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Abstract

We present a type checking algorithm for establishing a session-based discipline
in a π-calculus with name matching. We account for analyzing processes exhibit-
ing different behaviours in the branches of the if-then-else by imposing an affine
discipline for session types. This permits to obtain type-safety or absence of
communication errors while accepting processes of the form ifx = y thenP else0
that install a session protocol P whenever the test succeeds, and abort other-
wise. To this aim we define a type system based on a notion of context split, and
we prove that it satisfies subject reduction and type-safety. We implement the
type system in a split-free type checking algorithm, and we prove that processes
accepted by the algorithm are well-typed. We then show that processes that
are typed and do not contain Wait for deadlocks –an input and its correspond-
ing output (or vice-versa) are in the same thread instead of in parallel ones–
are accepted by the algorithm, thus providing a partial completeness result. We
conclude by investigating the expressiveness of the typing system and show that
our theory subsumes recent works on linear and session types.

1. Introduction

Session types allow a concise description of protocols by detailing the se-
quence of messages involved in each particular run of the protocol. Introduced
for a dialect of the π-calculus with accept/request primitives [16, 24], the concept
has been transferred to different realms, including functional [8, 21, 23, 25, 18]
and object-oriented programming [1, 4, 6], and even to operating systems [5];
refer to [3] for a recent overview.

In this paper, we make a step further towards the theory and practice of
session types by allowing a more flexible programming style that includes the
ability to check the identity of resources, and by developing an algorithmic
type system to discern well-typed processes that cannot go wrong. A central
feature in session-based systems is the capacity to pass on the processing of a
session, which is known as delegation. The following example, which is taken
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from the original formulation of session types in [16], perfectly illustrates the
idea. The design of a FTP server requires the presence of a daemon and of
a pool of threads, which communicate by means of a private channel. The
daemon is awake by a client request on a public channel to establish a session s.
Afterwards, a random thread accepts the daemon’s request to establish another
session on the private channel; the aim of the session is to delegate the client
session s, which will be served by the thread. A simplified code is written in
the π-calculus below. Ftpd is the daemon composed with n parallel instances of
FtpThread, where b is the private communication channel. The daemon waits
on channel pid for the client’s request, and afterwards sends one end point of
a freshly created session k over b, while uses the remaining end point of k to
delegate the client session s.

Init(pid)
def
= (νb)(Ftpd[pid, b] |

⊗
nFtpThread[b])

Ftpd[pid, b]
def
= pid(s).(νk)b〈k〉.k〈s〉.Ftpd[pid, b]

FtpThread[b]
def
= b(k).k(s).s(userid, passwd).FtpThread[b]

Clearly, the delegation mechanism requires reliable channels in order to be
sound. In the system above, this should be ensured by the restriction (νb),
which creates a channel dedicated to inter-communication among the daemon
and the threads. The general question that we face is: can we rely only on this
kind of assumptions in order to build safe systems? This could not be always the
case, as defended in [11]. For instance, the requirement of using dedicated chan-
nels is too strong for many actual distributed systems, which often are based
on open networks; also, the privacy of a channel can be disclosed (e.g. the π-
calculus scope extrusion mechanism) leading to non-secure restricted channels.
More practical approaches must then be taken into account in order to design
trustworthy session-based systems.

Motivation. We are interested in the design and analysis of session protocols
that rely on the ability to verify the identity of resources. This is relevant
for many purposes, which range from the design of protocols using a notion of
trust, to transaction systems featuring a roll-back option in case of wrong data.
To illustrate, consider a variant of the FTP server where the communication
channel among the daemon and the threads must be sent for verification to a
certification authority before that it can be used for delegating a session. The
system based on the Ftpd daemon below is instantiated with a tuple of (free)
delegation channels B = (b1, . . . , bn): the daemon checks the trust of b1 by first
establishing a session h with the authority by means of the channel cert, and
then by sending b1 over h. The continuation then waits for the answer of the
authority: if b1 is trusted then it is used to send a fresh session k to FtpThread,
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otherwise the certification protocol restarts by verifying the trust of b2.

Ftpd[pid, B]
def
= pid(s).Cert[s,B]

Cert[s,B]
def
= (νh)cert〈h〉.h〈b1〉.h(m).ifm = ok then (νk)b1〈k〉.k〈s〉.Ftpd[pid, B]

else Cert[s, (b2, . . . , bn)]

We omit the code for the certification authority and note that it crucially relies
on a tuple of certified channels (t1, . . . , tm), and on sub-processes of the form
if bi = tj thenP elseQ: given i ∈ {1, . . . , n}, bi is considered safe when it is
identical to tj , for some j ∈ {1, . . . ,m}. Our aim is to deploy an algorithmic
type system, or type-checker, that can accept processes of the form above basing
on session types.

Related Work. To the best of our knowledge, the combination of session types
and name matching has been studied before in [10], which introduces a session-
based type discipline for a π-calculus with accept/request primitives. In that
work, session types follow a linear discipline and the two branches of an if-then-
else process must behave identically. On contrast, in this paper we build on
a standard π-calculus with name matching and rely on an affine discipline for
session types to enforce that each end point of a session is used at most once.
We believe that requiring the two branches to follow the same linear discipline
is unnecessarily restrictive: there are indeed many interesting processes show-
ing a different session behaviour after the name matching test that we want to
analyze. [13] introduces a session typing system for a conventional π-calculus
with booleans. Types can represent one or both end points of the communi-
cation, and are qualified as linear or unrestricted : session types follow a linear
discipline and may evolve to unrestricted types. Types are allocated to processes
by means of context split, which is inherently non-deterministic. Similarly, [14]
considers a session typing system for π-calculus where types represent both end
points of the communication and are qualified. Both the papers [13] and [14]
do not address algorithmic issues. The typing system presented in this paper
is based on types representing both ends of the communication and embeds an
expressive fragment of [13]. We deploy an algorithmic typing system that does
not rely on context split, similarly to previous work for linear lambda calcu-
lus [27] and π-calculus with polarized channels [7]. The main idea in [27] is to
avoid to split the context into parts before checking a complex expression by
passing the entire context as input to the first sub-expression and have it return
the unused portion as an output. In the setting of concurrent computations,
when typing a parallel process P | Q, split-free solutions calculate the set of
linear identifiers used by P in order to remove it before type checking Q. This
approach, previously outlined for linear π-calculus [19], has been implemented
in the session system of [7] by representing each channel end point with a dis-
tinct identifier. On contrast, our algorithm works on a standard pi calculus and
accepts processes that consume different session identifiers in the two branches
of the if-then-else.
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Contributions. We introduce a typing theory for establishing a session-based
discipline in a π-calculus with name matching. To analyze processes that ex-
hibit different behaviours in the two branches of the if-then-else, we establish an
affine discipline for session types by requiring that each end point of a session
is used at most once. We define a typing system based on a notion of context
split and we show that well-typed processes cannot go wrong. We implement
the typing rules in a split-free algorithm based on functional patterns, and show
that the implementation is sound, that is: processes accepted by the algorithm
are well-typed. For the reverse direction we obtain a partial completeness re-
sult: typed process not containing Wait for deadlocks [2] are accepted by the
algorithm. We see this result as satisfactory: a fine-grained analysis permits us
to detect this class of typed deadlocks, which in turn we reject. We investigate
the expressiveness of our calculus and typing system by encoding a fragment
of the linear π-calculus with session types [13]; as a by product, we are able to
represent systems based on linear types [19] and session types [7].

A preliminary version of this paper appeared in [9], which deploys an algo-
rithmic solution for [13]. The work presented here is significantly different, since
we type more processes eventually relying on the ability to verify the identity of
resources. To complete the paper, we added the following results: (1) we prove
that well-typed processes cannot go wrong (Theorem 3.10), (2) we prove that
typed processes not containing Wait for deadlocks are accepted by the algo-
rithm (Theorem 4.8), (3) we embed a fragment of [13], study its expressiveness,
and provide a typing correspondence result (Theorem 5.3).

Plan of the paper. Section 2 introduces our language, a typed π-calculus with
name matching, and its typing system; a few examples are drawn. Section 3
shows that typed processes do not reach errors. Section 4 contains a type
checking algorithm that implement the type system in Section 2, and studies its
properties. Section 5 investigates the expressiveness of our system. In Section 6
we discuss the limitations of our approach and envision future work, concluding
the paper.

2. Typed π-calculus

This section introduces the syntax and the semantics of our typed π-calculus.
The formal definition is in Figure 1. We consider types of the form (S1, S2) and
(E1, E2) where each Si is a type describing the behavior of an end point of a
session and each Ei is a type describing the end point of a channel. An end
point of a session S finishes with the type end. A type of the form !T.S describes
a channel end able to send at most once a variable of type T and to proceed
as prescribed by S, following an affine discipline. Similarly, ?T.S describes a
channel end able to receive at most once a variable of type T and to continue
as S. The type end describes an end point of a session on which no further
interaction is possible. An end point of the form ?T describes a channel that
could be used in an unrestricted way to receive a variable of type T . Similarly
!T describes an end point channel that can used zero or more times to send a
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Syntax of typed processes

T ::= Types P,Q ::= Processes

(S, S) session x〈y〉.P output

(E,E) channel x(y).P input

S,R ::= Session end point (νy : T )P restriction

?T.S input ifx = y thenP elseQ name matching

!T.S output (P | Q) composition

end termination !P replication

E ::= Channel end point 0 inaction

?T input

!T output

Operator for type progression

next(?T.S) = S next(!T.S) = S next(end) = end

next((S1, S2)) = (next(S1), next(S2)) next((E1, E2)) = (E1, E2)

Rules for structural congruence

P | Q ≡ Q | P (P1 | P2) | P3 ≡ P1 | (P2 | P3) P | 0 ≡ P !P ≡ P |!P
(νy : (A,A))P | Q ≡ (νy : (A,A))(P | Q) (νy : (A,A))0 ≡ 0

(νx : (A,A))(νy : (B,B))P ≡ (νy : (B,B))(νx : (A,A))P

Rules for reduction

x〈z〉.P | x(y).Q
x
−→ P | Q[z/y] [R-Com]

P
y
−→ P ′ next(T ) = T ′

(νy : T )P
τ
−→ (νy : T ′)P ′

P
µ
−→ P ′ µ 6= y

(νy : T )P
µ
−→ (νy : T )P ′

[R-ResB],[R-Res]

if true thenP elseQ
τ
−→ P if false thenP elseQ

τ
−→ Q [R-IfT],[R-IfF]

P
µ
−→ P ′

P | Q
µ
−→ P ′ | Q

P ≡ Q Q
µ
−→ Q′ Q′ ≡ P ′

P
µ
−→ P ′

[R-Par],[R-Struct]

Figure 1: Typed π-calculus: syntax and semantics
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variable of type T . Types of the form (S1, S2) are called session types, while
types (E1, E2) are called channel types. We will often use the type (end, end)
to represent sessions that cannot be used in i/o (but can be passed around),

and call it top for short: > def
= (end, end). Basic channel values are represented

by means of (?>, !>), which we refer to as bot : ⊥ def
= (?>, !>). We use the

meta-variables A,B to range over session end points S,R and channel end points
E.

