
Compiling linear and static channels in Go

Extended Abstract

Marco Giunti?

NOVA LINCS, New University of Lisbon, Portugal

1 Introduction

Concurrent programming is nowadays pervasive to most software development
processes. However, it poses hard challenges to the developers, which must en-
visage and try to solve with their own forces undesired behaviours like security
breaches, protocol incompatibilities, deadlocks, races, livelocks; this is a very
difficult and error-prone task, requiring much more than just the programmer’s
skills: concurrency bugs appear frequently and have a substantial impact [11,21].
Automated techniques and tools are thus needed to analyse and ensure correct
concurrent code. Crucially, in order to be effective, the techniques must tackle
the struggle to balance the effort requested to the programmer, and the level of
sophistication of the properties ensured by the development process.

This abstract presents a significant contribution towards this direction by in-
troducing an high-level specification language with important features as channel-
over-channel passing, secret channels, and deadlock-freedom, that aims at pro-
viding for correctness-by-construction, and is supported by a fully automated
tool [2] that infers the types of well-behaved specifications, and generates exe-
cutable Go code. Our approach is unique, and has no burden for the developer:
the only task of the programmer is to describe the concurrent protocol in a spec-
ification language built upon few intuitive constructs, and with no decorations,
everything else is automated. Nevertheless, we accept important challenges: stat-
ically checking that the scope of a channel specified as secret is not enlarged at
runtime, even when the program runs in parallel with well-behaved interact-
ing contexts; statically checking deadlock-freedom on linear channels that can
be used exactly once in input and once in output; fully automated generation
of executable Go code that mimics non-deterministic synchronizations à la pi
calculus while enforcing race-freedom.

In the specification language, we consider a construct to declare secret chan-
nels, where secrecy is interpreted as the preservation of the following invariant
of the runtime system: the scope of a secret channel cannot be enlarged, even
when the program is executed in parallel with well-behaved interacting contexts;
that is, secret means static. This leads to a powerful but yet simple approach,
where the secrecy control does not rely on advanced features as, for instance,

? This work is partially supported by the Tezos fondation through the project
FACTOR and, by national funds, through FCT-Fundacão para a Ciência e a Tecnolo-
gia, I.P, in the context of NOVA LINCS through the project UID/CEC/04516/2019.

2 M. Giunti

non-interference [17,26], role-based- access control [27,9], or cryptographic anal-
ysis [5,3,4,32], but on a static analysis of the high-level language that is based
on types that are inferred in a fully automated fashion.

Related Work We did not find work similar to our construction; in particular,
the ideas behind the implementation in Go are original. We refer to [15,14] for
previous work of the author on secret channels.

Static channels and boundaries in process calculi have been investigate since
the origins of this research area [30], and more recently in [6,28,7], among the
others. The work in [6] is the closest to our approach, and introduces a pi calculus
featuring a group creation operator, and a typing system that disallows channels
to be sent outside of the group. Decisively, programmers must declare which is
the group type of the payload. In contrast, our analysis is fully-automated, does
not require type annotations, and is contextual : processes are allowed to sent a
channel outside the group if the context does not have read access to the channel.

To the best of our knowledge, most interpreters for distributed calculi sup-
porting channel-over-channel passing do not rely on channel-based mechanisms
at the target language level. The implementation of languages inspired by the
pi calculus has been pioneered by [31,25,29]. Central to this line of work is the
notion of Turner machine [31], which allows to simulate non-determinism and
concurrent executions in uniprocessors by interleaving the execution of processes;
this is de-facto mechanism for concurrency in most process calculi implementa-
tions (e.g. [13]). Previous attempts to develop calculi-inspired languages with
native support for channel-over-channel passing include JoCaml [12], where mo-
bility is now discontinued [22] for the sake of compatibility with OCaml.

