Session-based Type Discipline for Pi Calculus with Matching

Marco Giunti* Kohei Honda® Vasco T. Vasconcelos* Nobuko Yoshida*

Introduction. In [7] we have introduced an extension of the first session typing system [10]] that allows higher-
order session communication. In the new system, the reduction rule for session passing

k\[K).P| k2(K).Q — P| Q

does not allow the transmission of an arbitrary channel. In most situations a receiving process k?(k”).Q can be
alpha-converted ahead of communication so that the bound channel k” syntactically matches the free channel &’
in the object of the sending process [11]]. The exception happens exactly when k' is free in Q: alpha-conversion
becomes impossible (for it would capture the free variable k'), and communication cannot occur.

A more liberal rule allows the transmission of an arbitrary channel, implying a substitution on the client side.

KIK).P| k2(x).0 — P| QK /x]

Unfortunately this rule breaks subject reduction, a technique that is commonly used to prove that typable
processes do not reduce to errors. A counterexample is a process which, possessing one end of a channel, receives
the second end. The process:

KUK | k2(K").K"2(y).K 1[1]

is typable in the system of [7] under typing k: L,k": L, but reduces to process k’?(x).k’![1] which is not typable
under the same typing [4]. To tackle this problem and recover subject reduction, starting from Gay and Hole [6],
many works resort to decorate channel-ends with polarities. In this paper we show that the polarity-free language
of reference [7]] extended with the more liberal session-passing rule above is type-safe, even though it does not
enjoy subject reduction.

A second contribution of the paper is a simple generalization of the theory of session types that allows processes
to both send a channel and still use it, under limited conditions. The idea is that processes can safely use channels
both for communication and for non-communication operations, such as testing the identity of a session, or storing
the channel in some data structure. The example below illustrates the idea.

Consider a system with long running sessions composed of different degrees of trust. The protocol relies on a
database of malicious sessions that offers operations to add and to check for untrusted channels; the database runs
in parallel with the web service. Untrusted channels are stored in a set implemented as a pi calculus process and
are typed with end. By providing for channel matching, we can implement a process if y € set then P else Q that
continues as P if channel y is stored in the set of untrusted channels, and continues as Q otherwise. The insertion of
anew entry y in the set is done by the process Store[y].P. The code for the database process is below; we annotate
variables with the type at which they are used.

DB(d) = accept d(x).x > {contains :x?(yend

put : x?(y®"9) Store[y].DB(d)}

).if y € set then x<ino.DB(d)else x<lyes.DB(d),

Instances of the service that need an high level of confidentiality, whenever they receive a channel at some type 7',
send the channel to the database at type end and wait for an ack ensuring that the session is trusted before using
it. The fragment of the code of a client querying the database for the trust of a channel is below. Notice that after
passing the session at type end the continuation uses it at type 7.

x?(y).request d(z).z < contains.z! [yend] z>{yes: P(Y") [no: Q(y")}

The service itself is in charge of signaling untrusted channels to the database. Such channels could still be used
by instances of the service that do not require confidentiality, for instance when sessions are meant for exchanging
public data. The code below describes an instance sending an untrusted channel y at type T to the context and
signaling the channel at type end to the database.

x![y7].request d(z).z <t put.z![y®"9).

*Department of Informatics, University of Lisbon
TDepartment of Computer Science, Queen Mary University of London
#Department of Computing, Imperial College of London

Session-based Type Discipline for Pi Calculus with Matching Giunti, Honda, Vasconcelos and Yoshida

P :=ulle]P | u?(x).P | P|P' | (va)P | ifethenPelse P’ | 0

|def DinP | X[é] recursion

| request u(x).P | accept u(x).P session request / acceptance
lu<tl.P | ut>{li: P}icr label selection / branching

e =v|[u=v]|eande | eore | note expressions
u,v i=a | x | true | false values
D = {X;(%;) = P, }ier declaration for recursion

Figure 1: The top level syntax of processes.

Pi calculus with sessions. We distinguish two languages: the top-level language and the runtime language. The
former constitutes the language programmers program with; the latter includes constructs useful to describe the
operational semantics, but that need not be accessible to programmers.

The top level language relies on a few base sets: names, ranged over by a, variables ranged over by x,y,
labels ranged over by [, and process variables ranged over by X. The syntax is in Figure [I]and includes matching
processes of the form if [u = v] then P else P'.

The runtime language is the object of the operational semantics. It requires one more base set : channels ranged
over by k. We indicate runtime processes with Q.

