
Under consideration for publication in Math. Struct. in Comp. Science

Type Safety without Subject Reduction for
Session Types

Vasco T. Vasconcelos1 and Marco Giunti2 and Nobuko Yoshida3 and Kohei Honda4

1 Department of Informatics, University of Lisbon, Portugal
2 Department of Planning, University IUAV of Venice, Italy
3 Department of Computing, Imperial College of London , UK
4 Department of Computer Science, Queen Mary University of London, UK

Received 20 February 2010

We present a simple and intuitive type system for a variant of the pi calculus with

sessions where typable processes are guaranteed to be exempt from runtime errors. The

type system, meant to type programs, cannot be directly used to type the runtime

language. Hence, type-safety cannot be proved directly, via Subject Reduction. Instead

we define a different language enjoying Subject Reduction and prove our result by

suitable correspondences between the two languages. The exercise shows that polarities,

now widely used in binary session types, are justified solely by technical reasons, and

need not be exposed to programmers neither in the operational semantics nor in the

type system.

1. Introduction

In the beginning there was a language and there was a type system and the type system
was sound with respect to the operational semantics and typable terms were know to
be exempt from a suitable class of errors. In one word, all went well. The language was
a variant of the pi calculus equipped with primitives for channel creation and channel
communication. The type system carefully distinguished names, meant to be shared by
an arbitrary number of processes, from channels, to be used by at most two processes.
From names, and with the help of two dual primitives, accept and request, channels were
created. Channels were then used, in a continuous series of interactions, by exactly two
partners. The type system would then record in a single type the series of interactions
the channel would engage in (HVK98). All went well.

But the language had a limitation. Session passing, often called delegation, was re-
stricted to bound output: the sending party and the receiving party had to agree on
which channel to pass. If we denote by k![k′].P the process that sends channel k′ on
channel k and continues as process P , and write k?(k′).Q for the process that receives
channel k′ on channel k and continues as process Q, then the reduction rule for bound
session passing can be written as follows. Notice that occurrences of k′ in P are free

V. T. Vasconcelos, M. Giunti, N. Yoshida, and K. Honda 2

whereas those in Q are bound.

k![k′].P | k?(k′).Q → P | Q

This limitation was soon perceived by several authors, who hastily replaced bound
output by free output. The result was a language identical to the original one, with a
type system identical to the original system, but with a slight variation in the operational
semantics. The new rule for session delegation was now a lot more flexible than the
original.

k![k′].P | k?(x).Q → P | Q[k′/x]

The free output rule effectively allowed passing an arbitrary channel k′ that would
replace the bound variable x in the continuation of the receiving process Q. The exact
difference between the two rules comes to light when we consider transmitting a channel
already known by the receiver. The former rule would not allow such a reduction to
happen for, if k′ is free in Q, then the receiving process must be of the form k?(k′′).Q,
which cannot be renamed to a process of the form k?(k′).Q′, in order to match the
pattern required by the rule for bound output.

The new system was soon discovered to be unsound. The delicate balance between
the operational semantics and the type system of the original language were broken by
fiddling with the operational semantics alone, leaving untouched the rest of the system.
And the counterexample came exactly from were the two systems differ: passing a channel
already know to the recipient. The process on the left, below, is typable in a certain typing
context, whereas that on the right is not typable in the same context, for the receiving
thread now holds the two ends of a same channel (DCMYD06; YV07).

k![k′].0 | k?(x).x![a].k′?(y).0 → k′![a].k′?(y).0

A fix to the problem was soon produced; it encompassed adjusting other parts of
the system to fit the new reduction rule. The invention was to syntactically distinguish
the two ends of a same channel: for a given channel k, one end was to be called k+,
the other k−; the +/− annotations become known as polarities. The channel creation
reduction rule now distributed one channel end to the request party and another, syn-
tactically distinguished, end to the accept party. The new operational semantics dealt
with channel-polarity pairs. The type system had to be adjusted as well. While before
typing contexts conventionally described a map from channels into types, the new typing
environments mapped channel-polarity pairs into types, crucially allowing two entries for
the same channel, one denoted by k+, the other by k−. And problem with receiving a
known channel was fixed because one would receive the other end of the known channel,
and typing contexts allow two distinct entries, one for k′+ and for k′− (GH05).