Recently, a behavioural static analysys of Go programs based on multiparty
session types (MPST, [18]) have been presented in [19,20]. The approach fol-
lowed in this line of work consists in analysing existing Go programs, in order to
ensure stronger properties at compile-time, e.g. deadlock-freedom; this is done
by extracting the program’s behaviour as a global MPST. None of these works,
however, support channel-over-channel passing. In [8], the authors present a
framework to translate distributed MPST written in the Scribble protocol lan-
guage into a Go API. MPST types are mapped into Go types and methods.
Existing Go clients can use the API to ensure a form of practical safety: the API
dynamically generates errors (e.g. panic) when a Go program tries to break the
protocol’s safety, i.e. its linearity. On contrast, we generate both the server and
client’s code in a fully automated way, and we do not rely on dynamic analysis,
because the generated Go code aims at being correct-by-construction, that is
safety is tackled statically by means of type inference of pi calculus channels.

2 Example: designing a secret chat protocol

To illustrate our construction, we consider the example of a messaging applica-
tion with support for secret chat, that are chats that cannot be forwarded. We
believe that in a concurrent setting this feature can be naturally interpreted as
a secret channel, one that cannot be forwarded outside its designed scope. The

Compiling linear and static channels in Go 3

Alice , alice?(chat).(group?(friend).friend!chat | chat!helloAlice)

Bob , bob?(chat).chat!helloBob | bot?(m).getMsg!m |
getRandom?(r).r?(stranger).getMsg?(m).stranger! m

Carl , carl?(chat).chat!helloCarl

Board , board?(secret).S(secret)

ChatServer , setup?(user).

[hide chat][user!chat | board!chat | Alice | Bob | Carl | Board]

Chat , setup!alice.(bot!group | group!bob | group!carl)

P , 〈board, getMsg, setup〉(newbot, group, alice, bob, carl)(Chat | ChatServer)

S(x)
rec
= x?(message).(print ::message | S(x))

Fig. 1: Secret chat protocol in the LSpi specification language

scenario may be the following. Alice, Bob, and Carl create a private group in
the app in order to chat among themselves. After the creation phase, the app
installs a chat server waiting for a request of a user of the group to setup a chat:
once the request has been pick up, the server creates a hidden chat channel with
static scope including Alice, Bob, Carl, and the chat board, and send it to the
user. Finally, the user forwards the chat channel to her friends, and from now on
the group can use the channel to exchange messages on the board. In order to
do not contain errors, the protocol must maintain the invariant that the scope
of a secret channel cannot be enlarged: we thus need to ensure that the design
of our programs satisfies properties of this form, and that these properties are
preserved when programs are deployed in well-behaved contexts.

Figure 1 presents a specification of the protocol in the LSpi language, a
programming-oriented variant of the secret pi calculus [15]; incidentally, we note
that the specification adds a feature to Bob, that is to communicate with random
strangers (off the board). The LSpi language follows a minimalistic approach and
presents a small number of primitives for sending and receiving values over chan-
nels (noted ! and ?, respectively), where values are channels or base values,

restricting and hiding channels (new and hide, respectively), recursion (noted
rec
=),

parallel composition (noted |), printing, declaration of linear channels that must
be used exactly once in input, and once in output (noted 〈·〉), and let-process
definitions (noted ,). The aim of the language is to provide for a correct-by-
construction specification of concurrent programs and security protocols.

The three main protection ingredients in Figure 1 are hiding, restriction, and
linearity : hiding and linearity represent semantic protection, while restriction is
syntactic protection. Restriction is the core mechanism of pi calculus [23], and
naturally corresponds to local scope in programming languages: most channels
are declared as restricted in P in order to avoid direct access from the context.
Channel protection by linearity (e.g. board) offers (at least) the same guarantee

4 M. Giunti

by relying on types: contexts read/write accessing a linear channel will be ruled
out. Declaring chat with the hide constructor aims at forbidding the enlarging
of the scope of the channel, in all well-behaved computations.

One question that we face is the following: does the protocol’s specification P
in Figure 1 contain programming errors that can compromise the protocol logic?
For instance, can we statically detect if P , once immersed in a well-behaved con-
text and executed in a channel-based runtime system, leaks secret channels? This
is a fundamental prerequisite to the generation and execution of code, since our
goal is to deploy correct-by-construction concurrent programs that at runtime
preserve the high-level specification properties while communicating through
message-passing without instrumentation (e.g. monitoring the exchanges). Inter-
estingly, the protocol contains a subtle vulnerability that may cause a security
breach; the attack, detected by the GoPi tool [2], is outlined below.

