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Abstract— The ability to prevent and to detect intrusions in
computer systems is often heavily conditioned by having some
knowledge of the security flaws of the system under analysis.
Discover intrusions is particularly hard in concurrent systems,
which contain several interactions among their components;
suspicious interactions are usually studied manually by security
experts which need to establish if they are dangerous. In this
paper, we present an automated method to prevent intrusions in
concurrent systems that does not require any previous knowledge
of the flaws. We study the behaviour of an abstract model of the
system that captures its security-related behaviors; the model
contain the trusted components of the system such as the file
system, privileged processes, etc. We then check all possible
interactions with unprivileged processes to decide if the system
contain security flaws. This is accomplished by introducing a
non-interference security property which holds for models where
unprivileged processes do not have direct or indirect write access
to resources with an high security level. The property is based
on traces and can be decided by using standard concurrency
tools. Our method apply even to models containing information
flows among their components; this turns out to be a necessary
condition for analyzing interactions of actual computer systems,
where privileged processes usually have both read and write
access to low resources.

I. I NTRODUCTION

In the last years, several techniques have been developed
to the purpose of guarantee the security of computer systems.
Among these, two of the most used by security administra-
tors are intrusion detection and vulnerability analysis. In the
literature, intrusion detection refers to a range of techniques
that discover run-time attacks to computer systems by means
of analysis of system logs [1], [2]. A common approach
consists in parse logs to find attack patterns picked from a
database of signatures, e.g. [3], [4], [5]. Vulnerability analysis,
instead, concerns with the problem of identify security flaws
of computer systems, e.g. [6], [7]. We call this technique
intrusion prevention, since it focuses on preventing attacks,
rather than on detecting attacks at run-time.

Unfortunately, such techniques rely on previous knowledge
of the security flaws arising in computer systems. For practical
purposes, such flaws are often expressed as traces considered
dangerous w.r.t.the system under analysis, and no general
definition for undesired behaviour is provided. For instance,
most signatures-based detectors and vulnerability tools contain
patterns of some interaction among unprivileged users and
privileged programs which causes the system’s password file
to change, but they not explain which general property is
unsatisfied when the interaction occur. The need of foundations
for these techniques is thus emerging as a central issue [8].

Our interpretation is that both intrusion prevention, and
intrusion detection, are special cases of access control; given a
security policy for the system, then an intrusion is the sequence
of steps which directly or indirectly breaks the policy (e.g.,
similarly to [9], [10]). For instance, the malicious interaction
depicted above is an intrusion for a system where is supposed
that unprivileged processes cannot write the password file.
Indeed, an unprivileged user may indirectly avoid this pro-
hibition by means of a privileged program which acts like a
Trojan Horse. Such internal attacks, usually hard to discover
without any previous information, can be actually find out by
using non-interference [11].

In this paper, we develop a method to prevent intrusions
that does not require any previous knowledge of the flaws of
the system under analysis. The technique we propose may
discover unknown attacks, and apply to a wide range of
concurrent systems; these are indeed essential requirements
for foundations for discovering intrusions [8]. We adopt
the model-based approach [12], [7] to vulnerability analysis,
which consists in analyze the behaviour of an abstract model
of the system that captures its security-related behaviors;
the model contain the trusted components of the system
such as the file system, privileged processes, etc. To prevent
internal attacks of apparent honest privileged programs hid-
ing malicious code, we check all possible interactions with
unprivileged processes, and we decide if these interactions
comport security flaws. We identify flaws as direct or indirect
violations of the mandatory policy which denies to low level
processes to have write access to resources with an high
security level; roughly speaking, this policy may be called
the “no write up” policy. We characterize secure systems by
means of a non-interference [11] security property calledNon
Write-Modifiability on Compositions, which holds for those
systems that, when composed with unprivileged processes,
do not change their behaviour w.r.t. modification of sensible
resources; that is, in these systems low processes may not
directly and indirectly write high resources. The property is
based on traces and can be decided automatically by using
standard concurrency tools (e.g., [13], [14]); in the presence
of a violation, a counter-example is given: this may be
useful to generate traces of unknown attacks. Our approach
apply even to models containing information flows among
its components; this turns out to be a necessary condition
for analyzing interactions of actual computer systems, where
privileged processes usually have both read and write access
to low level resources. We use the property we proposed to



analyze two abstract models of UNIX-like systems that contain
known vulnerabilities [15], [16].

