
Towards static deadlock resolution
in the π-calculus

Marco Giunti and António Ravara

CITI and DI-FCT, Universidade Nova de Lisboa, Portugal

Abstract. Static analysis techniques based on session types discern con-
current programs that ensure the fidelity of protocol sessions – for each
input (output) end point of a session there is exactly an output (input)
end point available – being expressive enough to represent the standard
π-calculus and several typing disciplines. More advanced type systems,
enforcing properties as deadlock-freedom or even progress, sensibly re-
duce the set of typed processes, thus mining the expressiveness of the
analysis. Herein, we propose a first step towards a compromise solution
to this problem: a session based type checking algorithm that releases
some deadlocks (when co-actions on the same channel occur in sequence
in a thread). This procedure may help the software development pro-
cess: the typing algorithm detects a deadlock, but instead of rejecting
the code, fixes it by looking into the session types and producing new
safe code that obeys the protocols and is deadlock-free.

1 Introduction

Background and related work. Session types, introduced for a dialect of the π-
calculus of Milner et al. [1], allow a concise description of protocols by detailing
the sequence of messages involved in each particular run of the protocol [2–5]. A
key property is type-safety, which ensures that well-typed processes cannot go
wrong in the sense that they do not reach neither the usual data errors, as those
produced in this case by the use of base values as channels, nor communication
errors, as those generated by two parallel processes waiting in input on a same
session channel, or sending in output on the same session channel. An important
feature is session delegation — the capacity to pass on the processing of a session.
This is relevant for many purposes, e.g. it permits to design a FTP server that
requires the presence of a daemon and of a pool of threads that will serve the
client’s request picked by the daemon [3].

While many session typing systems require a means to distinguish the two
ends of a session channel in order to preserve type soundness [6–8], recently the
first author and Vasconcelos have developed a session typing system [9, 10] on top
of the standard π-calculus. The main benefit is expressiveness: session delegation
is described by the π-calculus communication mechanism; type-disciplines based
on session [7, 3] and linear [11] types can be embedded in the framework.

A drawback of most of these systems is accepting processes that exhibit vari-
ous forms of deadlocks — although type safety is guaranteed, they do not ensure

deadlock-freedom. For that aim, several proposals appeared recently, guarantee-
ing progress by inspecting causality dependencies in the processes [12–16] . Not
surprisingly, these systems reduce the set of typed processes, rejecting (as usual
in static analysis, which is not complete) deadlock-free processes.

Motivating example. To illustrate the problem that we are tackling in this paper,
consider a synchronous π-calculus with session-based communication channels
and boolean values. Take a process which behaviour consists in testing a boolean
variable and, on success, in acknowledging the result on a received channel and
then continuing the computation, like a(x).b(z).if z thenx〈true〉.P ′. The process is
well behaved and our type-system accepts it, but, the interaction with a process
sending channel b can cause a runtime deadlock; in fact, several systems in the
literature reject the process P below

P
def
= (νa, b)(a(x).b(z).if z thenx〈true〉.P ′ | a〈b〉.a〈false〉)

since
P → (νa, b)(b(z).if z then b〈true〉.P ′ | a〈false〉)

The well-known problem of delegating a linear channel already in use by the
receiver (cf. [8]) is avoided a priori ; as a (unfortunate) by-product, legitimate
processes of the form below are rejected as well:

LP
def
= (νa, b)(a(x).d〈b〉.x〈true〉 | a〈b〉 | P ′′)

The approach that we take is radically different: we aim at both type check P
and at transform it in a process that is deadlock-free. To type P , we assign
to a a pair type of the form (?T1.?bool.end, !T1.!bool.end), where the left entry
says that an end point of a (actually, the one in the left thread of P) is used
linearly to first receive a value of type T1, and then to receive a boolean, while
the right entry describes the dual behaviour of first sending a value of type T1
and then a boolean, which occurs in the right thread. We assign to b the type

T
def
= (?bool.end, !bool.end); that is, we split T into T1

def
= (end, !bool.end) and

T2
def
= (?bool.end, end), and let T1 be delegated over a, and T2 be used to type the

input on b. The key idea towards the transformation of P into a deadlock-free
process is to exploit the structure of the session type T , and check whether the
end point channels described respectively by T1 and T2 are used sequentially,
rather than in parallel.

In this paper, we still not deal with process P , but we handle processes
resulting from it by a linear scan, using a constraint-based rewriting procedure.1

Q
def
= (νa, b)(a(x).x(z).if z thenx〈true〉.P ′ | a〈b〉.a〈false〉)

Process Q above, resulting from P using the procedure, is typed by assigning to
a the type (?T.end, !T.end). What is important is that our type checking algo-
rithm, while typing Q and inferring that the variable x bound by the input on a

1 The procedure is still at an experimental stage; we do not discuss it here.

has type T , detects that the two linear endpoints of x described respectively by
T1 and T2 are used sequentially in i/o, and proposes a “fix”. We generate new
code for Q that mimics the behaviour described by the session type T , which,
in principle, is the desired behaviour of (the communication channel of) Q. The
type-assisted compositional translation [[·]] maps the typed sequential continua-

tion Q′
def
= x(z).if z thenx〈true〉.P ′ in a parallel process, using a forwarder (r)

and a semaphore (m) (to impose, in the source and in the translated processes,
the same order of communication); note that v = true is a parameter of the
translation, obtained by a linear scan of Q.

[[Q′]]v
def
= (νr,m)(x(y).r〈y〉 | r(z).if z thenm〈true〉.P ′ | x〈v〉.m(w))

After some confluent reduction steps, the channel sent over a is forwarded to the
receiver, which can finally successfully pass the boolean test:

(νa, b)(a(x).[[Q′]]v | a〈b〉.a〈false〉)→∗ (νm)(if true thenm〈true〉.P ′ | m(w) | a〈false〉)

Note that the type checking algorithm does not apply any transformation to
the legitimate (rewriting of) process LP (defined above), because the endpoint
of channel x that corresponds to T2 is not used in i/o (it is indeed delegated).

Contribution. Distributed programming is known to be very hard and one makes
mistakes by not taking into consideration all possible executions of the code.
Therefore, to assist in the software developing process, instead of simply re-
jecting a process that may contain a resource self-holding deadlock (RSHDF ,
i.e., one or more input and output on the same channel occur in sequence in
a given thread, an instance of Wait For deadlocks [17, 18]), we devise a type
checking algorithm that produces a fix for this kind of deadlocked processes by
a program transformation. We show that our program transformation is both
RSHDF -deadlock-free and error-free. These properties are achieved by relying
on automatic decoration of typed channels, and on light-weight verification of
the format of decorations, thus avoiding the use of type contexts and systems.

