Preventing Intrusions through Non-Interference

Marco Giunti
Dipartimento di Informatica
Universita Ca’ Foscari di Venezia
giunti@dsi.unive.it

Abstract—The ability to prevent and to detect intrusions in Our interpretation is that both intrusion prevention, and
computer systems is often heavily conditioned by having some jntrusion detection, are special cases of access control; given a
knowledge of the security flaws of the system under analysis. gec ity policy for the system, then an intrusion is the sequence

Discover intrusions is particularly hard in concurrent systems, f st hich directl indirectly breaks th I
which contain several interactions among their components; of steps which directly or indirectly breaks the policy (e.g.,

suspicious interactions are usually studied manually by security Similarly to [9], [10]). For instance, the malicious interaction
experts which need to establish if they are dangerous. In this depicted above is an intrusion for a system where is supposed
paper, we present an automated method to prevent intrusions in that unprivileged processes cannot write the password file.
concurrent systems that does not require any previous knowledge Indeed, an unprivileged user may indirectly avoid this pro-
of the flaws. We study the behaviour of an abstract model of the . .. L . .
system that captures its security-related behaviors; the model h'b'_t'on by means O_f a privileged program which act§ like a
contain the trusted components of the system such as the file Trojan Horse Such internal attacks, usually hard to discover
system, privileged processes, etc. We then check all possiblewithout any previous information, can be actually find out by
interactions with unprivileged processes to decide if the system using non-interference [11].

contain security flaws. This is accomplished by introducing a In this paper, we develop a method to prevent intrusions

non-interference security property which holds for models where that d t . . K led f the fl f
unprivileged processes do not have direct or indirect write access al aoes not require any previous knowleage of the flaws o

to resources with an high security level. The property is based the system under analysis. The technique we propose may
on traces and can be decided by using standard concurrency discover unknown attacks, and apply to a wide range of
tools. Our method apply even to models containing information concurrent systems; these are indeed essential requirements
flows among their components; this wms out to be a necessary ¢, foyndations for discovering intrusions [8]. We adopt
condition for analyzing interactions of actual computer systems, - .
where privileged processes usually have both read and write the_ model-k_Jase_d approach [12], [7] _to vulnerability analysis,
access to low resources. which consists in analyze the behaviour of an abstract model
of the system that captures its security-related behaviors;
l. INTRODUCTION the model contain the trusted components of the system
In the last years, several techniques have been develogeadh as the file system, privileged processes, etc. To prevent
to the purpose of guarantee the security of computer systetinsernal attacks of apparent honest privileged programs hid-
Among these, two of the most used by security administrang malicious code, we check all possible interactions with
tors are intrusion detection and vulnerability analysis. In thenprivileged processes, and we decide if these interactions
literature, intrusion detection refers to a range of techniquesmport security flaws. We identify flaws as direct or indirect
that discover run-time attacks to computer systems by meanslations of the mandatory policy which denies to low level
of analysis of system logs [1], [2]. A common approacprocesses to have write access to resources with an high
consists in parse logs to find attack patterns picked fromsacurity level; roughly speaking, this policy may be called
database of signatures, e.g. [3], [4], [5]. Vulnerability analysithe “no write up” policy. We characterize secure systems by
instead, concerns with the problem of identify security flawseans of a non-interference [11] security property caNean
of computer systems, e.g. [6], [7]. We call this techniqué/rite-Modifiability on Compositionswhich holds for those
intrusion prevention since it focuses on preventing attackssystems that, when composed with unprivileged processes,
rather than on detecting attacks at run-time. do not change their behaviour w.r.t. modification of sensible
Unfortunately, such techniques rely on previous knowledgesources; that is, in these systems low processes may not
of the security flaws arising in computer systems. For practiadirectly and indirectly write high resources. The property is
purposes, such flaws are often expressed as traces consideasgéd on traces and can be decided automatically by using
dangerous w.r.t.the system under analysis, and no genatahdard concurrency tools (e.g., [13], [14]); in the presence
definition for undesired behaviour is provided. For instancef a violation, a counter-example is given: this may be
most signatures-based detectors and vulnerability tools contageful to generate traces of unknown attacks. Our approach
patterns of some interaction among unprivileged users aapply even to models containing information flows among
privileged programs which causes the system’s password fie components; this turns out to be a necessary condition
to change, but they not explain which general property fer analyzing interactions of actual computer systems, where
unsatisfied when the interaction occur. The need of foundatigmsvileged processes usually have both read and write access
for these techniques is thus emerging as a central issue [8fo low level resources. We use the property we proposed to