Non-Interference

In general, in a system, information is typically protected
via some access control policy, limiting accesses of entities
(such as users or processes) to data. There are different levels
of flexibility of access control policies depending on the
possibility for one entity to change the access rights of its own
data. Here we will considermandatorypolicies [17] in which
entities have no control on the access rights. Unfortunately,
even when direct access to data is forbidden by (strong)
security policies, it might be the case that data areindirectly
leaked or modified by trusted programs which hide inside
some malicious code.

The necessity of controlling information flow as a whole
(both direct and indirect) motivated Goguen and Meseguer in
introducing the notion ofNon-interference[11], which for-
malizes the absence of information flow within deterministic
systems. Given a system in whichconfidential (i.e., high
level) and public (i.e., low level) information may coexist,
non-interferencerequires that confidential inputs never affect
the outputs on the public interface of the system, i.e., never
interfere with the low level users. If such a property holds,
one can conclude that no information flow is ever possible
from high to low level. A possibilistic security property
can be regarded as an extension of non-interference to non-
deterministic systems [18]. Various such extensions have been
proposed, e.g. [19], [20], [21], depending on the notion of
behaviour that may possibly be observed of a system, i.e., the
semantics model that is chosen to describe the system; most
of these properties are based ontracesor execution sequences.

In [22], Focardi and Gorrieri express the concept of non-
interference in theSecurity Process Algebra(SPA) language,
which is an extension of CCS [23] where the visible actions
are partitioned in two sets, high and low. In particular in
[22] the authors introduce the notion ofNon Deducibility on
Compositions: a systemE is “non deducible” if what a low
level user sees of the system is not modified by composing
any high level process with the system. The low vision of
the system is expressed by means of trace-based (NDC)
or bisimulation (BNDC) semantic properties, with important
differences: the former property may be expressed equivalently
avoiding universal quantification, while the latter need to
consider all possible high processes. Indeed the decidability
of BNDC is still an open problem, although proof techniques
for a large class of processes have been proposed [24], [25].
The whole approach is similar to testing equivalence [26].

Preserving the integrity of data

In this paper we focus on integrity policies, i.e. policies
which care about improper modification of data, rather than
secrecy policies, i.e., policies which prevent unauthorized
disclosure of data. In the literature, the standard mandatory
integrity policy is known as the Biba model [27] and maybe
roughly summarized through the rules “no read down”, “no

write up”; the Biba policy is the dual of the standard secrecy
policy [17]. We refer toNon Modifiability on Compositionsas
to the property requiring that the high view of the system does
not change in presence of low users, that is, this property is
the dual of Non Deducibility on Compositions.

Unfortunately, Non Modifiability on Compositions is of lit-
tle help in the analysis of models of actual operating systems,
where it is practically infeasible that no information flows from
low to high. As a matter of fact, in such systems privileged
programs have often read access to low, potentially insecure
resources; it turns out that most models of these systems do
not satisfy Non Modifiability on Compositions. Since our aim
is to discover potential intrusions in abstract models of actual
systems, we need to distinguish the observable behaviour of
systems where information flows from low to high, and thus
we often cannot use this property.

For these reasons, we introduce a weaker security property
which takes care of different types of access, i.e. distinguish
read from write accesses. The property holds for models
where unprivileged users do not have write access to sensi-
ble resources, both directly and indirectly, i.e. by exploiting
malicious code of trusted programs. We verify this invariant
by checking if the high behaviour w.r.t. write actions of the
model does not change in the presence of any possible low
process. The property is defined in a trace-based setting, and
enjoys a characterization which permits to avoid universal
quantification on low processes, making the property suitable
for actual systems analysis. The main drawback of the choice
of a trace-based semantics model is the inability to detect
deadlocks, which seems to us less significant in the scenario
under consideration.

To illustrate our technique, we draw an example of a core
file system process. We use a CCS-like language where the set
of visible actions is partitioned in the high (H) and the low
(L) level as in SPA, but each of these sets is in turn partitioned
in the read and the write subset; actions and co-actions belong
to the same subset.

We abstract a file system as a process that change it’s state
if and only if executes write actions.