Plan of the paper. In Section 2, we introduce a typed π-calculus with sessions
obeying a linear discipline, and review the safety properties of the typing sys-
tem. In Section 3, we define the class of resource-holding and of deadlock-free
processes, showing the latter closed under reduction. In Section 4, we present
an untyped π-calculus with decorated channels: as decorations are based on
types, we do not need to rely on typing information to identify safe processes. In
Section 5, we devise a split-free type checking algorithm that projects typed pro-
cesses into decorated ones. The aim is two-fold: (i) assess the typability of a typed
process given a context; and (ii) generate untyped, resource-deadlock free code.
We conclude presenting the main results of the algorithm: it accepts processes
typed by the split-based type system; and any process generated by the algo-
rithm: (i) does not reach errors during the computation; (ii) is resource-holding
deadlock-free. The proofs of the results presented herein are in a technical report
(cf [19]).

2 The source language: π-calculus with session types

We present the syntax and the (static and dynamic) semantics of the monadic,
choice-free, synchronous π-calculus, equipped with session types, our source lan-
guage. Then we state the main properties ensured by the type system.

Syntax of processes and types. Let P,Q range over the set of processes P, T
range over types T and R,S over session types, and Γ range over typing contexts
(or environments) G, which are maps from variables x, y, z to types; values v, w
are variables and the boolean constants true and false. The grammar in Figure 1
defines the language, which is standard (cf. [1], but uses type annotations in
restriction). We consider types T composed by channel types of the form (R,S),
where R and S are session types, each describing an end point of a session, and
the boolean type. An end point of a session S finishes with the type end. A type
of the form !T.S describes a channel that is used exactly once to send a value
of type T , and then is used as prescribed by S, following a linear discipline.
Similarly, ?T.S describes a channel that is used exactly once to receive a value
of type T , and then is used as imposed by S. The type end describes an end
point of a session on which no further interaction is possible.

Considering the usual notions of free and bound variables, α-conversion, as
well as of substitution, cf. [20], we use fv(P) and bv(P) to indicate respectively
the set of free and bound variables of P , which we assume disjoint by following
Barendregt’s variable convention [21], and let var(P) be the union of fv(P) and
bv(P). A process P is closed whenever var(P) = bv(P).

The processes of our language are thus synchronous output and input pro-
cesses, in the forms x〈v〉.P and x(y).P : the former sends a value v over channel x
to P , the latter waits on x for a value v that will substitute the bound occurence
of y in P , noted P [v/y]. Notice that substitution is not a total function; it is not
defined, e.g., for (y〈false〉)[true/y]. When writing P [v/y] we assume that the sub-
stitution operation involved is defined. The restricted process (νy : T)P creates
a variable y decorated with the type T ; the occurrences of y in P are bound.
Boolean values are contrasted using if-then-else. The remaining processes are
parallel composition, replication, and inaction. We ignore trailing 0’s and write
(νx̃ : T̃)P as a shortcut for (νx̃1 : T1) · · · (νx̃n : Tn)P , with n ≥ 0.

Dynamic semantics: reduction. Following standard lines, we describe the oper-
ational semantics of processes through a reduction relation, and allow to rear-
range processes with structural congruence. The congruence rules are standard;
we note that the second rule in the second line allows to remove a restriction
provided that the session type has been consumed.

The reduction rules are also standard. The only variation is that we record,
as a label of the reduction arrow, the variable where the (free) synchronisation
takes place (similarly to [7, 11]); this is convenient, and has no semantic impact,
allowing to represent the progression of type decorations in restricted processes
through the next operator over types. Let µ range over variables x, y and the
symbol τ , which we assume reserved (not occurring in the syntax of processes).

Syntax of typed processes

T ::= Types P,Q ::= Processes

(S, S) session x〈v〉.P output

bool boolean x(y).P input

S ::= End point (νy : T)P restriction

?T.S input if v thenP elseQ conditional

!T.S output (P | Q) composition

end termination !P replication

v ::= Values 0 inaction

true, false constant

x, y variable

Operator for type progression

next(?T.S) = S next(!T.S) = S next(end) = end next((S1, S2)) = (next(S1), next(S2))

Rules for structural congruence

(P | Q) ≡ (Q | P) ((P1 | P2) | P3) ≡ (P1 | (P2 | P3)) (P | 0) ≡ P !P ≡ (P |!P)

((νy : T)P | Q) ≡ (νy : T)(P | Q), if y /∈ fv(Q) (νy : (end, end))0 ≡ 0

(νy1 : T1)(νy2 : T2)P ≡ (νy2 : T2)(νy1 : T1)P P ≡ Q, if P =α Q

Rules for reduction

(x〈v〉.P | x(y).Q)
x
−→ (P | Q[v/y]) [R-Com]

P
y
−→ P ′ next(T) = T ′

(νy : T)P
τ
−→ (νy : T ′)P ′

P
µ
−→ P ′ µ 6= y

(νy : T)P
µ
−→ (νy : T)P ′

[R-ResB],[R-Res]

if true thenP elseQ
τ
−→ P if false thenP elseQ

τ
−→ Q [R-IfT],[R-IfF]

P
µ
−→ P ′

(P | Q)
µ
−→ (P ′ | Q)

P ≡ Q Q
µ
−→ Q′ Q′ ≡ P ′

P
µ
−→ P ′

[R-Par],[R-Struct]

Fig. 1. Typed π-calculus

Type split rules

S = S ◦ end S = end ◦ S
R = R1 ◦R2 S = S1 ◦ S2

(R,S) = (R1, S1) ◦ (R2, S2)
bool = bool ◦ bool

Context split rules

∅ = ∅ ◦ ∅ Γ = Γ1 ◦ Γ2 T = T1 ◦ T2

Γ, x : T = (Γ1, x : T1) ◦ (Γ2, x : T2)

Fig. 2. Type and context split

Moreover, let ⇒ indicate the reflexive and transitive closure of
µ
−→ , whenever

the labels are irrelevant.

Static semantics: type system. The type system uses a notion of type and context
split (cf. Walker’s chapter in Pierce’s book [22]), noted ◦, defined in Figure 2.
Formally, split is a three-argument relation. We write Γ1 ◦ Γ2 to refer to a type
environment Γ such that Γ = Γ1 ◦ Γ2. Figure 3 contains a typing system
with judgements of the form Γ ` P , where we assume that fv(P) ⊆ dom(Γ)
and bv(P) ∩ dom(Γ) = ∅. We make use of predicates on types and contexts,
balanced and terminated (noted respectively bal and term). Balancing relies on
the standard duality notion of session types; we let S be the dual of S:

?T.S =!T.S !T.S =?T.S end = end bal((S, S))

Note that booleans are not balanced, as we do not consider open processes of the
form if y thenP elseQ, or closed processes of the form (νx : bool)P . The terminated
types are (end, end) and bool: term((end, end)) term(bool).

