
Static semantics of secret channel abstractions

Marco Giunti

CRACS/INESC-TEC
Universidade do Porto

Abstract. The secret π-calculus extends the π-calculus by adding an
hide operator that permits to declare channels as secret. The main aim
is confidentiality, which is gained by restricting the access of the object
of the communication. Communication channels protected by hide are
more secure since they have static scope and do not allow the context’s
interaction, and can be implemented as dedicated channels. In this paper,
we present static semantics of secret channel abstractions by introducing
a type system that considers two type modalities for channels (scope):
static and dynamic. We show that secret π-calculus channels protected
by hide can be represented in the π-calculus by prescribing a static type
modality. We illustrate the feasibility of our approach by introducing
a security API for message-passing communication which works for a
standard (π-calculus) middleware while featuring secret channels. Inter-
estingly, we just require the programmer to declare which channels are
meant to be secret, leaving the burden of managing the security type
abstractions to the API compiler.

1 Introduction

The proliferation of interacting computer devices and the growing complexity
of the software components continuously cause security issues; see [21] for the
list of vulnerabilities discovered at Google in the last years, which includes the
recent Heartbeat OpenSSL bug. Secrecy and confidentiality are major concerns
in most systems of communicating agents. Either because some of the agents are
untrusted, or because the communication uses insecure channels, there may be
the risk of sensitive information being leaked to potentially malicious entities.
The price to pay for such security breaches may also be very high. It is not
surprising, therefore, that secrecy and confidentiality have become central issues
in the formal specification and verification of communicating systems. Formal
methods have been indeed advocated as an effective tool to analyze and deploy
secure communicating programs and protocols [14]. Process calculi, in particu-
lar, allow to study prototypal security analysis techniques that could be embed-
ded into next-generation compilers for distributed languages, and to investigate
high-level security abstractions that can be effectively deployed into lower-level
languages, thus providing for APIs for secure process interaction (e.g. [10]).

The π-calculus and especially its variants enriched with mechanisms to ex-
press cryptographic operations, the spi calculus [5] and the applied π-calculus [4],

have become popular formalisms for security applications. They all feature the
operator new (restriction) and make crucial use of it in the definition of security
protocols. The prominent aspects of new are the capability of creating a new
channel name, whose use is restricted within a certain scope, and the possibil-
ity of enlarging its scope by communicating it to other processes. The latter
property is central to the most interesting feature of the π-calculus: the mobil-
ity of the communication structure. Although in principle the restriction aspect
of new should guarantee that the channel is used for communication within a
secure environment only, the capability of extruding the scope leads to security
problems. In particular, it makes it unnatural to implement the communication
using dedicated channels, and non-dedicated channels are not secure by default.
The spi calculus and the applied π-calculus do not assume, indeed, any secu-
rity guarantee on the channel, and implement security by using cryptographic
encryption.

By way of motivation, consider the π-calculus process below, which describes
a protocol to exchange a confidential information.

P = (new c)((new s)(c〈s〉.s〈ATMpwd〉) | c(x).x(y).p〈x〉) (1)

This protocol is composed by two threads communicating over a restricted chan-
nel c to exchange a password to access the ATM: the thread on the left generates
a (secure) channel s and sends it over c, and later sends the password over s; the
thread on the right waits to receive from c a channel (that will instantiate) x,
waits on x to receive a value, and subsequently releases x over a public channel p
to allow further use of the channel. Still, implementing this solution in untrusted
environments is difficult, since we cannot rely on dedicated channels for commu-
nication on names created by the new operator. One natural approach to cope
with this problem is to map the private communication within the scope of the
new into open communications protected by cryptography.

For instance, we may resort to the spi calculus and map the command (new s)
into the generation of two cryptographic keys, noted (new s+, s−), to be sent over
the network through the crypto-packet {s+, s−}c+ . The packet is encrypted with
the public key c+ and can be only open a process that knows the decryption
key c−, that is the (spi calculus representation of the) receiver on the right:

net(z).decrypt z as {x+, x−}c− innet(w).decrypt w as {y}x− in p〈x+, x−〉

The aim is to protect the exchange of the confidential information by encrypt-
ing the password with the cryptographic key s+, noted {ATMpwd}s+ . Unfor-
tunately, the naive protocol above suffers from a number of problems, among
which the most serious is the lack of forward secrecy [1]: the content of the
crypto-packet encrypted with s+ can be retrieved by a spi calculus context that
first buffers the encrypted message and later receives the decryption key s−.

Stated differently, the spi calculus protocol above does not preserve the se-
mantics of P , which can be formalized by means of the behavioural equivalence
in (2), where we assume p free in P :

P ∼= (new s)(p〈s〉) (2)

This equation establishes a well-known fact, that is that in the π-calculus com-
munication on channels restricted with new is invisible: this is clearly false for the
naive spi calculus protocol above, as the context can retrieve the content of the
secret exchange. While a solution to recover the behavioral theory of π-calculus
is available [10], the price to pay is a complex cryptographic protocol that relies
on a set of trusted authorities acting as proxies.