F
4
= writeL.F ′ + read1H .F

F ′
4
= read2H .F ′

Executing thewriteL action causesF to move to stateF ′,
and F ′ exhibits a new actionread2H that was not available
in F . Sinceread2H has an high security level, this represent
a flow from the low to the high level. However, since the
high behaviour ofF w.r.t. to write actions does not change by
executing low actions, we conclude thatF is safe.

The paper is structured as follows: in Section II we present
some basic notions on the process algebra SPArw; Section III
contain the definition of a SPArw model for a small subset of a
UNIX-based system which contains a well-known vulnerabil-
ity. In Section IV we present theNon Write-Modifiability on
Compositionssecurity property, and we verify that the SPArw

model presented in Section III is flawed. In Section V we



study recent attacks based on symbolic link vulnerabilities.
Comparison with related work and a few concluding remarks
are reported in Section VI.

II. READ/WRITE SECURITY PROCESSALGEBRA

We present the syntax and the semantics of our model
language, theRead/Write Security Process Algebra(SPArw, for
short). The SPArw language is a variation of CCS [23], where
the set of visible actions is partitioned into two levels, high and
low, which are in turn partitioned into two access type sets,
read and write, in order to specify multi-level systems with
read/write access control. SPArw syntax is based on the same
elements as CCS that is: a setL of visible actions containing
input actions a, b, . . . and output actions ā, b̄, . . .; a special
actionτ which models internal computations, i.e., not visible
outside the system; a complementation function·̄ : L → L
such that¯̄a = a, for all a ∈ L. Act = L ∪ {τ} is the set
of all actions. The set of visible actions is partitioned into
four setsActc

i , i ∈ {H, L}, c ∈ {r, w} such thatActc
i =

Actc
i . Moreover, the setsActc

i are disjoint and they coverL:⋂
c∈{r,w},i∈{H,L} Actc

i = ∅ and
⋃

c∈{r,w},i∈{H,L}Actc
i = L.

We indicate withActL,ActH , respectively the setAct r
L ∪

Actw
L, and the setAct r

H ∪Actw
H .

The syntax of SPArw terms (or processes) is defined as
follows:

E ::= 0 | a.E | E + E | E|E | E \ v | E[f ] | Z
wherea ∈ Act , v ⊆ L and a ∈ v iff ā ∈ v, f : Act → Act
is such thatf(ā) = f(a), f(τ) = τ , f(Actc

i ) ⊆ Actc
i ∪ {τ}

for eachc ∈ {r, w} and i ∈ {H, L}, andZ is a constant that

must be associated with a definitionZ
4
= E.

The syntax of processes is standard for CCS and needs no
comments; we will abbreviate often the processE.0 with E.
For the definition of security properties it is also useful the
hiding operator, /, of CSP [28], which can be defined as a
relabelling as follows: for a given setv ⊆ L, E/v

def= E[fv]
where fv(x) = x if x 6∈ v and fv(x) = τ if x ∈ v. In
practice,E/v turns all actions inv into internalτ ’ s. For the
sake of brevity we will write oftenE\L to indicate the process
E\ActL

. We denote byE the set of all SPArw processes. We let
L(E) denote thesort of E, i.e. the set of the actions occurring
syntactically inE, E ∈ E . We indicate withEL the set oflow

processes:EL
4
= {E ∈ E : L(E) ⊆ ActL ∪ {τ}}.

The operational semantics of SPArw processes is given in
terms ofLabelled Transition Systems; the inference rules are
reported in Tab. I and are standard for CCS. The syntax of the
value-passingversion of SPArw is reported in Tab. II; value
expressionse1, ..., en need to be consistent with arity of ac-
tionsa and of constantsA, respectively, whereasb is a boolean

expression. A constantA is defined byA(x1, ..., xm)
def
= E

whereE is a value-passing SPArw agent that must not contain
free variables exceptx1, ..., xm, which need to be distinct. As
described in [23], value-passing calculus semantics is given
by translating the calculus into the pure calculus.

Finally let=⇒ be a multi-step transition relation such that if
E( τ→)∗ a→ ( τ→)∗E′ thenE

a=⇒ E′. If γ = a1, . . . an, we write
E

γ
=⇒ to mean that there existsE′ s.t.E

a1=⇒ . . .
an=⇒ E′. The

set of (weak) traces ofE, T (E), is defined as follows:T (E) =
{γ ∈ L∗ : E

γ
=⇒}. Two processes aretrace equivalent, noted

E1 ≈T E2, if T (E1) = T (E2).