analyze two abstract models of UNIX-like systems that contawrite up”; the Biba policy is the dual of the standard secrecy
known vulnerabilities [15], [16]. policy [17]. We refer toNon Modifiability on Compositionas
to the property requiring that the high view of the system does
not change in presence of low users, that is, this property is
In general, in a system, information is typically protectethe dual of Non Deducibility on Compositions.
via some access control policy, limiting accesses of entitiesUnfortunately, Non Modifiability on Compositions is of lit-
(such as users or processes) to data. There are different letlelielp in the analysis of models of actual operating systems,
of flexibility of access control policies depending on thevhere itis practically infeasible that no information flows from
possibility for one entity to change the access rights of its owow to high. As a matter of fact, in such systems privileged
data. Here we will consideanandatorypolicies [17] in which programs have often read access to low, potentially insecure
entities have no control on the access rights. Unfortunatetgsources; it turns out that most models of these systems do
even when direct access to data is forbidden by (strongdt satisfy Non Modifiability on Compositions. Since our aim
security policies, it might be the case that data iadérectly is to discover potential intrusions in abstract models of actual
leaked or modified by trusted programs which hide insid®g/stems, we need to distinguish the observable behaviour of
some malicious code. systems where information flows from low to high, and thus
The necessity of controlling information flow as a wholave often cannot use this property.
(both direct and indirect) motivated Goguen and Meseguer inFor these reasons, we introduce a weaker security property
introducing the notion ofNon-interferenceg[11], which for- which takes care of different types of access, i.e. distinguish
malizes the absence of information flow within deterministiccad from write accesses. The property holds for models
systems. Given a system in whiatonfidential (i.e., high where unprivileged users do not have write access to sensi-
level) and public (i.e., low level) information may coexist, ble resources, both directly and indirectly, i.e. by exploiting
non-interferenceequires that confidential inputs never affectalicious code of trusted programs. We verify this invariant
the outputs on the public interface of the system, i.e., nevgy checking if the high behaviour w.r.t. write actions of the
interfere with the low level users. If such a property holdsnodel does not change in the presence of any possible low
one can conclude that no information flow is ever possibfgocess. The property is defined in a trace-based setting, and
from high to low level. A possibilistic security propertyenjoys a characterization which permits to avoid universal
can be regarded as an extension of non-interference to nqoantification on low processes, making the property suitable
deterministic systems [18]. Various such extensions have bdenactual systems analysis. The main drawback of the choice
proposed, e.g. [19], [20], [21], depending on the notion aff a trace-based semantics model is the inability to detect
behaviour that may possibly be observed of a system, i.e., theadlocks, which seems to us less significant in the scenario
semantics model that is chosen to describe the system; mastler consideration.
of these properties are basedtracesor execution sequences. To illustrate our technique, we draw an example of a core
In [22], Focardi and Gorrieri express the concept of norile system process. We use a CCS-like language where the set
interference in theSecurity Process Algebrg8PA) language, of visible actions is partitioned in the higtH(and the low
which is an extension of CCS [23] where the visible actiond.) level as in SPA, but each of these sets is in turn partitioned
are partitioned in two sets, high and low. In particular it the read and the write subset; actions and co-actions belong
[22] the authors introduce the notion bfon Deducibility on to the same subset.
Compositions a systemFE is “non deducible” if what a low We abstract a file system as a process that change it's state
level user sees of the system is not modified by composiiigand only if executes write actions.
any high level process with the system. The low vision of
the system is expressed by means of trace-babdHoaC) F
or bisimulation BNDC) semantic properties, with important F’
dlffgr(_ences. '_[he former pro_perty may b(_a expressed eqwvaleql:"%ecuting thewriter, action caused’ to move to stater”,
avoiding universal quantification, while the latter need tQ

consider all possible high processes. Indeed the decidabi |nd F" exhibits a new actiomead2 that was not available
P gn p ' I F'. Sinceread2y has an high security level, this represent

of BNDC is still an open problem, although proof techniques flow from the low to the high level. However, since the
for a large class of processes have been proposed [24], [25]. . _ o '
e . . igh behaviour ofF" w.r.t. to write actions does not change by
The whole approach is similar to testing equivalence [26]. . .)
executing low actions, we conclude th&tis safe.

Non-Interference

writer, F' + readly . F
read2g.F’

(1> 1>

Preserving the integrity of data The paper is structured as follows: in Section Il we present

In this paper we focus on integrity policies, i.e. policiesome basic notions on the process algebra"SP3ection I
which care about improper modification of data, rather tharontain the definition of a SPA model for a small subset of a
secrecy policies, i.e., policies which prevent unauthorizeadNIX-based system which contains a well-known vulnerabil-
disclosure of data. In the literature, the standard mandatadty. In Section IV we present thdlon Write-Modifiability on
integrity policy is known as the Biba model [27] and mayb€ompositionssecurity property, and we verify that the SPA
roughly summarized through the rules “no read down”, “nmodel presented in Section Ill is flawed. In Section V we

study recent attacks based on symbolic link vulnerabilities. Finally let=> be a multi-step transition relation such that if
Comparison with related work and a few concluding remarks(5)* % (5)*E’ thenE == E'.If v = a4, . . . a,,, We write

are reported in Section VI. E =L to mean that there exisf8’ s.t. E =% ... 2% E’. The
set of (weak) traces dt, T'(E), is defined as followsI'(E) =
Il. READ/WRITE SECURITY PROCESSALGEBRA {ye£* : E=L}. Two processes ateace equivalentnoted