k+![k′+].0 | k−?(x).x![a].k′−?(y).0 → k′+![a].k′−?(y).0

The question remained: does the original type system guarantee absence of runtime
errors for typable processes, in the presence of free output, and in spite of the unsound-
ness of the type system? The counterexample cannot lead us to think otherwise. This
paper shows that one can pick the original language, the original operational semantics

Type Safety without Subject Reduction for Session Types 3

with bound replaced by free output, and a simple variant of the original type system,
and still guarantee type safety. Here is how we proceed. We carefully distinguish the pro-
gramming language, the language available to programmers, from the runtime language.
Programmers do not deal with channels directly but manipulate these via conventional
programming variables. Channels are runtime entities only: they are created at runtime
and eventually replace variables in the source code. The type system is defined for the
programming language only, hence knows nothing of channels, and is thus not suitable
to type the runtime language.

Typable programs are nevertheless shown not to suffer from runtime errors. How?
Certainly not via the most common strategy—subject-reduction and type safety—for
there is no type system for the runtime language. Instead we resort to a second language
for which we define a type system that enjoys subject-reduction and type safety for an
appropriate notion of error. All there remains is to prove two correspondences between
the two languages: an operational correspondence from the programming language into
the auxiliary language, and an error correspondence between the auxiliary language and
the programming language.

How does this auxiliary language look like? Well, it turns out to be the language with
polarities. At this point the interested reader may wonder “what is the point of the
exercise if the language with polarities is still there?” The language with polarities is
a simple technical device, encapsulated in a proof, the proof that typable programs are
exempt from errors. Our language, programming or runtime, the operational semantics
or the type system at no point use polarities. Programmers willing to understand the
operational semantics of the language they are programming with are not exposed to
artificial artifacts, such as the distinction between ends of a same channel, a subterfuge
employed with the sole purpose of getting the technical details right. And we firmly
believe that there are alternatives, more elegant and mind-opening, to polarities.

Given the above introduction, the plan for the the paper should be self-evident. We
start by describing the language and its type system (Section 2). We then introduce the
operational semantics, state what we understand by runtime errors and enunciate the
main result “Well typed programs do not go wrong” (Section 3). The rest of the paper
is dedicated to the proof of this result. We introduce the language with polarities, its
operational semantics and type system; we present the notion of runtime errors for this
language, and prove type safety via subject-reduction (Section 4). To complete the proof
we show the two corresponding results: operational and error, in opposite directions
(Section 5). We conclude the paper by describing related work and summarising our
findings.

2. The Syntax and Type System for Programs

This section describes the syntax and the type system for our programming language.
We distinguish the programming language from the runtime language, introduced in the
next section. The former constitutes the language programmers program with; the latter
includes constructs required to describe the operational semantics, but that need not be
accessible to programmers.

V. T. Vasconcelos, M. Giunti, N. Yoshida, and K. Honda 4

P ::= request a(x).P session request

| accept a(x).P session acceptance

| v![v].P value sending

| v?(x).P value reception

| v � l.P label selection

| v � {li : Pi}i∈I label branching

| if v then P else P conditional branch

| P | P parallel composition

| 0 inaction

| (νn)P hiding

| (rec X(x̃).P)[ṽ] recursive process

| X[ṽ] recursive call

v ::= x | true | false values

n ::= x binder

Fig. 1. The syntax of programs.

2.1. Syntax

The programming language relies on a few base sets: variables (sometimes called names)
ranged over by a, b and also x, y, labels ranged over by l, and process variables ranged
over by X. The values of our language are names and the boolean literals true and false.
The syntax is in Figure 1.

The two first processes in the grammar, accept a(x).P and request a(x).P , denote two
partners sharing a common name a and willing to establish a communication session;
variable x denotes the channel on which the session will be conducted using the next
four constructors. Channels are runtime entities to be introduced in Section 3. Processes
of the form u![v].P and u?(x).P ′ exchange a value on channel u. The former sends a
value v and continues as P ; the latter receives a value that replaces variable x in the
continuation P ′. The next two processes, u� l.P and u�{li : Pi}i∈I , exchange a label on
u. The former selects a label l, whereas the latter branches on the received label (which
must be one of the li) and continues with process Pi. In all these cases, the type system
for our language makes sure that u is not a boolean value.