III. M ODELING SECURITY-RELATED BEHAVIOUR OF

SYSTEMS

We define a SPArw model of a small subset of a UNIX-
based system which will exhibit a vulnerability [15], [12]
due to /etc/utmp, a file containing the association between
logged users and related terminals. We model the security
behaviour of the trusted components of the system, which are
a simplified file system process, the mail utilitycomsat, and an
user sending mail. To ensure that our method is effective, we
need to take care to assign actions to the appropriate subsets.
To this aim, we follow these guidelines.
• Security levels

(i) system programs execute both low and high actions
(ii) privileged programs execute high actions

(iii) normal programs execute low actions
• Access mode

(iv) an action belongs to the write subset if its synchro-
nization comport the file system state to change

(v) an action belongs to the read subset if its synchro-
nization does not comport the file system state to
change

The code of the file system is given in the value-passing
SPArw; the values we pass abstract contents and files names;
we will use V to indicate the finite set of values, and
we suppose thatV contain a value∅ representing empty
contents. We letpwd, utmp, ttyabbreviate respectively the
values /etc/pwd, /etc/utmp, and /dev/tty, and we letF =
{pwd, utmp, tty, mailbox}, F ⊆ V . We restrict to this
set of files only for convenience; what follows extends to
arbitrary finite set of files. The set of (value-passing) la-
bels is {writeH , writeL, readH , readL}; the translation of
each of this label in the pure calculus give raise to actions
belong to the appropriated subsets. We model a simplified
file system processFs(s) as reported in Table III; the pro-
cess regulates read and write accesses to the set of files
represented byF . The variables indicates the actual val-
ues contained in files, i.e. the values which are available
through the actionsreadl(f, extract(s, f)); the states may
change by means of the functionupdate, which writes a
given content on a filef ∈ F . To illustrate, lets0 be the
state where /etc/utmp contains the value /dev/tty; we have
that Fs(s0) contains the thread

∑
l∈L,H read l utmp tty. If

Fs(s0)
write L utmp new−−−−−−−−−−−−−−→ Fs(s1) then the reduct contains

the thread
∑

l∈L,H read l utmp new.
In the file system, we implement the mandatory access

control policy which we want to enforce; roughly speaking, the
policy is expressible as “no write-up”, that is, no controls on
the read accesses are needed to enforce this policy, while low



Prefix
a.E

a→ E
Sum

E1
a→ E′1

E1 + E2
a→ E′1

E2
a→ E′2

E1 + E2
a→ E′2

Parallel

E1
a→ E′1

E1|E2
a→ E′1|E2

E2
a→ E′2

E1|E2
a→ E1|E′2

E1
a→ E′1 E2

ā→ E′2
E1|E2

τ→ E′1|E′2
a ∈ L

Restriction
E

a→ E′

E \ v
a→ E′ \ v

if a 6∈ v

Relabelling
E

a→ E′

E[f ]
f(a)→ E′[f ]

Constant
E

a→ E′

Z
a→ E′

if Z
4
= E

TABLE I

THE OPERATIONAL RULES FORSPArw

a(x1, ..., xn).E , a(e1, ..., en).E , τ.E Prefixes
if b then E elseE Conditional
A(e1, ..., en) CostantP

i∈I Ei , E1|E2 , E\v , E[f ] Sum, Parallel Composition, Restriction, Relabelling

TABLE II

VALUE-PASSING SPArw SYNTAX

Fs(s)
4
= Write(s) + Read(s)

Write(s)
4
=

P
l∈L,H writel(xf , xc) . if w ∈ ACL(l, xf )
then Fs(update(s, xf , xc))
elseFs(s)

Read(s)
4
=

P
l∈L,H,f∈F readl(f, extract(s, f)).F s(s)

TABLE III

FILE SYSTEM

processes cannot write high resources. In the value-passing
version of the system, we enforce the no write-up policy
by means of the access control matrix defined in Tab. IV.
Each entry of the matrix may containr, w or both; that is, if
ACL(l, f) contain r, w then the levell has the capability to
both read and write the filef . We build the matrix by following
a standard method [17] consisting in assigning security levels
to files; according to the scenario we are modeling, /etc/passwd
and /dev/tty have an high security level; the labels in the
matrix express which permission is granted on files to security
levels. As introduced, this access control method block direct
attempts of low users to write high resources; indirect accesses
exploited by using back-doors of trusted programs, or bad
configurations of the system, need to be analyzed through non-
interference. We will see how to do that in the next section.