Based on these considerations, in [19] we argue that the restriction operator
of π-calculus does not adequately ensure confidentiality, and we introduce an op-
erator to program explicitly secret communications, called hide. The operator is
static: that is, we assume that the scope of hidden channels can not be extruded.
The motivation is that all processes using a private channel shall be included in
the scope of its hide declaration; processes outside the scope represent another
location, and must not interfere with the protocol. Since the hide cannot extrude
the scope of secret channels, we can use it to directly build specifications that
preserves forward secrecy. In contrast, we regard the restriction operator of the
π-calculus, new, as useful to create a new channel for message passing with scope
extrusion, and which does not provide secrecy guarantees. Still, this approach
assumes specialized semantics for communicating processes, that is: to enforce
static scope for secret channels, we rely on a special-purpose middleware that
checks the content of each exchange and only allows interactions that do not
cause a security break.

In this paper, we show that the static scope mechanism can be enforced
in a π-calculus enjoying standard semantics (cf. [24]) by using strong static
typing. The hide security operator is accessible as a macro of an idealized API
for secure programming: programs using secret channels are transformed into
typed π-calculus processes and checked: when type-checking succeeds, the scope
of channels protected by hide cannot be enlarged during the computation. The
API language inherits the the syntax of [19] and allows to patch the protocol P
in (1) by re-programming the secure channel with hide: note that the scope
delimited by the square parentheses crucially includes the receiver, otherwise
the protocol would be rejected.

H = (new c)([hide s][H ′]) H ′ = c〈s〉.s〈ATMpwd〉 | c(x).x(y).p〈x〉 (3)

User programs are mapped into a typed π-calculus where channel types are
decorated with modality qualifiers: d for dynamic channels and s for static (secret)
channels. The hide declaration in (3) is compiled into a restriction decorated with
a static type, where we guess the channel type of s (cf. [27]), which is chan〈>〉:

[[[hide s][H ′]]] = (new s : s chan〈>〉)(H ′)

The encoding of H is obtained similarly by guessing the channel type of c,
which is chan〈chan〈>〉〉. Note that the compilation assigns a dynamic type to the
payload of c: the type system allows to send s having a static type over c by
upcasting the type of the payload from dynamic to static.

[[H]] = (new c : d chan〈d chan〈>〉〉)[[[hide s][H ′]]] (4)

Types and Processes

T ::= Types: P ::= Processes:

m chan〈T 〉i channel x(y ÷B).P input

> top x〈v〉.P output

m ::= Modalities (newx : T)(P) restriction

s static P | Q composition

d dynamic 0 inaction

i ::= Identifiers !P replication

∀ universal B ::= Blocked entries:

n unique number ∅ empty

B ∪ {T} type

Fig. 1. π-calculus: syntax

Contribution.

– We introduce a type system to enforce a static scope for π-calculus channels
by decorating channel types with static and dynamic type modalities

– We show that a fragment of the secret π-calculus [19] can be encoded into the
typed calculus while preserving an operational correspondence. The compi-
lation requires the type of the payload of channels to be guessed (when possi-
ble), while type modalities are inferred automatically. An upcast mechanism
allows to send static channels over channels exchanging dynamic variables.

– We discuss possible applications of the proposed technique, which we inter-
pret as an abstract API for secure message-passing.

Structure of the paper. Section 2 introduces the syntax and the static and dy-
namic semantics of the typed π-calculus. Section 3 reviews the secret π-calculus,
and presents a semantics-preserving compilation of the secret π-calculus into the
typed π-calculus. In Section 4 we discuss some applications of our technique. We
conclude in Section 5 by envisioning future work and by discussing a few related
papers.

2 Typed π-calculus

In this section we introduce the syntax of the typed π-calculus, and its static and
dynamic semantics. We use x, y, v to range over variables, and n to range over
unique numbers (identifiers). The syntax of types in Figure 1 include channel
types decorated with static (s) and dynamic (d) type modalities, and the top
type, noted >. The type modalities, ranged by m, are the core of the security
mechanism of the typed π-calculus and allow to enforce constraints on the mobil-
ity of channels. Type identifiers, ranged by i, are used to identify static types and

to disallow their disclosure by means of structural rearrangement of processes.
Variables of type top can be passed around but cannot be used in input/output.
We assume that input processes are decorated with a set of blocked types and that
this set is managed automatically through structural congruence, leaving the de-
tails of the mechanism to implementations. For the purpose of the presentation,
we make type identifiers explicit and assume two forms for identifiers: universal,
noted ∀, and unique numbers n produced by a clash-free generator, noted gen();
in implementations, type identification would be managed transparently by the
compiler.

The syntax of processes is standard, but for input. The input process x(y ÷
B).P includes a set of (blocked) types B in its definition. When B is the empty
set, the input process is the standard one of the π-calculus, otherwise, B contains
types T that cannot be received by the input process, for any type assignment
of x. Notably, this has impact only on the static semantics, while the dynamic
semantics of the language is unaffected. Process (new y : T)(P) is the restriction
process, and introduces a new variable y of type T with scope in P .