The typing rules are inspired by the system of Giunti and Vasconcelos [9],
and represent a subsystem of its recent re-formulation [10], to which we refer for
all details. We note that (a) we have left and right rules for typing input and
output processes, corresponding to the cases whether the type for the prefix is
on the left or on the right: for compactness, we only indicate left rules; (b) Rule
[T-Out-l] allow session delegation by means of context split: for instance, if
Γ ` P with Γ = Γ1 ◦ (Γ2, x : (!T1.S,R)), then v is both sent at type T1 and used
at type T2 in the continuation, whereas Γ (v) = T1 ◦ T2.

Results. The type system guarantees the usual type preservation and safety prop-
erties — basic values are not used as channels (for synchronisation) and channels
are always used linearly — when considering balanced contexts, i.e., contexts
mapping variables to balanced types (processes must send and receive values of
the same type on both end points of a same channel). The proof of these results
can be found in a recent work of Giunti [23].

Theorem 1 (Subject reduction). Let Γ be balanced. If Γ ` P and P ⇒ P ′

then there is Γ ′ balanced such that Γ ′ ` P ′.

Typing rules for values

term(Γ)

Γ ` true, false : bool

term(Γ)

Γ, x : T ` x : T
[T-Bool],[T-Var]

Typing rules for processes

Γ, x : (S,R), y : T ` P
Γ, x : (?T.S,R) ` x(y).P

Γ1 ` v : T Γ2, x : (S,R) ` P
Γ1 ◦ (Γ2, x : (!T.S,R)) ` x〈v〉.P [T-In-l],[T-Out-l]

Γ1 ` v : bool term(Γ2) Γ2 ` P Γ2 ` Q
Γ1 ◦ Γ2 ` if v thenP elseQ

[T-If]

Γ, x : T ` P bal(T)

Γ ` (νx : T)P

Γ ` P term(Γ)

Γ `!P
[T-Res],[T-Repl]

Γ1 ` P1 Γ2 ` P2

Γ1 ◦ Γ2 ` P1 | P2

term(Γ)

Γ ` 0
[T-Par],[T-Inact]

Fig. 3. Type system

The main result of this section is that typed processes do not reach errors during
the computation. Besides basic errors of the form x〈true〉.P | x(y).y(z).P , where
true can be send through [R-Com] but the substitution is not defined, we consider
errors due to non-linear use of channels, as in the parallel compositions x〈v〉.P1 |
x〈w〉.P2 and x(y).P1 | x(y).P2.

Definition 1 (Error Process). A process R is a error, if it is of the form
R ≡ (νz̃ : T̃)(P | Q), for some x, v and w, where (i) P = x〈v〉.P1 | x〈w〉.P2, or
(ii) P = x(y).P1 | x(z).P2.

Theorem 2 (Type Safety). If Γ ` P with Γ balanced, and P ⇒ Q, then Q
is not an error.

In short, although session type systems accept processes with non-deterministic
behaviour (due to the behaviour of parallel composition), the behaviour of each
session is deterministic, as communication channels (used for synchronisation)
must be used linearly. In particular, a session type system rules out a pro-
cess like a(x).0 | a〈v〉.a(x).0 | a〈u〉, since the communication order cannot
be guaranteed, but accepts deadlocks like a〈v〉.a(x).0, a(x).a〈x〉, or even like
a(x).b〈u〉 | b(x).a〈v〉.

3 Resource-Holding Deadlocks

The aim now is to introduce a syntactic (untyped) characterisation of processes
that do not contain deadlocks due to the self-holding of resources; this is a sim-
plified variant of Hold and Wait or Resource-Holding deadlocks. Our formulation
of the property is such that it is preserved by reduction, and it has a simple,

decidable, proof technique to verify if the property holds for a given process.
In Section 6 we discuss how we envision to tackle the general deadlock resolu-
tion problem for the π-calculus. We motivate first the formal definition through
examples. Then present it rigourously and develop the proof technique.

Resource self-holding deadlocks: motivation. In the following we analyse bal-
anced, typable, self-hold and wait deadlocks while leaving type decorations im-
plicit. Deadlocked processes like (νa)(νb)(a(x).b〈true〉 | b(y).a〈false〉) are not
resource self-holding deadlocks, and are not addressed by our analysis tech-
nique. Intuitively, a process exhibits a resource self-holding deadlock if both
ends of a (private) channel appear in sequence — communication on that chan-
nel is not possible. The basic examples2 are the processes (νa) a〈true〉.a(y) and
(νa) a(y).a〈true〉, which contain a resource self-holding deadlock, since no com-
munication on a can occur, as the co-actions appear in sequence, instead of in
parallel. More intricate resource self-holding deadlocks include processes of the
form (νa)(νb)(b〈false〉.(a(x).b(y) | a〈true〉)), or of the form

(νa)(νb)(a(x).b(y).x〈true〉 | a〈b〉) (1)

a(x).b(y).a〈y〉.(x(z) | x〈true〉) | b〈c〉 (2)

Process (1) is a simple variant of the process P of the introduction which del-
egates one end point of a session; process (2) describes a delicate situation in-
volving binders. Our algorithm still not deal with these class of processes: in
(1) we should predict that the left thread will receive b, while in (2) we cannot
simply put the output on a in parallel, as the variable y would escape its scope.
In Section 6 we envision how we could tackle these deadlocks.

Resource self-holding deadlocks: formally. We consider the following auxiliary
notions on multisets, and let e be multiset intersection, d multiset union, b
multiset inclusion, and \ multiset difference. The subject variables of P , noted
subjv(P), is the multiset with the occurrences of x ∈ var(P) identified by the
rules (1) subjv(x(y).P) = {x} d subjv(P), and (2) subjv(x〈v〉.P) = {x} d
subjv(P), the remaining productions being homomorphic. The x-variables of P ,
noted x(P), is the subset identified by {x, x, · · · } e subjv(P), where {x, x, . . . }
is a countably infinite multiset of x.

Definition 2 (Sequential and Parallel Variables). The sequential vari-
ables of a process P , noted sv(P), is the submultiset of subjv(P) identified by
the rules (the remaining cases are homomorphic):

1. sv(x(y).P) = {x} d sv(P)
2. sv(x〈v〉.P) = {x} d sv(P)
3. sv(P | Q) = sv(P) d sv(Q)\((sv(P) e sv(Q)) d (sv(P) e sv(Q)))
4. sv(if v thenP elseQ) = sv(P) d sv(Q)

The parallel variables of a process P , noted pv(P), is pv(P)
def
= subjv(P)\ sv(P).

2 While most of the examples do not require the use of restriction, we limit the scope
of channels to help the comprehension of the reader.

Parallel variables are those that occur as subjects in different threads. A process
does not contain resource-holding deadlocks if every channel has a matching pair
in another thread, giving it a chance to interact.

Definition 3 (Resource Self-Holding Deadlock Freedom). A process P is
Resource Self-Holding Deadlock-Free (RSHDF), if sv(P) = ∅, or, equivalently,
if subjv(P) = pv(P).