Q == (Fig. 1) | (vk)Q channel binder
u,v == (Fig. 1) | k linear channel
ni=alk identifiers

The runtime language differs only in that (synchronization) identifiers include channels, so that, for example
k![true].0 is a process (as opposed to x![true].0 in the base language). The bindings for the runtime language are
processes (vn)P, which binds occurrences of the identifier n in P, i.e. (va)P or (vk)P, and def {X;(%;) = P, };ics in P,
which binds occurrences of each process variable X; in process P,. The definition of bound and free names and
channels is standard, and so is the capture-free substitution of a variable x with value v in a process P, denoted
by P[v/x]. We implicitly assume that in all mathematical contexts all bound identifiers are pairwise disjoint and
disjoint from the free identifiers. The operational semantics relies on structural congruence, for the syntactic re-
arrangement of processes, preparing these for the application of the rules in the reduction relation. Structural
congruence is the smallest relation including the rules below:

glo=0 0|0=010 (0|00 =0](Q10"
(vn)Q| Q' = (vn)(Q| Q) (vi')(vn)Q = (vn)(vn')Q (vn)0=0
defDin0=0 defDD'inQ=defD'DinQ defDin(vn)Q= (vn)def Din Q
(def DinQ) | Q' =def Din(Q| Q') defDin(def D in Q)= defDD'inQ

Reduction also relies on a standard evaluation function |, reducing expressions to values. We assume [u = u] |
true, and [u = v] | false whenever u # v.

The reduction rules are in Figure[2] Sessions between two partners start when an accept process meets a request
process, as described in rule [LINK]. The result of such interaction is the creation of a new channel k, that replaces
both the bound variable x in the continuation Q of the accept process and the bound variable y in continuation Q'
of request. In rule [COM], when a send process k![e].Q meets a receive process k?(x).Q, the semantics start by
evaluating expression e to a value v, which is passed from the send party to the receive party, replacing variable x
in Q. In case the expression evaluates to a channel k, we have session passing.

Reduction may go wrong for a number of reasons. Here we are interested on communication errors, problems
arising from a mismatch of the expectations of the partners involved in a particular interaction. Examples include
the parallel composition of two partners both trying to output, as in k![true]. | k <1.Q, or even when three partners
try to read/write on the same channel, as for example in k![true]. | k<1/.Q | k?(x).Q’. The formal definition of what
we mean by an error process is below [[7]].

Session-based Type Discipline for Pi Calculus with Matching Giunti, Honda, Vasconcelos and Yoshida

accept a(x).Q | request a(y).Q" — (vk)(Qlk/x] | Q'[k/y]) [LINK]
elv = Kle.0| k2(x).0 — 0| Q'[v/«] [CoMm]

k<11;.0 k> {l;: Qitier — Q| Qj (eI [LABEL]

eltrue = ifethenQelse Q' — Q [IFT]

e | false = ifethenQelse ' — O [IFF]

el P=def X(¥)=Qin (X[e]| Q') — defX(¥)=Qin (Q[#/%]]| Q) [DEF]
0—0 = (vn)Q— (vn)Q [Scop]

0—-0 = 0|0 - 0" [PAR]

0—0Q = defDinQ — defDinQ [DEFIN]

O=01and Q) — Qand % =0Q0" = 0 — Q" [STR]

Figure 2: Reduction

Definition 1 (Error Process). A k-process is a process prefixed by channel k; that is: k!le].Q, k?(x).Q, k<1.Q,
orkt>{l;: Qi}ier. A k-redex is the parallel composition of two k-processes, either of form (k![e].Q | k?(x).Q") or
(k<l.Q | k>{li: Qi}icr). Then Q is an error if Q = (vii)(def D in (Q' | Q")) where Q' is, for some k, the parallel
composition of either two k-processes that do not form a k-redex, or three or more k-processes.

In the following, we provide for a typing system for top level processes able to filter out all errors that can arise
during the computation.
Type Assignment for the Top Level Language. We borrow from [7] the distinction between sorts, ranged over
by S, and types, ranged over by T. Sorts are assigned to values: a boolean value has type bool, a name has a type
(T') describing the interactive sessions it may engage upon. The interactive session, in turn, is described by a type
T with the following grammar:

T w=2S.T | T).T | &{li: Ti}ies | end | V[S].T |UT).T | @{li: Thies | t | pe.T

Types ![S].T and ?[S].T describe channels willing to send or to receive a value of sort S (that is a boolean value or
a name) and then continue its interaction as prescribed by 7. Types ![T].T and ?[T|.T are similar, only that this
time the value exchanged is a linear value (a channel) described by a type, rather than a shared value described by
a sort. Differently from [7], in our framework the type end can also be used to type, e.g., conditional expressions.
Types @{l;: T; }iey and &{I;: T;}ic; represent channels ready to select (to send) a label or to branch on an incoming
label. The two last type constructors allow for recursive type structures.