End point type duality plays a central role ensuring that communication
between the two end points of a channel proceeds smoothly. Intuitively, the
dual of an output is an input and the dual of input is an output whenever the
type expected in input is exactly the type sent in output. In particular if S2 is
dual of S1, noted S1 = S2, then ?T.S1 is dual of !T.S2.

?T.S =!T.S !T.S =?T.S ?T =!T !T =?T end = end

Types T of the form (end, end) and (E1, E2) are called terminated, and de-
noted with the predicate term(T ). A channel having terminated type cannot be
used for session-based communication.

term((end, end)) term((E1, E2))

Typed processes are ranged over P,Q. We rely on a set of variables, also
referred as names, ranged over by a, b, . . . , u, v, . . . x, y, z. We consider syn-
chronous output and input processes, in the forms x〈z〉.P and x(y).P . The
restricted process (νy : T )P provides for create a variable y decorated with the
type T . The matching process ifx = y thenP elseQ allows for comparison of
variables. The remaining processes are parallel composition, replication, and
inaction. The binders for the language appear in parentheses: the variable y
is bound in x(y).P and in (νy : T )P . Free and bound variables in processes,
noted respectively with fv(P ) and bv(P ), are defined accordingly, and so is al-
pha conversion, substitution of variable y by variable z in a process P , denoted
P [z/y]. We follow Barendregt’s variable convention, requiring bound variables
to be distinct from each other and from free variables in any mathematical con-
text. We will often omit trailing 0’s and abbreviate processes x〈v〉.0 and x(y).0
with x〈v〉 and x(y).

We define the semantics of our calculus via a reduction relation, also in in
Figure 1, and use structural congruence to rearrange processes. Structural con-
gruence, noted ≡, is the smallest relation on processes including the equivalence
induced by alpha-conversion, and the rules in Figure 1. Most rules are standard,
while in the rules for the scope of variables we enforce the decoration type to
be of a specific form, to ensure soundness. In the first rule on the second line,
we allow the scope of x to encompass Q whenever y is bound by a declaration
(νy : T ); due to variable convention, variable y cannot be free in Q. The second
rule in the same line permits to remove a binding, while the rule in the third
line permits to exchange two bindings of the required form. The reduction is

the smallest relation
µ
−→ on processes including the rules in the same figure,
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where we let µ range over the internal transition τ and variables x, y, z. The
aim of the label on the arrow is to represent the evolution of types of restricted
variables; this is only for convenience, and has no semantic impact (cf. [19]).

The [R-Com] rule permits to communicate a variable z from an output pre-
fixed one x〈z〉.P to an input prefixed process x(y).Q; the result is the parallel
composition of the continuation processes, where the bound variable y in the
input process is replaced by the variable z. We record on the arrow the variable
on which the synchronization takes place, that is x; this will be used in rules
[R-ResB],[R-Res]. Rule [R-ResB] depicts the case whether the reduction has
been originated from a reduction on the channel under restriction; the type of
the restriction of the continuation is inferred by means of the next operator,
which allows to unfold a session type. Rule [R-Res] applies when the reduction
is inferred from a channel not bound by the restriction, and does not change
the type of restriction of the continuation. Rule [R-IfT] says that a match-
ing process contrasting two identical variables does an internal transition τ and
reaches its continuation. Rule [R-IfF] applies when the two contrasted vari-
ables are different. Rule [R-Par] describes the behaviour of parallel processes,
and rule [R-Struct] allows for rearrangement of processes by using structural
congruence. We will often abuse the notation and write P → P ′ to indicate

that there is µ such that P
µ
−→ P ′. Similarly, we write P ⇒ P ′ to indicate that

a) P → · · · → P ′ or that b) P ′ = P .

Type system. Type environments or contexts Γ are a possibly empty map from
variables to types. In an environment Γ, x : T we assume that x does not occur
in Γ; we also assume the variable bindings in Γ to be unordered. We let dom(Γ)
be the set of names in Γ. We write Γ\x to indicate the context Γ1 whenever Γ =
Γ1, x : T or whenever Γ1 = Γ and x 6∈ dom(Γ). A context Γ is terminated, noted
term(Γ), whenever for all x ∈ dom(Γ) it holds term(Γ(x)). Types and contexts
can be split; this will be exploited in the typing rule for parallel processes and in
the rules for sending a variable. The definition of the split relation over types and
type environments, noted ◦, is in Figure 2. We will often write Γ1◦Γ2 to indicate
that there is Γ such that Γ = Γ1 ◦Γ2. Essentially, type split permits to separate
the two channel ends of a session, and to spawn the use of terminated types in
an unbounded manner. To illustrate, suppose that type (?T.S, end) describes
the local use of a variable x in process P1, and that (end, !T.R) describes the use
of x in process P2. The global use of x in P1 and P2, that is the use of x in the
parallel process P1 | P2, is depicted by the session type (?T.S, !T.R), which is
eventually split into (?T.S, end) and (end, !T.R). On contrast, a process using a
channel x at type (?T.S, !T.R) cannot be put in parallel with a process using x
at type !T.S′; this would break the affine type discipline for sessions, which says
that each end point of a session must be used at most once. We can instead
have x used at type (?T , !T ) in several threads, being the usage of a channel
type unrestricted, or x used both at type (?T.S, !T.R) in one thread and at type
(end, end) in the remainder.

The typing system is in Figure 2. Rule [T-Var] is for typing values and
requires the environment pruned from the typed entry to be terminated, so to
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Session end point split rules

S = S ◦ end S = end ◦ S

Type split rules

R = R1 ◦R2 S = S1 ◦ S2

(R,S) = (R1, S1) ◦ (R2, S2)
(E1, E2) = (E1, E2) ◦ (E1, E2)

Context split rules

∅ = ∅ ◦ ∅ Γ = Γ1 ◦ Γ2 T = T1 ◦ T2
Γ, x : T = (Γ1, x : T1) ◦ (Γ2, x : T2)

Γ = Γ1 ◦ Γ2 T = T2 ◦ T1
Γ, x : T = (Γ1, x : T1) ◦ (Γ2, x : T2)

Typing rule for values

term(Γ)

Γ, x : T ` x : T
[T-Var]

Typing rules for processes

Γ, x : (S1, S2), y : T ` P
Γ, x : (?T.S1, S2) ` x(y).P

Γ, x : (S1, S2), y : T ` P
Γ, x : (S1, ?T.S2) ` x(y).P

[T-InS-l],[T-InS-r]

Γ(x) = (?T ,E) Γ, y : T ` P
Γ ` x(y).P

Γ(x) = (E, ?T ) Γ, y : T ` P
Γ ` x(y).P

[T-In-l],[T-In-r]

Γ1 ` y : T Γ2, x : (S1, S2) ` P
Γ1 ◦ (Γ2, x : (!T.S1, S2)) ` x〈y〉.P

Γ1 ` y : T Γ2, x : (S1, S2) ` P
Γ1 ◦ (Γ2, x : (S1, !T.S2)) ` x〈y〉.P

[T-OutS-l],[T-OutS-r]

Γ1 ` y : T Γ2(x) = (!T ,E) Γ2 ` P
Γ1 ◦ Γ2 ` x〈y〉.P

[T-Out-l]

Γ1 ` y : T Γ2(x) = (E, !T ) Γ2 ` P
Γ1 ◦ Γ2 ` x〈y〉.P

[T-Out-r]

Γ(x) = (E1, E2) = Γ(y) Γ ` P Γ ` Q
Γ ` ifx = y thenP elseQ

[T-If]

Γ, x : (A,A) ` P
Γ ` (νx : (A,A))P

term(Γ) Γ ` P
Γ `!P

[T-Res],[T-Repl]

Γ1 ` P1 Γ2 ` P2

Γ1 ◦ Γ2 ` P1 | P2
Γ ` 0 [T-Par],[T-Inact]

Figure 2: Type system
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give a chance to affine resources to be used. The rule for typing processes follow.
For input we have four rules [T-InS-l],[T-InS-r], [T-In-l] and [T-In-r]; rules
[T-InS-l],[T-InS-r] are used whenever the input channel is a session respec-
tively on the left and on the right, and [T-In-l] and [T-In-r] are performed
whenever the input is a channel end-point respectively on the left and on the
right. Rule [T-InS-l] permits to type an input channel x by using the end
point type ?T.S1 on the left of a type (?T.S1, S2). If x is typed with ?T.S1,
we know that the bound variable y is of type T , and we type P under the
extra assumption y : T . Equally important is the fact that the continuation
uses channel x at continuation type (S1, S2), that is, process x(y).P uses chan-
nel x at type (?T.S1, S2) whereas P may use the same channel this time at
type (S1, S2). Rule [T-InS-r] permits to type an input x described by a session
type (S1, ?T.S2) by following the same mechanism. Rule [T-In-l] permits to
type an input channel x by using the channel end point type ?T on the left
of a type (?T ,E). The continuation P is typed by using the same type for x,
eventually adding the assumption y : T for the bound variable. Rule [T-In-r]
applies when the channel end point for the input is on the right.

Then four rules for typing an output follow. Symmetrically, we have two
rules for typing a session, [T-OutS-l], [T-OutS-r], and two rules for typing
an output channel described by a channel type, [T-Out-l],[T-Out-r]. In the
typing rules for output we account for sending a variable that can have a channel
or a session type; in the latter case we have delegation of one or both ends of the
session. To illustrate the delegation mechanism we describe the rule for typing
an output with the left end point of a channel type, [T-Out-l]; the remaining
rules follow a similar schema. Rule [T-Out-l] permits to use an environment
Γ such that Γ(x) = (!T ,E) to send a variable y at type T on x and to continue
as P , given that there is a split Γ = Γ1 ◦ Γ2 such that Γ1 ` y : T , and Γ2 ` P .
For instance if T = (?T ′.S1, end) and Γ(y) = (?T ′.S1, !T

′.S2) then y is both sent
at type T and used at type (end, !T ′.S2) in the continuation P .

Rule [T-If] permits to type an if-then-else process which compares the iden-
tity of two variables, which must have the same channel type; comparing the
identity of sessions can indeed lead to gain more information and in turn break
the affine discipline, similarly to what happens in i/o types [22]. The rule for
restriction [T-Res] permits to type a variable having a type composed by dual
end points. This is essential to preserve subject reduction, as we will see in the
next section. Rule [T-Par] allow to type two processes put in parallel with a
context Γ if there is a split of Γ into Γ1 and Γ2 such that P is typed by Γ1

and Q is typed by Γ2. This permits to preserve the affine invariant, so that we
cannot have two processes using the same end of a session. In the replication
rule, [T-Repl], we require the environment to be terminated, so that the pro-
cess under replication does not contain free sessions. Any context could be used
in rule [T-Inact] to type the inert process; as introduced, requiring contexts
to be terminated (cf. [13]) rules out interesting processes that show different
behaviour in the branches of the if-then-else.

Example 2.1. We write a derivation for a variant of the FTP daemon using
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certified channels of the introduction. We consider a tuple of free channels

(b1, . . . , bn), n > 0, and let Cert[s, ε]
def
= 0, where ε is the empty tuple. The

code for the daemon is below.