Examples of (balanced typed) RSHDF processes include a〈b〉.d〈c〉.a(x) |
a(y).a〈true〉 | d(z), and (νa)(νb)(a(x).(x〈true〉 | b(z).x(y)) | b〈true〉.a〈c〉) . We do
not consider processes like a〈b〉.d〈c〉.a(x) | a〈true〉.a(y) | d(z), or a〈true〉 | a〈false〉,
or a(x).P1 | a〈true〉.P2 | a(y).P3, which are RSHDF while are not typable by a
balanced environment. Processes containing sequential variables (typed or not),
and thus not RSHDF , are for instance (νa)a〈true〉 | b(y), or if true then a〈b〉 |
a(y) else a〈b〉.a(y), or a〈b〉 | a(x).(x〈true〉 | c(y)), or (νa)(a〈b〉 | c〈a〉).

Results. The main result of this section is that the RSHDF property is closed
under reduction (cf. Theorem 3). It is useful to analyse the shape of types ap-
pearing in the derivations of our interest. The invariant we rely on is that if a
session type provides for sending/receiving a variable, then the type of the pay-
load is balanced (i.e., when a process outputs a channel with an ”active” session,
it delegates both end points).

We have seen that balanced types guarantee subject reduction and type
safety. Still, a balanced type permits to type a input process that waits for an
unbalanced variable, what is useless since the process cannot receive such variable
from a balanced process. To refine our analysis on type derivation trees, we iden-
tify the class of semi-balanced types, processes and contexts, noted sbal; we give
here the intuition and refer to the technical report [19] for the formal definition.
End point types ?T.S, !T.S are semi-balanced when T is balanced or T = bool,
and S is semi-balanced; end is semi-balanced. Types (S, end), (S, S), (end, S)
are semi-balanced whenever S is semi-balanced. A process is semi-balanced if all
type decorations under restriction are semi-balanced. A context is semi-balanced
if all types in its range are semi-balanced.

With small modifications we inherit the following result from Theorem 1,
and use it in the proof of Theorem 3 below, which guarantees the of closure of
RSHDF under reduction.

Corollary 1. If Γ ` P , Γ is semi-balanced, and P ⇒ P ′, then there is a semi-
balanced Γ ′ such that Γ ′ ` P ′.

Notice that semi-balanced contexts force a process to delegate both end
points of a channel, when sending it on another channel. In fact, processes of the
form (1) above are not semi-balanced, and are (still) not tackled by our analysis.

Theorem 3 (RSHDF preservation). If Γ ` P with Γ and P semi-balanced,
P is RSHDF, and P ⇒ P ′, then P ′ is RSHDF.

Syntax of decorated processes

σ, ρ ::= Decoration Types H,K ::= Processes

bool boolean φ〈ω〉.H output

S end point φ(yσ1 , . . . , yσn).H input

> top (νyσ1 , . . . , yσn)H restriction

φ, ϕ ::= Prefixes ifω thenH elseK conditional

xσ decoration (H | K) composition

ω, ψ ::= Values !H replication

xσ1 , . . . , xσn tuple 0 inaction

true, false constant

Rules for reduction (extends Fig. 1)

S1 = S2 φ̃ = yσ1 , . . . , yσn |ω| = |φ̃|

(xS1〈ω〉.H | xS2(φ̃).K)
xS1

−−−→ (H | K[ω/φ̃])

[R-DCom]

1 ≤ i < j ≤ n σi = S σj = S H
yS
−−→ H ′

(νyσ1 , . . . , yσn)H
τ
−→ (νyσ1 , . . . , yσi−1 , yσi+1 , . . . , yσj−1 , yσj+1 , . . . yσn)H ′

[R-DResL]

Fig. 4. Target language

4 The target language: decorated π-calculus

We use this new language in the type-checking and deadlock resolution algo-
rithm. We adopt a constructive approach: the algorithm takes a typing context
and a process and while building the type derivation creates a new process in
the target language, decorating the channels with the types used up until that
point. In fact, it transforms linearly used session channels into linear channels
that synchronise in the same order, guaranteeing absence of races, as one session
channel is mapped into a tuple of linear channels.

When, during type checking, the algorithm detects a (possible) deadlock, it
launches the deadlock release function on the decorated version of the original
process. Since we deal with sequential threads locally, transferring information
from the global typing context to the channels occurring in that thread, the
algorithm is compositional and linear in the size of the input process.

Syntax and semantics of the decorated π-calculus. In this section we introduce a
variant of the polyadic π-calculus [20] where channels are decorated with session
types. The algorithm projects typed processes into decorated processes, as we
explain ahead. We use polyadic channels to map a channel of type (?T.S, !T.S)

into a tuple of the form x?T.S , xS , . . . , x!T.S , xS , . . . , x>, where > def
= (end, end).

The set of decorated processes H, ranged by H,K, is defined in Figure 4
by adorning processes of Figure 1 with end point types S. There is a small
difference, that is that we will never use end to decorate channels, and rely
on > to decorate channels carrying void capabilities. We define free and bound
variables of a process, noted respectively fv(H) and bv(H), in terms of multisets,
and count the occurrences of a same decorated variable by means of a function
occurs : F → N , where we let F be the set of decorated variables, ranged by φ, ϕ.
We indicate tuples of prefixes with φ̃. We use “\” to remove all occurrences of an
entry in a multiset. For space limitations, we omit all the details and note that,
for instance, bv((νyσ, . . . , yρ)P) = {yσ, . . . , yρ} d ({yσ, . . . , yρ} e fv(P)) d bv(P)
= bv(xS(yσ, . . . , yρ).P). We assume that alpha-conversion preserve decorations,
and define the usual rules for structural congruence, but for the axiom for the
null process: (νy>)0 ≡ 0.

The main change to the π-calculus semantics [20] is the communication rule,
[R-DCom]: two processes exchange a value only if the two end points of the
channel are decorated with dual types; this is akin to the polarity-based commu-
nication [7], and can be easily implemented by pattern matching of decorations.
Substitution of a prefix φ with a value ω of the same arity is noted as [ω/φ]:
whenever ω = xσ1

, . . . xσn
and φ̃ = φ1, . . . , φn, we write P [ω/φ̃] to indicate the

process P [xσ1
/φ1, . . . , xσn

/φn]. As in Figure 1, we record the prefix φ on the
arrow, which is of help for practical purposes and has no semantic impact. We
use η to range over φ and τ actions, and write H → K when the label is irrel-
evant. Rule [R-DResL] describes a reduction on a couple of dually decorated
prefixes that are restricted, and its continuation where the two dual end point
channels have been removed from the restriction declaration. This rule is meant
to describe linear processes where a decoration S appears only once, as we will
introduce below; for this very reason, the restriction can be removed after a
synchronisation.