Duality is a central concept in the theory of session types. The function 7 yields the canonical dual of a session
type T by exchanging ! with ?, and & with @. The formal definition is below.

Nal.T = ![OC].T &{l;: Ti}ier = &{1;: Ti}ie[end = end
T &{li: Ti}ier = ®{li: Ti}ier uX.T =uXx.T X=X

The type system distinguishes the sorts assigned to names and boolean values, from the types assigned to
channels. Types are treated linearly, a map from channels and variables into types T is denoted by the type en-
vironment A. Sorts are treated classically, a map from names and variables into sorts S is denoted by the sort
environment T'. Syntax A-x: T denotes the disjoint map union of A and (x: 7). The notation is extended straight-
forwardly to sort and type environments.

We let the merge, noted ®, be the smallest commutative binary relation over types satisfying 7 @ end = T.
We extend the operation to type environments and let A® (k: T) = A-k : T whenever k ¢ dom(A), otherwise if
A(k)®T is defined we let A® k : T = A’ with A’ differing from A only in A'(k) = A(k) ®T.

The typing rules for matching expressions are below. Notice that in rule for compare values taken from the
type environment the types at which the values are known may be different. Particularly, to test the identity of a
value it is sufficient that the value is known at type end.

I'tu:S,v:S Atu: Tv: T
't [u=v]: bool A+ [u=v]: bool

Session-based Type Discipline for Pi Calculus with Matching Giunti, Honda, Vasconcelos and Yoshida

TFu: (T) 'PoA-x: T TFu: (T) 'PoA-x: T

[Acc], [REQ]

'+ accept u(x).Pr>A [+ request u(x).P>A
I'He:S I'EPoA-u: T IFx:SEPrA-u: T [SEND]. [RCV]
' ulle]. P>A-u: \[S].T ' u?(x).P>A-u: ?[S).T ’

T'FPoAu:U-v:Dh T=T1T I'EPoA-u:U-x: T
T'Eullv].PrA-u: N[T).U-v: T TFu?(x).P>A-u: 2[T].U
CHPoA-uw: T, Yiel THPoA-u:T; jeEI

' ur{li: Plier>A-u: &{li: Titier Thu<tljPoA-u: &{l;i: T;}ier
I'EP>A THPBA I-a:SEP>A

[THR],[CAT]

[BR], [SEL]

[CONC],[NRES]

I'EP|PAQA I'F (va)PrA
I'e:bool THPrA THPBA AFe:bool THP>A THPBHA
- - [IEN],[IFC]
I'Fifethen Pelse P'>A I'tifethen Pelse P/>A
r'+eé: S

— = INACT], [VAR
I'FO0>A T-X:8THX[edoA-a: T [L IVAR]

r-xX:8T-%:S+-Poy: T T-X:STHPA
CHdef X(55) =Pin P'>A

[DEF]

Figure 3: Type system for top level syntax

In rule [THR], process u![v].P is typed with channel environment A-u: ![T].U -v: T; describing the fact that channel
variable v of type T) is sent on channel variable u of type ![T].U. Similarly to [3]], in passing channels we split the
capabilities and let the continuation process P use the passed channel at type T if is sent at type end, or at type
end if it is sent at type T (in such case the value can be used only for comparing it or sending it for comparison),
as witnessed by knowing v at type T = T} ® T> in the typing environment of the hypothesis. In rule [CONC],
the channel environment of P | Q is the merge of the environments A and A’ for the two processes, provided the
operation is defined: if a value is both in the domain of A and A, then at least one of the typings is end. Notice
that, differently from many works on session and linear types, in rules [INACT] and [VAR] we do not require the
type environment to contain only depleted resources (of type end). We discuss this point further in the conclusions.
The remaining rules are as in [7] .
We are now in a position to state the main result of the paper.

Theorem 2 (Type Safety). Let I'= P>A with P a top-level process. If P —* Q, then Q is not an error.

