 5. Each proxy
has three threadsPδ

q,t , Qδ
q,t , Dδ

q,l responsible for the proxy,
queue and domain services, respectively. The three threads
share a channelq collecting the public keys giving access to
fellow proxies. The domain serviceDδ

q,l is responsible for

updating this queue and for publishing the public queue key
of the proxy associate to the domainδ.

The proxy and the queue service also share the table
of binding client and server names stored on the private
channelt. The new definition of the proxy service ex-
tends the one given in Table 4, with the addition of a
replicated read request into the new channel created when
the client name is not present in the proxy’s table. The
read request is composed by several requests which re-
peatedly extract messages from the channel queue chan-
nel; such requests are directed to all the domains known
at the time the channel was created. The extracted mes-
sage and the client name index associated to the chan-
nel are then safely sent to the given queue managers en-
crypted under their public queue key. We call the repli-
cated read request! filter w from n◦@> in emit({M,w}δ+

q
)

a forwarderto the domainδ. The queue serviceQδ
q,t waits

for the packets sent by the forwarders and by other domain
managers. The server retrieves the name index and checks
if the entry is associated to a channel. If it is, the message is
sent to the queue of the associated channel. Otherwise both

11

the name index and the message are non-deterministically
sent to a manager of some known domain.

The translation of nets is compositional, and does not rely
on any pre-existing infrastructure for communications, as
now the proxies are dynamically generated within the trans-
lation; as in previous implementations we assume the pres-
ence of noise on the communication interface. We extend
the low-level term environment corresponding to the high-
level type environment with the public encryption keys of
the proxy managers corresponding to the high-level free do-
mains:{|δ1, . . . ,δn |} , {δ1

+
p /x, . . . ,δn

+
p /z}. We finally ob-

tain:

Theorem 4. I|=S∼=πT if and only if {| I |},{| fd(S,T) |} |=
W |(new kD)((S)) ∼=Aπ W |(new kD)((T)) .

5 Conclusion

We have developed a secure implementation of a typed pi
calculus, in which the access to communication channels is
regulated by capability types. The implementation draws on
a representation of the typed capabilities in the high-level
calculus as term capabilities protected by encryption keys
only known to the intended receivers. The implementation
relies on a proxy service to protect against malformed mes-
sages from the environment. This is achieved by generating
certified names (and associated channels) to represent the
context-generated names within the system. We have also
developed a distributed implementation in which the certi-
fication service is implemented by a set of distributed prox-
ies. Being fully compositional, the distributed implementa-
tion appears to be adequate for open-ended networks. The
only limitation in this respect is represented by our current
assumption that all proxies that participate in the synchro-
nization protocols be fully trusted. While a certain degree of
trust appears necessary to achieve a secure implementation,
it would be desirable to have some form of guarantees also
in the presence of malicious proxies. Achieving that seems
feasible with our implementation, by strengthening the pro-
tocols that govern the interactions among proxies. We leave
this to our plans of future work.

Our translation has several analogies with previous at-
tempts in the literature [3, 9]. In [3], the authors provide
a fully abstract implementation of the join calculus into a
dialect of the calculus equipped with cryptographic primi-
tives. The located nature of channels in the join calculus
makes it possible to rely on a very compact representation
in which a channel is associateda with a low level key
namea+, and to protect communications using an asym-
metric cryptosystem. In [9] a fully abstract implementation
of the pi calculus without matching into the join calculus is
given; similarly to ours, their translation relies both on the
presence of proxy pairs of internal and external names, and

on relays among the pairs components. By composing the
encodings [9],[3] one can securely implement the untyped
pi calculus without matching in a join calculus equipped
with cryptographic primitives. However, it is not clear how
to implement matching following this approach. In fact, as
noted in [15], the ability of test syntactic equality on names
invalidates the semantic equalities on names provided by
the equators [11] used in [9] to merge internal and external
names.

Acknowledgments.The name representation based on
self-signed certificates was suggested to us by Cedric Four-
net. We would like to thank him for his insightful comments
and constructive criticism on a previous draft of the paper.

References

[1] M. Abadi. Protection in programming-language transla-
tions. InProc. of ICALP ’98, pages 868–883, 1998.

[2] M. Abadi and C. Fournet. Mobile values, new names, and
secure communication. InProc. of the 28th ACM Sympo-
sium on Principles of Programming Languages (POPL ’01),
pages 104–115. ACM Press, 2001.

[3] M. Abadi, C. Fournet, and G. Gonthier. Secure implementa-
tion of channel abstractions.Information and Computation,
174(1):37–83, April 2002.

[4] M. Baldamus, J. Parrow, and B. Victor. A fully abstract en-
coding of theπ-calculus with data terms. InProc. of ICALP
’05, pages 1202–1213, 2005.

[5] B. Blanchet. From Secrecy to Authenticity in Security Pro-
tocols. In M. Hermenegildo and G. Puebla, editors,9th
International Static Analysis Symposium (SAS’02), volume
2477 of Lecture Notes on Computer Science, pages 342–
359, Madrid, Spain, Sept. 2002. Springer Verlag.

[6] B. Blanchet. Automatic Proof of Strong Secrecy for Security
Protocols. InIEEE Symposium on Security and Privacy,
pages 86–100, Oakland, California, May 2004.

[7] M. Boreale. On the expressiveness of internal mobility in
name-passing calculi.Theor. Comput. Sci., 195(2):205–226,
1998.

[8] M. Bugliesi and M. Giunti. Typed processes in untyped con-
texts. In R. Nicola and D. Sangiorgi, editors,Proc. of TGC
2005, Symposium on Trustworthy Global Computing, vol-
ume 3705 ofLecture Notes on Computer Science, pages 19–
32. Springer-Verlag, 2005.

[9] C. Fournet.The Join-Calculus: a Calculus for Distributed
Mobile Programming. PhD thesis, Ecole Polytechnique,
Palaiseau., November 1998. Also published by INRIA, TU-
0556.

[10] M. Hennessy and J. Rathke. Typed behavioural equivalences
for processes in the presence of subtyping.Mathematical
Structures in Computer Science, 14(5):651–684, 2003.

[11] K. Honda and N. Yoshida. On reduction-based process se-
mantics.Theor. Comput. Sci., 151(2):437–486, 1995.

[12] U. Nestmann and B. C. Pierce. Decoding choice encodings.
Inf. Comput., 163(1):1–59, 2000.

12

[13] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile
processes.Mathematical Structures in Computer Science,
6(5), 1996.

[14] B. C. Pierce and D. Sangiorgi. Behavioral equivalence in the
polymorphic pi-calculus.J. ACM, 47(3):531–584, 2000.

[15] D. Sangiorgi and D. Walker.The π-calculus A theory of
mobile processes. Cambridge, 2001.

13

A Proofs

The appendix is structured as follows. We first define administrative reductions and equivalence and we show that adminis-
trative reductions are closed under administrative equivalence and that administrative equivalence is contained in behavioural
equivalence. Next we state a number of lemmas which ensure that the leftover of the communications of the protocol are
invisible to the context (cf [3]). Subsequently we sketch the proofs of the soundness and completeness of the centralized
encoding〈〈 · 〉〉 . We omit the proofs of full abstraction of the distributed encoding which follow the same rationale.