Sound decorations. Instead of relying on a type system to ensure safety, we
exploit the decoration of variables to characterise processes that do not reach
errors during the computation (henceforth called sound processes). This char-
acterisation leads to a static, syntax-directed checking system. As we will show
later, our algorithm converts well-typed processes into sound processes, as one
would expect, so we do not need a static type system for decorated processes.

Sound processesH such that zend 6∈ var(H), for any z, are determined through
four syntactic conditions. First, we mimic the type system in Figure 1 and enforce
send and receive of values of the expected types by using a coherence inference
system. The system not only checks the consistency between subject and object
types, but also guarantees balanced payload types. However, it is not equivalent
to the type system, since sequential and linear behaviour are checked separately
Second, we check that processes have valid decorations for the same variable,
i.e., types must form a chain (enforcing the sequential behaviour prescribed by
the session types). Third, we check that each channel decorated with a type S is
used exactly once. Fourth, we check that the order of the exchanges prescribed

by the decorations are preserved. We omit the formal definition of sound process
and refer the reader to the technical report [19] for all details.

The main result of this section says that sound processes do not reach errors,
which are processes containing two processes prefixed with the same variable
that do not synchronise.

Theorem 4. If H is a sound process and H ⇒ K, then K is not of the form:

1. (νϕ̃)(xS〈ω〉.K1 | xR〈ψ〉.K2 | K3), for some xS , xR, ω and ψ
2. (νϕ̃)(xS(φ̃).K1 | xR(φ̃).K2 | K3), for some xS and xR
3. (νϕ̃)(xS〈ω〉.K1 | xR(φ̃).K2 | K3), for some xS , xR, ω such that R 6= S

In the decorated setting, the notion of resource self-holding deadlock freedom
is quite intuitive: prefixes with dual decorations must run in parallel. To this aim,
we define a notion of set3 intersection modulo dual type decorations, noted u:
({xS}∪A)u ({xS}∪B) = {xS , xS}∪ (AuB), xS uxR = ∅ if R 6= S, xS uyR = ∅
if x 6= y, and extend the definition of sequential variables as expected, e.g.
sv(H | K) = sv(H) ∪ sv(K)\(sv(H) u sv(K)).

Definition 4. A sound process H is Resource Self-Holding Deadlock-Free (or
RSHDF) if sv(H) = ∅.
Theorem 5. If H is RSHDF and H → K then K is RSHDF .

Canonical representation In this section we show that (semi-balanced) typed
π-calculus processes have a canonical representation in decorated π, and that
this representation both preserves the operational semantics and is sound.

First, we formalise trough function dec the projection of a π-calculus variable
having a balanced type T , or type bool, into a tuple of decorated variables.

dec(y, (?T.S, !T.S)) = {y?T.S , y!T.S} d dec(y, (S, S)) dec(y, bool) = ybool

dec(y, (!T.S, ?T.S)) = {y!T.S , y?T.S} d dec(y, (S, S)) dec(y, (end, end)) = y>

Definition 5. Let Γ ` Q with Γ and Q semi-balanced. The canonical represen-
tation of Q w.r.t. Γ , noted dec(Γ,Q), is obtained by

1. dec(x(y).P) = x?T.S(dec(y, T)).dec(Γ ′, P) whenever Γ (x) = (?T.S, !T.S) or
Γ (x) = (!T.S, ?T.S), and Γ ′ ` P is a sub-tree of Γ ` x(y).P ;

2. dec(x〈y〉.P) = x!T.S(dec(y, T)).dec(Γ ′, P) whenever Γ (x) = (!T.S, ?T.S) or
Γ (x) = (?T.S, !T.S), and Γ ′ ` P is a sub-tree of Γ ` x〈y〉.P ;

3. dec((νx : T)P = (ν dec(x, T))dec((Γ, x : T), P).

The remaining cases are homomorphic.

Theorem 6 (Operational Correspondence). Let Γ ` P with Γ and P semi-
balanced.

1. if P → P ′ and Γ ′ ` P ′ then dec(Γ, P)→ dec(Γ ′, P ′)
2. if dec(Γ, P)→ H then there are Γ ′, P ′ such that P → P ′ and H = dec(Γ ′, P ′)

Theorem 7 (Soundness). If Γ ` P with Γ and P semi-balanced, then dec(Γ, P)
is sound.
3 The subject variables of a sound process is indeed a set.

5 Deadlock resolution algorithm

We finally present the type checking and disentangling algorithm that releases
deadlocks from typed processes through a process transformation. This algo-
rithm is implemented using an inductive function that projects couples in G ×P
of Section 2 into decorated processes in H of Section 4. For clarity, the imple-
mentation of this function is presented by means of pattern analysis rules: we
note that the algorithmic rules do not rely on type and context split, which is
inherently non-deterministic.

Our procedure resolves multiple, nested deadlocks, possibly on the same
channel. It works in one linear pass (when analysing a sequential process) and it
is compositional (with respect to parallel threads). We stress again that the class
of deadlocks we disentangle is restricted to the sequential use of both end points
of a channel in a given thread. Moreover, we consider herein only finite sessions
(actually, we enforce total consumption of a session type when type-checking).

The top-level call of the algorithm has the form Γ A P . H, meaning
that given in input a semi-balanced environment Γ and a π-calculus process
P , when the call is successful a decorated process H is returned in output; this
implies that Γ ` P (cf. Figure 3), as we will show. In the rest of the presenta-
tion, let the . symbol be the separator between the input (on the left) and the
output (on the right) of the function. Note that the semi-balanced hypothesis
is crucial, as it permits to obtain that all types appearing in the algorithm’s
derivations are semi-balanced (which does not hold for Figure 3), and that rules
are deterministic. However, we may need to use backtracking (see below). The
top level call A makes use of the function `A, which is the core of the type-
checking and disentangling4 mechanism. The formal definitions of functions A

and `A are in Figures 5, 6,and 7, where the rules are assumed to be executed
in the given order. We introduce left rules for `A where the matched type for
the subject does appear in the left of a type (S1, S2); the right rules follow
the same schema. The inner call `A is a function with the following signature:
`A : G×D×P → G×D×H. The set D contains projections ∆ mapping variables

to types A def
= T ∪{(S, start), (start, S), (start, start)}; start is a new end-point type

which plays a role “dual” to end. We use > as a short for (end, end), and ⊥ as
a short for (start, start). At the bootstrap, a projection ∆ is generated from a
type environment Γ by means of a casting function, noted � , which maps all
types (S1, S2) in range(Γ) to type (start, start), and is idempotent over type bool.
The top-level call A is then successful whenever the inner call `A returns Γ and
∆ such that both are terminated, where we let any combination of end and start

to form a terminated type.
Projections are used in `A to detect whether two end points of a same session

are used sequentially, rather than in parallel. That is, in a projection a variable
starts with type (start, start) and then it can possibly have assigned a type of
the form (S, start) or (start, S), meaning that one of the two end points have

