
Static semantics of secret channel abstractions

Marco Giunti

University of Porto and University of Beira Interior, Portugal

NordSec, October 16 2014

Background
New Results
Type system

Applications and future work
Discussion

Motivation
Implementing restricted channels
Ad-hoc semantics for secret channels

Motivation

I The pi calculus and its variants based on cryptographic
operations are often used for protocol analysis

I E.g. googling - ”pi calculus” protocol - returns 50k hits

I All pi calculus variants make use of the new (restriction)
operator

I The new operator allows to

1. create a channel name and limit its use within a certain scope
2. enlarge the channel’s scope by communicating the channel to

others

Marco Giunti Static semantics of secret channel abstractions

Background
New Results
Type system

Applications and future work
Discussion

Motivation
Implementing restricted channels
Ad-hoc semantics for secret channels

Security problems

I The scope extrusion mechanism allows the mobility of the
communication structure (and the great expressiveness of the
pi calculus), but comports security problems

I Restricted channels cannot be implemented as dedicated
channels, and open channels are not secure by default

I The spi calculus and the applied pi calculus do not rely on
restriction for secure communication and use cryptographic
encryption

Marco Giunti Static semantics of secret channel abstractions

Background
New Results
Type system

Applications and future work
Discussion

Motivation
Implementing restricted channels
Ad-hoc semantics for secret channels

Motivating example

A simple protocol to exchange a confidential information

P = (new c)((new s)(c〈s〉.s〈pwd〉) | c(x).x(y).p〈x〉)

I Two parallel threads communicating over restricted channel c

I The left thread generates a (secure) channel s to send the
password, and forwards s over c

I The right thread receives a channel x from c,
uses x to retrieve some data, and releases x over a public
(free) channel p

I How to implement this protocol in an open network ?

Marco Giunti Static semantics of secret channel abstractions

Background
New Results
Type system

Applications and future work
Discussion

Motivation
Implementing restricted channels
Ad-hoc semantics for secret channels

Example: naive implementation

To avoid dedicated channels we use public key cryptography.
– (new s) mapped into generation of keys (new s+, s−)
–Aim: to encrypt the password: {pwd}s+

pi: c(x).x(y).p〈x〉 (1)

spi: net(z).decrypt z as {x+, x−}c− in (2)

net(w).decrypt w as {y}x− in p〈x+, x−〉

I (2) is the (spi calculus) code of the receiver in (1)

I Keys sent on the network through the packet {s+, s−}c+
I To retrieve s+, s− processes must use the decryption key c−

Marco Giunti Static semantics of secret channel abstractions

Background
New Results
Type system

Applications and future work
Discussion

Motivation
Implementing restricted channels
Ad-hoc semantics for secret channels

Example: naive implementation

Lack of forward secrecy

The implementation above suffers from a number of problems.

I The most serious is the lack of forward secrecy

I Informally: password in {pwd}s+ can be retrieved by buffering
the message and subsequently using the key s−

I Formally: the behavioral equation of pi calculus below is not
preserved by the spi calculus translation

P = (new c)((new s)(c〈s〉.s〈pwd〉) | c(x).x(y).p〈x〉)
P ∼= (new s)(p〈s〉) (p ∈ fv(P))

I The equation ensures a well-known fact: in the pi calculus
restricted communications are invisible

Marco Giunti Static semantics of secret channel abstractions

Background
New Results
Type system

Applications and future work
Discussion

Motivation
Implementing restricted channels
Ad-hoc semantics for secret channels

A secret pi calculus (Sπ)

I To avoid this problem in EXPRESS/SOS’12 we introduced a
pi calculus featuring both a new and a hide operator

I The new operator does not ensure any secrecy: that is, in
secret pi:

P 6∼= (new s)(p〈s〉)
I To recover the equation programmers must use the hide

operator:

H = (new c)([hide s][c〈s〉.s〈pwd〉 | c(x).x(y).p〈x〉])
H ∼=Sπ [hide s][p〈s〉]

I The brackets delimit the static scope of hide, which includes
the receiver. Note: s cannot be extruded (e.g. by p〈s〉)

Marco Giunti Static semantics of secret channel abstractions

Background
New Results
Type system

Applications and future work
Discussion

Static analysis of secret channels
Qualified types
Automatic translation

A type system to control the scope of channels

I In the secret pi calculus the scope of channels protected by
hide is managed by the reduction system

I The runtime system can be interpreted as a specialized
middleware for secure communications featuring local channels

I This talk: a type system for a standard pi calculus that
disallows the extrusion of channels ”declared” as static

I Our construction can be seen as an API for secure
programming:
– channels protected by hide are translated into typed
channels with static scope
– processes trying to leak secret (static) channels are rejected