Administrative reductions and equivalence As we introduced in§4, our encodings are not prompt [12], i.e.CE[〈〈P〉〉] does
several steps to be ready to execute the commit synchronization step on the channel queue that corresponds to the high-level
synchronization on the channel. Such reductions have the following properties: each reduction conducing to a commit (i)
does not preclude any other reduction and (ii) is invisible to the context. As we will show later, these reductions preserve
behavioural equivalence.

Based on these intuitions, in the following we introduce the notion of administrative reduction. A reduction is administra-
tive whenever satisfies one of the clauses of the Definition 9 introduced some lines below; we assume that the processes of
interest use a public interface for communications. The first clause is clear. The second clause describes a protocol that uses
a symmetric cryptoscheme and that is formed by a recursive filter meta-process waiting for packets on the public interface
and a replicated public emission of the packet waited by the filter; the reduction involving the filter receiving the packet
is administrative whenever the content of the packet has the correct arity and there not exists another packet with different
content that could be accepted by the filter.

The third clause describes a similar protocol involving a recursive filter and a public output and says that a reduction is
administrative whenever is inferred from the filter receiving a wrong packet (i.e., encrypted with a different key or containing
terms mismatching the expected arity). The fourth clause describes the behaviour of a filter of typeT on a private channel
n◦ which receives a term which represents a typeS that is not a sub-type ofT. The fifth clause describes the behaviour of
a process which receives a set carried on by a private outputn∗〈M〉 and then tests if a termN belong to the set and if yes
continue asQ; the reduction is administrative whenever the existence in the scope ofn∗ of a testing process on the same term
N and continuing asQ′ implies thatQ≡Q′.

The sixth clause says that the deterministic reduction which “unblocks”recX.P is administrative. The last clause describes
a protocol where a table set carried on a private channel is managed in a way similar to that of our Proxy server (see Tab.
4). The managing of the table is done by a meta-processTN(Q) defined aroundQ; hereQ is a process with free variables
that will be closed inTN(Q). The reduction under analysis is the one whereTN(Q) receives a table set from a private output
t〈M〉. Next the continuation ofTN(Q) tests ifM contains an index forNID (and in case binding the associated entry to the
free variables ofQ): if yes the process continue ast〈M〉 |Q otherwise it creates a channel for the fresh namen, outputs ont
the updatedM :: (NID ;n) :: (nID ;n) and executesQ with n binding the free variables ofQ.

In the following, for termsM,N we writeM = N to indicate thatM is syntactically equal toN; we write|M| to refer to the
dimension ofM.

Definition 9 (Administrative reduction). Let net∈ fn(P) and supposeP
τ−→ P′. We say thatP

τ−→ P′ is an administrative

reduction, notedP
A−→ P′, whenP↓a⇔ P′ ↓a and one of the following cases holds:

1. the reduction is inferred from a synchronization among a replicated input onnet and a replicated output onnet;

2. P ≡ C[filter1 ỹ with sk(N) in P| ! net〈{M}sk(N)〉] and P′ ≡ C[filter2;{M}sk(N)
ỹ with sk(N) in P| ! net〈{M}sk(N)〉] and

|M|= |ỹ| and∀C′,M′ : P≡C′[net〈{M′}sk(N)〉]∧|M′|= |ỹ| . M = M′

wherefilter1 x̃ with N in P is the process reached after unblocking the recursion guard offilter x̃ with N in P by means

of a deterministic reduction andfilter2;M x̃ with N in P is the processQ s.t.filter1 x̃ with N in P
c(M)
−−→ Q;

3. P≡C[filter1 ỹ with sk(N) in P|net〈M〉] andP′ ≡C[filter2;M ỹ with sk(N) in P] and¬(M = {M′}sk(N)∧|M′|= |ỹ|);
4. P ≡ C[(new n◦)Q|filter1 ỹ from n◦@T in P|n◦〈M〉] and P′ ≡ C[(new n◦)Q|filter2;M ỹ from n◦@T in P] and M

has typeS 6<: T where filter1 x̃ from c@T in P is the process reached after unblocking the recursion guard of
filter x̃ from c@T in P by means of a deterministic reduction andfilter2;M x̃ from c@T in P is the processQ s.t.

filter1 x̃ from c@T in P
c(M)
−−→ Q;

14

5. P ≡ C[(new n∗)n∗〈N〉 | i∈I if Ni 6∈ Setn∗ then Qi] and P′ ≡ C[(new n∗)(if Nj 6∈ N then n∗〈N ::
Nj〉 |Q j else n∗〈N〉) | i∈I\ j if Ni 6∈ Setn∗ then Qi] and∀i, j ∈ I . (Ni = Nj)⇒ (Qi ≡Q j);

6. P≡ recX.Q andP′ ≡C[(new n)!n(x).Q{n〈〉/X}|Q{n〈〉/X}];
7. P ≡ C[(new t)t〈M〉 | i∈I TNi (Qi)] and P′ ≡ C[(new t)let ỹ =?(NjID ,M) in t〈M〉 |Q j else

((new n)Chann | t〈M.(NjID ;n).(nID ;n)〉 |Q j{n/ỹ}) | i∈I\ jTNi (Qi)]
whereTN(Q) = t(z).let ỹ =?(NID ,z) in t〈z〉 |Q else (new n)Chann | t〈z.(NID ;n).(nID ;n)〉 |Q{n/ỹ} and fv(Q) = ỹ;

whereI = 1, . . . ,n. We let
A=⇒ be the reflexive and transitive closure of

A−→.

We set−→=
τ−−→ \ A−→.

Based on this we have the following notion of equivalence that ignore administrative reductions.

Definition 10 (Administrative equivalence). Administrative equivalence, noted≈A
ρ , is the largest symmetric and contextual

term-indexed relationR such thatρ |= HRK implies:

• if ρ |= H ↓n thenρ |= K ↓n

• H
A−→ H ′ implyK

A=⇒ K′ for someK′ such thatρ |= H ′RK′

• H −→ H ′ implyK
A=⇒−→ A=⇒ K′ for someK′ such thatρ |= H ′RK′ .

A simple, but important property of≈A
ρ is that it is contained in∼=Aπ

ρ . More precisely:

Lemma 5. If ρ |= H ≈A K thenρ |= H ∼=Aπ K.

Proof. Let ρ |= PRQ wheneverρ |= P≈A Q. The contextuality ofR follows directly from the definitions (which is the same
for both relations). To see thatR preserve barbs, supposeρ |= P↓a; by definition of≈A

ρ we haveρ |= Q↓a and in turnρ |= Q⇓a,

as requested. To see reduction closure, letP
τ−−→ P′. In caseP

A−−→ P′ we infer that∃Q′ s.t. Q
A=⇒ Q′ andρ |= P′ ≈A Q′.

We have thus foundQ′ s.t. Q ==⇒ Q′ and ρ |= P′RQ′. In caseP−−→ P′ we infer that∃Q′ s.t. Q
A=⇒−→ A=⇒ Q′ and

ρ |= P′ ≈A Q′. ThusQ
τ==⇒ Q′ andρ |= P′RQ′.

We easily obtain that≈A
ρ is coarser than'Aπ

ρ .

Lemma 6. If ρ |= H 'Aπ K thenρ |= H ≈A K.

The key property of administrative reductions is that they are closed under administrative equivalence, in the following
sense.

Proposition 7. Let ρ be a term environment s.t. fn(H,K)⊆ fn(ρ). If H
A−→ K, thenρ |= H ≈A K.

