
Secure Implementations of
Typed Channel Abstractions

Marco Giunti

Dep. of Informatics, University of Lisbon

April 16, 2008

(joint work with Michele Bugliesi)

– p. 1/22

Abstract
Analysis distributed computer systems

process algebras techniques

formal tools to control and reason about their behaviour

Such tools adequate to describe distributed systems?

model should be implementable

– p. 2/22

Example
Private communications in the pi calculus

P = (new a)a〈b〉 |a(x).p〈a〉 P −→ (new a)p〈a〉

Communication invisible by the context:

P ≈ (new a)p〈a〉 (∗)

Secure implementation

model using open communications and cryptography in
applied pi calculus

Dolev-Yao intruder

Equation (∗) preserved

– p. 3/22

Resource access control
Relevant both for design and security

e.g. mailbox

C = m〈mail〉 M = m(x).P

no guarantee mail not read by context

C |M |m(y).D −→ M |D{mail/y}

– p. 4/22

Resource access control
Relevant both for design and security

e.g. mailbox

C = m〈mail〉 M = m(x).P

no guarantee mail not read by context

C |M |m(y).D −→ M |D{mail/y}

Pi calculus solution [PS’96]:

channels have
read/write polarities

(static) typechecking en-
forces access control

Type Mode

a : T rw read/write

a : T r read

a : Tw write

– p. 4/22

Access control by static typing
Typed mailbox:

M = (new m) p〈m〉 | m(y).P

Provided I ⊢ p : (stringw)rw

mail channel obtained by contexts at type stringw

– p. 5/22

Access control by static typing
Typed mailbox:

M = (new m) p〈m〉 | m(y).P

Provided I ⊢ p : (stringw)rw

mail channel obtained by contexts at type stringw

Fact : type of distribution channel regulates how contexts
acquire capabilities

formalization: typed labelled transitions

I ⊢ p : (stringw)rw

I ⊲M
(m)p〈m〉
−−−−→ I,m : stringw ⊲M′

– p. 5/22

Implementing typed access control
Motivation

needed to use typed process calculi as specification tool for
distributed systems

Difficulties

Source level: behaviour of contexts enforced by static typing,
i.e. “enemies” respect the game’s rules

Implementation level: no assumptions on behaviour or trust
of contexts

– p. 6/22

Preserving typed equations
We want to preserve typed equations of the form

I |= P ≈π Q

types have semantics consequences

e.g. secret buffer

b : T r |= b(x).P ≈π 0

– p. 7/22

Preserving typed equations
We want to preserve typed equations of the form

I |= P ≈π Q

types have semantics consequences

e.g. secret buffer

b : T r |= b(x).P ≈π 0

in contrast low-level untyped contexts gain more capabilities
on the buffer

– p. 7/22

What we have done
Developed typed pi calculus with dynamically typed
synchronization

Syntax

p〈s@T 〉 type-coerced output

T ::= rw | w | r | ⊤ Types

Semantics

a〈b@T 〉 |a(x@S).P −→ P{b/x} provided T <: S

– p. 8/22

What we have done
Developed typed pi calculus with dynamically typed
synchronization

Syntax

p〈s@T 〉 type-coerced output

T ::= rw | w | r | ⊤ Types

Semantics

a〈b@T 〉 |a(x@S).P −→ P{b/x} provided T <: S

Secure implementation of typed pi calculus

full abstraction

I |= P ≈π Q ⇔ [[I]] |= [[P]] ≈Aπ [[Q]]

– p. 8/22

Dynamic vs static typing
Dynamic approach

type S decided by coercion type

I(p) = r

I ⊲M
(m)p〈m@S〉
−−−−−−→ I,m : S ⊲M′

Static approach

type S decided by transmission channel type

I(p) = Sr

I ⊲M
(m)p〈m〉
−−−−→ I,m : S ⊲M′

– p. 9/22

Towards the implementation

P = (new a)a〈b〉 |a(x).p〈a@r〉 p : r |= P ≈π (new a)p〈a@r〉

Naive solution

represent channel as couple formed by encryption and
decryption key

[[P]] = (new a+,a−)

