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Motivation

I The pi calculus and its variants based on cryptographic
operations are often used for protocol analysis

I E.g. googling - ”pi calculus” protocol - returns 50k hits

I All pi calculus variants make use of the new (restriction)
operator

I The new operator allows to

1. create a channel name and limit its use within a certain scope
2. enlarge the channel’s scope by communicating the channel to

others
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Security problems

I The scope extrusion mechanism allows the mobility of the
communication structure (and the great expressiveness of the
pi calculus), but comports security problems

I Restricted channels cannot be implemented as dedicated
channels, and open channels are not secure by default

I The spi calculus and the applied pi calculus do not rely on
restriction for secure communication and use cryptographic
encryption
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Motivating example

A simple protocol to exchange a confidential information

P = (new c)((new s)(c〈s〉.s〈pwd〉) | c(x).x(y).p〈x〉)

I Two parallel threads communicating over restricted channel c

I The left thread generates a (secure) channel s to send the
password, and forwards s over c

I The right thread receives a channel x from c,
uses x to retrieve some data, and releases x over a public
(free) channel p

I How to implement this protocol in an open network ?
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Example: naive implementation

To avoid dedicated channels we use public key cryptography.
– (new s) mapped into generation of keys (new s+, s−)
–Aim: to encrypt the password: {pwd}s+

pi: c(x).x(y).p〈x〉 (1)

spi: net(z).decrypt z as {x+, x−}c− in (2)

net(w).decrypt w as {y}x− in p〈x+, x−〉

I (2) is the (spi calculus) code of the receiver in (1)

I Keys sent on the network through the packet {s+, s−}c+
I To retrieve s+, s− processes must use the decryption key c−
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Example: naive implementation

Lack of forward secrecy

The implementation above suffers from a number of problems.

I The most serious is the lack of forward secrecy

I Informally: password in {pwd}s+ can be retrieved by buffering
the message and subsequently using the key s−

I Formally: the behavioral equation of pi calculus below is not
preserved by the spi calculus translation

P = (new c)((new s)(c〈s〉.s〈pwd〉) | c(x).x(y).p〈x〉)
P ∼= (new s)(p〈s〉) (p ∈ fv(P))

I The equation ensures a well-known fact: in the pi calculus
restricted communications are invisible
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A secret pi calculus (Sπ)

I To avoid this problem in EXPRESS/SOS’12 we introduced a
pi calculus featuring both a new and a hide operator

I The new operator does not ensure any secrecy: that is, in
secret pi:

P 6∼= (new s)(p〈s〉)
I To recover the equation programmers must use the hide

operator:

H = (new c)([hide s][c〈s〉.s〈pwd〉 | c(x).x(y).p〈x〉])
H ∼=Sπ [hide s][p〈s〉]

I The brackets delimit the static scope of hide, which includes
the receiver. Note: s cannot be extruded (e.g. by p〈s〉)
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A type system to control the scope of channels

I In the secret pi calculus the scope of channels protected by
hide is managed by the reduction system

I The runtime system can be interpreted as a specialized
middleware for secure communications featuring local channels

I This talk: a type system for a standard pi calculus that
disallows the extrusion of channels ”declared” as static

I Our construction can be seen as an API for secure
programming:
– channels protected by hide are translated into typed
channels with static scope
– processes trying to leak secret (static) channels are rejected
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Syntax of pi calculus types and processes

T ::= Types: P ::= Processes:

m chan〈T 〉 channel x(y ÷ B).P input

> top · · · pi

m ::= Modalities B ::= Blocked entry:

s static ∅ empty

d dynamic B ∪ {T} type

I I/o types are decorated with a scope modality
I Input processes decorated with blocked types to instruct the

type checker: semantics unaffected

I When B is empty: x(y).P
def
= x(y ÷ ∅).P
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Example, typed syntax

I We rewrite the secret pi calculus process

H = (new c)([hide s][H ′])

H ′ = c〈s〉.s〈pwd〉 | c(x).x(y).p〈x〉

I Typed syntax:

P = (new c : d chan〈T2〉)((new s : s chan〈>〉)(H ′))

T2 = d chan〈>〉

I Note: An upcast mechanism allows to send s over c by
changing the type of c to d chan〈s chan〈>〉〉
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An (abstract) API for secure programming

I We let programmers write code with the secret pi syntax

H = (new c)([hide s][H ′])

H ′ = c〈s〉.s〈pwd〉 | c(x).x(y).p〈x〉

I Code translated by guessing payload types of channels, scope
modalities inferred automatically

I E.g. pwd has top type, s brings values of top type, ...

