Iso-Recursive Multiparty Sessions and their Automated Verification

Marco Giunti Nobuko Yoshida

University of Oxford

ESOP 7 May 2025

Background

Contribution

Compliance

Verification

Discussion

Multiparty sessions

• OAuth2 example: Alice asks Rabbit to login and waits for Queen's authorisation, or cancels

I got a message from Rabbit. I might quit or send the message: Hey Alice, Rabbit is authorised

MultiParty Session Types (MPST)

- OAuth2: (Alice) service s sending (1) login or (2) cancel requests to (Rabbit) client c
 - 1. service waits for authorisation from the (Queen) authoriser a
 - 2. service ends
- Session type of service s:

 $T_{s} \stackrel{\text{def}}{=} \mu X.(c!login(unit).a?auth(bool).X + c!cancel(unit).end)$

- $\mu X.T$ is recursive type, $T_1 + T_2$ is choice between T_1 and T_2
- p!/(S).T and p?/(S).T indicate send to/receive from participant p on label / the payload S and continue as T

Contribution

Compliance

Verification

Discussion

Equi-recursive MPST

- MPST follow an equi-recursive approach
- Session type of service s:

$$T_{s} \stackrel{\text{def}}{=} \mu X.(\underbrace{\mathsf{c!login(unit).a?auth(bool).X + c!cancel(unit).end}}_{\text{body}})$$

• Type unfolding is the instantiation of X in the body with T_s :

 $T_{s}^{*} \stackrel{\text{def}}{=} c! \text{login}(\text{unit}).a? \text{auth}(\text{bool}). T_{s} + c! \text{cancel}(\text{unit}). \text{end}$

• Equi-recursion establishes

$$T_{\rm s}=T_{\rm s}^*=T_{\rm s}^{**}=\cdots$$

MPST: Top Down or Bottom Up?

- Original formulation of MPST is Top Down and relies on Global Types that
 - describe entire interaction scenario
 - are projected in local types used for type checking sessions
- Recent works consider Generalised MPST (*GMPST*) or Bottom Up approach:
 - property ϕ holds for a set of participants if ϕ holds for environment built from the participants' types
 - global types are not required

MPST: Top Down or Bottom Up?

	Express.	Complexity	Self-cont.	Mechanis.
Top-Down	×	✓	✓	×
Bottom-Up	✓	×	×	×

- Main drawbacks of global types
 - Limited by projectability or implementability
 - Require mechanised co-induction for equi-recursion
- Main drawbacks of generalised MPST
 - Perform worse than global types (PSPACE-hard)
 - Rely on model checkers to establish the environment's properties
 - Require mechanised co-induction for equi-recursion

This talk: Bottom-Up with Iso-Recursive GMPST

	Express.	Complexity	Self-cont.	Mechanis.
Top-Down	×	1	1	×
Bottom-Up*	1	×	×	×
Bottom-Up [£]	✓	?	✓	1

* equi-recursive **£** iso-recursive

- Attacked drawbacks of equi-recursive GMPST
 - Rely on model checkers to establish the environment's properties
 - Require mechanised co-induction for equi-recursion
- Solution provided by iso-recursive GMPST
 - The environment's property is checked by the type system (cf. duality in binary session types)
 - Mechanisation relies on inductive types and automated verification

Contribution

Compliance

Verification

Discussion

Iso-recursive GMPST

• In our setting, GMPST follow an iso-recursive approach

$$T_{s} \stackrel{\text{def}}{=} \mu X.R_{s}$$

 $R_{s} \stackrel{\text{def}}{=} c!login(unit).a?auth(bool).X + c!cancel(unit).end$

• Type unfolding is the instantiation of X in R_s with T_s

$$T_{s}^{*} \stackrel{\text{def}}{=} R_{s} \{ T_{s} / X \} = c! \text{login}(\text{unit}).a? \text{auth}(\text{bool}). T_{s} + c! \text{cancel}(\text{unit}). \text{end}$$