The binders of processes appear in parenthesis: (new y : T)(P) and x(y÷B).P
bind the free occurrences of y in P . Considering the usual notions of free and
bound variables, α-conversion, as well as of substitution, cf. [24], we use fv(P)
and bv(P) to indicate respectively the set of free and bound variables of P , which
we assume disjoint by following Barendregt’s variable convention [7]. We will of-
ten avoid trailing nils and write x〈v〉 and x(y) to indicate respectively processes
x〈v〉.0 and x(y).0, and write x(y).P to indicate the input process x(y ÷ ∅).P .
Structural congruence is the smallest relation on processes including the rules in
Figure 2. We embed the type block mechanism in the rules for structural con-
gruence through the block binary function, noted], defined in the same figure.
Blocked types could indeed be introduced both statically and dynamically, i.e.
when structural congruence is performed during the computation. We leave the
time when the system blocks explicitly the type in components as an implemen-
tation detail. The axioms of structural congruence are below in Figure 2. Most
rules are standard but the axiom in the second line, which deal with restric-
tion of a variable having a static type. The scope of x having type T is enlarged
to Q]T : all inputs in Q are forbidden to receive values of type T by means of the
block function defined above, which instructs the typing system. Note that, due
to variable convention, x bound in (newx : T)(P), cannot be free in Q, and that
an input of the form x(y ÷m chan〈T 〉i).P can receive values of type m chan〈T 〉j
whenever i 6= j. The reduction is the binary relation on processes defined by the
rules in Figure 2. The [R-Com] rule communicates variable v from an output
prefixed process x〈v〉.P to an input prefix x(y ÷B).Q; the result is the parallel
composition of the continuation processes, where, in the input process, the bound
variable y is replaced by v. The presence of the blocked types B in the input, as
introduced, allows to instruct the type checker and has no impact on commu-
nication. The rules in the last line allow reduction to happen underneath scope
restriction and parallel composition, and incorporate structural congruence into
reduction.

P] T = P Type blocking

(x(y ÷B).P)] T def
= x(y ÷B ∪ {T}).(P] T)

((newx : T)(P))] T ′ def
= (newx : T)(P] T ′)

(x〈v〉.P)] T def
= x〈v〉.(P] T) (P | Q)] T def

= P] T | Q] T

(!P)] T def
= !(P] T) 0] T def

= 0

P ≡ P Rules for structural congruence

P | Q ≡ Q | P (P | Q) | J ≡ P | (Q | J) !P ≡ P |!P P ≡ P | 0
(newx : s chan〈T 〉n)(P) | Q ≡ (newx : s chan〈T 〉n)(P | Q] s chan〈T 〉n)

(newx : T)(P) | Q ≡ (newx : T)(P | Q) T 6= s chan〈T ′〉n
(newx : T)(0) ≡ 0 (newx : T1)(new y : T2)(P) ≡ (new y : T2)(newx : T1)(P)

P → P Rules for reduction

x〈v〉.P | x(y ÷B).Q → P | Q{v/y} [R-Com]

P → Q

(newx : T)(P) → (newx : T)(Q)

P → P ′

P | Q → P ′ | Q
P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q
[R-Res] [R-Par] [R-Struct]

Fig. 2. π-calculus: type-based blocking and reduction semantics

Static semantics We consider typing judgments for processes of the form Γ ` P .
∆ with fv(P) ⊆ dom(Γ) and dom(∆) = dom(Γ). Type environments or contexts
Γ are a map from variables to types T ; return type environments or return
contexts ∆ are map from variables to return types U , which include types T in
Figure 1 and the void type, noted •.

U ::= T | •

The void type is managed transparently by the type system and is not used to
decorate restricted channels. Return contexts are used to convey the actual use
of channels, which can differ from the one described by the type environment. In
particular, channels having a void return type cannot be accessed by processes
running in parallel, while (dynamic) channels that are not used by the process
can be promoted to type >. In order to specify the typing system, in Figure 3
we introduce auxiliary operations on types, type environments and return type
environments. The upcast partial operation, noted ↑, is used to upcast the pay-
load of a channel type from dynamic to static. The downcast operation, noted
↓•i, transforms dynamic types exchanging a static channel identified by i into the
void type, disallowing further interaction of the context. This is enforced in the
rule to type a parallel composition by means of a composition partial binary op-

T↑= T Type upcast

d chan〈T 〉∀↑= s chan〈T 〉n n = gen()

∆↓•i= ∆ Return context downcast

U↓•i=

{
• U = d chan〈s chan〈T 〉n〉∀ and i = n

U else

∅↓•i= ∅
∆↓•i= ∆1

(∆,x : U)↓•i= ∆1, x : U↓•i

∆⊗∆ = ∆ Return context composition

U ⊗> = U >⊗ U = U T ⊗ T = T

∅ ⊗ ∅ = ∅ ∆1 = ∆3, x : U1 ∆2 = ∆4, x : U2

∆1 ⊗∆2 = ∆3 ⊗∆4, x : U1 ⊗ U2

Fig. 3. Type system: auxiliary operations

eration over return contexts, noted ⊗, which only allows to compose void types
with top types.