Proof. (Sketch) We define an asymmetric version of≈A
ρ , the administrative expansion, notedºA

ρ . Administrative expansion

is the largest relation which is strong barb preserving, contextual, and s.t. whenPºA
ρ Q andP

τ−−→ P′ or Q−→Q′ we have

the same clauses of≈A
ρ , while whenQ

A−→ Q′ we have thatP
A=−→ P′ with Q′ ºA

ρ P′. Then we prove that administrative
equivalence up-to administrative expansion, which is defined as the relationR which have the same clauses of≈A

ρ but s.t.
the relation reached by reducts isºA

ρ≈A
ρ¹A

ρ , is contained in≈A
ρ .

We Letρ |= C[H]RC[K] whenever{| I |} \ ñ⊆ ρ andC[−] = (new ñ, c̃)Rρ | −∧ρ ` R andH
A−→ K. We show thatR ∪ I ,

where I is the identity relation, is an administrative equivalence up-to administrative expansion.

The following corollary can be proved easily by induction on the number of transitions
A−→.

Corollary 8. Let ρ be a term environment s.t. fn(H,K)⊆ fn(ρ). If H
A=⇒ K, thenρ |= H ≈A K.

The following lemma can be easily proved by chasing-diagrams arguments.

Lemma 9. 'Aπ
ρ ,≈A

ρ and∼=Aπ
ρ are equivalence relations.

15

Protocol Properties Next we need lemmas similar to [3] to ensure that the leftover of the communications of the
protocol are invisible to the context; we omit the proofs that are very similar to [3]. We use the following nota-
tions. We letChann{N}[Q] indicate the process(new n∗,n◦) n∗〈N〉 |Q|RSn |WSn wheneverQ ≡ P1 | · · · |Pn and for

all Pi there existsMi s.t. WSn

net(Mi)−−−−→ WS|Pi or RSn

net(Mi)−−−−→ RSn |Pi . We write Proxy(M̃; s̃){C}[S] for the process
(new t) Pt |S| t〈 /0.(M1ID ;s1).(s1ID ;s1).(MmID;sm).(smID;sm)〉 | t∗〈C〉 wheneverM̃ = M1, . . . ,Mm, s̃ = s1, . . . ,sm and

S≡ P1 | · · · |Pn and for all Pi there existsMi s.t. Pt

net(Mi)−−−−→ Pt |Pi . We write M 6∈ Chana{N}[P] to mean that ifP ≡
a◦〈M1, . . . , f (M), . . . ,Mn)〉 |P′ then f is a one-way function. We say thatH

τ−→ K is an(n, t)-synchronization if theτ step

H
τ−→ K derives fromH ′ (c̃)n◦〈M̃〉

−−−−−→ K′, H ′′ n◦(M̃)
−−−→ K′′, with H ≡ (new d̃)H ′ |H ′′, K ≡ (new ˜c,d)(K′ |K′′) andM has typet.

Typically we note the synchronization steps
n@t−→. We let strong behavioural equivalence, noted'Aπ

ρ , be the largest symmetric
and contextual term-indexed relationR which satisfies the strong version of the clauses of Definition 7.

The first lemma says that a ciphertext cannot be distinguished from noise without knowledge of the symmetric decryp-
tion key. Notice that a packet{n}n has no associated destructors, since for symmetric decryption we use the destructor
decipher(cipher(x,sk(y)),sk(y)) .= x.

Lemma 10. For all ρ holdsρ |= (new k)! net〈{M}sk(k)〉 'Aπ (new n)! net〈{n}n〉.

The next lemma says that the channels do not accept packets with non-fresh nonces and that the ambient see these packets as
noise.

Lemma 11. Let ρ be a substitution s.t.a,a−w 6∈ A(ρ) and leta 6= c. For all processP,Q s.t. ρ ` Q and c 6∈ fn(Q) and
a,a−w 6∈ Chana{N}[P] we have

ρ |= W |(new c)Qρ |Chana{N.c}[P] | ! net〈{M,c}a+
w
〉 ≈A W |(new c)Qρ |Chana{N.c}[P] .

The next Lemma says that we can remove the nonces from the channel provided they do not appear in the environment.

Lemma 12. For all processesP,Q s.t. ρ `Q andc 6∈ fn(P,Q) hold

ρ |= (new c)Qρ |Chana{N.c}[P]'Aπ (new c)Qρ |Chana{N}[P] .

We use a similar Lemma to remove nonces from the Proxy.

Lemma 13. Letρ be a substitution s.t.k,k−P 6∈ A(ρ) and suppose{c,k}∩ s̃= /0 . For all processS,Q s.t. ρ `Q andc 6∈ fn(Q)
we have

ρ |= (new c)Qρ |W |Proxy(M̃; s̃){N.c}[S] | !net〈{Ñ,c}k+
P
〉 ≈A (new c)Qρ |W |Proxy(M̃; s̃){N.c}[S]

The next lemma says that secret channels are not visible up-to strong barbed congruence.

Lemma 14. For all ρ holds ifs 6∈ fn(S) thenρ |= (new s)Chans|Proxy(B̃,B; s̃,s){C}[S]'Aπ Proxy(B̃; s̃){C}[S] .

Operational Correspondence In this section we establish that the operational correspondence of the centralized encoding
〈〈 · 〉〉 . The operational correspondence of[[·]] (Theorem 1) is easier and can be obtained with minor rearrangements. To ease
the notation, we let{| /0 |}= net/x,k+

P /y, i.e. , for eachI we have thatRange({| I |}) contains the proxy keyk+
P . We say that an

environmentI is compatible with a pi calculus processP if there exists∆ <: I s.t. ∆ ` P.

We first need a Lemma saying that〈〈 · 〉〉 is closed under substitution, in the following sense.

Lemma 15. 〈〈P{v/x}〉〉 ≡ 〈〈P〉〉{[[v@A]]/x}.

Lemma 16 (Preservation of execution steps).Let I be compatible withP. If P
τ−→ P′ thenCE[〈〈P〉〉] A=⇒−→≈A

{| I |} CE[〈〈P′ 〉〉].

Proof. (Sketch). By induction on the derivation ofP
τ−→ P′. We sketch the base case (PI-CLOSE@). We prove that

∃K s.t. CE[〈〈P〉〉] A=⇒ n@t−→ K ≈A
{| I |} CE[〈〈P′ 〉〉] which actually proves the claim as

n@t−→ is not administrative. We prove that

K ≈A
{| I |} CE[〈〈P′ 〉〉] by using the lemmas introduced to remove the left over of the communication

n@t−→. More in detail, we first

16

use Lemma 15 to move inside the encoding the capabilities exchanged with
n@t−→. Next we use Lemma 10 and'Aπ

{| I |}⊆≈A
{| I |}

(Lemma 6 to remove the leftover of the communications protected under a session key. Lemma 11 permit us to remove
communications protected under encryption keys possibly known to the context; here we exploit that the protocol always
insert a fresh nonce in such packets to prevent cryptanalysis attacks. We apply Lemma 12 to remove nonces from the channel
used for matching the pi calculus reduction, i.e. the channel processChann. Finally we use Lemma 14 to remove the channel
and its entry in the table.

The reverse direction of operational correspondence is subtler, as the encoding is notprompt. We therefore need a general-
ization of the standard reflection result, based on the relation≈A. First we introduce useful notation and terminology and

then state few preliminary lemmas. LetH
A=⇒ H ′ −→ K. We call the reduction sequence

A=⇒ canonical, and write is as in
pAq=⇒, if it only includes the administrative steps fromH required to enable the synchronization inH ′ (as stated, this is loose,
but can be made precise, as we know exactly which are those steps).