We present the syntax and the semantics of our modél ~r Es, if T(E:) = T(Es).
language, th&®ead/Write Security Process Algel§&PA™, for 1
short). The SPA' language is a variation of CCS [23], where
the set of visible actions is partitioned into two levels, high and
low, which are in turn partitioned into two access type set
read and write, in order to specify multi-level systems wit
read/write access control. SPAsyntax is based on the sam
elements as CCS that is: a g&bof visible actions containing
input actionsa, b, ... and output actionsa, b, ...; a special
actionT which models internal computations, i.e., not visibl
outside the system; a complementation functionl — L
such thata = a, for all a € L. Act = L U {7} is the set
of all actions The set of visible actions is partitioned int

. M ODELING SECURITY-RELATED BEHAVIOUR OF
SYSTEMS

We define a SPA model of a small subset of a UNIX-
ased system which will exhibit a vulnerability [15], [12]
ue to /etc/utmp, a file containing the association between
ogged users and related terminals. We model the security
behaviour of the trusted components of the system, which are
a simplified file system process, the mail utildtgmsatand an
user sending mail. To ensure that our method is effective, we
need to take care to assign actions to the appropriate subsets.
o0 this aim, we follow these guidelines.

four setsAct{, i € {H,L}, ¢ € {r,w} such thatAct{ = « Security levels

Act¢. Moreover, the setsict¢ are disjoint and they covef: (i) system programs execute both low and high actions
Neegrayicimry Acti = 0 andU.cq e pm.ny Act = L. (||) privileged programs execute high.actions

We indicate with Acty,Acty, respectively the setict} U (iify normal programs execute low actions

Act?, and the setdct’y U Actl. » Access mode

(iv) an action belongs to the write subset if its synchro-
nization comport the file system state to change
(v) an action belongs to the read subset if its synchro-
E:=0|aE|E+E|EE|E\v|E[f]|Z nization does not comport the file system state to
change
wherea € Act, v C L anda € v iff a € v, f: Act — Act The code of the file system is given in the value-passing
is such thatf(a) = f(a), f(7) = 7, f(Act]) C Acti U{T} SPA™: the values we pass abstract contents and files names;
for eachc € {r,w} andi € {H, L}, angZ is a constant that we will use V to indicate the finite set of values, and
must be associated with a definitigh= F. we suppose thal” contain a valueg representing empty
The syntax of processes is standard for CCS and needscoatents. We lefowd, utmp, ttyabbreviate respectively the
comments; we will abbreviate often the procds$ with E. values /etc/pwd, /etc/utmp, and /dev/tty, and we fet=
For the definition of security properties it is also useful thépwd, utmp, tty, mailbox}, F C V. We restrict to this

hiding operator, /, of CSP [28], which can be defined as set of files only for convenience; what follows extends to
def

relabelling as follows: for a given setC £, E/v = E[f,] arbitrary finite set of files. The set of (value-passing) la-
where f,(z) = z if 2 ¢ v and f,(z) = 7 if z € v. In Dbels is{writey, writer, ready,readr}; the translation of
practice,F /v turns all actions irv into internal7’ s. For the each of this label in the pure calculus give raise to actions
sake of brevity we will write ofterZ\ ;, to indicate the process belong to the appropriated subsets. We model a simplified
E\ 4ct, - We denote by the set of all SPA processes. We let file system procesg’s(s) as reported in Table IIl; the pro-
L(F) denote thesort of E, i.e. the set of the actions occurringcess regulates read and write accesses to the set of files

syntactically inE, E € £. We indicate with;, the set offow represented by". The variables indicates the actual val-
processesE;, 2 (Ec&: L(E)C Acty U{r}}. ues contained in files, i.e. the values which are available

through the actionsead,(f, extract(s, f)); the states may

terms of Labelled Transition Systemthe inference rules are €Nange by means of the functiarpdate, which writes a
reported in Tab. | and are standard for CCS. The syntax of tBl¥en content on a filef < . To illustrate, lets, be the
value-passingversion of SPAY is reported in Tab. II; value state where /etc/utmp contains the value /dev/tty; we have
expressions:, ..., e, need to be consistent with arity of actNat 3(50)}‘30;'[51'”5 the thread ., , read l_utmptty. If
tionsa and of constantsl, respectively, wheredsis a boolean pg(s) """, poo)y then the reduct contains

expression. A constand is defined byA(x1, ..., z.,) “E the thread) ", ;; read_l_utmp_new.

whereE is a value-passing SPPAagent that must not contain In the file system, we implement the mandatory access
free variables excepty, ..., z,,, Which need to be distinct. As control policy which we want to enforce; roughly speaking, the
described in [23], value-passing calculus semantics is givpalicy is expressible as “no write-up”, that is, no controls on
by translating the calculus into the pure calculus. the read accesses are needed to enforce this policy, while low

The syntax of SPA terms (or processesis defined as
follows:

The operational semantics of SPAprocesses is given in

E1 % E Ey % E
Prefix - Sum 1 27"

aE%E E\+Ey % B E1+ Ey % EY
E\ 5 E| Ex 5 E)
E1|B2 % E}|E E1|B> % Ep|E) E%E
Parallel 1Bz = al‘ 2 N 1Bz = Ei|E; Restriction j— if a v
E\, — E| E; — FE) cr E\v— E'\v
a
E1|E> N E'|E}
‘ ESE ESE A
Relabelling T o S— Constant —— fZ=FE
E[f] =" E'[f] zZ%E
TABLE |
THE OPERATIONAL RULES FORSPA™

a(zi,...,zn).E, aler,...,en).E, 7.E Prefizes

if bthen EelseE Conditional

Ale1,...,en) Costant

Yicr Bis Er1|E2, E\v, E[f] Sum, Parallel Composition, Restriction, Relabelling

TABLE I
VALUE-PASSING SPA™ SYNTAX
Fs(s) 2 Write(s) + Read(s) Jete/utmp | mailbox | /etc/passwd | /dev/tty
~ L rw rw r r
Write(s) = > cp gwrite(zy,xe).if we ACL(l,zy) H ryw r,w r,w r,w
then F's(update(s,zf,xc))
elseFs(s) TABLE IV
Read(s) A ZleL,H,feF ready (f, extract(s, f)).Fs(s) THE ACCESS CONTROL LIST(ACL)
TABLE Il
FILE SYSTEM

Comsat 2 Y men\g read-H-mailbox_m .

.)) > ey read_H utmp_t . write_H t_m.Comsat
processes cannot write high resources. In the value-passing

version of the system, we enforce the no write-up policfhe model of the system is the process
by means of the access control matrix defined in Tab. IV. A
Each entry of the matrix may contamw or both; that is, if S = Fs(so) | Comsat | U

ACL(l, f) containr,w then the levell has the capability 10 where U = Y, _,, write_H_mailbox_v represents an high
both read and write the fil¢. We build the matrix by following yser process writing some valuein the mailbox. Remember
a standard method [17] consisting in assigning security levelgt in the states, the terminal file/etc/utmp contains the

to files; according to the scenario we are modeling, /etc/passwglue /dev /tty; the value of the other files is irrelevant.
and /dev/tty have an high security level; the labels in the

matrix express which permission is granted on files to security IV. NON-INTERFERENCEPROPERTIES
levels. As introduced, this access control method block directThe NDC [22] security property aims at guaranteeing that
attempts of low users to write high resources; indirect accessesinformation flow from the high to the low level is possible,
exploited by using back-doors of trusted programs, or baden in the presence of malicious processes. The main moti-
configurations of the system, need to be analyzed through neation is to protect a system also from internal attacks, which
interference. We will see how to do that in the next sectioncould be performed by the so call@dojan Horseprograms,

i.e., programs that are apparently honest but hide inside some
The comsat server checks the mailbox for incoming mail amdalicious code. We refer to the converse security property of
prints the new message on the terminal in which the userN®C, which denies information flows from low to high, as
logged on; this information is retrieved from /etc/utmp. Wéo the Non Modifiability on Compositions (NM@r short).
let Comsat read and write labels belong tH since in the PropertyNMC is based on the idea of checking the system
scenario under consideration comsat is a privileged prograagainst all low level potential interactions, representing every

possible low level malicious program. In other words, a systefalone, and thus the reducts.®f;, have /etc/utmp containing
E is NMC if what a high level user sees of the system is nahe init valuetty.
modified by composing any low level procelsto £. NMC

may be used to verify if a system respects the Biba pO|i$¥ThiS example shows the inadequacy, in such cases, of the
MC security property. For instance, if comsat specifica-
[27] w.r.t. both direct and indirect information flows, that is y_propery P

. . tion was consisting in reading on which terminal is logged
in NMC systems both high processes do not read low resourtfig recipient of a new message, this system would be still
an\(,jvloyvtprgcesses do nott \t/_/nte h\'/?/h r e;lou:ce\:ls\ﬁ h ¢ considered unsafe. But it is clear that such system would be
£l € introduce sol\r/Te an) a 'OTIS' me; éca € ‘E € S? normally acceptable by most security administrators; indeed
of low processes. More formally, lel(E) denote thesort o no violations of the integrity of the system could happen if

E, i.e. the set of the (possibly executable) actions OCCUMMR msat does not use the information available in the terminal

syntactically inE, £ € & then the set of low level agents 'Sfile to execute write actions. As a matter of fact, we observe

defined ast; = {E € £ : L(E) C Acty U {r}}. We have thatNMC is too strong for the security analysis of models of
the following definition. actual systems, and thus is of little help.