The conditional is standard and it takes advantage of the only base values we have
equipped our language with. Parallel composition P | P ′ runs processes P and P ′ in
parallel, and 0 denotes the terminated process. Processes of the form (νn)P restrict
the scope of identifier n (a name in the programming language) to process P . We have
equipped our language with a syntactic category for binders, anticipating the needs of
the runtime language. Finally, processes (rec X(x̃).P)[ṽ] and X[ṽ] allow for recursive
definitions, providing for potentially unbounded behaviour.

Our running example is that of an idealized File Transfer Protocol (FTP) server, relying
on an authentication server to authenticate potential clients and comprising a fixed pool

Type Safety without Subject Reduction for Session Types 5

of threads to interact with clients, taken from (HVK98). We start by introducing a typical
client, a client that needs to upload a file on the server. Such a client starts by requesting
a session with the server, then sends his username and password. If the authentication
succeeds, the client selects option “put”, sends the file, and completes the session by
selecting option “quit”.

Client = request a(z).z![“name”].z![“pass”].z�{sorry: 0,welcome: z�put.z![file].z�quit.0}

The server is composed of a demon and a pool of m threads, sharing a name b for
internal communication; we denote by ΠmP the parallel composition of m copies of
process P .

Server = (νb)(Ftpd[b] | ΠmFtpThread[b])

The demon accepts incoming connections from clients by listening on its address a;
once established, each such connection is denoted by variable x. It then requests one of
its threads using the shared name b. When such a request is granted by an (idle) thread,
thus establishing a new session y, the client’s session x is delegated to the thread via
channel y. The FTP demon then loops waiting for another client connection.

Ftpd = rec X(b).(accept a(x).request b(y).y![x].X[b])

Each FTP thread starts by accepting a request from the demon on name b, thus
establishing a new channel y on which the client’s session x is received. The thread reads
the client’s username and password, and proceeds to the authentication phase.

FtpThread = rec Y (b).(accept b(y).y?(x).x?(username).x?(passwd).Authenticate)

To authenticate a client, a new session must be established, this time with the authen-
tication server as. After sending the username and the password, the thread waits for an
answer that may come in one of two forms: valid or invalid. Unsuccessful authentications
are forwarded to the client, and the thread loops, thus becoming free to accept further
requests from the server. Successful authentications are also made known to the clients,
but this time the FTP thread provides some basic FTP operations.

Authenticate = request as(z).z![username].z![passwd].

z � {invalid : x� sorry.Y, valid : x� welcome.Actions[x]}

The last piece of code is a loop that repeatedly reads the client’s FTP operation until
a quit is received, on which occasion the thread becomes free to accept further requests
from the server.

Actions = rec Z(x).(x� {get : x?(filename). . . . Z[x],

put: x?(file). . . . Z[x],

quit : . . . Y })

2.2. Types

V. T. Vasconcelos, M. Giunti, N. Yoshida, and K. Honda 6

S ::= bool | 〈T 〉 sort

T ::= ?[α].T | ![α].T | ⊕{li : Ti}i∈I | &{li : Ti}i∈I | end | t | µt.T type

α ::= S | T sort or type

Fig. 2. The syntax of types and sorts.

?[α].T = ![α].T ⊕{li : Ti}i∈I = &{li : Ti}i∈I end = end

![α].T = ?[α].T &{li : Ti}i∈I = ⊕ {li : Ti}i∈I µt.T = µt.T t = t

Fig. 3. The dual function on session types.

We distinguish sorts, ranged over by S, from types, ranged over by T ; we let α range over
sorts and types. The syntax of types and sorts in Figure 2, where we rely on a base set
of type variables, ranged over by t.

Sorts are assigned to values: a boolean value has type bool, a name has a type describing
the interactive sessions it may engage upon. The interactive session, in turn, is described
by a type. Types ![S].T and ?[S].T describe channels willing to send or to receive a value of
sort S (that is a boolean value or a name) and then continue its interaction as prescribed
by T . Types ![T].T and ?[T].T are similar, only that this time the value exchanged is a
linear value (a channel) described by a type, rather than a shared value described by a
sort. Type end represents a channel on which no further interaction is possible. Types
⊕{li : Ti}i∈I and &{li : Ti}i∈I represent channels ready to select (to send) a label or to
branch on an incoming label. The two last type constructors allow for recursive type
structures.

We include recursive session types µt.T , which are required to be contractive, i.e.,
containing no subexpression of the form µt1 . . . µtn.ti, and take an equi-recursive view
of types, not distinguishing between a type µt.T and its unfolding T [µt.T/t]. Types are
understood up to type equivalence, so that, for example, in a typing derivation, types
µt.T and T [µt.T/t] can be used interchangeably.