Lemma 17. If CE[〈〈P〉〉] A=⇒ H −→ K then there existsH ′ such thatCE[〈〈P〉〉] pAq=⇒ H ′ −→ • A=⇒ K.

Proof. (Sketch) We first show by case analysis thatH
n@t−→ K. To see thatH −→ K impliesH

n@t−→ K, consider that: (i)H ’s
outputs on net are under replication, while its inputs on net may be under replication, or recursive filters: in the last case they
are waiting for termsM encrypted under a session keysk(N) and no other termsM′ 6= M are encrypted undersk(N); (ii)
reductions onn◦ or satisfies the expected type or not; (iii) reductions onn∗, t∗ are all administrative since translated processes
never associate the same nonce to different packets; (iv) reductions on the table channelt satisfy the last clause of Def. 9 for
the processQ , let z̃= Cast(n, t) in ! {z̃}k.

Since the names ofH arenet, ñ◦, ñ∗, t, t∗ and “recursion” names̃r used by processesrecX.P (which satisfies condition

Def. 9(6)), we infer thatH −→ K must be inferred fromH
n@t−→ K. Next we show that a(n, t)-reduction must be preceded

by the completion of the write protocol and of the completion of the first part of the read protocol (the asynchronous part).
Finally we prove that administrative reductions which are not subsequent (this is the case whenever the first admin. reduction
unblocks the next admin. red.) can be “rearranged”.

Lemma 18. Let I be compatible withP and supposeCE[〈〈P〉〉] pAq=⇒ H −→ K. Then there existsP′ such thatP
τ−→ P′ and

{| I |} |= K ≈A CE[〈〈P′ 〉〉].
Proof. (Sketch) The lemma follows by exhibiting the canonical administrative post-sequence fromK and then by using
Lemmas 10,11,12,14 to remove the leftover of the protocol session.

Lemma 19 (Reflection of execution steps).Assume{| I |} |= H ≈A CE[〈〈P〉〉] andH
τ−→ K. Then either{| I |} |= H ≈A K or

there existsP′ such thatP
τ−→ P′ and{| I |} |= H ≈A CE[〈〈P′ 〉〉].

Proof. Let H
τ−→ K. If H

A−→ K, we apply Proposition 7 and we obtain{| I |} |= H ≈A K. OtherwiseH −→ K and by

{| I |} |= H ≈A CE[〈〈P〉〉] we infer that there existsZ0 s.t. {| I |} |= CE[〈〈P〉〉] A=⇒−→ Z0
A=⇒ Z and{| I |} |= K ≈A Z. We apply

Lemma 17 and we infer that there isQ s.t.CE[〈〈P〉〉] pAq=⇒−→Q
A=⇒ Z0. We apply Lemma 18 ad we obtain that there isP′ s.t.

P
τ−→ P′ and{| I |} |= Q≈A CE[〈〈P′ 〉〉]. FromQ

A=⇒ Z0
A=⇒ Z and Corollary 8 we deduce{| I |} |= Q≈A Z, and by transitivity

of ≈A (Lemma 9) we obtain{| I |} |= Z≈A CE[〈〈P′ 〉〉]. We use this result and the hypothesis{| I |} |= K ≈A Z and transitivity of
≈A to infer{| I |} |= K ≈A CE[〈〈P′ 〉〉], and we are done.

The following corollary of Lemma 19 will be used to prove the soundness of the translation.

Corollary 20. If CE[〈〈P〉〉] =⇒ H then there existsP′ such thatP =⇒ P′ and{| I |} |= H ≈A CE[〈〈P′ 〉〉].

Given a type environmentI, to prove preservation and reflection of barbs we define testing contexts of the formTn =
link (n,y) in (new k)emit({sk(k),>}y+

r
) |filter x̃ with sk(k) in ω〈〉 whereω 6∈ fn({| I |}). The following barb predicateI |=

P⇓n+
w
, (n+

r ∈ A({| I |}) ∧ {| I |},ω/x |= (Tn |P)⇓ω correspond to pi calculus barbI |= P↓n, in the following sense.

Proposition 21. The following hold.

17

1. I |= P↓a impliesI |= CE[〈〈P〉〉]⇓a+
w

2. I |= CE[〈〈P〉〉]⇓a+
w

impliesI |= P⇓a.

By using the operational correspondence we prove the only if direction of Theorem 3 and establish the soundness of the
translation.

Theorem 22 (Soundness).{| I |}|=CE[〈〈P〉〉]]∼=AπCE[〈〈Q〉〉] impliesI|=P∼=πQ.

Proof Sketch.We consider the relation defined asI ² PRQ whenever{| I |} |= CE[〈〈P〉〉]] ∼=Aπ CE[〈〈Q〉〉], and we prove thatR
is a typed behavioural equivalence. We prove thatR is reduction closed by using Lemma 16 and Corollary 20 (cf. [7]). Let

P
τ−−→ P′; we apply Lemma 16 and findK s.t. CE[〈〈 〈〈P〉〉 〉〉] A=⇒−→ K

A=⇒ K0 and{| I |} |= K ≈A CE[〈〈P′ 〉〉] By Lemma 5 we

have{| I |} |= K ∼=Aπ CE[〈〈P′ 〉〉]. By reduction closure of∼=Aπ
{| I |} we easily deduce that there existsH s.t.CE[〈〈Q〉〉] A=⇒−→H and

{| I |} |= K ∼=Aπ H. We apply Corollary 20 to the last weak transition and we obtain that there existsQ′ s.t. Q ==⇒ Q′ and
{| I |} |= H ≈A CE[〈〈Q′ 〉〉]. By Lemma 5 we have{| I |} |= H ∼=Aπ CE[〈〈Q′ 〉〉]; by the results above and transitivity of∼=Aπ

{| I |} (Lemma

9) we conclude that{| I |} |= CE[〈〈P′ 〉〉]∼=Aπ CE[〈〈Q′ 〉〉], which in turn impliesI |= P′RQ′, as needed.
Barb preservation is obtained directly by using Proposition 21. LetI |= P↓a; thusI(a) <: r and in turna+

r ∈ Range({| I |}).
By the contextuality of∼=Aπ

{| I |}, we find ω 6∈ fn({| I |}) s.t. {| I |},ω/x |= CE[〈〈P〉〉] ∼=Aπ CE[〈〈Q〉〉]. Now we easily findT s.t.

{| I |},ω/x ` T andTa ≡ T({| I |},ω/x). By closure under parallel compositon of∼=Aπ we infer{| I |},ω/x |= CE[〈〈P〉〉] |Ta ∼=Aπ

CE[〈〈Q〉〉] |Ta. By Proposition 21(1) we haveI |= CE[〈〈P〉〉]⇓a+
w

; by barb preservation of∼=Aπ
{| I |} it easily followsI |= CE[〈〈Q〉〉]⇓a+

w
.