Ftpd[pid, (b1, . . . , bn)]
def
= ! pid(s).Cert[s, (b1, . . . , bn)]

Cert[s, (b1, . . . , bn)]
def
= (νh : Th)cert〈h〉.h〈b1〉.h(m).ifm = ok thenUse[s, b1] elseCert[s, (b2, . . . , bn)]

Use[s, b]
def
= (νk : Tk)b〈k〉.k〈s〉

We assign labels of the form Ty to types, meaning that y has type Ty, and identify
context Γ and Γ′:

Tk = (?Ts.end, !Ts.end) T ′k = (?Ts.end, end) T ′′k = (end, !Ts.end)

Th = (!Tb.?⊥.end, ?Tb.!⊥.end) T ′h = (end, ?Tb.!⊥.end) T ′′h = (!Tb.?⊥.end, end)

T ′′′h = (?⊥.end, end) Ts = (?⊥.end, end) Tb = (?T ′k, !T
′
k) Tc = (?T ′h, !T

′
h)

Γ = pid : (?Ts, !Ts), cert : Tc, b1 : Tb, . . . , bn : Tb, ok : ⊥ Γ′ = Γ, s : Ts, h : >

The derivation for process Use[s, bi] is below, where i ∈ {1, . . . , n}. We omit to
label the judgements obtained by using [T-Var].

Γ, s : >, h : >, k : T ′k,m : ⊥ ` k : T ′k

Γ′, k : >,m : ⊥ ` s : Ts

([T-Inact])
Γ, s : >, h : >, k : >,m : ⊥ ` 0

([T-OutS-r])
Γ′, k : T ′′k ,m : ⊥ ` k〈s〉

([T-Out-r])
Γ′, k : Tk,m : ⊥ ` bi〈k〉.k〈s〉

([T-Res])
Γ′,m : ⊥ ` Use[s, bi]

The derivation for the continuation of Cert[s, bn] is the following.

Γ′,m : ⊥ ` Use[s, bn]
([T-Inact])

Γ′,m : ⊥ ` Cert[s, ε]
([T-If])

Γ′,m : ⊥ ` ifm = ok thenUse[s, bn] elseCert[s, ε]

We now type process Cert[s, bn]; we use ifm = ok thenUse[s, bn] as a short for
ifm = ok thenUse[s, bn] elseCert[s, ε].

Γ, s : >, h : T ′h ` h : T ′h

Γ, s : >, h : > ` bn : Tb

Γ′,m : ⊥ ` ifm = ok thenUse[s, bn]
([T-InS-l])

Γ, s : Ts, h : T ′′′h ` h(m).ifm = ok thenUse[s, bn]
([T-OutS-l])

Γ, s : Ts, h : T ′′h ` h〈bn〉.h(m).ifm = ok thenUse[s, bn]
([T-Out-r])

Γ, s : Ts, h : Th ` cert〈h〉.h〈bn〉.h(m).ifm = ok thenUse[s, bn]
([T-Res])

Γ, s : Ts ` Cert[s, bn]

By following the same schema, we can type process Cert[s, (bn−1, bn)].

Γ, s : Ts, h
′ : >,m′ : ⊥ ` ifm′ = ok thenUse[s, bn−1] elseCert[s, bn]

· · ·
Γ, s : Ts ` Cert[s, (bn−1, bn)]

10



We conclude with the derivation for the daemon, where the judgement for Cert[s, (b1, . . . , bn)]
is built by chaining the derivations above.

Γ, s : Ts ` Cert[s, (b1, . . . , bn)]
([T-In-l])

Γ ` pid(s).Cert[s, (b1, . . . , bn)]
([T-Repl])

Γ ` Ftpd[pid, (b1, . . . , bn)]

Example 2.2. We design an e-commerce system to sell items with a rebate
option, and outline how we can type it. To ease the notation, in the code below
we emphasize the variables used for communication, and assume the remaining
variables to have type ⊥. We also send pair of values, noted 〈v, w〉. The selling
service waits for requests from clients to establish a session q. Afterwards, the
service receives from the client two distinct session end points: the first endpoint,
tha is a, is used to receive the chosen item, the coupon for the rebate, and the
client’s credit card number; the second endpoint, that is b, is used to roll-back
the transaction in case that the coupon is wrong.

SellingService
def
= !p(q).q(a).q(b).a(item).a(coupon).a(creditCard).

if coupon = rebateCode thenOkSendRebate

else RepeatNoRebate

OkSendRebate
def
= (νr : (?⊥.end, !⊥.end))(a〈r〉 | server〈rebateCode, r〉)

RepeatNoRebate
def
= b〈couponInvalid〉.b(item).b(creditCard)

The reader will notice that the two branches OkSendRebate and RepeatNoRebate
describe two different behaviours for a and b: a is used in OkSendRebate to send
a freshly created rebate channel r (also delegated to a server) and is left unused in
RepeatNoRebate, while b is used in RepeatNoRebate to re-start the transaction
without a rebate option and is left unused in OkSendRebate. We stress that
requiring a and b to have the same session behaviour in both branches would be
unnecessarily artificial. We briefly outline the typings of the session variables
a and b, and of server; the type of channel p and of its bound variable q are
defined accordingly.

InputRebate
def
= (?⊥.end, end) OutputRebate

def
= (end, !⊥.end)

a : (?Item.?Coupon.?CreditCard.!OutputRebate.end, end)

b : (!Message.?Item.?CreditCard.end, end)

server : (?〈Coupon,InputRebate〉, !〈Coupon,InputRebate〉)

3. Typed processes do not go wrong

This section contains the proof of the main result for the typing system:
typed processes do not reach errors during the computation. A key property in
building towards this result is subject reduction, which we tackle by introducing
auxiliary definitions and lemmas.
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We start by introduction the notion termination closure of a context Γ,
noted T (Γ), which is the projection of Γ that is available to all threads.

T (∅) = ∅ T (Γ, x : (S1, S2)) = T (Γ), x : (end, end)

T (Γ, x : (E1, E2)) = T (Γ), x : (E1, E2)

A termination closure can be always extracted by means of context split.
We will use this property in proving the lemma that is the wedge of subject
reduction (Lemma 3.6).

Lemma 3.1. The following hold.

1. If term(Γ) then T (Γ) = Γ;

2. Γ = Γ ◦T (Γ);

3. Γ = T (Γ) ◦ Γ.

Proof. By induction on the size of dom(Γ). The proof is straightforward.

Weakening is a fundamental property of the typing system, and permits to
change a type end with any session type.

Lemma 3.2 (Weakening). The following hold.

1. If Γ, x : (end, S) ` P then Γ, x : (R,S) ` P
2. If Γ, x : (R, end) ` P then Γ, x : (R,S) ` P .

Proof. By induction on the length of the inference. To illustrate, consider
(1) and suppose that the derivation Γ, x : (end, S) ` z〈w〉.P terminates with
[T-OutS-r]. Thus Γ, x : (end, S) = Γ1 ◦ (Γ2, z : (S1, !T.S2)) and Γ1 ` w : T and
Γ2, z : (S1, S2) ` P . We know Γ1 = Γ′, x : (end, S′), and Γ2 = Γ′′, x : (end, S′′)
when z 6= x, otherwise we have z = x, and S1 = end, and x 6∈ dom(Γ2). By I.H.
when z 6= x we have Γ′′, x : (R,S′′), z : (S1, S2) ` P , otherwise Γ2, z : (R,S2) `
P . In both cases we conclude by applying [T-OutS-r] and Γ1 ` w : T , ob-
taining Γ, x : (R,S) ` z〈w〉.P . Now assume case [T-If] holds: Γ ` ifx =
y thenP elseQ inferred from Γ(x) = (E1, E2) = Γ(y) =, Γ ` P and Γ ` Q.
Let Γ = Γ1, z : (end, S). We apply the I.H. and infer Γ1, z : (R,S) ` P and
Γ1, z : (R,S) ` Q. Since z 6= x, z 6= y we apply [T-If] and infer the desired
result, Γ1, z : (R,S) ` ifx = y thenP elseQ. As further example, consider case
[T-Par]. We have Γ, x : (end, S) ` P | Q inferred from Γ1 ` P and Γ2 ` Q where
Γ, x : (end, S) = Γ1◦Γ2. Therefore Γ1(x) = (end, S1) and Γ2(x) = (end, S2) where
S = S1 ◦S2. We apply the I.H. and infer that (Γ1\x), x : (R,S1) ` P . We apply
[T-Par] and deduce that Γ, x : (R,S) ` P | Q, as desired.

The corollary below generalizes the result to environments; the proof is based
on multiple applications of the weakening lemma.

Corollary 3.3. If Γ1 ` P and Γ1 ◦ Γ2 is defined then Γ1 ◦ Γ2 ` P .
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Reduction preserves typability for a certain class of type environments, which
we refer as balanced. Essentially, a balanced environment ensures that in a
synchronization the type of the variable sent in output is equal to the type
expected in input. This notion is standard in session types (cf. [16]), and has a
counter-part in typing systems featuring subtyping (e.g. [22, 7]), where the type
expected in input must be a super-type of the type of the value sent in output.
The formal definition of the balanced predicate, noted bal(T ), is below. The
case whether one channel end has type S while the other channel end has type
end depicts a channel used only with one modality (the one of S), which can be
input, output, or none. An environment Γ is balanced whenever bal(Γ(x)) for
all x ∈ dom(Γ).

bal((S, S)) bal((S, end)) bal((end, S)) bal((E,E))

To understand why subject reduction does not hold for unbalanced contexts,

consider the composition of P
def
= a(x).x〈z〉 and Q

def
= (νb : (?>.end, !>.end))

a〈b〉.(b(y) | b〈w〉). Process P expects on a a channel to be used in output,
while process Q sends over a a session channel that cannot be used in i/o, since
its continuation uses both the input and the output end point of the session.
The composition P | Q reduces to a non-typed process (by applying [R-Com],

[R-Struct]): Q′
def
= (νb : (?>.end, !>.end))(b〈z〉 | b(y) | b〈w〉). This process

cannot be accepted since there are two outputs on the same session and it is
considered an error, as we will introduce later. However, the composition P | Q
could be typed by assigning to a the unbalanced type (?(end, !>.end), !(>)),
which we disallow. In a subtyped world, the situation would be the following: Q
sends b at type > while P does expect a sub-type of >, or the output capability,
which is clearly unsound and in turn rejected. We note that unbalanced contexts
can still appear in derivations, for increased flexibility. For instance we may have
the typing x : (?>.end, !T.!>.end) ` (νw : T )x〈w〉.(νz : >)(x〈z〉 | x(y)).

An important result says that structural congruence preserve typings, in the
following sense.

Lemma 3.4 (Preservation of Structural Congruence). If P ≡ Q and Γ ` P
then Γ ` Q.