The typing system in Figure 4 introduces typing rules for values and pro-
cesses. We illustrate the most interesting rules. Rule [T-Par] allows to type a
parallel composition P1 | P2 by composing the return contexts ∆1 and ∆2 pro-
duced respectively by typing P1 and P2, when the ⊗ operation is defined. In
rule [T-Repl] we accept replicated processes that do not send static channels
over dynamic channels, to disallow instances of P to enlarge the scope of a static
channel. Rule [T-Res-S] allows to type a restricted variable having a static type
identified by a unique number n. To this aim, the continuation must be typed by
adding to the context the new entry for the variable and return a context ∆ that
does not change the type of the restricted variable. The top-level return context
is built by pruning the restricted variable and by downcasting ∆. We have two
rules for input, [T-In] and [T-In-Up], and to rules for output, [T-Out] and
[T-Out-Up], which correspond respectively to input, upcast in input, output,
and upcast in output. We allow to upcast the payload of channels from dynamic
to static in input (a) and output (b), given that: a) the upcasted type is not
blocked; b) the type of the channel’s object is equal to the upcasted type. Note
that in rules [T-In-Up],[T-Out-Up] the return type of the channel is different
from the type in the type environment.

Rule [T-In] allows to type an input process x(y÷B).P with a channel of the
form m chan〈T ′〉i, given that T ′ 6∈ B and that the continuation can be typed by
adding the entry y : T ′ to the context. The return type of the bound variable y
must not change in the continuation: to upcast the type of a variable bound by
an input, one has to use rule [T-In-Up]. The top-level call returns the environ-

Γ ` v : T Typing rule for variables

Γ, v : T ` v : T [T-Var]

Γ ` P . ∆ Typing rules for processes

Γ ` P1 . ∆1 Γ ` P2 . ∆2

Γ ` P1 | P2 . ∆1 ⊗∆2

Γ ` P . ∆ • 6∈ range(∆)

Γ `!P . ∆
[T-Par] [T-Repl]

Γ, y : T ` P . ∆, y : U

Γ ` (new y : T)(P) . ∆

Γ, y : T ` P . ∆, y : T

Γ ` (new y : s chan〈T 〉n)(P) . ∆↓•n
[T-Res],[T-Res-S]

T = m chan〈T ′〉i T ′ = m′ chan〈T ′′〉j T ′ 6∈ B
Γ, x : T, y : T ′ ` P . ∆, x : T, y : T ′

Γ, x : T ` x(y ÷B).P . (∆↓•j), x : T
[T-In]

T↑= s chan〈T ′〉n T↑6∈ B
Γ, x : m chan〈T↑〉i, y : T↑` P . ∆, x : m chan〈T↑〉i, y : T↑
Γ, x : m chan〈T 〉i ` x(y ÷B).P . (∆↓•n), x : m chan〈T↑〉i

[T-In-Up]

T = m chan〈T ′〉i Γ ` v : T ′ Γ, x : T ` P . ∆, x : T ∆ ` v : T ′

Γ, x : T ` x〈v〉.P . ∆, x : T
[T-Out]

T↑= s chan〈T ′〉n Γ ` y : T↑
Γ, x : m chan〈T↑〉i ` P . ∆, x : m chan〈T↑〉i ∆ ` y : T↑

Γ, x : m chan〈T 〉i ` x〈y〉.P . ∆, x : m chan〈T↑〉i
[T-Out-Up]

∅ ` 0 . ∅ U = T or (T = d chan〈T ′〉i and U = >) Γ ` 0 . ∆

Γ, x : T ` 0 . ∆, x : U
[T-Inact-E],[T-Inact]

Fig. 4. π-calculus: type checking

ment ∆↓•j , x : T , where ∆ is obtained by the call for the continuation, and j is
the identifier of the payload type T ′: this disallows attempts to declassify secret
channels by means of forwarding (cf. Section 4). Rule [T-In-Up] allows to type
an input process x(y ÷ B).P with a type of the form of the form m chan〈T 〉i,
given that T↑ is defined and that T↑6∈ B, and that the continuation can be typed
by both changing the type of x to m chan〈T↑〉i, and by adding the entry y : T↑.
Note that the return type of x cannot change, and that the return context ∆
is downcasted: this operation set the type of channels that are exchanging y to
void, disallowing further interaction of the context. Rule [T-Out] allows to type
an output process and is standard, while we require that the type of the sent
variable does not change in the return type environment, to enforce a consistent
use of the variable in the context. Rule [T-Out-Up] is specular to [T-In-Up],
while there is no need to downcast the return type environment since the object
of the output has already a static type: as in [T-Out], we enforce that the ob-
ject type does not change in the return type environment. We have two rules for

inaction, [T-Inact-E] and [T-Inact], corresponding to empty and non-empty
contexts. In rule [T-Inact], we allow to promote each return type of the form
d chan〈T 〉∀ to type >: this permits compositions with processes that are not using
i/o channel capabilities (cf. [20]).

The subject reduction theorem ensures that the static semantics of the π-
calculus agrees with its dynamic semantics. As usual, the proof relies on two
auxiliaries results: type preservation under structural congruence, and a substi-
tution lemma. See [18] for all details.

Theorem 1 (Subject reduction). Let Γ be balanced. If Γ ` P .∆ and P → Q
then there is ∆′ such that one of the following hold:

1. Γ ` Q . ∆′;
2. Γ = Γ1, x : m chan〈T 〉i and Γ1, x : m chan〈T↑〉i ` Q . ∆′, for some x ∈

dom(Γ).

The last result of this section establishes the soundness of the types analy-
sis, namely: well-typed processes do not try to enlarge the scope of a channel
decorated as static. The theorem below formalizes this intuition.