We apply Prop. 21(2) and we obtainI |= Q⇓a, as needed.
Finally we show thatR is contextual. Closure undernew follows straightforwardly from the closure undernew of ∼=Aπ

{| I |}
and by〈〈(new n)P〉〉 = (new n)〈〈P〉〉 . Closure under processesRs.t. I ` R follows by noting that〈〈R〉〉 can be built around{| I |}.
To see thatI |= PRQ implies I,a : A |= PRQ, we use the contextuality of∼=Aπ

{| I |} to infer {| I |},a/x |= CE[〈〈P〉〉] ∼=Aπ CE[〈〈Q〉〉].
Then to add entries[[a : A]]/x to the environment, we use a “weakening” lemma stating thatρ `M andρ |= P∼=Aπ Q implies
ρ,M/x |= P∼=Aπ Q. These results let us deduce{| I,a : A|} |= CE[〈〈P〉〉]∼=Aπ CE[〈〈Q〉〉] and in turnI,a : A |= P∼=π Q, as needed.

Completeness We introduce a encoding which extend〈〈 · 〉〉 by allowing encryption keys to be formed around terms. To
motivate, notice that both the cryptosystem and the certificates can be instantiated with terms; while client processes build
keys and certificates around names, the environment can legitimately create valid encryption keys and certificates around
terms.

We extend the encoding of values to arbitrary terms.

[[N@rw]] , (NID ,N+
w ,N+

r ,NCERT) [[N@r]] , (NID ,hash(N+
w),N+

r ,NCERT)
[[N@w]] , (h(N),ek(wr(N)),>)(NID ,N+

w ,hash(N+
r),NCERT) [[N@>]] = (NID ,hash(N+

w),hash(N+
r),NCERT)

We let 〈〈P〉〉β, whereβ = {(n,N), . . .} is a partial injective function from names to terms (we reserve the nameβ to
this function), be defined as:〈〈u〈v@T〉〉〉β,(v,N) = (new k)emit({sk(k),u,}k+

P
) |filter y with sk(k) in emit({[[N@T]]}y+

w
) and

〈〈u〈v@T〉〉〉β = 〈〈u〈v@T〉〉〉 wheneverv 6∈ dom(β). We let 〈〈(new n)P〉〉β = (new n)〈〈P〉〉β with n 6∈ dom(β). The remaining
clauses are the same of〈〈 · 〉〉 . We write ρ ` {β,(n,N)} whenever existsN′ s.t. ρ ` N′ ∧N = N′ρ, andρ ` β. We define
{| I,a : T |}β,(a,N) = {| I |}β, [[N@T]]/x and{| I,a : T |}β = {| I |}β, [[a : T]]/x whenevera 6∈ dom(β).

The encoding〈〈 · 〉〉β is closed under substitution.

Lemma 23. Let Γ,x : A` P andΓ ` v : A. The following hold.

1. 〈〈P{v/x}〉〉β,(v,N) ≡ 〈〈P〉〉β,(v,N){[[N@A]]/x}
2. if v 6∈ dom(β) then 〈〈P{v/x}〉〉β ≡ 〈〈P〉〉β{[[v@A]]/x}
Preservation of execution steps extend straightforwardly to〈〈 · 〉〉β.

Lemma 24 (Preservation of execution steps).Let I be compatible withP, and suppose{| I |} ` β. If P
τ−−→ P1 then

CE[〈〈P〉〉β]
A=⇒−→≈A

{| I |} CE[〈〈P1 〉〉β] .

18

We present now the Theorem that prove that the translation〈〈 · 〉〉β is complete. We introduce an up-to technique for behavioural
equivalence useful to prove the Theorem.

Lemma 25 (Weak equivalence up-to administrative equivalence).LetR be a symmetric indexed relation, contextual and
such thatρ |= HRK implies:

• if ρ |= H ↓n thenρ |= K⇓n

• H
A=⇒ H ′ impliesK

A=⇒ K′ for someK′ such thatρ |= H ′ ≈A R ≈A K′

• H
A=⇒−→ A=⇒ H ′ impliesK =⇒ K′ for someK′ such thatρ |= H ′ ≈A R ≈A K′ .

ThenR ⊆∼=Aπ
ρ .

Theorem 26 (Full Abstraction). Assumedom(β) ⊆ dom(I) and{| I |} ` β. I ² P∼= Q if and only if{| I |} |= CE[〈〈P〉〉β] ∼=Aπ

CE[〈〈Q〉〉β].

Proof Sketch.Theorem 22 directly provides the if direction. We therefore prove the only if case.

To ease the notation used in the definition of the candidate relation we consider computing environments of the form
CE∗∆[−] , W |Proxy∗∆s

|Chan∗∆s
representingconfigurationsof the proxy, where∆ ⊆ I. The proxy configurationProxy∗∆s

associates client names in∆ to their server counter-part∆s moduloβ and contains proxy requests of the context. Formally
the proxy map contains entries of the form(NID ,vs) where orN = v ∈ ∆∧ v 6∈ dom(β) or β(v) = N. The scope of∆s is
outside this definition since the context may have received these names due to a linking request. The channel serversChan∗∆s
created by the proxy contain in their queue both read/write requests submitted by the context and intermediate steps . The
computing environment is surrounded by a context representing the low-level knowledge ofI; as introduced the context may
even contain proxy answers containing capabilities∆s. We abuse the notation and write[[∆s]] to indicate the server counter-
part of the capabilities[[∆]]β. To ensure closure under weakening, we augment{| I |} with fresh names̃b and we let the index
of the relation to be a subset of this base.

Given these intuitions, we letρ |= C[CE∗∆[〈〈P〉〉β]]RC[CE∗∆[〈〈Q〉〉β]]) whenever

1. I |= P∼= Q and∆⊆ I

2. ρ⊆ ({| I |}, b̃/x̃)∧ b̃∩ fn({| I |}) = /0 anddom(β)⊆ dom(I)∧{| I |} ` β

3. C[−] = (new ∆s, c̃)(R({| I |}β, b̃/x̃, [[∆s]]/ỹ) |−) and({| I |}β, b̃/x̃, [[∆s]]/ỹ) ` R .

We prove thatR is a weak equivalence up-to administrative equivalence. We use the following naming conventions:C[−] is
the context,CE∗∆[−] is the environment,〈〈P〉〉β is the process. For the sake of readability we omit the environment∆ from

the definition ofCE∗∆[−] whenever no ambiguity may arise. LetH
A=⇒ H ′ −→ K. We call the reduction sequence

A=⇒
canonical, and write is as in

pAq=⇒, if it only includes the administrative steps fromH required to enable the synchronization
in H ′ (as stated, this is loose, but can be made precise, as we know exactly which are those steps).

Barb preservation. Let ρ |= C[CE∗[〈〈P〉〉β]]↓a. If this barb is inferred fromρ |= CE∗[〈〈P〉〉β]↓a, a case analysis shows that
a = net. We match this barb withρ |= C[CE∗[〈〈Q〉〉β]]⇓a inferred fromρ |= W↓net. Otherwiseρ |= C↓a and we trivially have
ρ |= C[CE∗[〈〈Q〉〉β]]⇓a.

Reduction Closure We need to check the cases
A=⇒ and

A=⇒−→ A=⇒ of the definition of equivalence up-to administrative
equivalence.

Let C[CE∗[〈〈P〉〉β]]
A=⇒ K. By Proposition 7 we have{| I |} |= C[CE∗[〈〈P〉〉β]] ≈A K and we have done sinceρ |= K ≈A

C[CE∗∆[〈〈P〉〉β]]RC[CE∗∆[〈〈Q〉〉β]]).

Otherwise letC[CE∗[〈〈P〉〉β]]
A=⇒ H −→ H ′ A=⇒ K. We have to foundH ′′ s.t.C[CE∗[〈〈Q〉〉β]] =⇒ H ′′ andρ |= H ′ ≈A R ≈A

H ′′. By closure of≈A under administrative reductions and transitivity of≈A
ρ this impliesρ |= K ≈A R ≈A H ′′, as requested.