• T_{s}^{*} isomorphic and not equal to T_{s} : $T_{s}^{*} \neq T_{s}$

$$T_{\mathrm{s}}^{**} = R_{\mathrm{s}}\{T_{\mathrm{s}}^*/X\} = R_{\mathrm{s}}\{(R_{\mathrm{s}}\{T_{\mathrm{s}}/X\})/X\}\cdots$$

Verification

Discussion

Typing recursive threads

• Folded session process of the service: $s \lhd P_s$

$$P_{\rm s} \stackrel{\rm def}{=} \mu \chi. Q_{\rm s} \quad Q_{\rm s} \stackrel{\rm def}{=} {\rm c!login}\langle\rangle. {\rm a?auth}(x). \chi + {\rm c!cancel}\langle\rangle$$

• Unfolded session process of the service: $s \triangleleft P_s^*$

$$P_{s}^{*} \stackrel{\text{def}}{=} Q_{s}\{P_{s}/\chi\} = c! \mathsf{login}\langle\rangle.a? \mathsf{auth}(x).P_{s} + c! \mathsf{cancel}\langle\rangle$$

• Folded (unfolded) sessions have folded (unfolded) types

 $\emptyset \vdash P_{s} : \mu X.(c!login(unit).a?auth(bool).X + c!cancel(unit).end) = T_{s}$

 $\emptyset \vdash P_{s}^{*}$: c!login(unit).a?auth(bool). T_{s} + c!cancel(unit).end = T_{s}^{*}

 $\emptyset \nvDash P_{s} : T_{s}^{*} \qquad \emptyset \nvDash P_{s}^{*} : T_{s}$

Verification

Typing threads composition

• Consider a deployment of the OAuth2 protocol composed by

- 1. Unfolded service $s \triangleleft P_s^*$ having unfolded type T_s^*
- 2. Folded client $c \lhd P_c$ having folded type T_c
- 3. Folded authoriser $a \triangleleft P_a$ having folded type T_a
- Composition should be typed iff typings are compliant
- Top level rule for session composition

$$\begin{array}{cccc} \Gamma \vdash P_{\mathbf{s}}^* \colon T_{\mathbf{s}}^* & \Gamma \vdash P_{\mathbf{c}} \colon T_{\mathbf{c}} & \Gamma \vdash P_{\mathbf{a}} \colon T_{\mathbf{a}} \\ \Delta = \mathbf{s} \colon T_{\mathbf{s}}^*, \mathbf{c} \colon T_{\mathbf{c}}, \mathbf{a} \colon T_{\mathbf{a}} & \operatorname{comp}(\Delta) \\ \hline \Gamma \Vdash \mathbf{s} \lhd P_{\mathbf{s}}^* \parallel \mathbf{c} \lhd P_{\mathbf{c}} \parallel \mathbf{a} \lhd P_{\mathbf{a}} \colon \Delta \end{array}$$

- Three desiderata for comp abstraction:
 - 1. Is a terminating function
 - 2. Enforces mismatch-freedom and deadlock-freedom
 - 3. Can be deployed/verified in mainstream languages and tools

Verification

Compliance and termination

• We follow the approach "*types as processes*" and start by defining non-deterministic transitions of the form

$$T \stackrel{lpha}{\longrightarrow} T' \qquad \qquad D \diamond \Delta \stackrel{ au}{\longrightarrow} D \backslash_{\Delta} \diamond \Delta'$$

- D is a decreasing set which is a subset of a fixed point $W \ni \Delta$
- Intuition: W contains unfoldings of iso-recursive types in Δ up-to length n

$$W \supseteq \{\mathbf{s} \colon T_{\mathbf{s}}, \underbrace{\mathbf{s} \colon T_{\mathbf{s}}^*, \mathbf{s} \colon T_{\mathbf{s}}^{**}, \dots, \mathbf{s} \colon T_{\mathbf{s}}^{**\cdots*}}_{n}\}$$