Definition 4.1 (Non Modifiability on Compositions)et To capture.this situations th.at are very likely in modern
Ecé. systems, we introduce a security property weaker tRMC
called Non Write-Modifiability on CompositionéNWMC for
short). The idea is to check systems by analyzing the high

level behaviour w.r.t. write actions, rather than on all high level

The main obstacle to a practical use of safety properties ﬂ%\%t[ions (in fact write and read actions). A systé&his NWMG
consider all possible attackers is the universal quantification or every low level procesdl, a high level user cannot

processes; indeed the decidability of the bisimulation versi%rilstin . . .
. . . . guish thewrite behaviour ofE from the one of(E|II),
of NDC (and in turn of the bisimulatioNMC) is unknown i.e., if IT cannot interfere with the high level write execution

[22]. The use'of Igss discriminating propertles based on tr"?‘coefsthe systemE. In other words, a systent is NWMC if
permit to avoid this problem by supplying a characterizati

L) hat a high level user sees of the system with respect to write
which is decidable by standard concurrency tools [22], [14]. E}gctions is not modified by composing any low level process

decide if a systems iISIMC, we avoid universal quantification E

on low level processes by representing all possible low level '

interactions by relabelling low actions ta The intuition is Definition 4.4 (Non Write-Modifiability on Compositions):
that all possible backdoors or bugs of the system exploitaihiet £ € &.

by low level attacker; are now disclosed; indeed the in_tera}ctio% e NWMC ifft Y1 e&,, E/\g ~r (E|I)
with low processes is no more needed as synchronization of

actions and co-actions has been replaced by internal reductionas in the case oNMC, it is fundamental to supply a proof

Ec€NMC iff VII€& .E/p~p (E|I)\,

\LUHr

Theorem 4.2:E € NMC < E/; ~r E\[, . technique forNon Write-Modifiability On Compositions
Proof: The proof follows the same rationale of the proof Theorem 4.5: E €¢ NWM(C < E/\u ~7 E\ronr -
of Theorem 4.5, but is simpler. Proof: Let E € NWMC. Thus E/\pg ~r (E | O)\run-

ﬁpr the specificll = 0. FromT'(E | 0)\Lunr) = T(E\Lunr)

we infer E/p\p- ~r E\rum-. For the if direction,

let £/ \gr ~r E\pumgr - We have thatT'(F\p,nr) C
Example 4.3:S ¢ NMC. This result can be established byr'(E | II)\ug- and in turnT(E/\gr) € T(E | II)\Luar-

checking if holds Theorem 4.2 by means of a concurrency tobhe opposite direction also holds; indeedlifand £ synchro-

which accepts the CCS syntax, e.g. [13], or more directly mize on some action, this is a low action as only such labels

using the CoSEC tool [14]. We illustrate the intuition of whysyntactically occur ifl. E/.\ g~ can do this internal reduction

S is not NMC. In processS the states, of the file system since the low co-action participating in the synchronization is

may change by executing write requests on low resourcestabelled tor in E/;, .

this provokes the high behaviour &f and particularly of

F's(sp) to change. Similarly to the example of the introductior}\l

writing /etc/utmp with some value causes the filesystem to

change the state, as low users have write rights on the Proposition 4.6: NMC C NWMC

terminal file (i.e.W S AOL(L, /etc/utmp)). Consequently, Proof: Let E € NMC. By definition, for allll € &;,, we

in the state reached after the reduction, is visible an aCtiﬂaveE/L ~7 (E | II)\1. Since trace equivalence is closed
read_-H utmp-v originated by the file system in order to,qer restriction [23], we infe/;\ g ~r (E | I\ \ g+
communicate the new contenbf /etc/utmp to high processes.nat is E ¢ NWMC. To see that the inclusion is strict
More formally, we have that there is € V \ tty st. gnsider the example of the introduction:

read_H _utmp_v € T(S/1)) andread_H utmp_v & T(S\L). N A

Intuitively this holds since no processes overwrite /etc/utmpin = writep.F' +readly.F F' = read2y . F’

Based on this (strict) notion of security, we may check
the file system model defined in Section Il is indeed safe.

The following proposition formalizes the intuition that
WMCis less discriminating thahMC.

We have thatead2y € T(F/L) whileread2y ¢ T(F\1); by UNIX-like systems often privileged programs create files in
Theorem 4.2 it follows tha¥' ¢ NMC. FromT(F'/\x-) = a temporary directory like /tmp using predictable filenames
@ =T(F\runr) and Theorem 4.5 we infeF € NWMC. without checking whether a file with that name already exists.

Once we have weakened our notion of security concentrMalicious local users can therefore create a symbolic link to
ing on the violations of the integrity of the system, we check flleﬂt]hat will be_tused by SUCS :)rot?]rarfr_}s. The_tmaltl)m_ous use(;
if the system of Section Ill contains potential security flaw an then overwrite or append fo the fiie as It 1S being use
We find out that actually that system mounts attacka H-5]; Y the privileged program. We show how such attacks can be
indeed any privileged file ([15] mentions /etc/passwd) may kgéscovered by using the NWMC property.

overwritten by comsat if a malicious user subverts the termin IT0 this aim, we _ex’Fend the file system O.f Ta_b_le V_to permit
file /etc/utmp. the use of symbolic links. We abstract a simplified file system

where paths are associated to file descriptors. To read (write)