! net〈{b+,b−}a+〉 |net(y).decrypt y as {x̃}a− in ! net〈{a+,a−}p+〉

forward secrecy open problem [Abadi, ICALP‘98]

– p. 10/22

Towards the implementation

P = (new a)a〈b〉 |a(x).p〈a@r〉 p : r |= P ≈π (new a)p〈a@r〉

Naive solution

represent channel as couple formed by encryption and
decryption key

[[P]] = (new a+,a−)

! net〈{b+,b−}a+〉 |net(y).decrypt y as {x̃}a− in ! net〈{a+,a−}p+〉

forward secrecy open problem [Abadi, ICALP‘98]

Our solution

represent channel as process does not leak decryption key

– p. 10/22

A sound implementation
Client /server scheme with a read/write protocol

Types mapped into read/write encryption keys

[[a@rw]] = a+
w
,a+

r
[[a@w]] = a+

w
[[a@r]] = a+

r

Input/output source processes implemented as clients using
encryption keys

translated output processes use a+
w

(write protocol)

translated input processes use a+
r

(read protocol)

Decryption keys stored in secure channel manager servers

Chana = (new a◦)WSa |RSa

– p. 11/22

Write protocol
Client
Packages requests with a+

w
containing a fresh nonce

[[a〈v@T 〉]] = Emit{[[v@T]]}a+
w

, (new c) ! net〈{[[v@T]] ,c}a+
w
〉

– p. 12/22

Write protocol
Client
Packages requests with a+

w
containing a fresh nonce

[[a〈v@T 〉]] = Emit{[[v@T]]}a+
w

, (new c) ! net〈{[[v@T]] ,c}a+
w
〉

Server
Stores (fresh) write requests in a secret local buffer a◦

WSa = ! filter (x̃,z) with a−w in if z fresh then a◦〈x̃〉

Notation

A filter on k− discards all packets non-encrypted under k+

filter ỹ with k− in P = net(x).decrypt x as {ỹ}k− in P else net〈x〉

– p. 12/22

Read Protocol
Client
Package requests (w.r.t. types) containing a session key for the
answer

[[a(x@T).P]] = (new k)Emit({k,T}a+
r
) | ! filter x̃ with k in [[P]]

– p. 13/22

Read Protocol
Client
Package requests (w.r.t. types) containing a session key for the
answer

[[a(x@T).P]] = (new k)Emit({k,T}a+
r
) | ! filter x̃ with k in [[P]]

Server
Filters packets from the buffer a◦ at given types

RSa = ! filter (y, t,z) with a−r in

if z fresh then filter x̃ from a◦@t in ! net〈{x̃}y〉

Notation

A filter from n at t pick up messages from n at a “subtype” of t
filter x̃ from n@t in P = n(x̃).if wf (x̃, t) then P else n〈x̃〉

– p. 13/22

Encoding of pi calculus processes

[[(new a)P]] = (new a)Chana | [[P]]

[[u〈v@T 〉]] = Emit{[[v@T]]}u+
w

[[u(x@T).P]] = (new k)Emit({k,T}u+
r
) | ! filter x̃ with k in [[P]]

[[P |Q]] = [[P]] | [[Q]]

[[! P]] = ! [[P]]

[[[u = v]P;Q]] = if uID = vID then [[P]] else [[Q]]

[[0]] = 0

– p. 14/22

Soundness of the implementation
I a closed type environment of the pi calculus

Computing environment for translated processes:

EI[−] = −|W | ∏
n∈dom(I)

Chann

Theorem

I |= P ∼=π Q iff EI[[[P]]] ∼=Aπ
tr

EI[[[Q]]]

Closed only under translated contexts: not satisfying

– p. 15/22

Soundness of the implementation
I a closed type environment of the pi calculus

Computing environment for translated processes:

EI[−] = −|W | ∏
n∈dom(I)

Chann

Theorem

I |= P ∼=π Q iff EI[[[P]]] ∼=Aπ
tr

EI[[[Q]]]

Closed only under translated contexts: not satisfying

Example a(x).a〈x〉 ∼=π 0 6⇒ EI[[[a(x).a〈x〉]]] ∼=Aπ EI[0]