Termination: if Δ ∉ D then D ◊ Δ is stuck (cf. ended computation)

Verification

Discussion

Compliance as a function

1. Introduce the notion of deterministic LTS:¹

$$D \diamond \Delta \xrightarrow{\alpha_1} D \setminus_{\Delta} \diamond \Delta_1$$
 and $D \diamond \Delta \xrightarrow{\alpha_2} D \setminus_{\Delta} \diamond \Delta_2$ imply $\alpha_1 = \alpha_2$ and $\Delta_1 = \Delta_2$

2. Define relation \implies on top of \longrightarrow_d . Let $C \stackrel{\text{def}}{=} D \diamond \Delta$:

$$\circ \quad C \Longrightarrow C \text{ whenever } C \text{ is stuck}$$

 $\circ \quad C \Longrightarrow \widetilde{C_1}, \widetilde{C_2} \text{ whenever } C \text{ does a step and reaches } C' \text{ with } continuation } C'' \text{ and } C' \Longrightarrow \widetilde{C_1} \text{ and } C'' \Longrightarrow \widetilde{C_2}$

3. Define closure function by stripping decreasing sets:

$$\mathsf{closure}_D(\Delta) = \Delta_1, \dots, \Delta_n$$

whenever
$$D \diamond \Delta \Longrightarrow D_1 \diamond \Delta_1, \dots, D_n \diamond \Delta_n$$

¹Some parameters are omitted

Contribution

Compliance

Discussion

Compliance and error-freedom

- Compliance is designed to avoid errors
- Let $I = (1, \ldots, n)$, $n \ge 1$, and define

$$\bigoplus_{i \in I} \mathbf{r}! I_i(S_i) . T_i \quad \stackrel{\text{def}}{=} \mathbf{r}! I_1(S_1) . T_1 + \dots + \mathbf{r}! I_n(S_n) . T_n$$
$$\&_{i \in I} \mathbf{r}? I_i(S_i) . T_i \quad \stackrel{\text{def}}{=} \mathbf{r}? I_1(S_1) . T_1 + \dots + \mathbf{r}? I_n(S_n) . T_n$$

- Δ is a communication error if $\exists p, q \text{ s.t.}$
 - $\Delta(\mathbf{p}) = \bigoplus_{i \in I} \mathbf{q}! I_i(S_i) . T_i \text{ and } \Delta(\mathbf{q}) = \bigoplus_{j \in J} \mathbf{p}! I_j(S_j) . T_j \text{ (cf. \&)}$
 - $\Delta(\mathbf{p}) = \bigoplus_{i \in I} \mathbf{q}! l_i(S_i) . T_i \text{ and } \Delta(\mathbf{q}) = \&_{j \in J} \mathbf{p}? l_j(S_j) . T_j \text{ and }$ $\nexists_{i,j} \text{ s.t. } l_i @S_i = l_j @S_j \text{ (cf. symmetric case)}$
- Δ is a deadlock if $\Delta \xrightarrow{\tau} \Delta'$ and there is p s.t. $\Delta(p) \neq end$

ackground

Contribution

Compliance

Verification

Discussion

Compliance definition

- Remember $closure_D(\Delta) = \Delta_1, \ldots, \Delta_n$. Define $comp(\Delta)$:
 - if $\Delta_i \in \mathsf{closure}_D(\Delta)$ then Δ_i is not
 - 1. a communication error
 - 2. a deadlock
- OAuth example: environment Δ is

 s: c!login(u).a?auth(b). T_s + c!cancel(u).end,
 c: μX.(s?login(u).a!pwd(s).X + s?cancel(u).a!quit(u).end),
 a: μX.(c?pwd(s).s!auth(b).X + c?quit(u).end)
- Closure of Δ w.r.t. fixed point D is
 {Δ, (s: end, c: end, a: end)}
- We have comp(Δ), e.g. Δ is not a deadlock since $\Delta \xrightarrow{\tau} \Delta \setminus_{a}, a: c?pwd(s).s!auth(b). T_a + c?quit(u).end$