Proof. By induction on the number of applications of ≡. We draw some ex-
ample. The first case we tackle is when the last rule applied is P | 0 ≡ P .
To see the left to the right direction, take Γ ` P | 0, Γ1 ` P , Γ2 ` 0, and
Γ = Γ1 ◦Γ2. We apply weakening (Corollary 3.3) and infer Γ ` P . For the right
to the left direction, the result follows from T (Γ) ` 0 and Lemma 3.1(3). Now
take case !P ≡ P |!P . For the left to the right direction assume Γ `!P inferred
from term(Γ) and Γ ` P . We apply Lemma 3.1(1)-(2) and [T-Par] and infer
Γ ` P |!P . For the right to the left direction, assume Γ ` P |!P inferred from
Γ1 ` P and Γ2 `!P and Γ = Γ1 ◦ Γ2. We apply weakening (Corollary 3.3) and
infer Γ `!P . The last case we show is rule (νx : (A,A))0 ≡ 0. The left to the
right direction follows by application of [T-Inact], while the right to the left
direction follows by application of [T-Res].
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Preservation of typability in substitutions is essential to achieve subject re-
duction.

Lemma 3.5 (Substitution). If Γ1, x : T ` P , Γ2(z) = T and Γ1 ◦ Γ2 is defined,
then Γ1 ◦ Γ2 ` P [z/x].

Proof. By induction on the length of the judgement Γ, x : T ` P . The proof,
although elaborate, is completely standard.

The following lemma is the wedge of the proof of subject reduction and
permits to identify the environment that types the redex.

Lemma 3.6. If Γ ` P with Γ balanced and P
µ
−→ P ′, then

(Case µ = x): there are T, S such that

1. Γ = Γ1, x : (?T.S, ?T.S) and Γ1, x : (S, S) ` P ′, or
2. Γ = Γ1, x : (!T.S, !T.S) and Γ1, x : (S, S) ` P ′, or
3. Γ = Γ1, x : (?T, ?T ) and Γ ` P ′, or
4. Γ = Γ1, x : (!T, !T ) and Γ ` P ′;

(Case µ = τ): Γ ` P ′.

Proof. By induction on Γ ` P . The interesting case is when [T-Par] is used

to type a process that does perform [R-Com]: x〈z〉.P | x(y).Q
x
−→ P | Q[z/y].

We have Γ ` x〈z〉.P | x(y).Q inferred from [T-Par], Γ = ΓP ◦ΓQ, ΓP ` x〈z〉.P ,
and ΓQ ` x(y).Q. We have the following sub-cases for Γ(x) corresponding to
(a) Γ(x) = (?T.S, !T.S) and (b) Γ(x) = (!T.S, ?T.S) and (c) Γ(x) = (?T , !T )
and (d) Γ(x) = (!T , ?T ). To illustrate, consider (a). From [T-OutS-r] we infer
that ΓP = Γ1

P ◦ (Γ2
P , x : (end, !T.S), Γ1

P ` z : T , and Γ2
P , x : (end, S) ` P . From

[T-InS-l] we know that ΓQ = Γ1
Q, x : (?B.S, end), and Γ1

Q, x : (S, end), y : T ` Q.

From Γ1
P ` z : T and [T-Var] we know Γ1

P (z) = T and term(Γ1
P \z). We can

easily see that Γ1
P ◦Γ1

Q, x : (S, end) is defined. We apply substitution (Lemma 3.5)

and infer Γ1
P ◦ Γ1

Q, x : (S, end) ` Q[z/y]. An application of [T-Par] give us:

Γ2
P , x : (end, S)◦ Γ1

P ◦ Γ1
Q, x : (S, end) ` P | Q. The result then follows by noting

that the environment above is equal to Γ\x, x : (S, S). Sub-case b) is analogous,
while sub-cases c),d) follow a similar schema, but are simpler. As a further
example, consider the case whether through [T-Par] we infer Γ1 ◦ Γ2 ` P | Q
because of Γ1 ` P and Γ2 ` Q, and whether by means of [R-Par] we infer

the reduction P | Q
µ
−→ P ′ | Q because of P

µ
−→ P ′. We apply the I.H. to

Γ1 ` P and infer that when Γ′ ` P ′ with Γ′ having one of the shape of the
statement. Consider the case (µ = x). We need to show that the split of Γ′

and Γ2 is defined, so that we can apply [T-Par] and conclude. In sub-cases
(1,2) we have Γ2(x) = (end, end) and in turn Γ′ ◦ Γ2 defined; in sub-cases (3,4)
we have Γ2(x) = Γ1(x) = Γ′(x), as desired. We apply [T-Par] and conclude
Γ′ ◦Γ2 ` P ′ | Q. Otherwise we may have µ = τ and Γ′ = Γ1: we apply [T-Par]
and infer Γ1 ◦ Γ2 ` P ′ | Q, and we have done. In case [T-Res] the type of
the bound channel in the redex is provided by [R-Res] or [R-ResB]. In case
[R-Struct] we use Lemma 3.4. The remaining cases are standard.
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We have all the ingredients to prove that balanced typings are preserved by
reduction. We let Γ 7→ µ be the environment that is identified in Lemma 3.6 to
type a redex reached by firing µ, and Γ 7→ ε be equal to Γ.

Lemma 3.7. Let Γ ` P with Γ balanced. If P0

µ1

−−→ . . .
µn

−−→ Pn with n ≥ 0,
then ((Γ 7→ µ1) . . . ) 7→ µn ` Pn.

Proof. We proceed by induction on the number n of reductions. The case n = 0

is immediate: Γ ` P0. Otherwise let n > 0 and P0

µ1

−−→ . . .
µn−1

−−−−→ Pn−1
µn

−−→ Pn.
By I.H. we have that ((Γ 7→ µ1) . . . ) 7→ µn−1 ` Pn−1. To apply Lemma 3.6, we
need to ensure that the environment above is balanced. This can be shown
by inspecting the shape of Γ 7→ µ. An application of the lemma give us
(((Γ 7→ µ1) . . . ) 7→ µn−1) 7→ µn ` Pn. We note that the resulting environ-
ment is balanced, and conclude.

The subject reduction theorem is an immediate consequence of Lemma 3.7.

Theorem 3.8 (Subject Reduction). If Γ ` P with Γ balanced and P ⇒ P ′,
then Γ′ ` P ′ with Γ′ balanced.

We now build towards type-safety, or absence of errors. In our language, the
monadic pi calculus, errors can be only due to communication. In particular, we
repute an error each process that contains two parallel outputs or two parallel
inputs on the same session.

Definition 3.9 (Error). A closed process P is an error whenever

1. P ≡ (νx1 : T1) · · · (νxn : Tn)(xi〈v〉.P1 | xi〈w〉.P2 | Q) for some v, w, P1, P2

and i ∈ 1, . . . , n such that Ti is not terminated;
2. P ≡ (νx1 : T1) · · · (νxn : Tn)(xi(y).P1 | xi(y).P2 | Q) for some P1, P2 and
i ∈ 1, . . . , n such that Ti is not terminated.

The main result of this section says that well-typed processes cannot go
wrong.

Theorem 3.10 (Type safety). If ` P and P ⇒ P ′ then P ′ is not an error.

Proof. W.l.o.g., let P ′ ≡ (νx1 : T1) · · · (νxn : Tn)(Q1 | Q2), where fv(Q1 | Q2) ⊆
{x1, . . . , xn}. It is easy to see that P ⇒ P ′ has been inferred from P

τ1
−→ · · ·

τn
−−→ P ′, where n ≥ 0. We use Lemma 3.7 and infer that ` P ′. We need to prove

that (i) if Q1 = xi〈v〉.P1 | xi〈w〉.P2 then term(Ti) and (ii) if Q1 = xi(y).P1 |
xi(y).P2 then term(Ti). We show (ii), (i) is analogous. By multiple applications
of [T-Res] we infer x1 : T1, · · · , xn : Tn ` Q1 | Q2, and by two applications of
[T-Par] we obtain that x1 : T ′1, · · · , xn : T ′n ` Q1 and with Tj = T ′j ◦ T ′′j for
all j ∈ 1, . . . , n. Another application of [T-Par] gives us x1 : A1, · · · , xn : An `
xi(y).P1 and x1 : B1, · · · , xn : Bn ` xi(y).P2 where T ′j = Aj ◦Bj for j ∈ 1, . . . , n.
Now the assumption term(Ti) false leads to a contradiction, because this would
imply Ti = (?T.S, ?T.S), for some T and S, and in turn Ai = (?T.S,R1),
Bi = (?T.S,R2), for some R1 and R2, which is not deducible by the split rules
in Figure 2.
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The result can be transported to open processes by exploiting the lemma
below.

Lemma 3.11. If x1 : (R1, R1), . . . , xn : (Rn, Rn) ` P and P ⇒ P ′ then

1. ` (νx1 : (R1, R1)) · · · (νxn : (Rn, Rn))P ;

2. there are U1, . . . , Un such that (νx1 : (R1, R1)) · · · (νxn : (Rn, Rn))P ⇒
(νx1 : (U1, U1)) · · · (νxn : (Un, Un)) P ′.

Proof. To see 1) it suffices to apply [T-Res] n times. 2) follows by multiple
applications of [R-ResB].

4. Algorithmic type-checking

In this section we present an algorithm that implements the typing system
in Figure 2. The main difficulty to tackle is to avoid the use of type and context
split, which is inherently non-deterministic. To mimic the split of context into
parts, before checking a process we pass the entire context as input to the first
typing call and have it return the unused portion as an output. We still have
to deal with non-determinism in typing if-then-else processes. In that case, we
compute the join of the contexts return by the two branches.

We present typing rules for processes of the form Γ1 `A P .Γ2 where Γ1 is a
context received in input, P is a process received in input, and Γ2 is a context
produced as output; in the rest of the presentation we let the output be what is
on the right of the symbol .. An important difference among the type system
presented in this section and the one defined in Figure 2 is that the algorithmic
rules work up-to balanced contexts: that is, whenever we write Γ1 `A P .Γ2 we
assume that the input process Γ1 is balanced; we will then show that the return
process Γ2 is balanced as well. For this very reason, rules are deterministic:
given an input formed by a balanced context and a process, exactly zero or one
rule does match. The algorithmic rules are a declarative presentation of the
patterns of a function with signature check(g : context, p : process) : context: we
choose this presentation to ease the notation and to devise clear proofs, and
refer the reader to [9] for the details of the implementation of such patterns in
ML. Note that the top-level call of the function ensures that the context received
in input is balanced, otherwise the call immediately aborts.

We start by introducing the rules for variables. Each rule has the form
Γ1 `A x : T . Γ2 where Γ1, x and T are respectively a context, a variable and
a type received in input, and Γ2 is a context returned in output. In the rules
below the output context is obtained by setting each end point type Si used to
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type the variable to type end.

Γ = Γ1, x : (S1, S2),Γ2

Γ `A x : (S1, end) . Γ1, x : (end, S2),Γ2

Γ = Γ1, x : (S1, S2),Γ2

Γ `A x : (end, S2) . Γ1, x : (S1, end),Γ2

[A-VarS-l],[A-VarS-r]

Γ = Γ1, x : (S1, S2) . Γ2

Γ `A x : (S1, S2) . Γ1, x : >,Γ2

Γ = Γ1, x : (S1, S2) . Γ2

Γ `A x : > . Γ
[A-VarS],[A-Var-top]

Γ = Γ1, x : (E1, E2),Γ2

Γ `A x : (E1, E2) . Γ
[A-Var]

The rules for typing processes follow below. To type an inert process by using
[A-Inact] any context suffices; the context received in input is forwarded in
output. To type a parallel process in [A-Par] we check the first thread with
the context received in input. This operation returns in output a context that
is used to type-check the next thread. The context returned by the last typing
is forwarded in output.