4 When convenient, we will say “type disentangle” to mean resolution of a (typed)
wait-for sequential deadlock.

Top-level call

sbal(Γ) Γ ; (Γ �) `A P . Γ1;∆1;H term(Γ1) term(∆1)

Γ A P . H

Patterns for variables

T = (S1, S2)

Γ, x : T `A x : T . Γ, x : >
T = (S1, S2)

Γ, x : T `A x : > . Γ, x : T
[A-Session],[A-Top]

Patterns for output processes (excerpt)

Γ `A y : T . Γ1 Γ1, x : (S, end);∆1, x : (start, !T.S) `A P . Γ2, x : >;∆2, x : (start, R);H (∗)
Γ, x : (!T.S, !T.S);∆1, x : ⊥ `A x〈y〉.P . Γ2, x : (end, R);∆2, x : ⊥;K

[A-OutInit-l]

Γ `A y : T . Γ1 Γ1, x : (S, end);∆1, x : (start, R) `A P . Γ2;∆2;H (∗∗)
Γ, x : (!T.S, end);∆1, x : (start, R) `A x〈y〉.P . Γ2;∆2;K

[A-OutEnv-l]

Γ `A y : T . Γ1 Γ1, x : (end, R);∆1, x : (S, start) `A P . Γ2;∆2;H (∗ ∗ ∗)
Γ, x : (end, R);∆1, x : (!T.S, start) `A x〈y〉.P . Γ2;∆2;K

[A-OutProj-l]

(∗) if R = !T.S then K := x!T.S〈dec(y, T)〉.H else

if R = end then K := [[x!T.S〈dec(y, T)〉.H]]false else raise fail

(∗∗) if ∆2(x) = (start, R) then K := x!T.S〈dec(y, T)〉.H else K := [[x!T.S〈dec(y, T)〉.H]]false

(∗∗∗) if Γ2(x) = (end, R) then K := x!T.S〈dec(y, T)〉.H else K := [[x!T.S〈dec(y, T)〉.H]]false

Fig. 5. Type checking function (part 1)

been used sequentially. If at the end of the call the variable has a type of the
form (end, start) or (start, end), we know that type S have been consumed, and we
launch our program transformation by signalling where the deadlock may occur.
While useful, projections are source of (light) non-determinism; for instance
during type checking we may have Γ , ∆ and x such that Γ (x) = (?T1.S1, end)
and ∆(x) = (start, ?T2.S2). In this case we use backtracking, and first try to use
(?T1.S1, end), and then, if an exception is raised, try to use (start, ?T2.S2).

We can now analyse the patterns of function `A. The patterns for variables
have the form Γ1 `A x : T . Γ2 where Γ1, x and T are respectively a context, a
variable and a type received in input, and Γ2 is a context returned in output.
The patterns for processes Γ1;∆1 `A P1 . Γ2;∆2;H2 follow in the same figure.
For each input and output there are six rules: three matching the end point type
on the left and three matching the end point type on the right. Consider one of

Patterns for input processes (excerpt)

Γ1, x : (S, end), y : T ;∆1, x : (start, R), y : ⊥ `A P . Γ2, x : >, y : >;∆2, x : (start, R), y : A;H term(A) (])

Γ1, x : (?T.S,R);∆1, x : ⊥ `A x(y).P . Γ2, x : (end, R);∆2, x : ⊥;K
[A-InInit-l]

Γ1, x : (S, end), y : T ;∆1, x : (start, R), y : ⊥ `A P . Γ2, y : >;∆2, y : A;H term(A) (]])

Γ1, x : (?T.S, end);∆1, x : (start, R) `A x(y).P . Γ2;∆2;K
[A-InEnv-l]

Γ1, x : (end, R), y : T ;∆1, x : (S, start), y : ⊥ `A P . Γ2, y : >;∆2, y : A;H term(A) (]]])

Γ1, x : (end, R);∆1, x : (?T.S, start) `A x(y).P . Γ2;∆2;K
[A-InProj-l]

(]) if R = ?T.S then K := x?T.S(dec(y, T)).H else if R = end then Snippet else raise fail

(]]) if ∆2(x) = (start, R) then K := x?T.S(dec(y, T)).H else Snippet

(]]]) if Γ2(x) = (end, R) then K := x?T.S(dec(y, T)).H else Snippet

Snippet if e = findValue(x!T.S , (Γ1, x : >), H) && e 6= 0 then K := [[x?T.S(dec(y, T)).H]]e

else K := x?T.S(dec(y, T)).H

Fig. 6. Type checking function (part 2)

the (six) rules for output, rule [A-OutInit-l]. The rule describes the pattern
matched by the identified first, second and third parameter; the body invokes
type-checking of variable y at the expected type by passing context Γ taken from
the first parameter, and obtains as result Γ1; a recursive call on the continuation
is then invoked by “split” the continuation type of x in the context — (S, !T.S)
— between the context and the projection. To enforce termination of sessions, we
check that the type of x in the return environment is >. To see if x is deadlocked
in P , we check the type (start, R) of x in the return projection: if R is different
from !T.S, then it has been used, and we invoke the disentangling function [[·]] (cf.
Figure 8) passing as arguments the decorated process x!T.S〈dec(y, T)〉.H, where
H is the return process, and the boolean constant false, which, in this case, is
ignored: this second parameter will be used in the clauses for input. We can
now read the side condition (∗) and understand the result forwarded in output:

K := x!T.S〈dec(y, T)〉.H when R = !T.S, and K := [[x!T.S〈dec(y, T)〉.H]]false

when R = end. Note the failure when R 6= !T.S, 6= end, meaning that !T.S is
partially consumed.

Pattern [A-OutEnv-l] is matched when the environment assigns to the
output channel x a type of the form (!T.S, end). The right end point type is
equal to end since the channel has been used before (in input or output): in
fact the type of x in the projection is (start, R), which is different from ⊥. We
type check the variable and launch the call for the continuation by passing the

Patterns for processes (excerpt)

Γ1;∆1 `A P . Γ2;∆2;H Γ2;∆2 `A Q . Γ3;∆3;K

Γ1;∆1 `A P | Q . Γ3;∆3;H | K [A-Par]

sbal(T) Γ1, x : T ;∆1, x : > `A P . Γ2, x : ⊥;∆2, x : A;H term(A)

Γ1;∆1 `A (νx : T)P . Γ2;∆2; (νdec(x, T))H
[A-Res]

Γ1;∆1 `A y : bool . Γ2;∆2 Γ2;∆2 `A P . Γ2;∆2;H Γ2;∆2 `A Q . Γ2;∆2;K

Γ1;∆1 `A if y thenP elseQ . Γ2;∆2; if ybool thenH elseK
[A-If]

Γ ;∆ `A P . Γ ;∆;H

Γ ;∆ `A!P . Γ ;∆; !H
Γ ;∆ `A 0 . Γ ;∆;0 [A-Repl],[A-Inact]

Fig. 7. Type checking function (part 3)

entry x : (!T.S, end) for the environment and by forwarding the same projection
received in input. Condition (**) is similarly to condition (∗) of [A-OutInit-l]
and permit to check the shape of the return projection ∆ in order to launch the
code for disentangling: if ∆(x) is unchanged then we return the decorated process
x!T.S〈dec(y, T)〉.H, otherwise we invoke disentangling on x!T.S〈dec(y, T)〉.H.