Marco Giunti Static semantics of secret channel abstractions

Background
New Results
Type system

Applications and future work
Discussion

Static analysis of secret channels
Qualified types
Automatic translation

Syntax of pi calculus types and processes

T ::= Types: P ::= Processes:

m chan〈T 〉 channel x(y ÷ B).P input

> top · · · pi

m ::= Modalities B ::= Blocked entry:

s static ∅ empty

d dynamic B ∪ {T} type

I I/o types are decorated with a scope modality
I Input processes decorated with blocked types to instruct the

type checker: semantics unaffected

I When B is empty: x(y).P
def
= x(y ÷ ∅).P

Marco Giunti Static semantics of secret channel abstractions

Background
New Results
Type system

Applications and future work
Discussion

Static analysis of secret channels
Qualified types
Automatic translation

Example, typed syntax

I We rewrite the secret pi calculus process

H = (new c)([hide s][H ′])

H ′ = c〈s〉.s〈pwd〉 | c(x).x(y).p〈x〉

I Typed syntax:

P = (new c : d chan〈T2〉)((new s : s chan〈>〉)(H ′))

T2 = d chan〈>〉

I Note: An upcast mechanism allows to send s over c by
changing the type of c to d chan〈s chan〈>〉〉

Marco Giunti Static semantics of secret channel abstractions

Background
New Results
Type system

Applications and future work
Discussion

Static analysis of secret channels
Qualified types
Automatic translation

An (abstract) API for secure programming

I We let programmers write code with the secret pi syntax

H = (new c)([hide s][H ′])

H ′ = c〈s〉.s〈pwd〉 | c(x).x(y).p〈x〉

I Code translated by guessing payload types of channels, scope
modalities inferred automatically

I E.g. pwd has top type, s brings values of top type, ...

[[H]] = (new c : d chan〈T2〉)((new s : s chan〈>〉)(H ′))

I Payload types different from top have a dynamic modality,
e.g. T2 = d chan〈>〉

Marco Giunti Static semantics of secret channel abstractions

Background
New Results
Type system

Applications and future work
Discussion

Prevent channel leaks
Algorithmic techniques
Rearrangement of processes
Results

Static type checking

I Given the expected (dynamic) type T for p, we have

p : T ` [[H]]

[[H]] = (new c : d chan〈T2〉)(new s : s chan〈>〉)
(c〈s〉.s〈pwd〉) | c(x).x(y).p〈x〉)

I More interestingly, the type system rejects attempts to leak
channel s from p

I Specifically: the composition [[H]] | p(x) is ill-typed

I This is mandatory, as the reduction semantics of the pi
calculus would allow the interaction of the two threads

I How we obtain this?

Marco Giunti Static semantics of secret channel abstractions

Background
New Results
Type system

Applications and future work
Discussion

Prevent channel leaks
Algorithmic techniques
Rearrangement of processes
Results

Downcasting to the rescue

I To type check [[H]] the payload type T2 of c in the left thread
must be upcasted to the type s chan〈>〉 (*)

[[H]] = (new c : d chan〈T2〉)(new s : s chan〈>〉)
(c〈s〉.s〈pwd〉) | c(x).x(y).p〈x〉)

I The right thread must assign T2 as payload type of c as well,
since channel c is used in i/o (specifically, it is used in input)

I In turn, the variable x gains type (*), and the “final” type of p
is downcasted to the special type • (void) to disallow extrusion

I The void type is not accessible to the programmer and is used
in return environments to forbid the leak of static channels

Marco Giunti Static semantics of secret channel abstractions

Background
New Results
Type system

Applications and future work
Discussion

Prevent channel leaks
Algorithmic techniques
Rearrangement of processes
Results

Tracking the usage of channels

I We use return environments to keep track of the effective
usage of channels

I Our judgements have the form

Γ ` P .∆

where ∆ is a type environment with codomain= Types ∪ {•}
I The technique is reminding of those for algorithmic type

checking of linear systems
I The typing rule for parallel crucially asks that return

environments can be composed

Γ ` P1 .∆1 Γ ` P2 .∆2

Γ ` P1 .∆1 ⊗∆2

I Otimes: a void type can only be composed with top

Marco Giunti Static semantics of secret channel abstractions

Background
New Results
Type system

Applications and future work
Discussion

Prevent channel leaks
Algorithmic techniques
Rearrangement of processes
Results

Running example

I Given a suitable type T , we have that

p : T 6` [[H]] | p(x) .∆′

[[H]] = (new c : d chan〈T2〉)(new s : s chan〈>〉)
(c〈s〉.s〈pwd〉) | c(x).x(y).p〈x〉)

for any ∆′ since:

I p : T ` [[H]] . p : •
I p : T ` p(x) .∆ with ∆(p) 6= >
I In contrast:

p : T ` [[H]] | (new p′ : T ′)p′(x) . p : • since
p : T ` (new p′ : T ′)p′(x) . p : >

Marco Giunti Static semantics of secret channel abstractions

Background
New Results
Type system

Applications and future work
Discussion

Prevent channel leaks
Algorithmic techniques
Rearrangement of processes
Results

Blocked types in input

I Following standard lines, we consider a pi calculus with
reduction semantics and structural congruence (≡)