The comsat server checks the mailbox for incoming mail and
prints the new message on the terminal in which the user is
logged on; this information is retrieved from /etc/utmp. We
let Comsat read and write labels belong toH since in the
scenario under consideration comsat is a privileged program.

/etc/utmp mailbox /etc/passwd /dev/tty
L r, w r, w r r
H r, w r, w r, w r, w

TABLE IV

THE ACCESS CONTROL LIST(ACL)

Comsat
4
=

∑
m∈V \∅ read H mailbox m .∑

t∈V read H utmp t . write H t m.Comsat

The model of the system is the process

S
4
= Fs(s0) | Comsat | U

where U =
∑

v∈V write H mailbox v represents an high
user process writing some valuev in the mailbox. Remember
that in the states0 the terminal file/etc/utmp contains the
value/dev/tty; the value of the other files is irrelevant.

IV. N ON-INTERFERENCEPROPERTIES

The NDC [22] security property aims at guaranteeing that
no information flow from the high to the low level is possible,
even in the presence of malicious processes. The main moti-
vation is to protect a system also from internal attacks, which
could be performed by the so calledTrojan Horseprograms,
i.e., programs that are apparently honest but hide inside some
malicious code. We refer to the converse security property of
NDC, which denies information flows from low to high, as
to the Non Modifiability on Compositions (NMCfor short).
PropertyNMC is based on the idea of checking the system
against all low level potential interactions, representing every



possible low level malicious program. In other words, a system
E is NMC if what a high level user sees of the system is not
modified by composing any low level processΠ to E. NMC
may be used to verify if a system respects the Biba policy
[27] w.r.t. both direct and indirect information flows, that is,
in NMC systems both high processes do not read low resources
and low processes do not write high resources.

We introduce some notations. We indicate withEL the set
of low processes. More formally, letL(E) denote thesort of
E, i.e. the set of the (possibly executable) actions occurring
syntactically inE, E ∈ E ; then the set of low level agents is

defined asEL
4
= {E ∈ E : L(E) ⊆ ActL ∪ {τ}}. We have

the following definition.

Definition 4.1 (Non Modifiability on Compositions):Let
E ∈ E .

E ∈ NMC iff ∀ Π ∈ EL . E/L ≈T (E | Π)\L

The main obstacle to a practical use of safety properties that
consider all possible attackers is the universal quantification on
processes; indeed the decidability of the bisimulation version
of NDC (and in turn of the bisimulationNMC) is unknown
[22]. The use of less discriminating properties based on traces
permit to avoid this problem by supplying a characterization
which is decidable by standard concurrency tools [22], [14]. To
decide if a systems isNMC, we avoid universal quantification
on low level processes by representing all possible low level
interactions by relabelling low actions toτ . The intuition is
that all possible backdoors or bugs of the system exploitable
by low level attackers are now disclosed; indeed the interaction
with low processes is no more needed as synchronization of
actions and co-actions has been replaced by internal reduction.

Theorem 4.2:E ∈ NMC ⇔ E/L ≈T E\L .
Proof: The proof follows the same rationale of the proof

of Theorem 4.5, but is simpler.

Based on this (strict) notion of security, we may check if
the file system model defined in Section III is indeed safe.

Example 4.3:S 6∈ NMC. This result can be established by
checking if holds Theorem 4.2 by means of a concurrency tool
which accepts the CCS syntax, e.g. [13], or more directly by
using the CoSEC tool [14]. We illustrate the intuition of why
S is not NMC. In processS the states0 of the file system
may change by executing write requests on low resources;
this provokes the high behaviour ofS and particularly of
Fs(s0) to change. Similarly to the example of the introduction,
writing /etc/utmp with some valuev causes the filesystem to
change the states0 as low users have write rights on the
terminal file (i.e.w ∈ ACL(L, /etc/utmp)). Consequently,
in the state reached after the reduction, is visible an action
read H utmp v originated by the file system in order to
communicate the new contentv of /etc/utmp to high processes.
More formally, we have that there isv ∈ V \ tty s.t.
read H utmp v ∈ T (S/L)) andread H utmp v 6∈ T (S\L).
Intuitively this holds since no processes overwrite /etc/utmp in

S alone, and thus the reducts ofS\L have /etc/utmp containing
the init valuetty.