Notice that the type system we are considering is meant to type top level processes only. The straightforward
extension of the type system to the runtime syntax, which amounts to allow runtime channels k as opposed to
channel variables x both in linear environments and in processes, does not satisfy subject reduction, as the following
example shows (notice that a: (?[bool].end) - P>0):

P = request a(x).x![true].0 | accept a(y).y?(z).0 — (vk)(k![true].0 | k?(z).0),

The parallel composition on the right-hand side is not typable, for both operands will have k£ on the channel
environment at a type different from end, making the merge of the environments in rule [CONC] not defined.
Outline of the Proof of Type Safety for Top Level Processes, Theorem 2} We define a mapping [-]] from a
different runtime language to the base runtime language, and we prove that typable top-level processes do not
reduce to errors by showing operational and error correspondence results .

The syntax for the double binder runtime language is obtained by replacing the binder (vk)P of the runtime
language with a double binder (vcd)R [], where c¢,d are distinct identifiers [5]. The syntax of double binder
processes R includes processes P of Figure |1} we define a reduction relation R < R’ and a typing system for
double binder processes. The encoding [[-]] maps double binder processes (ved)R in runtime processes (vVk)Q such
that both channel-ends c,d related by the double binder are mapped into a single runtime channel k£ bound in Q.

Let P be a typed top level process, and assume P —* Q. We need to show that Q is not an error. The proof
proceeds with the following steps.

Session-based Type Discipline for Pi Calculus with Matching Giunti, Honda, Vasconcelos and Yoshida

1. Typing Correspondence. We show that typed top level processes are typed double binder processes.

2. Operational Correspondence We prove that the mapping [[-]] is sound:

P—"Q = JRsuchthat P—" Rand [R] =Q

3. Type Safety of Double Binder Language. We provide for the subject reduction of the double binder runtime
language and in turn we prove that typable double-binder processes do not reduce to errors. We apply this
result to (1) and infer that

R not an error

4. Error Correspondence. We prove that

R not an error = [[R]] not an error

5. Error Congruence. We glue (2) and (4) and show that

([R]] = Q and [[R]] not an error) = Q not an error

The remainder of paper details the various steps.

The double binder runtime language. As mentioned above we introduce a double binder (vcd)R construct, that
must not be confused with notation (vc,d)R often used in the literature to indicate the process (ve¢)(vd)R. We
underline that the top level language is a sub language of both runtime languages.

The semantics of the new language is defined over configurations of the form ¢ ¢ R where ¢ is an irreflexive,
symmetric and functional binary relation over channels, which we call channel-end connection. We let dom(o)
be the domain of 6. We write - (c,d) to indicate the union 6 U (c,d), whenever {c,d} Ndom(c) = 0. We let
=gp be the structural congruence relation for double binder processes, which is obtained straightforwardly from
the structural rules for runtime processes e.g. (Ved)R | R' =gy (ved)(R | R').

The interesting rules for the reduction are below; the remaining rules are obtained by extending the rules in
Figure [2]to configurations.

o o (accept a(x).R | request a(y).R) — oo ((ved)(Rle/x] | R'[d/y])) [LINKD]
cod Ne|lv = oo(clle].R| d?(y).R) — oo (R|R'[v/y]) [ComD]
cod N jel = oo(c<lj.R|d>{li: Ritict) — 0o (R| R)) [LABELD]
o-(c,d)oR —oc-(c,d)oR = o0o(ved)R— oo (ved)R [ScopD]

The new rule [LINKD] creates, for two processes accept n(x).R and request n(y).R’ ready to engage in a session,
not one but two channel-ends ¢ and d, one for each partner. The connection between channel-ends ¢ and d is made
explicit in the binding (ved). Rule [COMD] performs value passing from the sending party c![e].R to the receiving
partner d?(y).R’, provided c and d are related by ©.

The types for the double binder runtime language are those of the base language. The type system now has
judgments on configurations of the form I' - ¢ ¢ R>A with dom(A) C dom(o).

We add a single new rule w.r.t. the type system for top-level processes of Figure 3}

'to-(c,d)oR>A-c:T-d: T

CRESD
I'-oo(ved)R>A [CRESD]

In rule [CRESD], the double binding (ved) gives raise to a (¢,d) entry in o, in line with the operational seman-
tics. The rule types a channel double-binder, making sure that the two ends, ¢ and d, of a channel have dual types.
Subject reduction and type-safety hold only for balanced environments [[11].

Definition 3. Ler ¢ be an channel-end connection and A be a typing such that fc(A) C dom(o). We say that A is

balanced by o whenever cod and {c,d} C dom(A) implies that or (i) A(c) = A(d) or (ii) A(c) ® A(d) |.