The following cases of interaction arise forH −→ H ′.

19

(Context - Environment). We prove that there is a minimal sequence
pAq=⇒ and a processH0 s.t. C[CE∗[〈〈P〉〉β]]

pAq=⇒
C1[CE∗1[〈〈P〉〉β]] −→ H0

A=⇒ H ′ andH0 ≡ C2[CE∗2[〈〈P〉〉β]], for some configurationCE∗2[−] and contextC2[−] satisfying the
definition ofR. The intuition is that no prior interaction with the process is needed ifH −→H ′ occurred by a communication

among the context and the environment. We match this move withC[CE∗[〈〈Q〉〉β]]
pAq=⇒C1[CE∗1[〈〈Q〉〉β]] −→C2[CE∗2[〈〈Q〉〉β]].

Next we need to ensure thatC2[−] is a context valid forR. If the synchronization is obtained by the context sending a
packet to the environment this clearly holds by the initial hypothesis onC[−]. Otherwise the context receives a packet from
the environment; a case analysis shows that such packet is a proxy answer containing linked capabilities. Since translated
processes do not move, it follows that such request was sended by the context, i.e. there isN andT such that the context

knows[[N@T]] . From the hypothesis on the shape ofC[−] and fromC[−] pAq=⇒C1[−] and from the communication hypothesis
we infer that there isR1 ≡ net(x).R′ |R∗ closed by{| I |}β, b̃/x̃, [[∆s]]/ỹ such that

C1[−] ≡ (new ∆s, c̃)R1{| I |}β, b̃/x̃, [[∆s]]/ỹ| −
C2[−] ≡ (new ∆s,Ns, c̃)(R′{{[[Ns@T]]}M/x}|R∗)({| I |}β, b̃/x̃, [[∆s]]/ỹ) | −

x 6∈ dom({| I |})∪{x̃, ỹ}
whereNs is the name indicating the server counterpart of the termN. Three cases arise: (i)N = v for somev∈ dom(I) and
v 6∈ dom(β) or (ii)∃v . β(v) = N and (iii) N ∈ dom(I) . In case (i) ifv∈ ∆ we have done; otherwise we considerΓ = ∆,v : T
and we obtainC2[−] ≡ (new Γs, c̃)(R′ |R∗)({| I |}β, b̃/x̃, [[∆s]]/x̃, [[Ns@T]]/x) |−, as requested. In case (ii)Ns = vs and we
proceed as above and check whetherv ∈ ∆ or not; remember indeed that in this case[[vs@T]] is the server counterpart of
[[N@T]] . In case (iii) we choose a namev fresh toI andb̃ and associate it toN in β,(v,N). Indeed by weakening closure
of ∼=π we haveI,v : rw |= P∼=π Q. We obtainC2[−] ≡ (new Γs, c̃)(R′ |R∗)({| I,v : rw |}, b̃/x̃, [[∆s]]/x̃, [[vs@T]]/x) |− where
Γ = ∆,v : rw ⊆ I,v : rw. Finally fromρ⊆ {| I |}, b̃/x̃ we obtainρ⊆ {| I,v : rw |}, b̃/x̃.

We use the results above and closure of≈A under admin. reductions to concludeρ |= H ′ ≈A

C2[CE∗2[〈〈P〉〉β]]RC2[CE∗2[〈〈Q〉〉β]].

(Context - Process).By syntactic analysis of the encoding〈〈 · 〉〉β, we infer that this interaction has occurred on the channelnet,
which is the only free channel used by〈〈 · 〉〉β. We first analyze the case whether the context inputs a term from the process. We

rearrange the administrative reductionsC[CE∗[〈〈P〉〉β]]
A=⇒ H by choosing the minimal sequence which let first the context

move and then the process move; the remaining moves are matched with the after-sequenceH ′
0

A=⇒ H ′:

C[CE∗[〈〈P〉〉β]]
pAq=⇒C1[net(x).R|CE∗[〈〈P〉〉β]

pAq=⇒ H0 −→ H ′
0

A=⇒ H ′

whereH0≡C1[net(x).R|(new b̃)CE∗1[P∗ |net〈M〉]] andH ′
0≡C1[(new b̃)R{M/x}| CE∗1[P∗]]. Here the configuration is possi-

bly evolved toCE∗1[−] as the packet received by the context may be a linked emission, that is the proxy could have generated
a new channel and association due to a linking request of the process.

A case analysis on〈〈 · 〉〉β shows thatP∗ |net〈M〉 ≡ P∗; this holds since all outputs onet syntactically occurring in the
encoding are under replication.

We exploit the following fact. Two cases arise forM:

1. M = {Ñ}sk(k) andk∈ b̃

2. M = {Ñ,c}ek(N) andc∈ b̃ and{dk(N),N}∩A(ρ) = /0

In case (1), we use a Lemma saying thatM can be treated as noise wheneverk does not occur in the free names of the context
(see the Example in Section??) and we inferρ |= H ′

0'Aπ C1[(new n)R{{n}n/x}|(new b̃)CE∗1[P∗]]. Indeedk∈ b̃ implies that
k 6∈ fn(R), i.e. this is a afresh name coming out from the translation. From the hypotheses on the reductions above and from

P∗ |net〈M〉 ≡ P∗ we obtainC1[(new n)R{{n}n/x}|CE∗[〈〈P〉〉β]]
A=⇒C1[(new n)R{{n}n/x}|(new b̃)CE∗1[P∗]] . We use these

results and closure of admin. reductions and'Aπ
ρ ⊆≈A

ρ to infer H ′ ≈A
ρ H ′

0 ≈A
ρ C1[(new n)R{{n}n/x}|CE∗[〈〈P〉〉β]] . We match

this interaction by lettingnet(x).R receive a term from the noise processW:

C[CE∗[〈〈Q〉〉β]]
pAq=⇒ C1[net(x).R|CE∗[〈〈Q〉〉β]]
−→ C1[(new n)R{{n}n/x}|CE∗[〈〈Q〉〉β]] .

20

By ρ |= H ′ ≈A H ′
0≈A C1[(new n)R{{n}n/x}|CE∗[〈〈P〉〉β]]RC1[(new n)R{{n}n/x} |CE∗[〈〈Q〉〉β]] we obtain reduction closure.

In case (2) we use a Lemma which says that if the confounderc is not in the free names ofR and both the decryption key
dk(N) and the seedN are not known to context (formally:{dk(N),N}∩A(ρ) = /0) thenρ |= H ′

0 ≈A C1[(new n)R{{n}n/x}
|(new b̃)CE∗1[P∗]]. HereR seesM as noise because it has no access to the confounderc and cannot destructM both by
knowing or constructing the keydk(N); however it can administratively forward the packet to the legitimate receiver. This
intuition motivates the use of≈A in place of the stronger'Aπ. As in case (1) we match this interaction by lettingnet(x).R
receive a term from the noise processW:

C[CE∗[〈〈Q〉〉β]]
pAq=⇒ C1[net(x).R|CE∗[〈〈Q〉〉β]]
−→ C1[(new n)R{{n}n/x}|CE∗[〈〈Q〉〉β]] .

We obtain reduction closure with the same equations of case (1).