Theorem 2 (Soundness). If Γ ` P . ∆ and P reduces in zero or more steps
to (newx1 : T1) · · · (newxn : Tn)(Q | R) then none of the following cases happen:

1. Q = (new y : s chan〈T 〉n)(x〈y〉.Q1 | Q2) | x(z ÷B).Q3

2. Q = (new y : s chan〈T 〉n)(x〈y〉.Q1 | Q2 | x(z ÷B ∪ s chan〈T 〉n).Q3)

3 An API for secure programming

Rather than ask to programmers to use the security type abstractions presented
in the previous section, we want to provide an high-level language featuring
secret channels and transparently compile it in the typed π-calculus. In the
remainder of the section we present the language, which is inspired by the se-
cret π-calculus [19], and its compilation in the typed π-calculus of Section 2. We
conclude by proving that the static and dynamic semantics of the translated pro-
grams agree with the dynamic semantics of the secret π-calculus, thus showing
that our approach is sound. This provides an abstract API for secure program-
ming: the programmer writes the security protocol in the high-level language,
the protocol is compiled into the typed π-calculus, type-checking is performed
before execution. When the protocol is well-typed, our main result is that direct
information flows on secure channels are not allowed (while attacks based on
indirect flows are still possible, cf. [26]).

Programmer language The syntax1 in Figure 5 is inspired by the secret π-
calculus [19]. To depict channel-based communication we consider an infinite

1 The original formulation of the secret π-calculus is untyped and also features a form
of trusted input, which is outside the scope of the paper.

Programmer syntax

H ::= Programs: !H replication

x〈v〉.H output H | K composition

x(y).H input 0 inaction

[hidex][H] secret channel (newx)(H) channel

Extended syntax

A ::= Types [hidex : A][M] secret channel

chan〈A〉 channel (newx : A)(M) channel

> top !M replication

M ::= Processes: M | N composition

x〈v〉.M output 0 inaction

x(y ÷ B).M input

Fig. 5. Secret π-calculus

set N of channels or variables ranged over by x, y, z and v. We use A,B, C to
denote subsets of N . The programmer syntax includes, in addition to the stan-
dard operators of the π-calculus [24], a secret channel process [hidex][H], which
is a process that creates an invisible channel x and continue as H. The program-
mer must be carefully include in the scope delimited by the square parentheses
all processes that are meant to communicate over a secret channel: (compiled)
processes that try to open the scope of a secret channel are rejected by the
typed analysis. The extended syntax in the same figure introduces two modifi-
cations, which are transparent to the programmer: a set of blocked variables in
input, noted B, and channel type decorations in channel and secret channel cre-
ation. The binders of the extended language appear in parenthesis: x(y÷B).M ,
(new y)(M) and [hide y][M] bind the free occurrences of y in M . The set B allows
to embed the block mechanism in the axioms of structural congruence, which is
required by the secret π-calculus semantics. For space limitations, we illustrate
this mechanism with an example, and refer to [19] for all the details. Consider
the secret π-calculus process M1 below, where we assume x, z different from y
and w.

M1 = [hide y : >][x〈z〉.x〈y〉] | x(w ÷ ∅).x〈w〉 (5)

The reduction M1 → [hide y : >][x〈y〉 | x〈z〉] is enforced in two steps: first, by the
structural congruence axioms, we establish M1 ≡ [hide y : >][x〈z〉.x〈y〉 | x(w ÷
{y}).x〈w〉], then we allow the inner composition to interact since z sent in output
is different from y blocked in input.

Compilation The compilation of programs H into typed π-calculus processes P
is in two steps. User programs H are transformed into secret π-calculus pro-

Assignment of type modalities

[[chan〈A〉]]d = d chan〈[[A]]d〉∀ [[chan〈A〉]]s = s chan〈[[A]]d〉gen()
[[>]]m = > m = s, d

Encoding processes

[[[hidex : A][M]]]Γ = (newx : [[A]]s)([[M]]Γ,x : [[A]]s)

[[(newx : A)(M)]]Γ = (newx : [[A]]d)([[M]]Γ,x : [[A]]d
)

[[x〈y〉.M]]Γ = x〈y〉.[[M]]Γ

[[x(y ÷ B).M]]Γ = x(y ÷B).[[M]]Γ B = {x1, . . . , xn}, B = {Γ (x1), . . . , Γ (xn)}
[[M | N]]Γ = [[M]]Γ | [[N]]Γ

[[!M]]Γ = ![[M]]Γ

[[0]]Γ = 0

Fig. 6. Compilation of secret π-calculus

cesses M by means of a function 〈〈 · 〉〉I that guesses2 the channel types of the
restricted channels of H (when possible), where I = A1 · · ·An is a stack of types
such that A1 is on top of the stack. The encoding is below: the remaining cases
are homomorphic.