Verification

Discussion

Properties of the type system

- Let $\mathcal{M} = p_1 \lhd P_1 \parallel \cdots \parallel p_n \lhd P_n$ be a session
- Let $D \ni \Delta$ be a fixed point of the form $\Delta_1, \cdots, \Delta_m$
- 1. Subject reduction

If $\Gamma \Vdash \mathscr{M} : \Delta$ and $\mathscr{M} \xrightarrow{\alpha} \mathscr{M}'$ then

•
$$D \diamond \Delta \xrightarrow{\alpha} D' \diamond \Delta'$$
 and $\Gamma \Vdash \mathscr{M}' \colon \Delta'$

2. Progress

If \mathscr{M} is closed and $\Gamma \Vdash \mathscr{M} : \Delta$ and $\nexists \mathscr{M}' \cdot \mathscr{M} \xrightarrow{\tau} \mathscr{M}'$ then $\mathsf{Ended}(\mathscr{M})$

◆□ > ◆□ > ◆三 > ◆三 > 三 = の < ⊙

Deployment and verification of compliance

- Challenge: simultaneous implementation and verification
- 1. Deploy closure and compliance in OCaml by relying on
 - Exception handling to deal with non-deterministic choices
 - · Fixed points and history of visited environments
- 2. Use Cameleer [PR21] pipeline to
 - Annotate OCaml with GOSPEL [CFLP19] specifications
 - Compile functions and specifications into Why3 [FP13]
- 3. Mechanise proof of:
 - The compliance function terminates
 - If Δ is compliant then the final environment is not an error or a deadlock

App

Example: closure in Cameleer/Why3

- Specification: 6 pre-conditions, 1 variant, 7 post-conditions
- Verification conditions (VC): 505

	Why3 Interactive Proof Session
Edit Tools View Help	
tus Theories/Goals	Task compliance.ml
> // minimal'vc [VC for minimal]	1620
Imstep2'vc [VC for mstep2] Imsplit_vc	1057 let[@ghost] rec nstep2
	1058 (decr : typEnv list) 1059 ((w : typEnvBedexes)[@phost])
>) 0 [exceptional postcondition]	1059 ((w : typEnvRedexes)[@ghost]) 1060 (env : typEnv)
> I [exceptional postcondition]	1061 (next : oracle)
>] 2 [exceptional postcondition]	1062 ((history : typEnv list)[@ghost]) : typEnv =
> 3 [exceptional postcondition]	<pre>1063 let[@ghost] history1 = history @ [env] 1064 in</pre>
>] 4 [assertion]	1965 if not (minimal env)
> 5 [exceptional postcondition]	1066 then
 > 1 (exceptional postcondition) > 2 (exceptional postcondition) > 3 (exceptional postcondition) > 4 (exceptional postcondition) > 5 (exceptional postcondition) > 6 (exceptional postcondition) > 7 (exceptional postcondition) > 7 (exceptional postcondition) 	1067 raise (NotMinimal historyl) 1068 else if not (mem typEnv env decr)
> 7 [exceptional postcondition]	1969 then
> 3 8 [postcondition]	1070 begin
> [[postcondition] > [[postcondition] > [10 [precondition] > [11 [precondition] > [11 [precondition] > [11 [precondition] > [14 [precondition] > [16 [pastcondition] > [20 [exceptional postcondition] > [20 [exceptional postcondition]	1071 if nem_typEnv env history
> 10 [precondition]	1072 then 1073 if not (sound env next)
> 10 [precondition]	1074 then
> 11 [precondition]	1075 raise (Deadlock history])
> 12 [precondition]	1076 else 1077 raise (MFixpoint history])
> 15 [precondition]	1078 else
> 14 [precondition]	1079 raise (DecrNotFixpoint history1)
> 15 [precondition]	1080 end
> 16 [postcondition]	1081 else 1082 let decr1 = mremove env decr
> [] 17 [exceptional postcondition]	1983 in
> [] 18 [exceptional postcondition]	<pre>1084 assert (List.length decr1 = List.length decr - 1);</pre>
> J 19 [exceptional postcondition]	1085 match next env with 1086 Err e ->
> 20 [exceptional postcondition]	1986 EFF e -> 1987 begin
> 21 [exceptional postcondition]	1988 match e with
> 22 [exceptional postcondition]	1089 PAnomaly -> raise Anomaly
> 23 [exceptional postcondition]	1090 PIllFormed -> raise IllFormed 1091 end
> 24 [exceptional postcondition]	1092 PNone ->
> 25 [exceptional postcondition]	
> 26 [exceptional postcondition]	0/0/0 type commands here
> 26 [exceptional postcondition] > 27 [variant decrease]	Messages Log Edited proof Prover output Counterexample