We now analyze the case whether the process receives a term from the context. We have

C[CE∗[〈〈P〉〉β]]
pAq=⇒C1[net〈M〉 |CE∗[〈〈P〉〉β]

pAq=⇒ H0 −→ H ′
0

A=⇒ H ′

whereH0≡C1[net(x).R|(new b̃)CE∗1[P∗ |filter1 x̃ with N in P]] andH ′
0≡C1[(new b̃) CE∗1[P∗ |filter2;M x̃ with N in P]] where

these filters are those introduced in Definition 9.
A case analysis shows that all input onnet of the translation ofP are recursive filters under fresh session keys not known
to C[−], i.e. N = sk(k) with k ∈ b̃. We easily obtainH ′

0 ≡C1[net〈M〉 |(new b̃)CE∗1[P∗ |filter x̃ with N in P]], i.e. H ′
0 reach

deterministically in one stepH0, and in turn from Def. 9(1) and closure of≈A under admin. reductions we obtainρ |= H ′
0≈A

H0. We re-apply closure of≈Aand obtain bothρ |= H0 ≈A C[CE∗[〈〈P〉〉β]] andρ |= H ′ ≈A H ′
0. By applying transitivity of≈A

ρ

to the results above we haveρ |= H ′ ≈A C[CE∗[〈〈P〉〉β]]. Summing up:C[CE∗[〈〈P〉〉β]]
A=⇒→ A=⇒ H ′ ≈A

ρ C[CE∗[〈〈P〉〉β]]. We do
not need to match these moves sinceρ |= H ′ ≈A C[CE∗[〈〈P〉〉β]]RC[CE∗[〈〈Q〉〉β]].

(Environment - Process).There are many cases.

Environment reduction.In this case

C[CE∗[〈〈P〉〉β]]
pAq=⇒C[CE∗1[〈〈P〉〉β]]−→ H ′

0
A=⇒ H ′

A case analysis shows that the synchronization has been inferred fromC[CE∗1[〈〈P〉〉β]]
n@T−→ H ′

0 and in turn andH ′
0 ≡

C[! {[[N@T]]}M |CE∗2[〈〈P〉〉β]] for someCE∗2[−] and N. Indeed the environmentCE∗1[−] clearly changes it’s state since
it looses two messages in the queue ofchanneln. Since the translated process does not move the capabilities[[N@T]]
come out from the context and in turnC[! {[[N@T]]}M |−] satifies the definition ofR. We match this move with

C[CE∗[〈〈Q〉〉β]]
pAq=⇒C[CE∗1[〈〈Q〉〉β]]−→C[! {[[N@T]]}M |CE∗2[〈〈Q〉〉β]] asρ |= H ′ ≈A C[! {[[N@T]]}M |CE∗2[〈〈P〉〉β]]R

C[! {[[N@T]]}M |CE∗2[〈〈Q〉〉β]].

Process reduction.In this case

C[CE∗[〈〈P〉〉β]]
pAq=⇒ n@t−→ H0

A=⇒ H ′

and the synchronization has been inferred from a read and write request ofP. We use a minor variant of reflection of

execution steps that consider arbitrary environmentsCE∗[−] and bindingsβ to infer that there isP′ s.t. P
τ−−→ P′ and

ρ |= H0 ≈A C[CE∗[〈〈P′ 〉〉β]]. We exploit the hypothesisI |= P ∼= Q to infer thatQ ==⇒ Q′ with I |= P′ ∼= Q′. Now we
use a variant of preservation of execution steps similar to that above to infer that there isH ′′ such thatC[CE∗[〈〈Q〉〉β]] =⇒
H ′′ ≈A

ρ C[CE∗[〈〈Q′ 〉〉β]]. From closure of≈A under admin. reductions and transitivity of≈A and the results above we obtain
ρ |= H ′ ≈A H0 ≈A C[CE∗[〈〈P′ 〉〉β]]RC[CE∗[〈〈Q′ 〉〉β]]≈A H ′′ and we are done.

Context out - Process in (intrusion).This is the case whereas the encoding ofP receives a term from the context
trough the queue of a channel in the actual configuration. We haveP ≡ (new b̃)P2 |a(x@T).P1 and I ` a : w and
CE∗[−]≡ CE∗1[−|a∗1〈N〉 |a◦1〈[[N@S]]〉] with S<: T anda is linked toa1. We have the following canonical sequence:

C[CE∗[〈〈P〉〉β]]
pAq=⇒ C[(new b̃, c̃)CE∗2[〈〈P2 〉〉β |P∗ |filter x with sk(k) in 〈〈P1 〉〉β]]

−→ H ′
0

A=⇒ H ′

21

Here c̃ is formed by the seedk of the shared keysk(k) and the noncec contained in the input request of the encoding
of a(x@T); P∗ is the leftover of this request. We haveCE∗2[−] ≡ CE∗1c[filter x̃ with a◦1@T in !net〈{x̃}sk(k)〉] where the
definition if CE∗1c is the same ofCE∗1 but containing the noncec in the nonce list as ina∗1〈c :: N〉. Finally we haveH ′

0 ≡
C[(new c̃)CE∗2[(new b̃)〈〈P2 〉〉β |P∗ | ! {[[N@T]]}sk(k) |filter x with sk(k) in 〈〈P1 〉〉β]].

By letting the continuation ofP to receive the packet{[[N@T]]}sk(k) and by removing the leftover of the communication
we obtain

(i) if (v,N) ∈ β or N = v for some v ∈ dom(I) then H ′
0

A=⇒≈A
ρ C[CE∗1[(new b̃)〈〈P2 〉〉β | 〈〈P1{v/x}〉〉β]] ≡

C[CE∗1[〈〈(new b̃)P2 |P1{v/x}〉〉β]]

(ii) else there is v s.t. {| I,v : S|} ` β,(v,N) and H ′
0

A=⇒≈A
ρ C[CE∗1[(new b̃)〈〈P2 〉〉β | 〈〈P1{v/x}〉〉β,(v,N)]] ≡

C[CE∗1[〈〈(new b̃)P2 |P1{v/x}〉〉β,(v,N)]] with v 6∈ n(P).

By the hypothesisI |= P∼= Q we infer that in case (i)I |= a〈v@S〉 |P∼= a〈v@S〉 |Q and in case (ii)I,v : S |= a〈v@S〉 |P∼=
a〈v@S〉 |Q. Sincea〈v@S〉 |P τ−→ P′ , (new b̃)P2 |P1{v/x}, by hypothesis there isQ′ s.t.a〈v@S〉 |Q =⇒Q′ and (i)I |= P′ ∼=
Q′ or (ii) I,v : S |= P′ ∼= Q′. We apply preservation of execution steps to processa〈v@S〉 |Q immerged in the environment
CE∗1[−], i.e. the environment not containing the messagea1〈N@T〉, and obtain

(i) C[CE∗1[〈〈a〈v@S〉 |Q〉〉β]] =⇒≈A
ρ C[CE∗1[〈〈Q′ 〉〉β]]

(ii) C[CE∗1[〈〈a〈v@S〉 |Q〉〉β,(v,N)]] =⇒≈A
ρ C[CE∗1[〈〈Q′ 〉〉β,(v,N)]]

It’s easy to see that in case (i)C[CE∗1[〈〈a〈v@S〉 |Q′ 〉〉β]]
A=⇒≈A

ρ C[CE∗[〈〈Q′ 〉〉β]] and in case (ii)

C[CE∗1[〈〈a〈v@S〉 |Q′ 〉〉β,(v,N)]]
A=⇒≈A

ρ C[CE∗[〈〈Q′ 〉〉β,(v,N)]]; in these results we use≈A to discard unuseful leftoftvers of
the write request.
In case (i) from closure of≈A under administrative reductions we infer
C[CE∗1[〈〈a〈v@S〉 |Q′ 〉〉β]]≈A

ρ C[CE∗[〈〈Q′ 〉〉β]] and in turn from the results above

C[CE∗[〈〈Q′ 〉〉β]] ==⇒ H ′′ ≈A
ρ C[CE∗1[〈〈Q′ 〉〉β]] .