Duality is a central concept in the theory of session types. The function T , defined
in Figure 3, yields the canonical dual of a session type T . We write T = T ′ on the
understanding that we are always working up to type equivalence, so that, for example,
µt.?[bool].t. is dual of ![bool].µt.![bool].t.

Analysing the types in our running example, one can assign to the authentication
server the type of a name whose sessions start by accepting two strings (username and
passwd) and then answer with one of two possibilities—valid or invalid—after which the
protocol comes to an end.

as : 〈?[String].?[String].⊕ {invalid : end, valid : end}〉

The type of the FTP server is that of a name whose sessions start by accepting two
strings (username and passwd) and then must be ready to receive the result of the
authentication. A “sorry” terminates the protocol, whereas a “welcome” result leads to

Type Safety without Subject Reduction for Session Types 7

Γ ` true : bool Γ ` false : bool Γ, x : S ` x : S [True],[False],[Name]

Fig. 4. Typing rules for values.

a loop of FTP operations: put, get and quit.

a : 〈T 〉 where

T = ?[String].?[String].

⊕ {sorry: end,

welcome: µt.&{put: ?[File].t, get : ?[String].![File].t, quit : end}}

Notice that by reading the type of the FTP server, clients cannot infer the delegation
process that happens between the demon and its threads, nor the sub-session that is
initiated with the authentication server.

Finally, session delegation on name b, between the demon and its threads, is governed
by a type 〈![T].end〉 where T is the type of the complete FTP session above.

Concentrating on the client side, we see that his session may be governed by a type that
starts by sending two strings and then expects one of two options: “sorry” or “welcome”.
In the former case the session is terminated; in the latter, the client embarks on a series
of operations, so that the session as seen from the client’s side can be described by:

T = ![String].![String].

&{sorry: end,

welcome: µt.⊕ {put: ![File].t, get : ![String].?[File].t, quit : end}}

This is certainly not the only type for the client; a more concise type would exclude the
“get” branch and the recursive type. This is however a possible type for the client, and
the one that matches that of the server.

2.3. Typing Assignment

The type system distinguishes the sorts assigned to names and to boolean values, from
the types assigned to channels. Types are treated linearly; a map from channels and
variables into types T is denoted by ∆. Sorts are treated classically; a map from names
to sorts S is denoted by Γ. We also record in Γ assignments of process variables X to
pairs of sequences S̃T̃ of sorts (first) and types (then).

We write ∆, x : T to denote the typing environment ∆ extended with an entry x : T
when x 6∈ dom(∆). We generalize the notation to type environments and denote the
disjoint map union of ∆ and ∆′ by ∆,∆′.

Type assignment system for the programming language is in Figures 4 and 5. The
rules in Figure 4 describe type assignment to values. The first two rules are standard for
boolean values. The last rule says that sorts for non-linear values are taken from the sort
environment Γ.

The rules in Figure 5 describe typing assignment to processes and use sequents of the

V. T. Vasconcelos, M. Giunti, N. Yoshida, and K. Honda 8

Γ ` a : 〈T 〉 Γ ` P .∆, x : T

Γ ` accept a(x).P .∆

Γ ` a : 〈T 〉 Γ ` P .∆, x : T

Γ ` request a(x).P .∆
[Acc],[Req]

Γ ` v : S Γ ` P .∆, u : T

Γ ` u![v].P .∆, u : ![S].T

Γ, x : S ` P .∆, u : T

Γ ` u?(x).P .∆, u : ?[S].T
[Send],[Rcv]

Γ ` P .∆, u : U

Γ ` u![v].P .∆, u : ![T].U, v : T

Γ ` P .∆, u : U, x : T

Γ ` u?(x).P .∆, u : ?[T].U
[Thr],[Cat]

Γ ` Pi .∆, u : Ti ∀i ∈ I
Γ ` u� {li : Pi}i∈I .∆, u : &{li : Ti}i∈I

Γ ` P .∆, u : Tj j ∈ I
Γ ` u� lj .P .∆, u : ⊕ {li : Ti}i∈I

[Br],[Sel]

Γ ` P .∆ Γ ` P ′ .∆′

Γ ` P | P ′ .∆,∆′
Γ ` v : bool Γ ` P .∆ Γ ` P ′ .∆

Γ ` if v then P else P ′ .∆
[Conc],[If]