Decidable Type Checking

- We achieve decidability in two steps
- 1. Termination of $\Gamma \vdash P \colon T \in \{\top, \bot\}$ by passing a fixed point of type redexes
- 2. Termination of $\Gamma \Vdash \mathscr{M} : \Delta \in \{\top, \bot\}$ by (1) and by termination of compliance
- Proof mechanised in Cameleer by relying on fixed point parameters
- Production type checker derived by generating fixed points w.r.t. a *max depth* parameter

Background

Contribution

Compliance

Verification

Discussion

Future work

	Express.	Complexity	Self-cont.	Mechanis.
Top-Down	×	1	1	×
Bottom-Up*	1	×	×	×
Bottom-Up [£]	✓	?	1	 Image: A start of the start of

- Compare complexity w.r.t. other approaches
- Mechanise subject reduction
- Add features
 - 1. session delegation
 - 2. (bounded) asynchronous MPST

Background

Contribution

Compliance

Verification

Discussion

Thanks!

References

- [FP13] Jean-Christophe Filliâtre, Andrei Paskevich: Why3 Where Programs Meet Provers. ESOP 2013: 125-128
- [CFLP19] Arthur Charguéraud, Jean-Christophe Filliâtre, Cláudio Lourenço, Mário Pereira: GOSPEL - Providing OCaml with a Formal Specification Language. FM 2019: 484-501
- [PR21] Mário Pereira, António Ravara: Cameleer: A Deductive Verification Tool for OCaml. CAV (2) 2021: 677-689
- [GY25a] Marco Giunti, Nobuko Yoshida: Iso-Recursive Multiparty Sessions and their Automated Verification - Technical Report. CoRR abs/2501.17778 (2025)

Deterministic transitions of environments

- Ingredients for deterministic computation:²
 - 1. collect information about discarded branches and selections
- The resulting LTS has the form below, where Δ is minimal

$$D \diamond \Delta \xrightarrow{lpha} D \backslash_{\Delta} \diamond \Delta_1 \blacktriangleright \Delta_2$$

- Symbol ► is separator of the sum continuation
- Example: deterministic LTS of types

c!login(u).a?auth(b).
$$T_s$$
 + c!canc(u).end $\xrightarrow{c!canc\langle\rangle}_d$
end ► c!login(u).a?auth(b). T_s

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Back

²Some items are omitted.

Appendix ○●○○○

Environment closure

• Closure ${\mathscr C}$ relies on semi-reflexive transitive relation \Longrightarrow

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Consider the configuration $C \stackrel{\text{def}}{=} D \diamond \Delta$

1. C is stuck:
$$C \Longrightarrow C$$

2. If

t

• C moves to
$$D \setminus_{\Delta} \diamond \Delta_1 \blacktriangleright \Delta_2$$
 and
• $D \setminus_{\Delta} \diamond \Delta_1 \Longrightarrow \widetilde{E_1}$ and
• $D \setminus_{\Delta} \diamond \Delta_2 \Longrightarrow \widetilde{E_2}$
then $C \Longrightarrow \widetilde{E_1}, \widetilde{E_2}$

