Lupin COPES with blockchain consensus

Francisco Santos! Leonardo Santos! Marco Giunti?

Anténio Ravara3* Sim3o Melo de Sousa3®

Inforum
September 6, 2024

LUniversity of Beira Interior 2University of Oxford 3NOVA LINCS

4*NOVA School of Science and Technology ®University of Algarve

Consensus Protocols are challenging

Moderately Complex Paxos Made Simple:
High-Level Executable Specification of Distributed Algorithms*

Yanhong A. Liu Saksham Chand Scott D. Stoller

Computer Science Department, Stony Brook University

Comparing Distributed Consensus Algorithms*

Péter Urban André Schiper
Japan Advanced Institute of Science and Technology (JAIST) Ecole Polytechnique Fédérale de Lausanne (EPFL)
1-1 Asahidai, Tatsunokuchi, Nomi, Ishikawa 923-1292, Japan CH-1015 Lausanne, Switzerland

Paxos vs Raft: Have we reached consensus on
distributed consensus?

Heidi Howard Richard Mortier
University of Cambridge University of Cambridge
Cambridge, UK Cambridge, UK
first.last@cl.cam.ac.uk first.last@cl.cam.ac.uk

In Search of an Understandable Consensus Algorithm
(Extended Version)

Diego Ongaro and John Ousterhout
Stanford University

Changes to (blockchain) protocols may and have led
to vulnerabilities

Ethereum moving to Proof of Stake became open to bouncing

attacks

Ethereum proof-of-stake under scrutiny.

U. Pavloff, Y. Amoussou-Guenou, and S. Tucci-Piergiovanni 2022

Solana halting has been proven to vulnerable to halt with a

single malicious node

Halting the Solana Blockchain with Epsilon stake.
J. Sliwinski et al. 2024

The distance from theory to practice

function propose(c).) proctype proposer(int round; short myval) {
if As: (s,c) € decisions then short hr = —1, hval = —1, tmp;
s’ :=min{s | s € Nt A ;hort h, r, v;
/. J/ o . yte count;
Acd : (s,c) € proposalst decisions}; bprepare (round):
proposals := proposals U {(s',c)}; do
VA € leaders : send(\, (propose, ', c)); :: rec_p(round,count,h,v, hr, hval);
end if :: send_a(round,count,hval ,myval,tmp);
end function od }
Paxos Proposer pseudocode .
Paxos Made Moderately Complex, Robbert van Paxos Proposer in SPIN
Renesse 2019 Model Checking Paxos in Spin, Giorgio

Delzanno et. All 2014

Typically, consensus protocols are:
e described with pseudo code
e verified with idealised languages

e implemented with mainstream languages

COnsensus Protocols Evaluation and Simulation (COPES)
Aim
e Support evaluation and validation by simulated executions

e Detect/check vulnerabilities by running extensively (many

experiments, run many times)

COnsensus Protocols Evaluation and Simulation (COPES)

Aim

e Support evaluation and validation by simulated executions

e Detect/check vulnerabilities by running extensively (many

experiments, run many times)

Pipeline for developing and analysing prototypes of consensus

protocols

1.

Specify in a declarative event-based DSL with well defined
semantics

Analyse the specification

Compile (in proved correct-by-construction way) to a
mainstream language

. Run the code on a simulator / emulator

Lupin

Domain Specific Language (DSL) to develop consensus
mechanisms

Foundations written in formal language (Coq)

Implementation guided by formal specification

Generates OCaml code runnable in consensus simulators (E.g.
MOBS COPES)

Example: formal semantics of receive block

E = {id = i, received_blocks = br, chain = bc, ...

¢ = neighbours i m = Block{b, ...}
mxceM me br valid(b)

E’ = E {chain = bc + m, minting = true, ..

3

(RcvVALIDB) Py
M@E o> N, —— MQ@E' > N;

M is the mailbox

E is the entity

N; is a role with identity /

c is a set of channels abstracting the neighbours of /

Lupin implementation of rule

| MINER + receive Block from neighbours as msg =>
if contains msg entity.chain do
if valid msg do
entity.chain := add msg entity.chain;
entity . minting := true;
end
end

Semantic analyser

Type checking, verification of conditions in simulation

Protocol simulated in functor-based Virtual Machine

Each node evaluated at each execution step

Ending on consensus or error (rules never executed), discover
potential deadlocks and livelocks

Example: building blocks on alarm

rings

© 0N U A WN

R I I e S S S
NHRO©OW®®NOUD_WNRO

File .lue
id @ int
blockchain : list block

File .lum

Block {

id @ int

hash : string
¥

File .lun

Entities = 1..128

Topology =
PartiallyConnectedUndirected

File .lup
protocol = Test
roles = MINER

RUN {
| MINER + spontaneously =>
if entity.id = 1 do

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Alarm.start 2;
end
+ alarm_ring =>
if entity.id = 1 do
Alarm.stop ();
a := Digest.SHA.create_hash
(Random. string 128);
msg := Block (entity.id) a;
entity.blockchain := List.append
entity.blockchain msg;
send msg to neighbours;
end
+ receive Block from neighbours
as msg =>
if not List.contains
entity . blockchain msg do
entity.blockchain := List.append
entity.blockchain msg;
send msg to neighbours;
end }

10

Generated OCaml code

W N OAWN R

e e e =
0 ~NOUIAWNHO®©

>

4-tuple:

type of rule
configuration to be checked
message constructor

BN

function executed if rule accepted

(Lts Receive,
Conf (entity , !role, peer),
Some (Constructor "Block”),
fun ()—
let m = match in_msg with Some msg— msg |
let content =
match m with

None— assert false

| Make (-, -, [-; String content |)— content

| -— assert false
in
let blockchain =
get_field entity "blockchain” |> fun a—
match a with Some (Messages Ist)— Ist |
in
if List.mem m blockchain then ()
else (
UnorderedSet.add out_buffer (Some m);

_— assert false

entity.fl <— Some ("blockchain”, Messages (m :: blockchain)))

in

11

la Statistics

Node 30
Region: EUROPE

Current Statistics.

+ Chain Head:

o Creator:43

« Currently in Committee: false

« Currently a Proposer: false.
Global Statistics

+ TotalCommitee Partipations 0

« Proposals Created:
« Ended with 12 blocks inits chain

Link from 21 to 27
Messages in Transit:

"blockId": 10
}

[Cvese i o s
Timestamp: 5407610

BB Peyback spee:

12

Discussion

This talk:

e Developed DSL tailored for protocol engineers
e Programmer focuses on protocol logic
e Consensus mechanism deployed by Lupin

Future work:

e Mechanise properties of underlying model

e Add support for simulators and checkers, e.g. PRISM

13

Anyone interested?
Thanks!

14

	MOBS COPES
	Conclusion