Session-based Type Discipline for Pi Calculus with Matching Giunti, Honda, Vasconcelos and Yoshida

[ooaccept u(x).R]s = accept [u]]z(x).[coR]x
[oorequest u(x).R]x = request [u]lz(x).[coR]xs
loou?x).Rly = [uls?(x)-[ooR]x
looutlel Ry = [uls!([e]]-[ooR]s
[oo(va)R]]s = (va)[ooR]s
[oo(ved)R]]s = (VK)o (¢;d)oR]s (c—ka—)
[cou<ljR])s = [u]z<l.[coR]s

ulls > {li: [ooRs }ier

[ooifethenRelse Ry = if [e]s then [[R]s else [R]s
[6oR|R]x = [ooR]z|[ooR]x
[ooxfelz = X[l
[oodef {Xi(%) =Ri}icsinR]zs = def {Xi(%)=[0oRi]x}ics in [0 oR]s

Figure 4: The encoding of double binder configurations into runtime processes.

The proof of the subject reduction is involved, because of session passing and of the rule for typing composition
that merges possibly overlapping encodings.

Theorem 4 (Subject Reduction for the Double Binder Language). Let I' - o ¢ R> A with A balanced by o. If
00R — 0oR/, then there is A’ balanced by ¢ s.t. T o oR > A

Theorem 5 (Type Safety for the Double Binder Language). Let '+ 6 ¢ R>A with A balanced by ©. If 6 ©R —*
0 oR', then 6 R’ is not an error.

Proof. Standard, by using Subject Reduction (Theorem). 0

From the Double Binder Runtime to the Base Runtime Language. In order to state the correspondence be-
tween runtime processes, we define a mapping from the double binder language into the base language. A forget-
distinction function over a end-channel configuration o is an injective partial function from channel-ends c,d to
runtime channels k such that c6d and £(c) = k implies that X(d) = k.

The mapping [-]x from double binder configurations into runtime processes is defined in Figure i We let
[e]lz = X(e) whenever e is a channel, and e otherwise. The compilation of a double binder configuration 6 ¢ (ved)R
with parameter X in a runtime process Q involves the generation of a new channel £ bound in the encoding of o o R
with parameter X', where ¥’ is obtained by extending X with the entries ¥'(c¢) = k and ¥'(d) = k, so that the free
occurrences of ¢,d in the continuation R will be translated to the channel k.

First, we need a lemma to export values outside the encoding.

Lemma 6. [o oR[v/x]]|z = [[o o R]|z[[v]z/x].

Proof. By induction on the structure of [0 ¢ R]x. O

The core of the proof of operational correspondence is summarized the following lemma.

Lemma 7. If [R[]z — Q, then there is a double binder process R' such that 6 R — o oR' with [6oR|x = Q.

Session-based Type Discipline for Pi Calculus with Matching Giunti, Honda, Vasconcelos and Yoshida

Proof. By induction on the length of the inference [[o ¢ R]y — Q. The link and communication cases build on
lemma [6] O

The next theorem says that structural congruence is preserved by [[-].

Theorem 8 (Congruence Correspondence). If R’ =gy R then [6 ¢ R]x = [0 oR]s.

Proof. By case analysis on the rules for =gy. O
The next theorem establishes the soundness of the encoding.
Theorem 9 (Operational Correspondence). Let P be a top-level process of Figure|l| If there is a runtime process
Q such that P —" Q, for n > 0, then there is a double binder process R such that 0o P —" 0 R with [0oR]p = Q.
Proof. By induction on the length n of reduction. When n = 0, we have that Q = P and we are done since
[0 P]lg = P. The induction step is proved by using Theorems 7)and 8] O
The following lemma says that the mapping [[-]x preserve prefixes.
Lemma 10. Ler Q = [0 ©R]z. We have that Q is a k-processes if and only if R is a c-process and £(c) = k.
The close the proof of our main result, we need to show that [[-]]x maps correct processes in correct processes.
Theorem 11 (Error Correspondence). Let 0 ©R be a configuration and assume ¥ is a forget-distinction function

over ©. If 6 O R is not an errov, then [o R]|y is not an error.