Example 4.7:5 ¢ NWMC. A counter-example is that 3 file, one first requires the file descriptor associated to the
S/ \nr has tracewrite_H pwd-v, while S\ Lux- has not. To path, then directly reads (writes) the file descriptor; the read
illustrate, notice that when low actions are blocked we hayeyrite operations succeed only if the process may access the
the invariant that in all states /etc/utmp contains /dEV/tty; thfﬁe descriptor_ The sef' D is the finite set of file descriptors
holds since the specification of the system does not incluggailable. The access control list now defines accesses from
any process overwriting such file. Thus only write co-actionsecurity levels to file descriptors, rather than to paths. We
write_H_mbx_v or write_H _ttyv are observable; the formerconsider two files/etc/passwd and /tmp/con fig and we let
represent mail sended Y, the latter originate from Comsat g be the initial state where /tmp/config and /etc/passwd have
printing mail on the terminal. Conversely, when low actiongespectively file descriptostrc and strp, which are different.
are hidden, we can reach a state where the file system malgs jet high processes to read and write bsthc and strp
available a portread_H _utmp-pwd which corresponds to while low processes can read both file descriptors.
communicating that /etc/ utmp contains the value /etc/passwithe file system defined in Table V formalize the intuitions
To see that, remember that low level users can overwri@ove. We use a value passing chardiebk to set symbolic
letc/utmp by synchronizing with the file system; in this casghks among paths. i.e. to assign the file descriptor of the target
such synchronization is turned into an internal reduction Q)éth to the file descriptor of the source path. Pure actions
the hiding operator/,,. Comsat synchronizes with the filegptained from the translation oflink belong to the write
system though the poricad_H _utmp_pwd and subsequently sypsets, as this operation comport a change of the state of the
exhibits an actionvrite_H _pwd-v that is not visible when low system. To obtain the file descriptor of a path, a value passing
actions are blocked. Particularly, wheris the value root::0:0, channelopen is used; we let pure actions obtained fropen

Comsat set root's password to blank [15]. To conclude, Wg belong to the read subsets, as the execution of such actions
verify that the solution proposed in [15] to this flaw actuallyjo not comport a system change.

recover the security of the system. Indeed once patched the
system by protecting file /etc/utmp against malicious users,

i.e. by setting ACILL, /etc/utmp) = r, we actually obtain Fs(s)
that S/ \u- ~r S\runr; this can be automatically verified 7,5,
through the Concurrency workbench [13]. By Theorem 4.5 we
obtain that the patched system is NWMC. SetLink(s)

Write(s) + Read(s) + Link(s)

SetLink(s) + GiveLink(s)

>ier, m stinky(zs, zq).F's(updateFD(s, s, 24))
2ierL,u,ser opery (f, extractFD(s, f)).F's(s)
Yiern,m write (Ta, ze) -

if we ACL(l,zq) then Fs(update(s, a,z.))
elseF's(s)

iweLink(s)

> 1> 1> > 1>

Applying our method, we have thus found that the modeF
introduced is flawed, since a low user of the system may’rite(s)
indirectly break the “no write up” mandatory system’s security
policy obtaining that the high level password file (in fact any
privileged file) is overwritten. Using a security property less
discriminating tharNMC gave us the possibility to individuate
the core of the intrusion. That is, by checking if the system
satisfies thé&NWMC property we individuated the action which
exactly cause the security policy to be broken. Moreover, we

verified that the solution suggested in [15] actually patches tWe consider a progranP € £, writing some content: on
vulnerability. the file /tmp/config

Read(s) >ier, H.aca Teadi(a, extract(s, a)).F's(s)

TABLE V
FILE SYSTEM WITH SYMBOLIC LINKS

V. SYMBOLIC LINKS VULNERABILITIES

In this Section we draw another example of the use of
the NWMC property to prevent intrusions arising in the
specification of concurrent systems. and such that progranP both does not write the file

Many recent attacks (e.g, [16], [29], [30], [31], [32]) exploitdescriptor strp and does not setup a symbolic link from
the use of symbolic links to overwrite sensible files. In mangmp/config to any other file. More formally we assume

PEP | Z open_H _/tmp/config/_a.write_H a_c
a€FD

(Uypey write_H _strp_v U,ev slink_H_/tmp/config-v) N which captures the intended outcome of executing every pro-
L(P)=2@. gram. Their implementation find vulnerabilities as violations
The model of the system is the proce&é Fs(so) | P. of invariant properties, e.g. in all states the password file is

not overwritten. The authors focus on the automated analysis

We follow the approach of Section IV and we US®YMC of interactions among the system components, which in usual

property to check if the system defined above contains viokinerability analysis techniques is done manually. We adopt

tions of its integrity. the same model-based approach to vulnerabilities analysis,

Example 5.1:We use Theorem 4.5 to show that ¢ while we express security properties as mandatory access con-

NWMC. As in the previous flaw, the presence of a privilegeHOI policies. The use of non-interference let us discover both

process acting as a Trojan Horse is fundamental. IndeéiH,eCt violations, and attacks exploited by means of trusted
S/t \rr may evolve to a state where a symbolic link fro

pinalicious programs containing back-doors. Moreover, we do

Jtmplconfig to /etc/passwd is setted up. Intuitively this holddCt réquire any previous knowledge of the vulnerabilities of

since the definition of"S(s) let low users setup symbolic links ("€ System modeled. =~ .