Γ `A 0 . Γ
Γ1 `A P . Γ2 Γ2 `A Q . Γ3

Γ1 `A P | Q . Γ3
[A-Inact],[A-Par]

Rule [A-Out-l] is used when the entry for the output is the left end point of a
type of the form (!T.S1, S2). We ignore the right end point S2 and invoke type
checking for the continuation by changing the type of the channel to (S1, end)
through a context update operation, noted +:

Γ, x : >+ x : (S1, S2) = Γ, x : (S1, S2) .

Lastly we change the type of x in the context returned by the call for the
continuation by restoring the right end point, that is we return for x the type
(end, S2), which disallows any further use of the left end point in parallel threads.
This will will be of help in reject deadlocked processes that hold both ends of
a session sequentially, as we will show in Section 4.1. Rule [A-Out-L-r] is
matched when the output of the session is on the right.

Γ1, x : > `A y : T . Γ2 Γ2 + x : (S1, end) `A P . Γ3, x : (S′, S′′)

Γ1, x : (!T.S1, S2) `A x〈y〉.P . Γ3, x : (end, S2)
[A-OutS-l]

Γ1, x : > `A y : T . Γ2 Γ2 + x : (end, S2) `A P . Γ3, x : (S′, S′′)

Γ1, x : (S1, !T.S2) `A x〈y〉.P . Γ3, x : (S1, end)
[A-OutS-r]

For sending a variable on an channel having a termination end point on the left
in rule [A-Out-l] we require the sent variable to be typed by the same context
received in input. The context obtained by the typing for the variable is then
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used to call the checking function for the continuation process. Rule [A-Out-r],
which applies when the termination end point is on the right, describes the same
mechanism.

Γ1(x) = (!T , ?T ) Γ1 `A y : T . Γ2 Γ2 `A P . Γ3

Γ1 `A x〈y〉.P . Γ3
[A-Out-l]

Γ1(x) = (?T , !T ) Γ1 `A y : T . Γ2 Γ2 `A P . Γ3

Γ1 `A x〈y〉.P . Γ3
[A-Out-r]

To type an input process we require the expected type to agree with the type
of the input channel. We have four rules, [A-InS-l],[A-InS-r],[A-In-l] and
[A-In-r], that correspond respectively to the cases whether the end point for
the input is a session on the left and on the right, and whether the end point
is a termination on the left and on the right. In all rules we check that the
type for the sound variable is balanced, otherwise we reject the process. We
illustrate rule [A-InS-l]. In this case the type of the input channel is of the
form (?T.S1, S2), and we invoke type-checking of the continuation by changing
the type of x to (S1, end) and by adding the typing y : T for the variable bound
by the input. The context returned is pruned from the bound variable, noted
Γ\y, and the type of x is restored to (end, S2), so that x can be used in parallel
threads.

bal(T ) Γ1, x : (S1, end), y : T `A P . Γ2, x : (S′, S′′)

Γ1, x : (?T.S1, S2) `A x(y).P . Γ2\y, x : (end, S2)
[A-InS-l]

bal(T ) Γ1, x : (end, S2), y : T `A P . Γ2, x : (S′, S′′)

Γ1, x : (S1, ?T.S2) `A x(y).P . Γ2\y, x : (S1, end)
[A-InS-r]

bal(T ) Γ1(x) = (?T , !T ) Γ1, y : T `A P . Γ2

Γ1 `A x(y).P . Γ2\y
[A-In-l]

bal(T ) Γ1(x) = (!T , ?T ) Γ1, y : T `A P . Γ2

Γ1 `A x(y).P . Γ2\y
[A-In-r]

The rule for typing a matching process, [A-If], requires the types of the con-
trasted variables to be terminated and equal, as in [T-If]. To resolve the non-
determinism of the two branches we build a context to be return by relying on
a join partial commutative operation over types and contexts with the same
domain, noted ⊗. The formal definition is below, where we use infix notation
and write Γ1 ⊗ Γ2 to indicate the context ⊗(Γ1,Γ2), whenever defined.

S ⊗ end = end S ⊗ S = S

(R1, R2)⊗ (S1, S2) = (R1 ⊗ S1, R2 ⊗ S2) (E1, E2)⊗ (E1, E2) = (E1, E2)

∅ ⊗ ∅ = ∅ (Γ1, x : T1)⊗ (Γ2, x : T2) = Γ1 ⊗ Γ2, x : T1 ⊗ T2

This permits to type processes that do not exhibit the same behaviour in the
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two branches, as for instance the process ifx = y thenP else0.

Γ1(x) = (E1, E2) = Γ1(y) Γ1 `A P . Γ2 Γ1 `A Q . Γ3

Γ1 `A ifx = y thenP elseQ . Γ2 ⊗ Γ3
[A-If]

The rules for type a process generating a new channel, [A-Res], and replication,
[A- Repl], are below. The rule for restriction requires the decoration type to
be of the form (S, S) or (E,E), as in [T-Res]. In the call for checking the
process under the replication, we require the context returned in output to be
equal to the one received in input. Indeed, a change of a type in the range of
the output context would indicate that an end point of a session has been used
or delegated: this must clearly be forbidden under replication.

Γ1, y : (A,A) `A P . Γ2

Γ1 `A (νy : (A,A))P . Γ2\y
Γ1 `A P . Γ2 Γ2 = Γ1

Γ1 `A!P . Γ2
[A-Res],[A- Repl]

Example 4.1. We show an algorithmic derivation for a service that allows to
clients to establish a session with the condition that the bootstrap must occur on
a specific channel t, which is assume to be trusted. The code is below:

Service
def
= (νs : Ts)a(x).ifx = t thenx〈s〉.s(y) else ack〈error〉

We identify the following types and contexts, where we let Ts be the type of s,
and Tx be the type of both x and t.

Ts = (?>.end, !>.end) Tx = (?(end, !>.end), !(end, !>.end))

Γ = a : (?Tx, !Tx), t : Tx, ack : (?⊥.end, !⊥.end), error : ⊥
Γ′ = a : (?Tx, !Tx), t : Tx, ack : (?⊥.end, end), error : ⊥

Γ′′ = Γ, s : (?>.end, end), x : Tx Γ′′′ = Γ, s : >, x : Tx

The derivation for the then branch is the following.

([A-VarS-r])
Γ, s : Ts, x : Tx `A s : (end, !>.end) . Γ′′

([A-Inact])
Γ, s : >, x : Tx, y : > `A 0 . Γ, s : >, x : Tx, y : >

([A-InS-l])
Γ′′ `A s(y) . Γ, s : >, x : Tx

([A-Out-l])
Γ, s : Ts, x : Tx `A x〈s〉.s(y) . Γ, s : >, x : Tx

The derivation for the else branch is below.

([A-Var])
Γ′, s : Ts, x : Tx `A error : ⊥ . Γ′, s : Ts, x : Tx

([A-Inact])
Γ′, s : Ts, x : Tx `A 0 . Γ′, s : Ts, x : Tx

([A-Out-L-r])

Γ, s : Ts, x : Tx `A ack〈error〉 . Γ′, s : Ts, x : Tx

Incidentally, we note that (Γ, s : >, x : Tx)⊗ (Γ′, s : Ts, x : Tx) = Γ′, s : >, x : Tx.
We conclude with the derivation for the service.

Γ, s : Ts, x : Tx `A x〈s〉.s(y) . Γ, s : >, x : Tx Γ, s : Ts, x : Tx `A ack〈error〉 . Γ′, s : Ts, x : Tx
([A-If])

Γ, s : Ts, x : Tx ` ifx = t thenx〈s〉.s(y) else ack〈error〉 . Γ′, s : >, x : Tx
([A-In-l])

Γ, s : Ts ` a(x).ifx = t thenx〈s〉.s(y) else ack〈error〉 . Γ′, s : >
([A-Res])

Γ ` Service . Γ′
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4.1. Properties of the algorithmic system

The first part of this section is devoted to establishing the soundness of the
algorithm, that is: processes accepted by the algorithm are typed by the system
in Figure 2. In the second part we show a result of partial completeness: if a
process is typable and does not contain a Wait for deadlock then it is accepted
by the algorithm.

Soundness. To tackle the soundness result, we project the pattern rules pre-
sented in Section 4 into the typing system of Figure 2. We introduce prelim-
inary lemmas and definitions that will be useful to prove the main result of
this section. The first property says that the algorithmic system preserves the
balancing of contexts, in the following sense.

Lemma 4.2. If Γ1 is balanced and Γ1 `A P . Γ2 then dom(Γ2) = dom(Γ1) and
Γ2 balanced.

Proof. By induction on Γ1 `A P . Γ2, eventually relying on a similar result for
values. To illustrate, take [A-OutS-l] and let Γ1, x : (!T.S, end) `A x〈y〉.P . Γ3

be inferred from Γ1, x : > `A y : T . Γ2 and Γ2 + x : (S, end) `A P . Γ3. Assume
Γ1, x : (!T.S, end) balanced. From the top type balanced we infer Γ1, x : >
balanced. It’s easy to see that this implies dom(Γ2) = dom(Γ1, x : >) with
Γ2 balanced, and Γ2(x) = >. We can apply induction on Γ2 + x : (S, end) =
(Γ2\x), x : (S, end) and infer that dom(Γ2 + x : (S, end)) = dom(Γ3) with Γ3

balanced. The result then follows by transitivity. As a further example, consider
case [A-Par] and assume that Γ1 `A P | Q . Γ3 has been inferred from Γ1 `A
P . Γ2 and Γ2 `A Q . Γ3. The I.H. says that dom(Γ1) = dom(Γ2) with Γ2

balanced. We apply the I.H. to Γ2 `A Q . Γ3 and obtain dom(Γ2) = dom(Γ3)
with Γ3 balanced.

We then establish a result similar to Lemma 3.2.

Lemma 4.3 (Algorithmic Weakening). Let Γ1 be balanced.