[[H]] = (new c : d chan〈T2〉)((new s : s chan〈>〉)(H ′))

I Payload types different from top have a dynamic modality,
e.g. T2 = d chan〈>〉
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Static type checking

I Given the expected (dynamic) type T for p, we have

p : T ` [[H]]

[[H]] = (new c : d chan〈T2〉)(new s : s chan〈>〉)
(c〈s〉.s〈pwd〉) | c(x).x(y).p〈x〉)

I More interestingly, the type system rejects attempts to leak
channel s from p

I Specifically: the composition [[H]] | p(x) is ill-typed

I This is mandatory, as the reduction semantics of the pi
calculus would allow the interaction of the two threads

I How we obtain this?
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Downcasting to the rescue

I To type check [[H]] the payload type T2 of c in the left thread
must be upcasted to the type s chan〈>〉 (*)

[[H]] = (new c : d chan〈T2〉)(new s : s chan〈>〉)
(c〈s〉.s〈pwd〉) | c(x).x(y).p〈x〉)

I The right thread must assign T2 as payload type of c as well,
since channel c is used in i/o (specifically, it is used in input)

I In turn, the variable x gains type (*), and the “final” type of p
is downcasted to the special type • (void) to disallow extrusion

I The void type is not accessible to the programmer and is used
in return environments to forbid the leak of static channels
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Tracking the usage of channels

I We use return environments to keep track of the effective
usage of channels

I Our judgements have the form

Γ ` P .∆

where ∆ is a type environment with codomain= Types ∪ {•}
I The technique is reminding of those for algorithmic type

checking of linear systems
I The typing rule for parallel crucially asks that return

environments can be composed

Γ ` P1 .∆1 Γ ` P2 .∆2

Γ ` P1 .∆1 ⊗∆2

I Otimes: a void type can only be composed with top
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Running example

I Given a suitable type T , we have that

p : T 6` [[H]] | p(x) .∆′

[[H]] = (new c : d chan〈T2〉)(new s : s chan〈>〉)
(c〈s〉.s〈pwd〉) | c(x).x(y).p〈x〉)

for any ∆′ since:

I p : T ` [[H]] . p : •
I p : T ` p(x) .∆ with ∆(p) 6= >
I In contrast:

p : T ` [[H]] | (new p′ : T ′)p′(x) . p : • since
p : T ` (new p′ : T ′)p′(x) . p : >
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Blocked types in input

I Following standard lines, we consider a pi calculus with
reduction semantics and structural congruence (≡)

I Blocked types in input inserted in ≡ scope extrusion rule

I Example:

[[H]] | p(z ÷ ∅) ≡ (new c : d chan〈T2〉)(new s : s chan〈>〉)
(c〈s〉.s〈pwd〉) | c(x).x(y).p〈x〉 | p(z ÷ {s chan〈>〉}))

I Process p(z ÷ {s chan〈>〉}) cannot upcast the required
payload type since it is blocked

I In detail: types must have identifiers in order to avoid clashes:
(new c : d chan〈T2〉∀)(new s : s chan〈>〉n)(...) n perfect id
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Soundness and expressiveness

I Typed processes reduce to typed processes (SR)

I Operational correspondence among (a fragment of) secret
π-calculus processes and their typed translation

Assume Γ,∆ such that Γ ` [[H]] .∆.

1. H → H ′ implies [[H]]→ [[H ′]]
2. [[H]]→ Q implies H → H ′ with [[H ′]] ≡ Q

I Note the typability assumption, essential to switch from
middleware to software support of secret channels
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Applications: protection against 3rd party code

Example: malicious list handler

{| () |}z = z〈⊥,⊥,⊥〉
{| (〈a0, b0〉, . . . , 〈an, bn〉) |}z = (new z ′)(z〈a0, b0, z ′〉 |

{| (〈a1, b1〉, . . . , 〈an, bn〉) |}z ′ )
Add(x , y , z) = z(h1, h2, z

′).((new z ′′)(z〈x , y , z ′′〉 | z ′′〈h1, h2, z ′〉) |
port888〈h1, h2〉) %% Suspicious

Fix: re-program the list, compile and ...

StoreSecCh(H, y) = [hide x ][H | (new z)({| () |}z | Add(x , y , z))]

ask to the type-checker! Γ
?
` [[StoreSecCh(H, y)]] | Q
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Applications: Mandatory access control

DBUS is an IPC system using private and public bus for
communication
–Previous versions: bug allows users to listen private bus

[marco]# echo $DBUS_SESSION_BUS_ADDRESS > Public/address

[guest]# dbus-monitor --address /home/marco/Public/address

I We interpret this issue as MAC problem

I The private session bus address cannot be disclosed by its
owner

I Fix: program the bus with hide. All users trying to leak the
channel will be rejected
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Limitations

I We just deal with direct information flows
–We need protection against indirect flows, covert channels...

I Typed analysis does not scale
Γ ` P and Γ ` Q does not imply Γ ` P | Q

I Static typing is too demanding
– We would need lightweight (dynamic) typing integrated
with advanced functionalities
– E.g. contracts, certificates, functions, cryptographic
operations, ...
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Extensions

I To understand better the static semantics of programs we
need typed behavioural equivalences, typed bisimulation, ...

I The system has been designed to be easily integrated with
other type systems
–E.g. linear types, affine types, session types, ...

I Further design choice: keep the system algorithmic as possible
–Algorithmic type checking and inference obtainable easily (by
extending code of previous tools)
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Thanks!

Questions?

Recent related work

I Myself: Algorithmic type checking for a pi-calculus with name
matching and session types. J. Log. Algebr. Program. 82(8)

I Myself, Antonio Ravara: Towards Static Deadlock Resolution in the
pi-Calculus. TGC 2013: 136-155

I Myself, Catuscia Palamidessi, Frank D. Valencia: Hide and New in
the Pi-Calculus. EXPRESS/SOS 2012
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