This example shows the inadequacy, in such cases, of the
NMC security property. For instance, if comsat specifica-
tion was consisting in reading on which terminal is logged
the recipient of a new message, this system would be still
considered unsafe. But it is clear that such system would be
normally acceptable by most security administrators; indeed
no violations of the integrity of the system could happen if
comsat does not use the information available in the terminal
file to execute write actions. As a matter of fact, we observe
that NMC is too strong for the security analysis of models of
actual systems, and thus is of little help.

To capture this situations that are very likely in modern
systems, we introduce a security property weaker thanNMC
called Non Write-Modifiability on Compositions(NWMC for
short). The idea is to check systems by analyzing the high
level behaviour w.r.t. write actions, rather than on all high level
actions (in fact write and read actions). A systemE is NWMC,
if for every low level processΠ, a high level user cannot
distinguish thewrite behaviour ofE from the one of(E|Π),
i.e., if Π cannot interfere with the high level write execution
of the systemE. In other words, a systemE is NWMC if
what a high level user sees of the system with respect to write
actions is not modified by composing any low level process
Π to E.

Definition 4.4 (Non Write-Modifiability on Compositions):
Let E ∈ E .

E ∈ NWMC iff ∀ Π ∈ EL, E/L\Hr ≈T (E | Π)\L∪Hr

As in the case ofNMC, it is fundamental to supply a proof
technique forNon Write-Modifiability On Compositions.

Theorem 4.5: E ∈ NWMC ⇔ E/L\Hr ≈T E\L∪Hr .

Proof: Let E ∈ NWMC . Thus E/L\Hr ≈T (E | 0)\L∪Hr

for the specificΠ = 0. FromT (E | 0)\L∪Hr) = T (E\L∪Hr)
we infer E/L\Hr ≈T E\L∪Hr . For the if direction,
let E/L\Hr ≈T E\L∪Hr . We have thatT (E\L∪Hr) ⊆
T (E | Π)\L∪Hr and in turnT (E/L\Hr) ⊆ T (E | Π)\L∪Hr .
The opposite direction also holds; indeed ifΠ andE synchro-
nize on some action, this is a low action as only such labels
syntactically occur inΠ. E/L\Hr can do this internal reduction
since the low co-action participating in the synchronization is
relabelled toτ in E/L .

The following proposition formalizes the intuition that
NWMC is less discriminating thanNMC.

Proposition 4.6:NMC ⊂ NWMC

Proof: Let E ∈ NMC. By definition, for allΠ ∈ EL, we
haveE/L ≈T (E | Π)\L. Since trace equivalence is closed
under restriction [23], we inferE/L\Hr ≈T (E | Π)\L\Hr ,
that is E ∈ NWMC . To see that the inclusion is strict,
consider the example of the introduction:

F
4
= writeL.F ′ + read1H .F F ′

4
= read2H .F ′



We have thatread2H ∈ T (F/L) while read2H 6∈ T (F\L); by
Theorem 4.2 it follows thatF 6∈ NMC . From T (F/L\Hr) =
∅ = T (F\L∪Hr) and Theorem 4.5 we inferF ∈ NWMC .

Once we have weakened our notion of security concentrat-
ing on the violations of the integrity of the system, we check
if the system of Section III contains potential security flaws.
We find out that actually that system mounts attacks a-lá [15];
indeed any privileged file ( [15] mentions /etc/passwd) may be
overwritten by comsat if a malicious user subverts the terminal
file /etc/utmp.