1. If Γ1, x : (S, end) `A P.Γ2, x : (S′, end) then Γ1, x : (S, S) `A P.Γ2, x : (S′, S);

2. If Γ1, x : (end, S) `A P.Γ2, x : (end, S′) then Γ1, x : (S, S) `A P.Γ2, x : (S, S′).

Proof. By induction on the length of the inference, eventually relying on a
similar result for values. To see an example of 1), consider rule [A-InS-l]:
Γ1, x : (?T.S, end) `A x(y).P.(Γ2\y), x : (end, end) inferred from (∗) Γ1, x : (S, end),
y : T `A P . Γ2, x : (S1, end). We apply [A-InS-l] to (∗) and infer the desired
result, Γ1, x : (?T.S, ?T.S) `A x(y).P . (Γ2\y), x : (end, ?T.S). As further ex-
ample, consider [A-Par]: Γ1, x : (S, end) `A P | Q . Γ2, x : (S2, end) inferred
from (∗∗) Γ1, x : (S, end) `A P . Γ′ and (∗ ∗ ∗) Γ′ `A Q . Γ2, x : (S1, end). We
easily see that Γ′ = Γ′′, x : (S1, end). We apply the I.H. to (∗∗) and infer
Γ1, x : (S, S) `A P . Γ′′, x : (S1, S). Next we apply the I.H. to (∗ ∗ ∗) and obtain
Γ′′, x : (S1, S) `A Q . Γ2, x : (S2, S). An application of [A-Par] gives us the
desired result, Γ1, x : (S, S) `A P | Q . Γ2, x : (S2, S).
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By repeated applications of the lemma above we obtain the following useful
result.

Corollary 4.4. Let Γ1 `A P . Γ2 with Γ1 balanced. If Γ1 ◦ Γ3 is defined and
balanced, then Γ1 ◦ Γ3 `A P . Γ2 ◦ Γ3.

Next, we note that in a type derivation Γ1 `A P .Γ2, the session end points
contained in Γ2 have not been used to type P (otherwise they would have
been set to end). We identify the environment that is sufficient to type P by
means of the notion of used closure defined below. Given a balanced judgement
Γ1 `A P .Γ2 we let the used closure of Γ1 w.r.t. Γ2, noted Γ1 .Γ2, be the typing
context ∅ whenever Γ1 = ∅, and be defined by (Γ1 . Γ2)(x) = Γ1(x) . Γ2(x)
otherwise:

S . S = end S . end = S

(S1, S2) . (S′, S′′) = (S1 . S
′, S2 . S

′′) (E1, E2) . (E1, E2) = (E1, E2)

Lemma 4.5. If Γ1 `A P . Γ2 with Γ1 balanced then Γ1 . Γ2 is defined.

Proof. By induction on Γ1 `A P .Γ2. In the output cases we use a similar result
for values. As an example, consider case [A-InS-l]. We have Γ1, x : (?T.S1, S2) `A
x(y).P .Γ2, x : (end, S2) inferred from Γ1, x : (S1, end) `A P .Γ2, x : (S′, S′′). By
I.H. we have Γ1, x : (S1, end) .Γ2, x : (S′, S′′) defined. From this we infer Γ1 .Γ2

defined. We conclude by noting that (?T.S1, S2).(end, S2) = (end, S2). Consider
now case [A-If] and assume Γ1 `A ifx = y thenP elseQ . Γ2 ⊗ Γ3 be inferred
from Γ1 `A P . Γ2 and Γ1 `A Q . Γ3 where Γ1(x) = (E1, E2) = Γ1(y). By
I.H. Γ1 . Γ2 and Γ1 . Γ3 are defined. Let Γ = Γ2 ⊗ Γ3. We need to show that
Γ1 . Γ is defined. Whenever Γ1 = ∅ this is true by hypothesis. Otherwise take
Γ1 = Γ′, z : T . We proceed by case analysis and show that the I.H. imply that
T .Γ(z) is defined. Whenever T = (E1, E2) we have Γ2(z) = T = Γ3(z), and in
turn Γ(z) = T , T . T = T , and the result follows. Otherwise let T = (R1, R2),
Γ2(z) = (S1, S2), Γ3(z) = (U1, U2), Γ(z) = (V1, V2). For each Ri, i = 1, 2, we
have that one of the following cases holds, where we let A be of the form S with
S 6= end: (a) Ri = A ∧ Si = A ∧ Ui = A ∧ Vi = A, or (b) Ri = A ∧ Si =
end ∧ Ui = A ∧ Vi = end, or (c) Ri = A ∧ Si = A ∧Ui = end ∧ Vi = end, or (d)
Ri = A ∧ Si = end ∧ Ui = end ∧ Vi = end. In all cases we have Ri . Vi defined
and in turn T . (V1, V2) defined, as desired.

An used closure generated by the algorithmic system is sufficient to type a
process with the system `, as we show below. The following lemma is the wedge
of the proof of soundness (cf. Theorem 4.7).

Lemma 4.6. Let Γ1 be balanced.

1. If Γ1 `A z : T . Γ2 then Γ1 . Γ2 ` z : T ;

2. If Γ1 `A P . Γ2 then Γ1 . Γ2 ` P .
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Proof. For the first item, we proceed by a case analysis and obtain that there
are Γ′, T ′ and T ′′ such that Γ1 = Γ′, z : T ′, Γ2 = Γ′, z : T ′′, and T ′ . T ′′ = T .
We conclude by un(Γ′ . Γ′) and [T-Var]. For the second item, we proceed
by induction on the length of the derivation. We prove the most interesting
cases. Assume case [A-Par] holds and let Γ1 `A P | Q . Γ3 be inferred from
Γ1 `A P . Γ2 and Γ2 `A Q . Γ3. By I.H. we have Γ1 . Γ2 ` P and Γ2 . Γ3 ` Q.
To conclude by applying [T-Par] we need to show that (Γ1 . Γ2) ◦ (Γ2 . Γ3) is
defined and equal to Γ1 . Γ3. If Γ1 = ∅ we are done by applying the first rule
for context split. Otherwise assume x ∈ dom(Γ1). We exploit Lemma 4.5 in
order to infer the types Γ2(x) and Γ3(x). Whenever Γ1(x) = (E1, E2) we have
Γ2(x) = Γ1(x) = Γ3(x), because of Lemma 4.5. We then conclude by applying
the split rule for termination types in Figure 2. Now assume Γ1(x) = (S, end).
Lemma 4.5 implies that we have two cases for Γ2(x) corresponding to (i) (S, end)
and (ii) >. In case (i) we have (Γ1 . Γ2)(x) = > and two sub-cases for Γ3(x)
corresponding to (i.a) (S, end) and (i.b) >. In case (i.a) we have (Γ2.Γ3)(x) = >
and in case (i.b) we have (Γ2 . Γ3)(x) = (S, end). In both sub-cases we have
> ◦ ((Γ2 . Γ3)(x)) = (Γ1 . Γ3)(x). In case (ii) we have (Γ1 . Γ2)(x) = (S, end)
and Γ3(x) = >, and in turn (Γ2 .Γ3)(x) = >. From this we infer (S, end) ◦> =
(S, end) = Γ1(x) . Γ3(x). The cases Γ1(x) = (end, S) and Γ1(x) = (S1, S2) are
similar. Consider now case [A-If], and let Γ1 `A ifx = y thenP elseQ . Γ be
inferred from Γ1 `A P . Γ2 and Γ1 `A Q . Γ3 where Γ1(x) = (E1, E2) = Γ1(y)
and Γ = Γ2⊗Γ3. We need to show that Γ1 .Γ ` ifx = y thenP elseQ. By I.H we
have Γ1 .Γ2 ` P and Γ1 .Γ3 ` Q. We claim that there are Γ′ and Γ′′ such that
Γ1 . Γ = (Γ1 . Γ2) ◦ Γ′ and Γ1 . Γ = (Γ1 . Γ3) ◦ Γ′′. The result then follows by
apply weakening, Corollary 3.3, followed by [T-If]. To justify the claim, take
Γ1 . Γ2. This environment could differ from Γ1 . Γ in a number of end points
in the range of Γ2 and Γ that are equal to S in the former and to end in the
latter; this is deduced by Lemma 4.5, and by definition of ⊗. Therefore such
end points are equal to end in Γ1 . Γ2 and to S in Γ1 . Γ. We then build Γ′ as
follows: Γ1 . Γ2(x) = (S1, S2) and Γ1 . Γ(x) = (R1, R2) imply Γ′(x) = (U1, U2)
where Si = Ri ◦ Ui for each i = 1, 2. The case Γ1 . Γ3 is analogous.

By relying on the lemma above we establish the main result of this section.

Theorem 4.7 (Soundness). If Γ `A P . Γ′ with Γ balanced then Γ ` P .

Proof. Let Γ1 `A P . Γ2. By Lemma 4.6 we have Γ1 . Γ2 ` P . Contexts Γ1

and Γ1 .Γ2 could differ in a number of end points that are of the form S in the
range of the former and have been set to end in the range of the latter, because
they are not used. We build a context Γ3 such that Γ1 = (Γ1 . Γ2) ◦ Γ3 as
follows: Γ1(x) = (S1, S2) and Γ1 . Γ2(x) = (R1, R2) implies Γ3(x) = (U1, U2)
with Si = Ri◦Ui, for i = 1, 2. We apply weakening (Corollary 3.3) to Γ1.Γ2 ` P
and conclude Γ1 ` P , as desired.

Completeness for deadlock-free processes. We now show that we accept an im-
portant class of typed processes, or processes not containing Wait for dead-
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[T-OutS-l] dead(Γ, x : (S1, S2) ` x〈y〉.P ) Γ, x : (S1, end) ` x〈y〉.P →
dead(Γ′ ` P )

[T-OutS-r] dead(Γ, x : (S1, S2) ` x〈y〉.P ) Γ, x : (end, S2) ` x〈y〉.P →
dead(Γ′ ` P )

[T-Out-l] dead(Γ, x : (E1, E2) ` x〈y〉.P ) dead(Γ′ ` P )
[T-Out-r] dead(Γ, x : (E1, E2) ` x〈y〉.P ) dead(Γ′ ` P )
[T-InS-l] dead(Γ, x : (S1, S2) ` x(y).P ) Γ, x : (S1, end) ` x(y).P →

dead(Γ′ ` P )
[T-InS-r] dead(Γ, x : (S1, S2) ` x(y).P ) Γ, x : (end, S2) ` x(y).P →

dead(Γ′ ` P )
[T-In-l] dead(Γ, x : (E1, E2) ` x(y).P ) dead(Γ′ ` P )
[T-In-r] dead(Γ, x : (E1, E2) ` x(y).P ) dead(Γ′ ` P )
[T-Repl] dead(Γ `!P ) dead(Γ ` P )
[T-Res] dead(Γ ` (νx : T )P ) dead(Γ, x : T ` P )
[T-If] dead(Γ ` ifx = y thenP elseQ) dead(Γ ` P ) ∨ dead(Γ ` Q)
[T-Par] dead(Γ1 ◦ Γ2 ` P | Q) dead(Γ1 ` P ) ∨ dead(Γ2 ` Q)

Table 1: Deadlocked predicate

locks [2]1: an input and its corresponding output (or vice-versa) are in the same
thread instead of in parallel ones. We rely on the help of types to try to infer
this kind of errors made by the programmer in coding sessions, and design a
type-checking algorithm that reject these processes. Moreover, we are studying
a procedure to disentangle such form of deadlocks; we will discuss further this
point in the conclusions (cf. Section 6).