Similarly in case (ii) we deduce that there isH ′′ such that

C[CE∗[〈〈Q′ 〉〉β,(v,N)]] ==⇒ H ′′ ≈A
ρ C[CE∗1[〈〈Q′ 〉〉β,(v,N)]] .

From closure of≈A under admin. reductions we infer (i)ρ |= H ′ ≈A C[CE∗1[〈〈P′ 〉〉β]] or (ii) ρ |= H ′ ≈A C[CE∗1[〈〈P′ 〉〉β,(v,N)]].
We have done as in case (i) we haveρ |= H ′ ≈A C[CE∗1[〈〈P′ 〉〉β]]RC[CE∗1[〈〈Q′ 〉〉β]] ≈A H ′′ and in case (ii) we haveρ |= H ′ ≈A

C[CE∗1[〈〈P′ 〉〉β,(v,N)]]RC[CE∗1[〈〈Q′ 〉〉β,(v,N)]]≈A H ′′. In (ii) notice thatρ = σ, b̃/x̃ andσ⊆ {| I,v : S|} have been deduced from the
hypothesisσ⊆ {| I |}.

Context in - Process out (extrusion).In this case the process sends capabilities to the context trough the environment. We
haveP≡ (new b̃ : B̃)P′ |a〈v@S〉 andI ` a : r andCE[−]≡ (new ã)CE∗1[a∗1〈N〉 |filter x̃ with a◦1@T in !net〈{x̃}M〉] wherea is
linked toa1 andS<: T. We have the following canonical sequence:

C[CE∗[〈〈P〉〉β]]
pAq=⇒C[(new b̃, c̃)CE∗1c[a◦1〈[[N@S]]〉 | 〈〈P′ 〉〉β |P∗]]−→ H ′

0
A=⇒ H ′

whereP∗ is the leftover of the communication to send the output request containing the noncec = c̃ andCE∗1c[−] is defined
as CE∗1[−] but containsc in the nonce list and(v,N) ∈ β. The caseN = v ∈ dom(I) is simpler and we omit it. The
synchronization involves the filter receiving the packet[[N@S]] ona◦1. By removing the leftover we have

H ′
0 ≈A

ρ C[(new b̃)!net〈{[[N@T]]}M〉 |CE∗2[〈〈P′ 〉〉β]] .

We exploit the characterization of∼=Aπ
{| I |} in terms of typed bisimulation presented in Chapter?? and we infer that:I ² P∼= Q,

I.P
(b̃)a〈v@T〉
−−−−−−→ Iuv : T .P′, implies that thre isQ′ such thatI.Q

(b̃)a〈v@T〉
======⇒ Iuv : T .Q′ with Iuv : T |= P′∼= Q′. Thus existsQ0,

s.t.Q ==⇒ Q0 andI .Q0
(b̃)a〈v@T〉
−−−−−−→ Iuv : T .Q′

0 andQ′
0 ==⇒ Q′. From these results we infer thatQ0≡ (new b̃)Q′

0 |a〈v@T〉.

22

We apply preservation of execution steps and inferC[CE∗[〈〈Q〉〉β]] =⇒≈A
ρ

C[CE∗[〈〈Q0 〉〉β]]. From the shape ofQ0 and by following the same steps we did in showing thatC[CE∗[〈〈P〉〉β]]
pAq=⇒C[(new b̃, c̃)

CE∗1c[〈〈P1 〉〉β |P∗]] we infer

C[CE∗[〈〈Q0 〉〉β]]
A=⇒C[(new b̃, c̃)CE∗1c[〈〈Q′

0 〉〉β |P∗]] .

Notice indeed that both the leftoverP∗ and the environmentCE∗1c[−] are determined by the (encoding of)a〈v@T〉 which
is the same for both processes (up-to alpha-renaming of bindingsb̃, c̃). Now we let the synchronization occur inside the
environmentCE∗1c[−] and we remove the leftover:

C[(new b̃, c̃)CE∗1c[〈〈Q′
0 〉〉β |P∗]]→ K1

≈A
ρ C[(new b̃)!net〈{[[N@T]]}M〉 |CE∗2[〈〈Q′

0 〉〉β]] .

Finally we apply preservation of execution steps and reduction closure of≈A and obtain

K1 =⇒ K′′ ≈A
ρ C[(new b̃)!net〈{[[N@T]]}M〉 |CE∗2[〈〈Q′ 〉〉β]] .

Summing up we have:

C[CE∗[〈〈Q〉〉β]] =⇒ K′′ ≈A
ρ C[(new b̃)!net〈{[[N@T]]}M〉 |CE∗2[〈〈Q′ 〉〉β |P∗]]

By definition of R we have thatC[−] ≡ (new c̃)R({| I |}β, b̃/x̃, [[∆s]]/ỹ) |− where ({| I |}β, b̃/x̃, [[∆s]]/ỹ) ` R. No-
tice that the bindingsc̃ may contain names inI that do not occur in the base. We defineD[−] =
(new b̃)C[R1({| Iuv : T |}β, b̃/x̃, [[∆s]]/ỹ) |−] where({| Iuv : T |}β, b̃/x̃, [[∆s]]/ỹ) ` R1. It’s easy to findR1 s.t.
C[(new b̃)!net〈{[[N@T]]}M〉 ≡ D[−]. Indeed we have what we need to build the term[[N@T]] , andM was previously used
by the environment.
SinceIuv : T |= P′ ∼= Q′ and(v,N) ∈ β we have

ρ |= H ′ ≈A H ′
0 ≈A D[CE∗2[〈〈P′ 〉〉β]]RD[CE∗2[〈〈Q′ 〉〉β]]≈A H ′′

as desired.

Contextuality Let ρ |= C[CE∗[〈〈P〉〉β]]RC[CE∗[〈〈Q〉〉β]]). For the first clause, letρ ` S. By ρ ⊆ ({| I |}, b̃/x̃) we have
ρ |= C[Sρ |CE∗[〈〈P〉〉β]]RC[Sρ |CE∗[〈〈Q〉〉β]]) where fn(Sρ) ∩ bn(C) = /0. For the second clause, letn 6∈ fn(ρ). Since
ρ ⊆ {| I |}, b̃/x̃, we haveρ,n/x ⊆ {| I |}, b̃/x̃,n/x provided n 6∈ b̃.. We haveρ,n/x |= C[CE∗[〈〈P〉〉β]]RC[CE∗[〈〈Q〉〉β]]) as
C ≡ C{n/x} holds sinceC has not free variables. Last, we analyze the third clause. Fromρ \ n⊆ ({| I |}, b̃/x̃) we infer
ρ\n |= (new n)C[CE∗[〈〈P〉〉β]]R(new n)C[CE∗[〈〈Q〉〉β]]) as(new n)C[−] satisfies the definition required inR by the hypothe-
sis onC[−].

23