〈〈x(y).H 〉〉I = x(y ÷ ∅). 〈〈H 〉〉I 〈〈 (newx)H 〉〉A·I = (newx : A) 〈〈H 〉〉I
〈〈 [hidex]H 〉〉A·I = [hidex : A] 〈〈H 〉〉I 〈〈H | K 〉〉I1·I2 = 〈〈H 〉〉I1 | 〈〈K 〉〉I2

The encoding from secret π-calculus processes M to π-calculus processes P ,
noted [[·]]Γ , in Figure 3 is parametrized by a type environment Γ . We use Γ
to transform blocked variables of a secret π-calculus input process into blocked
types of a typed π-calculus process, while constructing the type environment
from the program code. Standard types A are encoded into types T of Figure 1
by means of the compilation [[·]]m defined in the same Figure. Note that the
payload of types is qualified as dynamic since the typing system allows to upcast
it to a static type, as introduced in Section 2. The encoding of restricted channels
assign a dynamic type modality to channels programmed with new, and a static
type modality to channels programmed with hide, as expected.

The main result of this section is that compiled processes that type-check
preserve the dynamic semantics of the secret π-calculus, in the following sense.

Theorem 3. Let M be a secret π-calculus process. If there are Γ, Γ1 and ∆1

such that Γ1 ` [[M]]Γ . ∆1, then the following hold.

1. If M →M ′ then [[M]]Γ → [[M ′]]Γ

2 In practice, channel types would be inferred by using techniques based on constraint
systems, e.g. [29, 6].

2. If [[M]]Γ → Q then there is M ′ such that M →M ′ and [[M ′]]Γ = Q

A simple counter-example is the secret π-calculus processN = [hide y : >][x〈y〉.N ′] |
x(z÷∅).N ′′: the compilation [[N]]Γ does not type check, for any Γ , since the type
system rejects the attempt of reading from a channel sending a secret variable.
Other counter-examples are the secret π-calculus processes x〈x〉 and x〈y〉 | y〈x〉,
because we do not consider recursive types (for simplicity), as well as processes
that are decorated with the wrong types.

4 Applications

To illustrate possible usages of the API, we start by drawing an example based
on a process that potentially attempts to declassify a secret channel by means
of forwarding it on a public channel x, where we assume w, y, x, z all distinct.

M2 = [hide y : chan〈>〉][w〈y〉 | w(z ÷ ∅).x〈z〉] (6)

The encoding ofM2 is process P2 below, which type-checks: types T1, T2 describe
the free channels of P , while type T4 is a return type of P .

P2 = (new y : T3)(w〈y〉 | w(z ÷ ∅).x〈z〉)
T1 = d chan〈T2〉∀ T2 = d chan〈>〉∀
T3 = s chan〈>〉1 T4 = d chan〈T3〉∀

Indeed this process, taken in isolation, is safe, while its interaction can entail a
security break, as we discuss at end of the paragraph.

Take the type environment Γ = w : T1, x : T1. Informally, the type system
allows to send the static channel y over w and x by upcasting the type of the
payload of w and x, and by downcasting their return type. We first outline a
derivation for the left thread of P2: note that we change the return type of x
through (three applications of) [T-Inact], since x is not used.

([T-Inact])
w : T4, x : T1, y : T3 ` 0 . w : T4, x : >, y : T3

([T-Out-Up]) (*)
Γ, y : T3 ` w〈y〉 . w : T4, x : >, y : T3

A derivation for the right thread is below; note that the return type of x is set
to void, since the secret variable z is sent over x.

([T-Inact])
w : T4, x : T4, y : T3, z : T3 ` 0 . w : T4, x : T4, y : T3, z : T3

([T-Out-Up])
w : T4, x : T1, y : T3, z : T3 ` x〈z〉 . w : T4, x : T4, y : T3, z : T3

([T-In-Up]) (**)
Γ, y : T3 ` w(z).x〈z〉 . w : T4, x : •, y : T3

We glue together the two derivations by using [T-Par], and finish by applying
[T-Res-S]: the final effect is to set the return type of w to void.

{| () |}z = z〈⊥,⊥,⊥〉
{| (〈a0, b0〉, . . . , 〈an, bn〉) |}z = (new z′)(z〈a0, b0, z′〉 | {| (〈a1, b1〉, . . . , 〈an, bn〉) |}z′)

Add(x, y, z) = z(h1, h2, z
′).((new z′′)(z〈x, y, z′′〉 | z′′〈h1, h2, z

′〉) |
port88〈h1, h2〉) %% Suspicious

Fig. 7. A malicious list handler

(∗) (∗∗)
([T-Par])

Γ, y : T3 ` w〈y〉 | w(z).x〈z〉 . w : T4, x : •, y : T3
([T-Res-S])

Γ ` P2 . w : •, x : •

A void return type acts as a protection against contexts trying to leak secrets
from the process. For instance, a composition of the form P2 | x(u).P ′ does
not type check, i.e. Γ 6` P2 | x(u).P ′ . ∆, for any P ′. This holds because the
composition (w : •, x : •)⊗(w : U1, x : U2) is undefined whenever U1 6= >, U2 6= >,
and because if Γ ` x(u).P ′ . ∆′ then ∆′(x) 6= >. Similarly, P2 | Q is ill-typed
if w appears free as subject of an input or output in Q, for any Q.