Pattern [A-OutProj-l] is matched when the type of the output channel x
in the projection is of the form (!T.S, start). In this case we invoke type checking
for the continuation (after contrasting the variable) by passing the same environ-
ment received in input and by passing the entry x : (S, start) for the projection.
Dually to [A-OutEnv-l], in (∗∗∗) we control the return environment Γ in or-
der to launch disentangling: if Γ (x) is unchanged then we forward in output

x!T.S〈dec(y, T)〉.H, otherwise we return [[x!T.S〈dec(y, T)〉.H]]false.

The rules for input, [A-InInit-l], [A-InEnv-l] and [A-InProj-l], follow in
Figure 6 and are analogous respectively to [A-OutInit-l], [A-OutEnv-l] and
[A-OutProj-l] in Figure 5. The main differences are:

(a) there is no variable to type-check;

(b) in the call for the continuation the variable y bound by the input is added
to the context at the payload type of the channel, and to the projection
at type ⊥; the type of y must be terminated in both the return context
and environment (cf. condition term(A)), to enforce a linear discipline for y
whenever its type is different from bool and >;

(c) function [[·]] in Figure 8 is invoked after checking that the value ω sent
over the sequential output corresponding to the input prefix satisfies cer-
tain conditions (cf. Snippet). This is implemented through a linear scan
function findValue (see below) which, when successful, returns a value differ-
ent from 0. When successful, we invoke function [[·]] by passing as arguments
x?T.S(dec(y, T)).H and ω, otherwise, we return x?T.S(dec(y, T)).H.

Type disentangling encoding [[·]] : H× V → H
(R =!T.S, IT

def
= ?T.end, OT =!T.end, yT and zT defined accordingly)

[[xR〈ω〉.H]]ψ
def
= (νrOT , rIT , r>) (∗)

(xR〈ω〉.〈〈H〉〉
x
R
r
IT
| xR(yT).rOT 〈yT 〉)

[[xR(yU).H]]ψ
def
= (νrOT , rIT , r>)(νmO> ,mI> ,m>) (∗∗)

((xR(zT).rOT 〈zT 〉 | rIT (yU).〈〈H〉〉xRm
O>
| xR〈ψ〉.mI>()))

(∗) {rOT , rIT , r>, yT }∩fv(H) = ∅ (∗∗) {rOT , rIT , r>,mO> ,mI> ,m>, zT }∩fv(H) = ∅

Auxiliary function for processes, 〈〈·〉〉 : H×F ×F → H

〈〈xR(yU).H〉〉xRϕ = ϕ(yU).H

〈〈φ(yU).H〉〉ψϕ = φ(yU).〈〈H〉〉ψϕ φ 6= ψ

〈〈xR〈ω〉.H〉〉xRϕ = ϕ〈〉.H

〈〈φ〈ω〉.H〉〉ψϕ = φ〈ω〉.〈〈H〉〉ψϕ φ 6= ψ

The remaining cases are homomorphic

Fig. 8. Transformation of decorated processes

Function findValue : F × G ×H → V ∪ {0} takes in input a prefix xS ∈ F , an
environment Γ ∈ G, and a decorated process H ∈ H, and scans the structure
of H to find the value ω sent over xS . The function returns ω whenever ω is a
boolean value, or is equal to the tuple xσ1 , . . . , xσn , for some x ∈ dom(Γ), and 0
otherwise. See the technical report [19] for the formal definition.

In Figure 7 we have rules for compositional processes. The interesting rule
is the one for parallel composition, [A-Par]. The first call on the left returns a
triple (Γ2, ∆2, H), where Γ2 and ∆2 are obtained by setting to end the session
end points used in P , and H is obtained by disentangling (the decoration of)
P , through function [[·]]. The second call on the right uses the return context Γ2

and the projection ∆2 to generate the triple (Γ3, ∆3,K), where K is obtained
by disentangling Q, using the same schema. Note that the deadlocks of P and
Q are fixed compositionally: we detect whether P is deadlocked before analysing
Q, and return the triple (Γ3, ∆3, H | K).

Program Transformation. The encoding [[·]] in Figure 8 maps decorated input
and output processes in H into decorated processes in H, given a parameter in V.
The partial operation [[·]] is called only with prefixed arguments: when invoked,
it disentangles the first prefix encountered. To this aim, it uses the auxiliary
total function 〈〈 · 〉〉 which takes a decorated process and two prefixes and returns
a process. In the output first case of [[·]] (first line) we rely on a fresh (triple of)

forwarder(s) r to carry the result to be received by the input prefix of x, now put
in parallel; the deadlocked input occurrence of x is renamed to r by 〈〈 · 〉〉 . Note
that we ignore the ψ parameter; it is useful only in the case below. The input
first case of [[·]] (second line) follows a similar idea but is more elaborate, because
of variable binding; in this case we need both a (triple of) forwarder(s) r and
a (triple of) semaphore(s) m, to preserve the order of exchanges: the call 〈〈 · 〉〉
renames the deadlocked output occurrence of x in H with m, while the output
on x is put in parallel by instantiating the tuples of values to be sent with the
actual parameter of [[·]], that is ψ. As introduced, this parameter is found (before
invoking [[·]]) trough function findValue: the function searches for the occurrence
of an output prefix in a decorated process and returns the values sent in output,
when these are a boolean constant or a tuple of free prefixes.

Results. The first result guarantees that the algorithm succeeds only when type-
checking succeeds, that is when the process is accepted by the system in Figure 3.
The construction of the proof of the theorem is similar to the one in [23], as the
process returned in output by A is ignored.

Theorem 8 (Typability). If Γ A P . H then Γ ` P .

The second result is the main one of the paper: it ensures that the process
returned by the algorithm is sound and RSHDF .

Theorem 9 (Deadlock freedom). If Γ A P . H then H is RSHDF .

We have a stronger result for the sequential variables of P : such variables
run in parallel at the same level in the process returned by the algorithm.

Theorem 10 (Mismatch freedom). If Γ A P . H and x ∈ sv(P), then for
all xs ∈ var(H): H =⇒ Kxs

with Kxs
≡ (νϕ̃)(xS〈ω〉.K1 | xS(φ̃).K2 | K3).