Our static analysis relies on types, and detects attempts to open the scope of
an hidden channel at compile-time. Protocol P in Figure 1 does not type check
since a well-typed context interacting with P can open the scope of channel
chat. While Bob legitimately relies on a bot channel to produce messages for
random strangers, the Chat component erroneously (or maliciously) sends the
group channel over bot. An attacker may use the exploit to receive channel group
from P , and in turn to send a fake friend on group: the fake channel can be non-
deterministically pick up by Alice, who in turn will send channel chat over fake,
thus disclosing its secrecy. To patch the specification, we remove the thread in red
from Figure 1; the resulting process is accepted by GoPi, which automatically
generates and runs the process’ Go code: the output of an execution is below,
where randomization allowed Carl to join the chat. Note that throwing a timeout
(on waiting on all input channels) causes the Go runtime to detect a deadlock;
this is fine, since all blocked channels in the goroutines (i.e. the parallel threads)
are unrestricted, while our static analysis prevent deadlocks on linear channels.

Retrieved alice from setup. Retrieved chat from board. Retrieved chat from alice.
Retrieved carl from group. Retrieved chat from carl. Retrieved helloAlice from chat.
Print helloAlice. Retrieved helloCarl from chat. Print helloCarl.
TIMEOUT. Fatal error: all goroutines are asleep - deadlock! Exit status 2

3 Discussion

This abstract introduces two main techniques to assist the concurrent software
developement process: (a) an high-level specification language that supports
primitives for secrecy and linearity to design correct-by-construction protocols;
(b) a fully automated tool that (1) infers the type of channels of programs hav-
ing a good behaviour without relying on decorations of the source code, and
(2) generates executable Go code featuring channel-over-channel passing. The
techniques are framed in an open and ongoing project that aims at developing
and maintaining a compiler for a language with built-in support for mobility,
security, resource-awareness, and deadlock-resolution. The development of the

Compiling linear and static channels in Go 5

tool has reached a stable phase; we release the code in GitHub [2]. We plan sev-
eral improvements, among which the most interesting are: support for channel
subtyping [24], deployment of mechanized proofs of correctness [1,10], and em-
bedding program transformation techniques to statically resolve deadlocks [16].

References

1. Coq 8.9.0 – Reference Manual, https://coq.inria.fr/distrib/current/refman,
accessed May 2019

2. The GoPi compiler, https://github.com/marcogiunti/gopi

3. Abadi, M., Blanchet, B., Fournet, C.: The applied pi calculus: Mobile values, new
names, and secure communication. J. ACM 65(1), 1:1–1:41 (2018)

4. Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based cryp-
tographic proofs. In: POPL. pp. 90–101. ACM (2009)

5. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
CSFW. pp. 82–96. IEEE (2001)

6. Cardelli, L., Ghelli, G., Gordon, A.D.: Secrecy and group creation. Inf. Comput.
196(2), 127–155 (2005). https://doi.org/10.1016/j.ic.2004.08.003

7. Castagna, G., Vitek, J., Nardelli, F.Z.: The seal calculus. Inf. Comput. 201(1),
1–54 (2005). https://doi.org/10.1016/j.ic.2004.11.005

8. Castro, D., Hu, R., Jongmans, S., Ng, N., Yoshida, N.: Distributed program-
ming using role-parametric session types in go: statically-typed endpoint APIs
for dynamically-instantiated communication structures. PACMPL 3(POPL), 29:1–
29:30 (2019). https://doi.org/10.1145/3290342

9. Ferraiolo, D., Kuhn, D.R., Chandramouli, R.: Role-based access control. Artech
House (2003)

10. Filliâtre, J.C., Paskevich, A.: Why3 — where programs meet provers. In: ESOP.
LNCS, vol. 7792, pp. 125–128. Springer (2013)

11. Fonseca, P., Li, C., Singhal, V., Rodrigues, R.: A study of the internal and external
effects of concurrency bugs. In: DSN. pp. 221–230 (2010)