Safe programming with third-party libraries The abstract security API can be
useful to protect against malicious behaviour of third-party libraries. The mali-
cious code that we consider in Figure 7 is an implementation of a linked list in a
polyadic extension of the programmer language in Figure 5: the code is inspired
by [11]. A list of paired names (〈a0, b0〉, . . . , 〈an, bn〉) is programmed through the
encoding {| · |} as a list of processes linked by pointers: process zi〈xi, yi, zi+1〉 rep-
resents the entry 〈xi, yi〉, where zi is the reference to the next pair. A pair 〈x, y〉
can be added to a list z by means of the meta-process Add, noted Add(x, y, z).
The question we face is: how to detect if the library provides a backdoor by
forwarding the content of the list on some port, as in the last line of process
Add? Rather than checking the code of the library, programmers may trust the
list implementation and use it to store secure channels in a data structure that
allows to customize operations, e.g. searches.

StoreSecCh(N, y) = [hidex][N | (new z)({| () |}z | Add(x, y, z))]

To ensure that the secure channel is not disclosed when composing StoreSecCh(N, y)
with some N ′, we may compile the composition and run the type-checker. If the
result is positive, Theorem 3.2 ensures that the translation preserves the invari-
ant prescribed by the dynamic semantics of the secret π-calculus, that is that
process N ′ will not receive channel x during the computation. This allows to use
the secret π-calculus as an abstract API language for secure protocols.

Enforcing mandatory access control We review an example discussed in [19]. D-
Bus [25] is an IPC system for software applications that is used in many desktop
environments. Applications of each user share a private bus for asynchronous

message-passing communication; a system bus permits to broadcast messages
among applications of different users. Versions smaller than 0.36 contain an
erroneous access policy for channels which allows users to send and listen to
messages on another user’s channel if the address of the socket is known. The
code for the attack is synthesized below.

[marco@localhost]# echo $DBUS_SESSION_BUS_ADDRESS > Public/address

[guest@localhost]# dbus-monitor --address /home/marco/Public/address

The correct policy, subsequently released by Fedora, restricts the access to the
user’s bus to applications with the same user-id. The policy is mandatory and
cannot be changed by users, otherwise security is broken: this is enforced directly
in the (untyped) Unix-like access control method. Our interpretation of this
vulnerability is that the user’s bus can be abstracted as an hidden channel, that
is a channel that must not be disclosed by means of internal attacks or Trojan
horses. To ensure this invariant, we can program the D-Bus protocol in the
secret π-calculus, translate it in the π-calculus, and run the type-checker: this
will ensure that, when type-checking succeeds, the mandatory policy is enforced,
without the need of relying on explicit access control methods. We refer to [19]
for a possible implementation of the D-Bus protocol in the secret π-calculus.

5 Discussion

We introduce a type system to enforce static scope for channels in the π-calculus,
and defend that the static analysis can help in devise programs featuring secret
channels by providing a semantics-preserving translation of a fragment of the
secret π-calculus [19] into our typed π-calculus.

While we analyze some simple application of our technique, which we inter-
pret as an abstract API for secure message passing, we leave for future work a
precise comparison with calculi and frameworks for secret protocols (e.g. [5, 4,
2, 15]) and π-calculus dialects featuring static channels (e.g. [16, 30]), as well as
a (typed) behavioural theory to establish secrecy equations (cf. [17, 19]). Other
extensions we are interested in consist in study the integration among static and
dynamic type qualifiers and session types [20], develop type-inference techniques
á la [29, 6] to fully automatize the process compilation, and devise a type check-
ing algorithm to resolve the sources of non-determinism in the typing system
(cf. the rules for input and for inaction).

Many analysis and programming techniques for security have been developed
for process calculi. Among these, we would mention the security analysis enforced
by means of static and dynamic type-checking (e.g. [12, 22, 9]), the verification
of secure implementations and protocols that are protected by cryptographic
encryption (e.g. [8, 3, 10]), and programming models that consider a notion of
location (e.g. [23, 28, 13, 19]). The most related papers are [19, 12]. The paper
in [19] introduces the secret π-calculus, its behavioural theory, and a character-
ization based on bisimulation semantics. The presence of a spy context allows
to break some of the standard observational equivalences for restriction, which

can be recovered by using the secret channel operator. It would be interesting to
investigate whether the untyped theory of [19] would match a typed behavioural
theory based on static and dynamic type qualifiers. The work in [12] introduces
a π-calculus featuring a group creation operator, and a typing system that disal-
lows channels to be sent outside of the group. Programmers must declare which
is the group type of the payload: the typing system rules out processes of the
form (new p : U)(P | (newG)(newx : G[])(p〈x〉)) since the type U of the pub-
lic channel p cannot mention the secret type G, which is local. Differently, we
accept processes of this form and do not require such effort to programmers:
instead, we automatically infer the “group types” of processes declared with the
hide macro, and allow secret channels to be sent over “untyped” channels: i.e. we
type-check (the compilation of) process (new p)(p′(y) | [hidex][p〈x〉]) whenever
p′ 6= p, and reject it otherwise. Our main motivation is to shift the middleware
support for secret channels (cf. [19]) to a software support in a transparent way:
we show how this can be achieved, thus establishing an operational correspon-
dence among untyped and typed semantics of secret channels. From the API
language design point of view, we share some similarity with the ideas behind
the boxed π-calculus [28]. A box in [28] acts as wrapper where we can confine
untrusted processes; communication among the box and the context is subject
to a fine-grained control that prevents the untrusted process to harm the proto-
col. Our hide macro is based on the symmetric principle, but requires stronger
conditions, because we map the macro in a restriction process of the π-calculus:
for a process to be (type-)checked, we require the context outside the scope of
an hide to do not listen on channels exchanging secrets.