Back

Example: behavioural specification of fixed points

```
type typRedexes = typ list
(* sterling X T = T{\mu X.T/X} *)
let[@logic] sterling x t = substT t x t
let[@logic] rec produceRedexes (t : typ) (n : int) : typRedexes =
if n < 0 then []
else let m = n - 1 in t ::
match t with
  Typ_input (_, _, _, r) | Typ_output (_, _, _, r) \rightarrow produceRedexes r m
  Typ_mu (x, r) \rightarrow produceRedexes (sterling x r) m
  Typ_sum (r1, r2) \rightarrow produceRedexes r1 m @ produceRedexes r2 m
 Typ_end | Typ_var _ \rightarrow []
(*0 m = produceRedexes t n
ensures n > 0 \rightarrow t \in m
ensures n > 1 \rightarrow
(\forall l p s r. t = Typ_input l p s r \rightarrow r \in m) \land
(\forall l p s r. t = Typ_output l p s r \rightarrow r \in m) \land
(\forall x r. t = Typ_mu x r \rightarrow sterling x r \in m) \land
(\forall r1 r2. t = Typ\_sum r1 r2 \rightarrow r1 \in m \land r2 \in m)
variant n *)
```

Back

Mechanised closure

```
let[@logic] rec pre = function | [] \rightarrow [] | s :: tl \rightarrow s :: pre tl
(*0 m = pre param \n requires param \neq \emptyset \n variant param *)
let[@logic] rec last = function | [x] \rightarrow x |_{::} tl \rightarrow last tl
(*0 m = last param \n requires param \neq \emptyset \n variant param *)
(* Some parameters and exceptions are omitted *)
let[@ghost] rec mstep (decr : typEnv list) ((w : typEnvRedexes)[@ghost])
(env : typEnv) ((history : typEnv list)[@ghost]) : typEnv = ···
(*0 m = mstep decr w env history
requires nodup decr
requires mfixpoint w env (|decr| * 2)
requires env \in combinations w
requires decr \cap history = \emptyset
requires decr \cup history = combinations w
variant Idecrl
raises MFixpoint h \rightarrow h \neq \emptyset \land last h \in pre h \land error_free (last h)
raises Deadlock h 
ightarrow h 
eq \emptyset \land (last h \in pre h \land \neg error_free (last h)
  \vee stuck (last h) \wedge \neg consumed (last h))
raises WrongBranch h \rightarrow h \neq \emptyset \land
  \exists p q t1 t2. typ0f p (last h) = Some t1 \land typ0f q (last h) = Some t2
 \wedge error t1 t2 ···
ensures consumed m *)
```

Mechanised Compliance

Post-conditions of mstep:

raises MFixpoint $h \rightarrow h \neq \emptyset \land last h \in pre h \land error_free (last h)$ raises Deadlock $h \rightarrow h \neq \emptyset \land last h \in pre h \land \neg error_free (last h)$ \vee stuck (last h) $\wedge \neg$ consumed (last h) raises WrongBranch h \rightarrow h $\neq \emptyset \land \exists$ p q t1 t2. typOf p (last h) = Some t1 \land typOf q (last h) = Some t2 \land error t1 t2 ensures consumed m (* Some parameters and exceptions are omitted *) let[@ghost] compliance (all_combs : typEnv list) ((w:typEnvRedexes)[@ghost]) (env:typEnv) : bool = try let m = mstep all_combs w env ([]: typEnv list) in consumed m with MFixpoint hist \rightarrow let e = last hist in let h0 = pre hist in $e \in h0 \land error free e$ Deadlock _ \rightarrow raise NotCompliant | WrongBranch _ \rightarrow raise NotCompliant (*0 m = compliance all_combs w env next requires all_combs = combinations w requires nodup all_combs requires mfixpoint w env (/all_combs/ * 2) requires env \in all_combs raises NotCompliant \rightarrow true ensures m = true *) NURNER SERVER HE VQ@

```
Back
```