Γ ` 0 . ~u : ~end
Γ, x : S ` P .∆

Γ ` (νx)P .∆
[Inact],[Res]

Γ ` ũ : S̃

Γ, X : S̃T̃ ` X[ũṽ] . ~w : ~end, ṽ : T̃

Γ ` ũ : S̃ Γ, X : S̃T̃ , x̃ : S̃ ` P . ỹ : T̃

Γ ` (rec X(x̃ỹ).P)[ũṽ] . ṽ : T̃

[PVar],[Rec]

Fig. 5. Typing rules for programs.

form Γ ` P . ∆, read as “the sort environment Γ types process P with type environ-
ment ∆”. To type a process accept a(x).P with a type environment ∆, rule [Acc] checks
that name a has a sort of form 〈T 〉, and that process P can be typed with channel
environment ∆, x : T , where channel variable x is given the session type T contained in
the sort for name a. The case for processes request a(x).P is similar, only that this time
channel variable x is given the dual T of the session type in the type of name of a.

The next two rules, [Send] and [Rcv], type boolean and name sending and receiving.
To type an output process u![v].P , rule [Send] finds the sort S for the value v and the
channel environment ∆, u : T for the continuation P . In the resulting environment, the
type T for y is replaced by a type that first sends S and then continues with T . The rule
for reception is similar only that this time we read the sort for parameter x from the
shared environment Γ, removing the entry x : T , since x is bound in the conclusion.

Rules [Thr] and [Cat] deal with channel sending and receiving. This time process
u![v].P is typed with channel environment ∆, u : ![T].U, v : T describing the fact that
channel variable v of type T is sent on channel variable u of type ![T].U . The continuation
process P cannot use name v (as witnessed by the absence of v in the typing environment
of the hypothesis), and uses u according to the continuation type U . The rule for channel
reception is similar, only that the type T for the received channel x is taken from the type
?[T].U of u in the conclusion and placed in the typing environment of the hypothesis,
alongside with the continuation type U for u.

Rules [Br] and [Sel] deal with branching and selection. To type a branching process
each branch Pi is typed individually, yielding ∆ environments that differ only on the
type Ti for channel u. The resulting type environment builds a type &{li : Ti}i∈I from
the types of the branches. Dually, the rule for selection starts by typing the continuation

Type Safety without Subject Reduction for Session Types 9

New syntactic forms

v ::= . . . | k value

n ::= . . . | k binder

Fig. 6. The runtime language.

Q | 0 ≡ Q Q | Q′ ≡ Q′ | Q (Q | Q′) | Q′′ ≡ Q | (Q′ | Q′′)
(νn)Q | Q′ ≡ (νn)(Q | Q′) (νn′)(νn)Q ≡ (νn)(νn′)Q (νn)0 ≡ 0

Fig. 7. Structural congruence.

P to obtain an environment assigning type Ti to channel u. The conclusion injects this
type on a variant type ⊕{li : Ti}i∈I , in the environment for the conclusion.

Proceeding to rule [Conc], the channel environment for P | P ′ is the disjoint union of
the environments ∆ and ∆′ for the two processes, reflecting the linear nature of channels
in processes P and P ′. Contrarily to [Conc], in rule [If] the two branches P and P ′

share a same channel environment ∆, since at most one of them will be executed. Rule
[Res] is the standard rule for name binding, removing from the environment ∆ the entry
for the bound name.

Rules [PVar] and [Rec] deal with recursive processes, setting the form of the parame-
ters: first the shared values (of sorts S̃), then the channels (of types T̃). For rule [PVar],
the type S̃T̃ of process variable X is read from the shared environment Γ, then value
arguments must have sorts S̃, and channels types T̃ . In rule [Rec], process P , associated
with process variable X, is typed with the sorts S̃ for the shared parameters x̃ read from
the shared environment Γ, and the types T̃ for the channel parameters ỹ read from the
linear environment ∆. The juxtaposition of these sorts and types yields the type S̃T̃

associated with process variable X, which is then placed in the shared environment and
used to type the body of the recursive process P .

3. The Simple Runtime System

This section describes a runtime system for the language introduced above. In particular
it presents the runtime language, the operational semantics, and the notion of error.