Acknowledgements This work is supported by the North Portugal Regional Op-
erational Programme under contract NORTE-07-0124-FEDER-000062, by the
European Regional Development Fund through the COMPETE Programme un-
der contract FCOMP-01-0124-FEDER-037281 (PEST), and by national funds
through FCT - Fundacão para a Ciência e a Tecnologia. I warmly thank PEST
for travel support; I also thank the Center for Informatics and Information Tech-
nologies (CITI, citi.di.fct.unl.pt) for the support of facilities. The final ver-
sion of this paper has been improved thanks to the detailed comments and useful
criticism of the anonymous reviewers, to whom I am especially grateful.

References

1. Abadi, M.: Protection in programming-language translations. In: ICALP. LNCS,
vol. 1443, pp. 868–883. Springer (1998)

2. Abadi, M., Blanchet, B.: Analyzing security protocols with secrecy types and logic
programs. J. ACM 52(1), 102–146 (2005)

3. Abadi, M., Blanchet, B., Fournet, C.: Just fast keying in the pi calculus. ACM
Trans. Inf. Syst. Secur. 10(3) (2007)

4. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
POPL. pp. 104–115. ACM press (2001)

5. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus.
Inf. Comput. 148(1), 1–70 (1999)

6. et al., M.L.: Typing component-based communication systems. In: FMOODS/-
FORTE. LNCS, vol. 5522, pp. 167–181. Springer (2009)

7. Barendregt, H.: The Lambda Calculus - Its Syntax and Semantics. North-Holland
(1981 (1st ed), revised 1984)

8. Boreale, M., De Nicola, R., Pugliese, R.: Proof techniques for cryptographic pro-
cesses. SIAM J. Comput. 31(3), 947–986 (2001)

9. Bugliesi, M., Giunti, M.: Typed processes in untyped contexts. In: TGC. LNCS,
vol. 3705, pp. 19–32. Springer (2005)

10. Bugliesi, M., Giunti, M.: Secure implementations of typed channel abstractions.
In: POPL. pp. 251–262. ACM (2007)

11. Cai, X., Fu, Y.: The λ-calculus in the π-calculus. Math. Struct. Comp. Sci. 21(5),
943–996 (2011)

12. Cardelli, L., Ghelli, G., Gordon, A.D.: Secrecy and group creation. Inf. Comput.
196(2), 127–155 (2005)

13. Castagna, G., Vitek, J., Nardelli, F.Z.: The seal calculus. Inf. Comput. 201(1),
1–54 (2005)

14. Cortier, V., Kremer, S. (eds.): Formal Models and Techniques for Analyzing Secu-
rity Protocols, Cryptology and Information Security, vol. 5. IOS Press (2011)

15. Cortier, V., Rusinowitch, M., Zalinescu, E.: Relating two standard notions of se-
crecy. Logical Methods in Computer Science 3(3) (2007)

16. Fournet, C., Gonthier, G.: The reflexive cham and the join-calculus. In: POPL. pp.
372–385. ACM Press (1996)

17. Giunti, M.: Secure Implementations of Typed Channel Abstractions. PhD Thesis
TD-2007-1, Department of Informatics, Ca’ Foscari University of Venice (2007)

18. Giunti, M.: Static semantics of secret channel abstractions (2014), technical report,
available at tinyurl.com/n14-report

19. Giunti, M., Palamidessi, C., Valencia, F.D.: Hide and New in the Pi-Calculus. In:
EXPRESS/SOS. EPTCS, vol. 89, pp. 65–79 (2012)

20. Giunti, M., Vasconcelos, V.T.: Linearity, session types and the pi calculus. Math.
Struct. Comp. Sci. (2013), to appear, available at tinyrurl.com/mscs2013

21. Google: Application security., google.com/about/appsecurity/research. Ac-
cessed April 2014

22. Hennessy, M.: The security pi-calculus and non-interference. J. Log. Algebr. Pro-
gram. 63(1), 3–34 (2005)

23. Hennessy, M.: A Distributed Pi-calculus. Cambridge University Press (2007)
24. Milner, R.: Communicating and mobile systems - the Pi-calculus. Cambridge Uni-

versity Press (1999)
25. Pennington, H., Carlsson, A., Larsson, A., Herzberg, S., McVittie, S., Zeuthen, D.:

D-Bus specification., dbus.freedesktop.org
26. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-

nal on Selected Areas in Communications 21(1), 5–19 (2003)
27. Sangiorgi, D., Walker, D.: The pi-calculus, a theory of mobile processes. Cambridge

University Press (2001)
28. Sewell, P., Vitek, J.: Secure composition of untrusted code: Box pi, wrappers, and

causality. J. Comp. Sec. 11(2), 135–188 (2003)
29. Vasconcelos, V.T., Honda, K.: Principal typing schemes in a polyadic pi-calculus.

In: CONCUR. LNCS, vol. 715, pp. 524–538. Springer (1993)
30. Vivas, J.L., Dam, M.: From higher-order pi-calculus to pi-calculus in the presence

of static operators. In: CONCUR. pp. 115–130. LNCS, Springer (1998)