We start by introducing the notion of Wait for deadlock. Given a typing
derivation Γ ` P , we let the deadlocked predicate, noted dead(Γ ` P ), be defined
inductively on the structure of proof trees as in Table 1. The definition formal-
izes an easy concept: a process is deadlocked whenever it contains a prefix x
that cannot be typed by using only one end point of a session type: that is, if
x(y).P or x〈y〉.P require x to have a type of the form (S1, S2) with both S1 and
S2 distinct from the type end, then they are deadlocked. The first column of
Table 1 contains the label of the last rule applied in Γ ` P , the second column
contains the predicate dead(Γ ` P ), and the third column contains the condition
to be satisfied, stated as a standard logic formula. In the third column of the
first and second line, if there exists a derivation Γ1 ` x〈y〉.P , for the identi-
fied Γ1, then Γ′ ` P is the judgement appearing as premise in that derivation.
Similarly, in the third column of the fifth and sixth line, Γ′ ` P is the premise of
the judgement Γ1 ` x(y).P appearing in the left of the implication. In contrast,
in the third column of the third, fourth, seventh and eighth line the judgement
Γ′ ` P is the premise of Γ, x : (E1, E2) ` R, that is the proof tree appearing as

1This is one of the fourth conditions identified in the paper for a deadlock to occur. In the
pi-calculus setting, the Wait for condition is sufficient to block a single thread.
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subject of the deadlocked predicate in the second column, for the identified R.
We refine the class of typed processes accepted by the algorithm by introduc-

ing the notion of strongly balanced type and context. A balanced type (A1, A2)
is strongly balanced whenever all types T1, . . . Tn occurring as input argument
in A1 and A2 are balanced. Strongly balanced contexts contain in their range
only strongly balanced types. We note that an input process that waits for
an unbalanced variable is useless since it cannot receive such variable from a
balanced process, which sends in output only free or bound balanced variables.

The following theorem establishes our partial completeness result. The
strong balanced assumption is essential to obtain a typing correspondence in
the algorithm, which rejects non-balanced bound input variables and contexts.

Theorem 4.8 (Completeness). If Γ ` P with Γ strongly balanced and not
dead(Γ ` P ), then Γ `A P . Γ′, for some Γ′.

Proof. By induction on Γ ` P . Take case [T-InS-l] and assume that Γ,
x : (?T.S,R) ` x(y).P is inferred from Γ, x : (S,R), y : T ` P . We use the
logical equivalence ¬(A1 → A2) = A1 ∧ ¬A2 and reformulate the hypothe-
sis as: Γ, x : (?T.S, end) ` P and not dead(Γ, x : (S, end), y : T ` P ). From Γ,
x : (?T.S,R) strongly balanced we obtain Γ, x : (?T.S, end), y : T strongly bal-
anced, since the types occurring as input argument in T are contained in ?T.S
as well. We apply the I.H. and infer Γ1, x : (S, end), y : T `A P . Γ′, y : T ′. We
conclude by applying [A-InS-l]: Γ, x : (?T.S,R) ` x(y).P . Γ′\x, x : (end, R).
Case [T-InS-r] is similar, while cases [T-In-l] and [T-In-r] follow directly
by induction. Consider case [T-OutS-l] and let Γ ` x〈y〉.P with Γ = Γ1 ◦
(Γ2, x : (!T.S,R) be inferred from Γ1 ` y : T and Γ2, x : (S,R) ` P . From
[T-Var] we have Γ1(x) = >, and by hypothesis Γ1 ◦ (Γ2, x : (!T.S, end) ` x〈y〉.P
and not dead(Γ2, x : (S, end) ` P ). We apply the I.H. and infer Γ2, x : (S, end) `A
P . Γ3. We find Γ′,Γ′′ such that Γ1 ◦ (Γ2, x : (!T.S, end) `A y : T . Γ′, and
Γ′ = Γ2, x : (S, end) ◦ Γ′′, and we weaken (Corollary 4.4) the judgement to
Γ′ `A P . Γ3 ◦ Γ′′. We conclude by applying [A-OutS-l]: Γ `A x〈y〉.P .
(Γ3 ◦ Γ′′)\x, x : (end, R). Case [T-OutS-r] is analogous, while cases [T-Out-l]
and [T-OutS-r] follow directly from induction. The remaining cases are a
direct consequence of the I.H. As an example, consider case [T-Par] and let
Γ ` P | Q be inferred from Γ1 ` P and Γ2 ` Q where Γ = Γ1 ◦ Γ2. Since
dead(Γ ` P | Q) is false, we know that dead(Γ1 ` P ) and dead(Γ2 ` Q) are
false as well. We also know that Γ1 and Γ2 are strongly balanced; this can
be shown by induction on the size of dom(Γ). We apply the I.H. and obtain
Γ1 `A P .Γ′ and Γ2 `A Q.Γ′′. We apply weakening (Corollary 4.4) and obtain
Γ1 ◦ Γ2 `A P . Γ′ ◦ Γ2 and Γ2 ◦ Γ′ `A Q . Γ′′ ◦ Γ′. We note that Γ′ ◦ Γ2 and
Γ2 ◦ Γ′ are equal and balanced; this follows from the definition of context split
and from Lemma 4.2. We apply [A-Par] and conclude: Γ `A P | Q.Γ′′◦Γ′.

Remark 4.9. A key property of the type system in Section 2 is that structural
congruence preserve typings (Lemma 3.4). By gluing Theorem 4.7, Lemma 3.4,
and Theorem 4.8 we have a similar result for the algorithmic system: if Γ bal-
anced and Γ `A P . Γ′ (which in turn implies Γ strongly balanced), and P ≡ Q,
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and not dead(Γ ` Q), then Γ `A Q . Γ′′. We conjecture that the result holds in
general; the proof we envision is based on the one contained in [9]. We leave
this for future work.

5. Expressiveness

Having defined a typed theory, and implemented it in a type checking al-
gorithm, it remains to investigate the expressiveness of the theory itself. In
this section we identify a fragment of the linear π-calculus of [13] that can be
encoded in the typed π-calculus of Section 2 while preserving both typings and
reductions. The system in [13] does feature (a) linear types that evolve to un-
restricted types and (b) recursive types. The fragment of our interest does not
permit the input/output use of channels typed with (b) (while those channels
can be passed around), and do not feature linear recursive types of (b) (while
limited unrestricted recursion is allowed). We are interested in this fragment
because it corresponds with the image of the encoding of variants of π-calculus
that feature session [7] and linear [19] types, as we discuss at the end of the
section. However, we do not see difficulties in extending the system in Section 2
by considering recursive types, while the combination of a) with the analysis
of the if-then-else processes of our interest appears to be challenging. We will
return on this point in the conclusions (cf. Section 6).

Source language. The syntax of the source language and its typing rules are
in Figure 3. The differences with respect the syntax of processes in Figure 1
are: (1) restriction is not decorated and (2) processes can send, receive and
test boolean constants. The syntax of types L follow, where an end point is
qualified as linear (lin) or unrestricted (un). Recursive types are limited to the
form µa. un?L.U and µa. un!L.U , where a is a type variable, that is they are
unrestricted. End point type duality is as expected:

lin ?L.N =lin !L.N lin !L.N =lin ?L.N end =end

µa. un?L.U =µa. un?L.U µa. un!L.U =µa. un!L.U a =a

We let the term predicate to hold for unrestricted and boolean types: term(bool),
term(N1) and term((N1, N2)) whenever Ni is not of the form lin ?L.N or lin !L.N .
We use the same balanced predicate introduced in Section 2. We also use the
predicate un: un(U) and un((U1, U2)). We use ∆ to range over contexts assigning
types of the form L to variables x.

In the second part of Figure 3 we outline the (left) rules for split entries
having linear and mixed types; the rules for booleans and unrestricted types
are those of channel types (E1, E2) in Figure 2. The typing rules for processes
are below in the same figure. Rule [Tl-Inact] requires the environment to be
terminated, so to enforce the linear discipline. Note also conditions (∗) and
(∗∗) in typing input and output channels, so that (1) we do not permit linear
types to evolve to unrestricted types, and (2) we exclude unsound unrestricted
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Syntax of typed processes

L ::= Types K ::= Processes

(N1, N2) pair x〈v〉.K output

N single x(y).K input

bool boolean (νx)K restriction

N ::= End point if v thenK1 elseK2 conditional

lin ?T.S input (K1 | K2) composition

lin !T.S output !K replication

end termination 0 inaction

U unrestricted v ::= Values

U ::= Recursion true, false constant

µa. un?L.U input x, y variable

µa. un!L.U output

a type variable

Context split rules

Γ = Γ1 ◦ Γ2 T = N or (N1, N2)

Γ, x : T = (Γ1, x : T ) ◦ Γ2

Γ = Γ1 ◦ Γ2

Γ, x : (N1, N2) = (Γ1, x : N1) ◦ (Γ2, x : N2)

Γ = Γ1 ◦ Γ2

Γ, x : (N1, U2) = (Γ1, x : (N1, U2)) ◦ (Γ2, x : U2)

Typing rules

term(∆)

∆ ` 0

bal(N) ∆,x : (N,N) ` K
∆ ` (νx)K

[Tl-Inact],[Tl-Res]

∆1 ` v : bool ∆2 ` K1 ∆2 ` K2

∆1 ◦∆2 ` if v thenK1 elseK2
[Tl-If]

∆, x : N, y : L ` K (∗)
∆, x : q?L.N ` x(y).K

∆1 ` v : L ∆2, x : N ` H (∗∗)
∆1 ◦ (∆2, x : q !L.N) ` x〈v〉.K

[Tl-In],[Tl-Out]

∆, x : (N,N ′), y : L ` K (∗)
∆, x : (q?L.N,N ′) ` x(y).K

∆1 ` v : L ∆2, x : (N,N ′) ` K (∗∗)
∆1 ◦ (∆2, x : (q !L.N,N ′)) ` x〈v〉.K

[Tl-InC],[Tl-OutC]

(∗) q = lin⇒ ¬un(N) and q = un⇒ q?L.N = N

(∗∗) q = lin⇒ ¬un(N) and q = un⇒ q!L.N = N ∧ v 6= x

Figure 3: Source language: linear π-calculus
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Encoding of types

[[ lin ?L.N ]]
def
= ? ((L )) .[[N ]] [[ lin !L.N ]]

def
= ! ((L )) .[[N ]]

[[µa. un?L.U ]]
def
= end [[µa. un!L.U ]]

def
= end

[[ end ]]
def
= end (( bool ))

def
= ⊥

(( (N1, N2) ))
def
= ([[N1 ]], [[N2 ]]) (∗) ((N ))

def
= ([[N ]], end) (∗)

(( (U1, U2 ))
def
= (? ((L1 )) , ! ((L2 )) ) (∗∗) (( (U2, U1) ))

def
= (! ((L2 )) , ? ((L1 )) ) (∗∗)

((U ))
def
= (( (U,U) ))

(∗) N 6= U (∗∗) U1 =?L1.U1 and U2 =!L2.U2

Encoding of contexts

(( ∅ ))
def
= {true : ⊥, false : ⊥} ((Γ, x : L ))

def
= ((Γ )) , x : ((L ))

Figure 4: Encoding of linear types and contexts

recursive types of the form U1 = un ?L.U2 and U1 = un !L.U2 with U1 6= U2, and
processes of the form x〈x〉.P .

We have the following theorem, which says that balanced typings are pre-
served during the computation.