12. Fournet, C., Le Fessant, F., Maranget, L., Schmitt, A.: JoCaml: A language for
concurrent distributed and mobile programming. In: International School on Ad-
vanced Functional Programming. pp. 129–158. Springer (2002)

13. Franco, J., Vasconcelos, V.T.: A concurrent programming language with refined
session types. In: SEFM 2013. Lecture Notes in Computer Science, vol. 8368, pp.
15–28. Springer (2014). https://doi.org/10.1007/978-3-319-05032-4 2

14. Giunti, M.: Static semantics of secret channel abstractions. In: NORDSEC. LNCS,
vol. 8788, pp. 165–180. Springer (2014)

15. Giunti, M., Palamidessi, C., Valencia, F.D.: Hide and New in the Pi-Calculus. In:
EXPRESS/SOS. EPTCS, vol. 89, pp. 65–79 (2012)

16. Giunti, M., Ravara, A.: Towards static deadlock resolution in the π-calculus. In:
TGC 2013. LNCS, vol. 8358, pp. 136–158. Springer (2014)

17. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Security and
Privacy. pp. 11–20. IEEE (1982)

18. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016)

19. Lange, J., Ng, N., Toninho, B., Yoshida, N.: Fencing off go: liveness and safety for
channel-based programming. In: POPL. pp. 748–761. ACM (2017)

https://coq.inria.fr/distrib/current/refman
https://github.com/marcogiunti/gopi
https://doi.org/10.1016/j.ic.2004.08.003
https://doi.org/10.1016/j.ic.2004.11.005
https://doi.org/10.1145/3290342
https://doi.org/10.1007/978-3-319-05032-4_2

6 M. Giunti

20. Lange, J., Ng, N., Toninho, B., Yoshida, N.: A static verification framework for
message passing in go using behavioural types. In: ICSE. pp. 1137–1148. ACM
(2018). https://doi.org/10.1145/3180155.3180157

21. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study
on real world concurrency bug characteristics. In: ASPLOS. pp. 329–339 (2008).
https://doi.org/10.1145/1346281.1346323

22. Mandel, L., Maranget, L.: The JoCaml language, http://jocaml.inria.fr/doc,
Release 4.01, March 14, 2014

23. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts I and II.
Information and Computation 100(1), 1–77 (1992)

24. Pierce, B.C., Sangiorgi, D.: Typing and subtyping for mobile processes. Mathe-
matical Structures in Computer Science 6(5), 409–453 (1996)

25. Pierce, B.C., Turner, D.N.: Pict: a programming language based on the pi-calculus.
In: Proof, Language, and Interaction, Essays in Honour of Robin Milner. pp. 455–
494. The MIT Press (2000)

26. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21(1), 5–19 (2003)

27. Sandhu, R.S.: Role-based access control. In: Advances in computers, vol. 46, pp.
237–286. Elsevier (1998)

28. Sewell, P., Vitek, J.: Secure composition of untrusted code: Box pi, wrappers, and
causality. J. Comp. Sec. 11(2), 135–188 (2003)

29. Sewell, P., Wojciechowski, P.T., Unyapoth, A.: Nomadic pict: Programming
languages, communication infrastructure overlays, and semantics for mobile
computation. ACM Trans. Program. Lang. Syst. 32(4), 12:1–12:63 (2010).
https://doi.org/10.1145/1734206.1734209

30. Thomsen, B.: Plain CHOCS: A second generation calculus for higher order pro-
cesses. Acta Inf. 30(1), 1–59 (1993). https://doi.org/10.1007/BF01200262

31. Turner, D.N.: The Polymorphic Pi-calculus:Theory and Implementation. Ph.D.
thesis, University of Edinburgh (1995)

32. Zinzindohoué, J.K., Bhargavan, K., Protzenko, J., Beurdouche, B.: HACL*: A
verified modern cryptographic library. In: CCS. pp. 1789–1806. ACM (2017)

https://doi.org/10.1145/3180155.3180157
https://doi.org/10.1145/1346281.1346323
http://jocaml.inria.fr/doc
https://doi.org/10.1145/1734206.1734209
https://doi.org/10.1007/BF01200262

	Compiling linear and static channels in Go