between any possible files (this represents the actual situatiof cardi and Gorrieri [22] introduced non-interference prop-
in UNIX-like systems); such low level actions are turnegties of CCS-like models where actions have different se-
into internal synchronizations by the hiding operatgr Now curity levels. The authors studied the behaviour of models

programP synchronizes with the updated system and receiviPresenting small components of a system, e.g. a buffer cell,
as a file descriptor associated to /tmp/config the vaite by means of trace-based and bisimulation semantic proper-

which points to /etc/passwd. In the next smverwrites the ties. The approach based on bisimulation properties is more

file descriptor associated to /etc/passwd and flaws the syst&igcriminating, and can discover attacks which exploit covert
This indeed cannot happen ..z since both low actions channels; however, the study of bisimulation properties is
are blocked and by the assumptions we didfogactually on more expensive, and the decidability of the bisimulation non
L(P)) saying thatP does not overwrite /etc/passwd and dodgterference is unknown. In both cases the aim is to establish

not setup a link from /tmp/config to other files. More formally! N0 information flows among the security levels of the model

we have that there is € V' s.t.write_H strp-v € T(S/1\) analyzed. We argue that this req_uir_ement i_s too_strict_for
andwrite H strp o & T(S\ o). models of actual systems where it is practically infeasible

that no information flows from the low to the high level.

Unfortunately in this case no reasonable workaround ayge weakened this condition by permitting flows that do not
available to patch the system [16] (block linking in /tmp igomport any modification of the high resources.
probably not feasible). This suggests that using files with The use of types to enforce access control in abstract
predictable names and without subsequent checks in the spaebile systems have been recently an active field of research,
ification of programs that will run as privileged is highly nofe.g. [33], [34], [35], [36], [37]. Particularly, in [36], [37]
recommended. it is shown how non-interference can be enforced by using

Summing up, we showed that the propeNyVMC can be type systems. Extending our approach to a typed analysis
effectively used to verify the safety of of systems where trusted configuration vulnerabilities appears a promising field of
parts as the file system interact with privileged processgssearch. We reserve to future work an integration among the
possibly containing back-doors or vulnerabilities. two approaches.

VI. DISCUSSION REFERENCES

) In this paper, we St_Ud'Ed how to_prevent |ntru5|on_s In CCS[1] J. P. Anderson, “Computer security threat monitoring and surveillance,”
like models representing the security-related behaviors of con- Fort Washington, Pennsylvania, Tech. Rep. 79F296400, April 1980.
current systems. We interpret an intrusion as the sequence [8f D: E. Denning, "An Intrusion-Detection modellEEE Trans. on Soft-
it hich breaks the mandatory security policy which deni ware Engineeringvol. SE-13, no. 2, pp. 222-232, 1987.
steps W. '. y h yp y] : Eﬁ K. llgun, R. A. Kemmerer, and P. A. Porras, “State transition analysis:
to unprivileged users to have both direct and indirect write A rule-based Intrusion Detection approachEEE Transactions on
access to sensible resources. We introduced a non-interferenceSoftware Engineeringvol. 21, pp. 1-22, March 1995.
. . . . b4] M. Roger and J. Goubault-Larrecq, “Log auditing through model
Pf_ope”Y based on traces which is Val_'d for mOde_IS satisfyin checking,” in Proc. of 14th IEEE Computer Security Foundations
this policy. The property may be decided by using standard Workshop (CSFW'01), Cape Breton, Nova Scotia, Canada, June 2001
concurrency tools, and does not need previous knowledge of !EEE Comp. Soc. Press, 2001, pp. 220-236. [Online]. Available:
the vulnerabilities of the system. We drew two examples o citeseer.nj.nec.com/rogerollog.html
€ Yy AR g p > ~[5] J.-P. Pouzol and M. Ducass“Formal specification of intrusion signa-
how to use the property to verify the security-related behaviour tures and detection rules,” iRroc. of 15th IEEE Computer Security
of abstract systems where it is supposed that unprivileged Foundations Workshop (CSFW'Q2002. _
. . . | D. Farmer and E. H. Spafford, “The COPS Security Checker system.”
processes cannot directly or indirectly have write access in USENIX Summeri990, pp. 165-170.
privileged resources. [7] C. Ramakrishnan and R. Sekar, “Model-based analysis of configuration

We took inspiration from [12] in modeling the behaviour of vulnerabiles, Joumal of Computer Security (JGSjol. 1/2, no. 10,
pp. — s .

abstract systems to V_erify Security properties -In [1_2], [71, th%ll T. F. Lunt, “Foundations for intrusion detection?.”fioc. of Computer
authors define security properties trough an intentions model Security Foundations Workshop (CSFW’ 02900, pp. 104—106.

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]
[28]
[29]

(30]

(31]

(32

(33]

(34]

J. Zimmermann, L. M, and C. Bidan, “An improved reference flow[35]
control model for policy-based intrusion detection.”"BB$ORICS2003,

pp. 291-308.

C. Ko and T. Redmond, “Noninterference and intrusion detection,” in
Proc. of the 2002 IEEE Symposium on Security and PrivadffEE [36]
Computer Society, 2002, pp. 177-188.