Theorem 5.1 (Subject reduction [13]). Let ∆ be balanced and assume ∆ ` K.
If K ⇒ K ′ then ∆′ ` K ′ with ∆′ balanced.

Encoding. We encode the source language in the typed π-calculus of Section 2 by
assuming the existence of two distinct reserved variables true and false that can
only occur free in the syntax of processes P . Figure 4 introduces the encoding
(( · )) from qualifier-preserving contexts ∆ to contexts Γ, where ∆, x : (N1, N2)
does preserve qualifiers whenever N1 and N2 are both linear or both unre-
stricted, and when ∆ does. Contexts that do not preserve qualifiers are unbal-
anced and are not interesting since they do not guarantee subject reduction.
Type bool is mapped into ⊥, which we remind is a label for the termination
(!(end, end), ?(end, end)). The encoding relies on the auxiliary encoding [[ · ]] from
linear end point types N to end point types S. The auxiliary encoding disre-
gards unrestricted types occurring at the end of a linear end point L by setting
the continuation to end. This is sound since we know that in the source language
the channels described by these types are not used in i/o. We consider indexed
processes Ki and Pi such that each restricted variable has an unique natural
index, and the remaining variables have index 0; we let idx(Ki) be the set of
the indexes greater than 0. We will use positive indexes to retrieve the type
of restricted variables, following De Bruijn. We define the encoding [[·]]φ from
processes Ki to processes Pi with the following clauses and let the remaining
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ones be homomorphic, where φ is a type decoration function from indexes i
to types T , w range over xi and true , false and [[·]] does project the boolean
constants true and false into the reserved keywords true and false: [[true]] = true,
[[false]] = false, and [[xi]] = xi.

[[xi〈w〉.Ki]]φ
def
= xi〈[[w]]〉.[[Ki]]φ

[[xi(y0).Kj ]]φ
def
= xi(y0).[[Ki]]φ

[[(νxi)Kj ]]φ
def
= (νxi : ((L )) )[[Kj ]]φ φ(i) = L

[[ifw thenKi elseKj ]]φ
def
= if [[w]] = true then [[Ki]]φ else [[Kj ]]φ

Example 5.2. We map a typed derivation ∆ ` Ki into a derivation Γ ` P
of Figure 2. We represent unrestricted recursive types of the form µa.un?L.U
such that U = µa.un?L.U with ∗?L, and types of the form µa.un!L.U such

that U = µa.un!L.U with ∗!L; we avoid to write index zero. Let N
def
=

lin!bool.end, ∆
def
= z : (∗?N, ∗!N), u : (∗?bool, ∗!bool), and K1

def
= z(j).j〈true〉 |

(νy1)(z〈y1〉.y1(w).ifw thenu〈w〉. We note that there is a derivation tree ∆ ` K1

such that y1 has assigned (N,N). We thus let φ
def
= 1 7→ (N,N), and

have (( (N,N) )) = (!⊥.end, ?⊥.end), (( ∆ )) = true : ⊥, false : ⊥, z : (?(!⊥.end, end),
!(!⊥.end, end)), u : (?⊥, !⊥), and [[K1]]φ = z(j).j〈true〉 | (νy1 : (!⊥.end, ?⊥.end))
z〈y1〉.y1(w).ifw = true thenu〈w〉. We conclude that (( ∆ )) ` [[K1]]φ. We also
note that K1 ⇒ u〈true〉, and [[K1]]φ ⇒ u〈true〉.

The main result of this section establishes a correspondence among the two
systems.

Theorem 5.3 (Linear-π to π correspondence). Let ∆ ` Ki. Then there is a
decoration function φ such that dom(φ) = idx(Ki) and

1. (( ∆ )) ` [[Ki]]φ
2. Ki → K ′i implies [[Ki]]φ → [[K ′i]]φ′ for some φ′ s.t. dom(φ′) = dom(φ).

Proof. Given the derivation tree ∆ ` Ki, when dom(φ) 6= ∅ we build the dec-
oration function φ by recording all typings for the indexed restricted variables
in a list of pairs of the form [(1, L1) :: · · · :: (n,Ln)], where n ≥ 1. The
result (1) then follows by proceeding by induction on the length of the infer-
ence ∆ ` Ki. We illustrate the most interesting cases, where we avoid in-
dexes when unnecessary. In case [Tl-Res] we have ∆ ` (νxi)Ki inferred from
∆, xi : (N,N) ` Ki, and we know that φ(i) = (N,N). We apply [T-Res]
to the I.H and infer the desired result, (( ∆ )) ` (νxi : (( (N,N) )) )Ki. As fur-
ther example, consider case [Tl-InC] and let ∆, x : (q?L.N,N ′) ` x(y).Ki be
inferred from ∆, x : (N,N ′), y : L ` Ki, with the conditions on the qualifiers.
Let q = lin. Since ∆, x : (q?L.N,N ′) does preserve qualifiers, we have that
N ′ 6= U ′, for some U ′. We use condition (∗) and infer that N 6= U as well.
We can apply the I.H. and infer that (( ∆, x : (N,N ′), y : L )) ` [[Ki]]φ. A sim-
ple case-analysis on the encoding let us infer the desired result by applying
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[T-InS-l]: (( ∆, x : (lin?L.N,N ′) )) ` x(y).[[Ki]]φ. Let now q = un. The hy-
potheses on qualifiers let us infer that N ′ = U ′ and N = un?L.N . We apply
the I.H. and infer (( ∆, x : (N,N ′), y : L )) ` [[Ki]]φ. An application of [T-In-l]
gives us the desired result, (( ∆, x : (un?L.N,N ′) )) ` x(y).[[Ki]]φ. As last exam-
ple, take [Tl-If]: ∆1 ◦ ∆2 ` ifw thenKi elseKj inferred from ∆1 ` w : bool,
∆2 ` Ki, and ∆2 ` Kj . First, note that ∆1 and ∆2 may have different do-
main, because of linear types contained in ∆2 and not in ∆1. Consider now
w, which can be a boolean constant or a variable x such that ∆1(x) = bool

and Γ2(x) = bool, because of context split of booleans; the case w = xi with
i > 0 is ruled out since booleans do not appear under restriction. In both
cases we infer (( ∆1 )) ` [[w]] : ⊥. Moreover, we can weaken the judgement by
adding typings u : >, . . . , z : >, so to make the domain of (( ∆1 )) equal to that
of (( ∆2 )) : (( ∆1 )) , u : >, . . . , z : > ` [[w]] : ⊥. By I.H. we have (( ∆2 )) ` [[Ki]]φ, and
(( ∆2 )) ` [[Kj ]]φ. Note that (i) ( (( ∆1 )) , u : >, . . . , z : >)◦ ( (( ∆2 )) ) = (( ∆1 ◦∆2 )) ,
and (ii) (( ∆1 ◦∆2 )) = (( ∆2 )) , and (iii) (( ∆2 )) (true) = ⊥, as in all environ-
ments generated by the encoding. We apply [T-If] and infer the desired result,
(( ∆1 ◦∆2 )) ` [[ifw thenKi elseKj ]]φ.

To prove (2), we label linear π-calculus reductions occurring on restricted
channels with positive indexes (rather than with τ), and the remaining ones as in

Figure 1. We then show a stronger result: (a)Ki

µ
−→ K ′i implies [[Ki]]φ

µ
−→ [[K ′i]]φ,

and (b) Ki

h
−→ K ′i implies [[Ki]]φ

τ
−→ [[K ′j ]]φ 7→h, where when h > 0 and φ(h) = L

we set (φ 7→ h)(h) = next(L) (cf. Section 3). The proof is by induction on
the length of the inference. Most cases are straightforward, while the match-

ing cases follow from the axioms if true = true thenP elseQ
τ
−→ P and if false =

true thenP elseQ
τ
−→ Q . The interesting case is restriction: (νxi)Kj

i
−→ (νxi)K

′
j

inferred from Kj

xi

−→ K ′j . We apply [R-ResB] to the I.H. [[Kj ]]φ
xi

−→ [[K ′j ]]φ, and

infer (νxi : ((L )) )[[Kj ]]φ
µ
−→ (νxi : next( ((L )) ))[[K ′j ]]φ, where we let φ(i) = L. This

is the expected result, as (φ 7→ h)(i) = next(L), and (( next(L) )) = next( ((L )) ).

Cross-encodings. The identified fragment is interesting because it permits to
encode several variants of typed π-calculi. The paper [13] introduces an encod-
ing of the branch-select free fragment of the π-calculus with polarities presented
in [7], and an encoding of the linear π-calculus introduced in [19]. Both en-
codings project session and linear types into types L, and map polarized and
standard π-calculus processes into processes K. The paper establishes a typing
and reduction correspondence for both systems. This shows that [13] subsumes
those systems; more precisely, the fragment presented in this section does suf-
fice to encode both the recursive-free fragment of [7] and [19]. Since we encode
types L and processes K in our framework by having a correspondence result
(Theorem 5.3), this shows that we subsume the core of the polarised π-calculus
in [7], and the linear π-calculus in [19] as well.
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6. Conclusions

We introduce an affine discipline for session types in a π-calculus with name
matching, and implement the typing rules in in a type checking algorithm based
on functional patterns. The algorithm is sound, that is processes accepted by
the algorithm are well-typed, although not complete: we identify the class of
typed processes rejected by the algorithm as Wait for deadlocks [2].

Rejecting such processes makes sense since they are potentially dangerous,
e.g. they could represent a financial transaction that gets stuck in a critical
part, but is a draconian choice. A more flexible approach would permit to find
a fix for the typed process and to propose to the programmer two choices: keep
the original process or run a new one obtained by deadlock resolution.

In ongoing work [12], we are adding this feature to the algorithm by devising
a process transformation of Wait for deadlocks that is guided by session types.
The main idea is to detect such deadlocks during type-checking by exploiting
the concept behind the dead predicate, and to install a forwarder [17] in the
deadlocked point in order to disentangle the blocked channel, while preserving
type-safety and a correspondence among the original and the resolved process.

To the best of our knowledge, the idea of typing if-then-else processes that do
not exhibit the same behaviour in the branches by imposing an affine discipline
is a new contribution in the session type literature. Since behavioural type
disciplines tend to impose uniform typings for both branches of an if-then-else,
we believe that our proposal is a step towards more flexible type systems that
can be of interest for the programming languages community.

A limitation of our work is that session types and channel types do not
mix. While most session systems in the literature follow the same approach
(cf. [16, 7]), recently there have been proposals to let linear identifiers to progress
to unrestricted identifiers [26, 13]. We note that the combination of this feature
with the ability to accept the if-then-else processes of our interest is challenging,
and eventually leads to a much more complex definition of the algorithm. While
we think that this would be feasible, we preferred to keep the presentation
compact. We also believe that our approach leads to manageable algorithms for
type inference, for instance by following the constraint-based techniques in [20].
We leave this as future work. As a further improvement, we plan to introduce
recursive types in the typing theory, and extend the algorithm accordingly,
following the ideas in [13]. Last, we are exploring a semantic characterization
of deadlocks based on typed behavioral equivalences [15]. We believe that this
would complete the results in Section 4.1.
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