Proof. Without loss of generality, let

R = (va)(ved)def {X;(%) =R;}iciinRy |- | Ry
[[GOR]]Z = (vd)(vk)def {Xl‘()fi) = Qi}iel in Q] | s ‘ Qn
where 6/ = 6+ (¢,d), X =X-(cd — k) and Q; = [0’ oR /]|y, for j € 1,...,n.
We proceed by induction on 7 and show that if there are distinct i, j € 1,...,n such that Q;, Q; are k-processes

then both (a) and (b) hold:
(a) Q;|Qjis ak-redex
(b) if there exists r € 1,...,n, r # i, j, such that Q, is a kK’-process, then k' # k.
From this and congruence correspondence (Theorem we easily obtain that [0 ¢ R])x is not an error. O

Discussion. In [7] we have introduced an extension of the first session typing system [10] that allows higher-
order session communication. The calculus and typing system we present here extends these works by admitting
session passing or delegation by using the standard communication rule of pi calculus and by providing for the
comparison of channels. Besides the pragmatical interest of comparing values, we believe our result makes the
theory of session types more general by relaxing the rule for sending channels, and allowing type more processes.
Caires and Vieira [3|] present a more flexible merge operation on types; we intend to pursue further investigation
along these lines.

Starting from [6], many works on session types use polarized channels in order to achieve subject reduction
in the presence of session passing or to avoid the runtime checking of free names (e.g., [} 2} [8, [11]). In [6] the
authors considered a typed pi calculus with branching and selection where channel-ends are decorated with polar-
ities; communication and branching/selection occurs on channels with opposite polarities. While the type theory
is polarized, polarities of processes can be inferred by a typechecking algorithm, provided the type environments
in the rule for parallel composition are disjoint. In contrast, we avoid to use polarities in the type theory and admit
overlapping environments in typing compositions; the connection between channel ends are relegated to the proof
of type safety and are completely hidden to the programmer. This seems to us more suitable for synchronous imple-
mentations; in contrast asynchronous systems should use polarized channels for abstracting low level buffers [S].
We conjecture that our proof should be valid for most session-based calculi with accept and request primitives.

Session-based Type Discipline for Pi Calculus with Matching Giunti, Honda, Vasconcelos and Yoshida

Differently from our framework, many systems for session [6} 7, [11] and linear [9] types require the inert
process to be typed under an environment containing depleted resources (of type end). We think that the very
technical reason is to let the structural rule P | 0 = P preserve typing: adding non-empty capabilities to the type
environment of P can break typability. For instance for P = k?() in [[7] we can have O 0>k :![T] and O - P>k :?[T]
andinturn @F P | 0>k : L, while 91/ P>k : L. By contrast, in our system non-empty capabilities can be added in
compositions only to empty capabilities, because of the merge operation; the counter-example above is not typable
since P is using the input capability. We believe that our general rule for the inert process should be sound for
most systems typing a parallel composition with similar constraints on capabilities, for instance systems where the
composed environments are disjoint.

Acknowledgments. This work has been partially sponsored by the project SENSORIA, IST-2005-016004.

References

[1] Roberto Bruni and Leonardo Gaetano Mezzina. Types and deadlock freedom in a calculus of services, sessions and
pipelines. In AMAST, pages 100-115, 2008.

[2] Roberto Bruni, Rocco De Nicola, Michele Loreti, and Leonardo Gaetano Mezzina. Provably correct implementations of
services. In Trustworthy Global Computing, 2008.
[3] L. Caires and H. T. Vieira. Conversation types. In ESOP’09, LNCS. Springer-Verlag, 2009.

[4] Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia Drossopoulou. Session types for
object-oriented languages. In ECOOP, LNCS, pages 328-352. Springer-Verlag, 2006.

[5] Simon Gay and Vasco T. Vasconcelos. Linear type theory for asynchronous session types. Submitted, 2008.
[6] Simon J. Gay and Malcolm J. Hole. Subtyping for session types in the pi calculus. Acta Informatica, 42(2-3):191-225,
2005.
[7] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type disciplines for structured
communication-based programming. In ESOP, volume 1381 of LNCS, pages 22—-138. Springer-Verlag, 1998.
[8] Marija Kolundzija. Security types for sessions and pipelines. In Web-Services and Formal Methods, 2008.
[9] Davide Sangiorgi and David Walker. The m-calculus: a Theory of Mobile Processes. Cambridge University Press, 2001.
[10] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An Interaction-based Language and its Typing System. In PARLE,
volume 817 of LNCS, pages 398—413. Springer-Verlag, 1994.
[11] Nobuko Yoshida and Vasco T. Vasconcelos. Language primitives and type discipline for structured communication-based

programming revisited: Two systems for higher-order session communication. In SecReT, volume 171(4) of ENTCS,
pages 73-93, 2007.