J. A. Goguen and J. Meseguer, “Security Policies and Security Model§37]
in Proc. of the IEEE Symposium on Security and Privacy (SSP'82)
IEEE Computer Society Press, 1982, pp. 11-20.

C. Ramakrishnan and R. Sekar, “Model-based vulnerability analysis of
computer systems,” ifProc. of the 2nd Int. Workshop on Verification,
Model Checking and Abstract Interpretation (VMCAI'98P98.

R. Cleaveland, J. Parrow, and B. Steffen, “The concurrency workbench:
A semantics-based tool for the verification of concurrent systeAGN
Trans. Program. Lang. Systwol. 15, no. 1, pp. 36-72, 1993.

R. Focardi and R. Gorrieri, “The compositional security checker: A tool
for the verification of information flow security propertietfEE Trans.
Software Eng.vol. 23, no. 9, pp. 550-571, 1997.

C. Coordination Center, “Advisory CA-1994-06 Writable /etc/utmp
Vulnerability,” 1994, http://www.cert.org/advisories/CA-1994-06.html.

S. Focus, “Gnu automake symbolic link vulnerability,” 2004,
Gentoo Linux Security Advisory 200404. [Online]. Available:
http://www.securityfocus.com/advisories/6542

D. E. Bell and L. J. L. Padula, “Secure computer systems: Unified
exposition and multics interpretation,” MITRE MTR-2997, Technical
Report ESD-TR-75-306, 1975.

D. Sutherland, “A Model of Information,” irProc. of the 9th National
Computer Security Conferenck986, pp. 175-183.

S. N. Foley, “A Universal Theory of Information Flow,” iRroc. of the
IEEE Symposium on Security and Privacy (SSP’8TEEE Computer
Society Press, 1987, pp. 116-122.

D. McCullough, “Specifications for Multi-Level Security and a Hook-
Up Property,” inProc. of the IEEE Symposium on Security and Privacy
(SSP'87) |IEEE Computer Society Press, 1987, pp. 161-166.

J. McLean, “Security Models,Encyclopedia of Software Engineering
1994.

R. Focardi and R. Gorrieri, “Classification of Security Properties (Part
I: Information Flow),” in Proc. of Foundations of Security Analysis and
Design (FOSAD’'01)ser. LNCS, R. Focardi and R. Gorrieri, Eds., vol.
2171. Springer-Verlag, 2001, pp. 331-396.

R. Milner, Communication and Concurrency Prentice-Hall, 1989.

F. Martinelli, “Partial Model Checking and Theorem Proving for En-
suring Security Properties,” ifProc. of the IEEE Computer Security
Foundations Workshop (CSFW'98) IEEE Computer Society Press,
1998, pp. 44-52.

A. Bossi, R. Focardi, C. Piazza, and S. Rossi, “Verifying Persistent
Security Properties,"Computer Languages, Systems and Strucfures
vol. 30, no. 3-4, pp. 231-258, 2004.

R. D. Nicola and M. C. B. Hennessy, “Testing equivalences for pro-
cesses, Theoretical Computer Scienceol. 34, no. 1-2, pp. 83-133,
Nov. 1984.

K. Biba, “Integrity considerations for secure computer systems,” MITRE
Corporation, Tech. Rep. ESD-TR-76-372, 1977.

C. Hoare,Communicating Sequential Process&sr. International Series

in Computer Science. Prentice Hall, 1985.

SecuriTeam, “Maelstrom symbolic link vulnerability,” 2002. [Online].
Available: http://www.securiteam.com/unixfocus/5SFPOSOUG0I.html
US-CERT, “Redhat linux diskcheck.pl creates predictable temporary
file and fails to check for existing symbolic link of same
name,” 2000, Vulnerability Note VU#570952. [Online]. Available:
http://www.kb.cert.org/vuls/id/570952

——, “gpm creates temporary files insecurely,” 2001, Vulnerability Note
VU#426456. [Online]. Available: http://www.kb.cert.org/vuls/id/426456
——, “Netscape vulnerable to arbitrary file overwriting via symlink
redirection of temporary file,” 2001, Vulnerability Note VU#356323.
[Online]. Available: http://Aww.kb.cert.org/vuls/id/356323

B. Pierce and D. Sangiorgi, “Typing and subtyping for mobile pro-
cesses,"Mathematical Structures in Computer Sciengel. 6, no. 5,
1996.

M. Hennessy and J. Rathke, “Typed behavioural equivalences for
processes in the presence of subtypingathematical Structures in
Computer Sciengevol. 14, no. 5, pp. 651-684, 2003.

M. Bugliesi and M. Giunti, “Typed processes in untyped contexts,” in
Proc. of TGC 2005, Symposium on Trustworthy Global Computieg
Lecture Notes on Computer Science, R. Nicola and D. Sangiorgi, Eds.,
vol. 3705. Springer-Verlag, 2005, pp. 19-32.

M. Hennessy, “The security picalculus and non-interferendeyirnal

of Logic and Algebraic Programmingol. 63, no. 1, pp. 3-34, 2004.

S. Crafa and S. Rossi, “A theory of noninterference for the pi-calculus.”
in TGC, 2005, pp. 2-18.