If a generated by the context the channel manager for a is
not secure

– p. 15/22

Enhancing the design
Channel servers created by trusted centralized authority (Proxy)

separation among client (unsafe) and server (safe) names

client names associated to server names in Proxy’s table

client names tokens for server names requested using
proxy’s public key k+

p

link (M, ỹ) in P , (new h)Emit({h,M}k+
p
) |filter ỹ with h in P

– p. 16/22

Enhancing the design
Channel servers created by trusted centralized authority (Proxy)

separation among client (unsafe) and server (safe) names

client names associated to server names in Proxy’s table

client names tokens for server names requested using
proxy’s public key k+

p

link (M, ỹ) in P , (new h)Emit({h,M}k+
p
) |filter ỹ with h in P

read/write protocol same rationale

– p. 16/22

Refined encoding

[[(new a)P]] = (new a)[[P]]

[[a〈v@T 〉]] = link ([[a@w]] ,y) in Emit{[[v@T]]}y+
w

[[a(x@T).P]] = link ([[a@r]] ,y) in (new k)Emit({k,T}y+
r
)

| ! filter x̃ with k in [[P]]

[[P |Q]] = [[P]] | [[Q]]

[[! P]] = ! [[P]]

[[[u = v]P;Q]] = if uID = vID then [[P]] else [[Q]]

[[0]] = 0

– p. 17/22

Full Abstraction
Centalized implementation fully abstract:

Computing environment: CE[−] = Proxy |W |−

I |= P ∼=π Q ⇔ [[I]] |= CE[[[P]]] ∼=Aπ CE[[[Q]]]

– p. 18/22

Full Abstraction
Centalized implementation fully abstract:

Computing environment: CE[−] = Proxy |W |−

I |= P ∼=π Q ⇔ [[I]] |= CE[[[P]]] ∼=Aπ CE[[[Q]]]

long and difficult proof

bisimulation-based techniques

main tool: notion administrative steps first characterized
then abstracted away

– p. 18/22

A distributed implementation
Pi calculus with domain labels (no impact on
types/semantics)

S,T ::= δ{P} | S |T | (new n : A)S | stop

each domain mapped in a trusted proxy

I |= S ∼=π T closed under contexts using known domains

proxies coordinate to create virtual single queue for channel
manager

– p. 19/22

A distributed implementation
Pi calculus with domain labels (no impact on
types/semantics)

S,T ::= δ{P} | S |T | (new n : A)S | stop

each domain mapped in a trusted proxy

I |= S ∼=π T closed under contexts using known domains

proxies coordinate to create virtual single queue for channel
manager

distributed implementation fully abstract

I |= S ∼=π T ⇔ [[I]] |= Πd∈fd(S,T)Proxyd |W | [[S]] ∼=Aπ

Πd∈fd(S,T)Proxyd |W | [[T]]

– p. 19/22

Conclusions
Revised access control by subtyping in the pi calculus to
make implementation possible in untyped networks

In fact: source calculus result of “reverse engineering” of the
implementation

Given a secure implementation of typed abstractions

first result of this kind for typed process calculi

solves open problems (forward secrecy)

first implementation of pi with matching

– p. 20/22

Limitations
All proxies participating in distributed implementation fully trusted

model sub-sytems as physical locations trusting each other

some form of guarantees in the presence of malicious
proxies desiderable

seems achievable by strengthening protocols that govern
interactions among proxies

Noise’s presence hardly realistic

move to models consider semantic probabilistic equations
[Palamidessi and al. ‘00, Mitchell and al. 06]

– p. 21/22

Thanks!

– p. 22/22

	Abstract
	Example
	Resource access control
	Resource access control

	Access control by static typing
	Access control by static typing

	Implementing typed access control
	Preserving typed equations
	Preserving typed equations

	What we have done
	What we have done

	Dynamic vs static typing
	Towards the implementation
	Towards the implementation

	A sound implementation
	Write protocol
	Write protocol

	Read Protocol
	Read Protocol

	Encoding of pi calculus processes
	Soundness of the implementation
	Soundness of the implementation

	Enhancing the design
	Enhancing the design

	Refined encoding
	Full Abstraction
	Full Abstraction

	A distributed implementation
	A distributed implementation

	Conclusions
	Limitations
	Thanks!