6 Conclusions

We propose a new approach to tackle an old dilemma: can we do something to
assist the programmer instead of simply reject code that does not type check?
Founding on the π-calculus [1] and on a recent formulation of session types [9,
10], we devised a type-checking algorithm that, when finds a particular form of
deadlocks, which we refer to as resource self-holding deadlocks, automatically
generates new type safe deadlock free code that mimics the original process in-
tended behaviour as described by session types. We assessed the feasibility of our
approach by implementing the algorithm (the code is available online, see [19])
and by analysing several examples of self-holding deadlocks. We believe that our
approach is interesting since it can be used to release deadlocks in systems based
on session and linear types, e.g. [3, 7, 11], which are represented by the type sys-
tem of [10]. Moreover, we ensure deadlock freedom for well-typed processes not
by restricting the set of typable processes, but by “fixing” those that exhibit the
problem. If adapted to session based type systems of high-level languages, it may

be an useful tool to assist the programmer in the software developing process,
by (automatically) repairing program errors that can lead to runtime deadlocks.
Our long-term goal is deadlock resolution for untyped processes, leaving the
session type construction as a blackbox: the programmer writes the code; the
algorithm infers the types, resolves the deadlocks, and provides error-free code.

For what concerns the limitations of our approach, we note that our notion
of deadlock seems to be a specific instance of resource holding or Hold and Wait
deadlocks [17, 18], which is identified by considering resources (interpreted as
π-calculus channels) blocked by the same thread; this notion is thus insensi-
tive to the presence of cycles in waiting/releasing a resource. Specifically, there
are four unmanaged classes of processes that we want to deal with: (1) we do
not tackle processes of the form a(x).x〈true〉.b(z) | a〈b〉 (which reduces in one
step to the basic example b〈true〉.b(z)), because the type of x is not balanced,
which follows from a not having a semi-balanced type; (2) we do not tackle
processes like a(x).c(z).a〈z〉.(x〈true〉 | x(y)) | c〈b〉, because the actual object of
the output on a is bound; (3) we do not tackle branching processes of the form
a(x).ifx then a〈true〉 else a〈false〉, i.e. they do not type check, because we cannot
resolve the non-determinism caused by the test; (4) we do not tackle processes
with circular deadlocks like a(x).b〈true〉 | b(y).a〈false〉. To solve (1) and (2), we
plan to enhance function findValue and collect a a series of constraints of the form
x = v, meaning that the (bound) variable x should be instantiated with v, before
executing the algorithm. We can then pass as further parameter the constraints
to be instantiated, e.g. (1) x = b, and (2) z = b, and re-use the pattern rules
presented in this paper. Issue (3) could be solved by considering the π-calculus
with a non-deterministic choice operator, or by devising a communication pro-
tocol that implements a similar behaviour (cf. [24]), to transform the blocked
processes by putting in parallel the choice a〈true〉+ a〈false〉. The issue (4) seems
orthogonal to our approach, and would require techniques to detect dependencies
and circularities in message passing, similarly to many recent works (e.g. [12]).
We leave this for future work, as well as a behavioural theory to relate the source
and the resulting process of our tool.

Acknowledgments. This work is partially supported by the Portuguese Funda-
ção para a Ciência e a Tecnologia via project “CITI/FCT/UNL 2011-2012” —
grant PEst-OE/EEI/UI0527/2011 and project “Liveness, statically” — grant
PTDC/EIA-CCO/117513/2010, and by the COST Action IC1201: Behavioural
Types for Reliable Large-Scale Software Systems (BETTY). We would like to
thank Adrian Francalanza for fruitful discussions and illuminating examples, and
the anonymous reviewers for their careful reading and constructive criticisms.

References

1. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts I and II.
Information and Computation 100(1) (1992) 1–77

2. Honda, K.: Types for dyadic interaction. In: CONCUR. Volume 715 of LNCS.,
Springer (1993) 509–523

3. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: ESOP. Volume 1381 of
LNCS., Springer (1998) 122–138

4. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typing
system. In: PARLE. Volume 817 of LNCS., Springer (1994) 398–413

5. Dezani-Ciancaglini, M., de’Liguoro, U.: Sessions and session types: An overview.
In: WS-FM. Volume 6194 of LNCS., Springer (2009) 1–28

6. Dezani-Ciancaglini, M., Drossopoulou, S., Mostrous, D., Yoshida, N.: Objects and
session types. Information and Computation 207(5) (2009) 595–641

7. Gay, S.J., Hole, M.J.: Subtyping for session types in the pi calculus. Acta Infor-
matica 42(2/3) (2005) 191–225

8. Yoshida, N., Vasconcelos, V.T.: Language primitives and type discipline for struc-
tured communication-based programming revisited: Two systems for higher-order
session communication. In: SecReT. Volume 171(4) of ENTCS. (2007) 73–93

9. Giunti, M., Vasconcelos, V.T.: A linear account of session types in the pi calculus.
In: CONCUR. Volume 6269 of LNCS., Springer (2010) 432–446

10. Giunti, M., Vasconcelos, V.T.: Linearity, session types and the pi calculus. Math-
ematical Structures in Computer Science (2013) In press.

11. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM
Transactions on Programming Languages and Systems 21(5) (1999) 914–947

12. Bettini, L., et al.: Global progress in dynamically interleaved multiparty sessions.
In: CONCUR. Volume 5201 of LNCS., Springer (2008) 418–433

13. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
CONCUR. Volume 6269 of LNCS., Springer (2010) 222–236

14. Caires, L., Vieira, H.T.: Conversation types. Theoretical Computer Science
411(51-52) (2010) 4399–4440

15. Wadler, P.: Propositions as sessions. In: ICFP, ACM (2012) 273–286
16. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous

global programming. In: POPL, ACM Press (2013) 263–274
17. Coffman, E.G., Elphick, M., Shoshani, A.: System deadlocks. ACM Computing

Surveys 3(2) (1971) 67–78
18. Knapp, E.: Deadlock detection in distributed databases. ACM Computing Surveys

19(4) (1987) 303–328
19. Giunti, M.: LockRes: a deadlock resolver for the pi calculus. SML/NJ prototype

of the algorithm. The tool and the technical report are available at: ctp.di.fct.
unl.pt/~mgiunti/lockres.

20. Milner, R.: Communicating and mobile systems - the Pi-calculus. Cambridge
University Press (1999)

21. Barendregt, H.: The Lambda Calculus - Its Syntax and Semantics. North-Holland
(1981 (1st ed.), revised 1984)

22. Walker, D.: Substructural Type Systems. In: Advanced Topics in Types and
Programming Languages. MIT Press (2005)

23. Giunti, M.: Algorithmic type checking for a pi-calculus with name matching and
session types. The Journal of Logic and Algebraic Progr. 82(8) (2013) 263–281

24. Nestmann, U., Pierce, B.C.: Decoding choice encodings. Information and Compu-
tation 163(1) (2000) 1–59