Example 4.7:S 6∈ NWMC . A counter-example is that
S/L\Hr has tracewrite H pwd v, while S\L∪Hr has not. To
illustrate, notice that when low actions are blocked we have
the invariant that in all states /etc/utmp contains /dev/tty; this
holds since the specification of the system does not include
any process overwriting such file. Thus only write co-actions
write H mbx v or write H tty v are observable; the former
represent mail sended byU , the latter originate from Comsat
printing mail on the terminal. Conversely, when low actions
are hidden, we can reach a state where the file system makes
available a portread H utmp pwd which corresponds to
communicating that /etc/ utmp contains the value /etc/passwd.
To see that, remember that low level users can overwrite
/etc/utmp by synchronizing with the file system; in this case
such synchronization is turned into an internal reduction by
the hiding operator/L. Comsat synchronizes with the file
system though the portread H utmp pwd and subsequently
exhibits an actionwrite H pwd v that is not visible when low
actions are blocked. Particularly, whenv is the value root::0:0,
Comsat set root’s password to blank [15]. To conclude, we
verify that the solution proposed in [15] to this flaw actually
recover the security of the system. Indeed once patched the
system by protecting file /etc/utmp against malicious users,
i.e. by setting ACL(L, /etc/utmp) = r, we actually obtain
that S/L\Hr ≈T S\L∪Hr ; this can be automatically verified
through the Concurrency workbench [13]. By Theorem 4.5 we
obtain that the patched system is NWMC.

Applying our method, we have thus found that the model
introduced is flawed, since a low user of the system may
indirectly break the “no write up” mandatory system’s security
policy obtaining that the high level password file (in fact any
privileged file) is overwritten. Using a security property less
discriminating thanNMC gave us the possibility to individuate
the core of the intrusion. That is, by checking if the system
satisfies theNWMCproperty we individuated the action which
exactly cause the security policy to be broken. Moreover, we
verified that the solution suggested in [15] actually patches the
vulnerability.

V. SYMBOLIC L INKS VULNERABILITIES

In this Section we draw another example of the use of
the NWMC property to prevent intrusions arising in the
specification of concurrent systems.

Many recent attacks (e.g, [16], [29], [30], [31], [32]) exploit
the use of symbolic links to overwrite sensible files. In many

UNIX-like systems often privileged programs create files in
a temporary directory like /tmp using predictable filenames
without checking whether a file with that name already exists.
Malicious local users can therefore create a symbolic link to
a file that will be used by such programs. The malicious user
can then overwrite or append to the file as it is being used
by the privileged program. We show how such attacks can be
discovered by using the NWMC property.

To this aim, we extend the file system of Table V to permit
the use of symbolic links. We abstract a simplified file system
where paths are associated to file descriptors. To read (write)
a file, one first requires the file descriptor associated to the
path, then directly reads (writes) the file descriptor; the read
/ write operations succeed only if the process may access the
file descriptor. The setFD is the finite set of file descriptors
available. The access control list now defines accesses from
security levels to file descriptors, rather than to paths. We
consider two files,/etc/passwd and/tmp/config and we let
s0 be the initial state where /tmp/config and /etc/passwd have
respectively file descriptorstrc andstrp, which are different.
We let high processes to read and write bothstrc and strp
while low processes can read both file descriptors.
The file system defined in Table V formalize the intuitions
above. We use a value passing channelslink to set symbolic
links among paths. i.e. to assign the file descriptor of the target
path to the file descriptor of the source path. Pure actions
obtained from the translation ofslink belong to the write
subsets, as this operation comport a change of the state of the
system. To obtain the file descriptor of a path, a value passing
channelopen is used; we let pure actions obtained fromopen
to belong to the read subsets, as the execution of such actions
do not comport a system change.

Fs(s)
4
= Write(s) + Read(s) + Link(s)

Link(s)
4
= SetLink(s) + GiveLink(s)

SetLink(s)
4
=

P
l∈L,H slinkl(xs, xd).F s(updateFD(s, xs, xd))

GiveLink(s)
4
=

P
l∈L,H,f∈F openl(f, extractFD(s, f)).F s(s)

Write(s)
4
=

P
l∈L,H writel(xa, xc) .
if w ∈ ACL(l, xa) then Fs(update(s, a, xc))
elseFs(s)

Read(s)
4
=

P
l∈L,H,a∈A readl(a, extract(s, a)).F s(s)

TABLE V

FILE SYSTEM WITH SYMBOLIC L INKS

We consider a programP ∈ EH writing some contentc on
the file /tmp/config

P
4
= P ′ |

∑

a∈FD

open H /tmp/config/ a.write H a c

and such that programP both does not write the file
descriptor strp and does not setup a symbolic link from
/tmp/config to any other file. More formally we assume



(
⋃

v∈V write H strp v ∪v∈V slink H /tmp/config v) ∩
L(P ) = ∅.