I Blocked types in input inserted in ≡ scope extrusion rule

I Example:

[[H]] | p(z ÷ ∅) ≡ (new c : d chan〈T2〉)(new s : s chan〈>〉)
(c〈s〉.s〈pwd〉) | c(x).x(y).p〈x〉 | p(z ÷ {s chan〈>〉}))

I Process p(z ÷ {s chan〈>〉}) cannot upcast the required
payload type since it is blocked

I In detail: types must have identifiers in order to avoid clashes:
(new c : d chan〈T2〉∀)(new s : s chan〈>〉n)(...) n perfect id

Marco Giunti Static semantics of secret channel abstractions

Background
New Results
Type system

Applications and future work
Discussion

Prevent channel leaks
Algorithmic techniques
Rearrangement of processes
Results

Soundness and expressiveness

I Typed processes reduce to typed processes (SR)

I Operational correspondence among (a fragment of) secret
π-calculus processes and their typed translation

Assume Γ,∆ such that Γ ` [[H]] .∆.

1. H → H ′ implies [[H]]→ [[H ′]]
2. [[H]]→ Q implies H → H ′ with [[H ′]] ≡ Q

I Note the typability assumption, essential to switch from
middleware to software support of secret channels

Marco Giunti Static semantics of secret channel abstractions

Background
New Results
Type system

Applications and future work
Discussion

Protection against 3rd party code
Mandatory access control

Applications: protection against 3rd party code

Example: malicious list handler

{| () |}z = z〈⊥,⊥,⊥〉
{| (〈a0, b0〉, . . . , 〈an, bn〉) |}z = (new z ′)(z〈a0, b0, z ′〉 |

{| (〈a1, b1〉, . . . , 〈an, bn〉) |}z ′)
Add(x , y , z) = z(h1, h2, z

′).((new z ′′)(z〈x , y , z ′′〉 | z ′′〈h1, h2, z ′〉) |
port888〈h1, h2〉) %% Suspicious

Fix: re-program the list, compile and ...

StoreSecCh(H, y) = [hide x][H | (new z)({| () |}z | Add(x , y , z))]

ask to the type-checker! Γ
?
` [[StoreSecCh(H, y)]] | Q

Marco Giunti Static semantics of secret channel abstractions

Background
New Results
Type system

Applications and future work
Discussion

Protection against 3rd party code
Mandatory access control

Applications: Mandatory access control

DBUS is an IPC system using private and public bus for
communication
–Previous versions: bug allows users to listen private bus

[marco]# echo $DBUS_SESSION_BUS_ADDRESS > Public/address

[guest]# dbus-monitor --address /home/marco/Public/address

I We interpret this issue as MAC problem

I The private session bus address cannot be disclosed by its
owner

I Fix: program the bus with hide. All users trying to leak the
channel will be rejected

Marco Giunti Static semantics of secret channel abstractions

Background
New Results
Type system

Applications and future work
Discussion

Limitations
Future work
Thanks

Limitations

I We just deal with direct information flows
–We need protection against indirect flows, covert channels...

I Typed analysis does not scale
Γ ` P and Γ ` Q does not imply Γ ` P | Q

I Static typing is too demanding
– We would need lightweight (dynamic) typing integrated
with advanced functionalities
– E.g. contracts, certificates, functions, cryptographic
operations, ...

Marco Giunti Static semantics of secret channel abstractions

Background
New Results
Type system

Applications and future work
Discussion

Limitations
Future work
Thanks

Extensions

I To understand better the static semantics of programs we
need typed behavioural equivalences, typed bisimulation, ...

I The system has been designed to be easily integrated with
other type systems
–E.g. linear types, affine types, session types, ...

I Further design choice: keep the system algorithmic as possible
–Algorithmic type checking and inference obtainable easily (by
extending code of previous tools)

Marco Giunti Static semantics of secret channel abstractions

Background
New Results
Type system

Applications and future work
Discussion

Limitations
Future work
Thanks

Thanks!

Questions?

Recent related work

I Myself: Algorithmic type checking for a pi-calculus with name
matching and session types. J. Log. Algebr. Program. 82(8)

I Myself, Antonio Ravara: Towards Static Deadlock Resolution in the
pi-Calculus. TGC 2013: 136-155

I Myself, Catuscia Palamidessi, Frank D. Valencia: Hide and New in
the Pi-Calculus. EXPRESS/SOS 2012

Marco Giunti Static semantics of secret channel abstractions

	Background
	Motivation
	Implementing restricted channels
	Ad-hoc semantics for secret channels

	New Results
	Static analysis of secret channels
	Qualified types
	Automatic translation

	Type system
	Prevent channel leaks
	Algorithmic techniques
	Rearrangement of processes
	Results

	Applications and future work
	Protection against 3rd party code
	Mandatory access control

	Discussion
	Limitations
	Future work
	Thanks