The model of the system is the processS
4
= Fs(s0) | P .

We follow the approach of Section IV and we useNWMC
property to check if the system defined above contains viola-
tions of its integrity.

Example 5.1:We use Theorem 4.5 to show thatS 6∈
NWMC . As in the previous flaw, the presence of a privileged
process acting as a Trojan Horse is fundamental. Indeed,
S/L\Hr may evolve to a state where a symbolic link from
/tmp/config to /etc/passwd is setted up. Intuitively this holds
since the definition ofFS(s) let low users setup symbolic links
between any possible files (this represents the actual situation
in UNIX-like systems); such low level actions are turned
into internal synchronizations by the hiding operator/L. Now
programP synchronizes with the updated system and receives
as a file descriptor associated to /tmp/config the valuestrp
which points to /etc/passwd. In the next stepP overwrites the
file descriptor associated to /etc/passwd and flaws the system.
This indeed cannot happen inS\L∪Hr since both low actions
are blocked and by the assumptions we did onP (actually on
L(P )) saying thatP does not overwrite /etc/passwd and does
not setup a link from /tmp/config to other files. More formally,
we have that there isv ∈ V s.t.write H strp v ∈ T (S/L\Hr)
andwrite H strp v 6∈ T (S\L∪Hr).

Unfortunately in this case no reasonable workaround are
available to patch the system [16] (block linking in /tmp is
probably not feasible). This suggests that using files with
predictable names and without subsequent checks in the spec-
ification of programs that will run as privileged is highly not
recommended.

Summing up, we showed that the propertyNWMC can be
effectively used to verify the safety of of systems where trusted
parts as the file system interact with privileged processes
possibly containing back-doors or vulnerabilities.

VI. D ISCUSSION

In this paper, we studied how to prevent intrusions in CCS-
like models representing the security-related behaviors of con-
current systems. We interpret an intrusion as the sequence of
steps which breaks the mandatory security policy which denies
to unprivileged users to have both direct and indirect write
access to sensible resources. We introduced a non-interference
property based on traces which is valid for models satisfying
this policy. The property may be decided by using standard
concurrency tools, and does not need previous knowledge of
the vulnerabilities of the system. We drew two examples of
how to use the property to verify the security-related behaviour
of abstract systems where it is supposed that unprivileged
processes cannot directly or indirectly have write access to
privileged resources.

We took inspiration from [12] in modeling the behaviour of
abstract systems to verify security properties . In [12], [7], the
authors define security properties trough an intentions model

which captures the intended outcome of executing every pro-
gram. Their implementation find vulnerabilities as violations
of invariant properties, e.g. in all states the password file is
not overwritten. The authors focus on the automated analysis
of interactions among the system components, which in usual
vulnerability analysis techniques is done manually. We adopt
the same model-based approach to vulnerabilities analysis,
while we express security properties as mandatory access con-
trol policies. The use of non-interference let us discover both
direct violations, and attacks exploited by means of trusted
malicious programs containing back-doors. Moreover, we do
not require any previous knowledge of the vulnerabilities of
the system modeled.

Focardi and Gorrieri [22] introduced non-interference prop-
erties of CCS-like models where actions have different se-
curity levels. The authors studied the behaviour of models
representing small components of a system, e.g. a buffer cell,
by means of trace-based and bisimulation semantic proper-
ties. The approach based on bisimulation properties is more
discriminating, and can discover attacks which exploit covert
channels; however, the study of bisimulation properties is
more expensive, and the decidability of the bisimulation non
interference is unknown. In both cases the aim is to establish
if no information flows among the security levels of the model
analyzed. We argue that this requirement is too strict for
models of actual systems where it is practically infeasible
that no information flows from the low to the high level.
We weakened this condition by permitting flows that do not
comport any modification of the high resources.

The use of types to enforce access control in abstract
mobile systems have been recently an active field of research,
e.g. [33], [34], [35], [36], [37]. Particularly, in [36], [37]
it is shown how non-interference can be enforced by using
type systems. Extending our approach to a typed analysis
of configuration vulnerabilities appears a promising field of
research. We reserve to future work an integration among the
two approaches.
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