3.1. Syntax, Bindings, and Substitution

The runtime language requires one more base set, channels, ranged over by k. We extend
the syntax by including channels in values and by allowing channels to appear in ν-
binding positions; we indicate runtime processes with letter Q. The syntax of the runtime
language is in Figure 6; it differs from the programmer’s language (Figure 1) in that
values include channels, so that, for example, k![true].0 and x![k].0 are also processes,
and channels may appear in ν-binding positions so that (νk)(k![true].0) is a process.

The bindings for the runtime language are processes (νn)Q, which bind occurrences

V. T. Vasconcelos, M. Giunti, N. Yoshida, and K. Honda 10

accept a(x).Q | request a(y).Q′ → (νk)(Q[k/x] | Q′[k/y]) [Link]

k![v].Q | k?(x).Q′ → Q | Q′[v/x] [Com]

k � lj .Q | k � {li : Qi}i∈I → Q | Qj (j ∈ I) [Case]

if true then Q else Q′ → Q [IfT]

if false then Q else Q′ → Q′ [IfF]

(rec X(x̃).P)[ṽ] → P [ṽ/x̃][rec X(x̃).P/X] [Rec]

Q→ Q′ ⇒ (νn)Q→ (νn)Q′ [Scop]

Q→ Q′ ⇒ Q | Q′′ → Q′ | Q′′ [Par]

Q′ ≡ Q′ and Q′ → Q′′ and Q′′ ≡ Q ⇒ Q→ Q′′′ [Str]

Fig. 8. Reduction

of the identifier n (a name or a channel) in Q, processes accept a(x).Q, request a(x).Q
and v?(x).Q , which bind variable x in Q, and (rec X(x̃).Q)[ṽ], which binds both the
occurrences of the variables in x̃ and the occurrences of process variable X in process Q.
The definition of bound and free names and channels in a process Q is standard, denoted
by fv(Q) and fc(Q) respectively, and so is the capture-free substitution of a variable x
with value v in a process Q, denoted by Q[v/x], as well as the substitution of the part
X by rec X(x̃).Q in a process Q′, denoted by Q′[rec X(x̃).Q/X]. We implicitly assume
that in all mathematical contexts all bound identifiers are pairwise disjoint and disjoint
from the free identifiers.

3.2. Operational Semantics

The operational semantics relies on structural congruence for the syntactic rearrangement
of processes, preparing these for the application of the rules in the reduction relation.
Structural congruence is the smallest relation including the rules in Figure 7. The first
three rules establish the commutativity and associativity of the relation, and determine
that the terminated process is its neutral element. The fourth rule is scope extrusion,
and allows the scope of identifier n to encompass process Q′ as well. Notice that our
assumption on bound and free identifiers makes sure n is not free in Q, so as to avoid
the capture of a free name. The next rule says that the binding order in not important,
and the last allows for the garbage collection of unused channel or name binders.

The reduction relation → is defined in Figure 8. Sessions between two partners start
when an accept process meets a request process, as described in rule [Link]. The result of
such interaction is the creation of a new channel k, that replaces both the bound variable
x in the continuation Q of the accept process and the bound variable y in continuation Q′

of request. The scope of the new channel encompasses the two processes only, to guarantee
absence of interferences from other processes running in parallel. Once such a commu-
nication channel is established the interaction progresses either by value exchanging or
by selection/branching. In the former case, rule [Com], when a sending process k![v].Q
meets a receiving process k?(x).Q′, value v is passed from the send party to the receive

Type Safety without Subject Reduction for Session Types 11

party, replacing variable x in Q′. In the latter case, rule [Case], a process k� lj .Q selects
the branch labeled with lj in the menu of process k�{li : Qi}i∈I resulting in process Qj .

Rules [IfT] and [IfF] are conventional. The rule for recursive processes, [Rec], replaces
a process (rec X(x̃).P)[ṽ] by its body P with the appropriate substitutions performed:
values ṽ for variables x̃ and part X for part rec X(x̃).P . The two subsequent rules in the
figure—[Scop] and [Par]—allow reduction to happen underneath scope restriction and
parallel composition, respectively. The last rule incorporates structural congruence ≡ in
reduction.

Proceeding with the FTP example, the parallel composition of the FTP Server and
the Client reduces in two steps to the process

(νbk)(k![“name”]... | request b(y).y![k].Ftpd[b] | ΠnFtpThread[b])

using the recursion expansion rule for the demon followed by the session initiation rule.
A new runtime channel k is created to conduct the session established between the client
and the FTP server; such a channel replaces variable z in the client and variable x in the
demon. Next one of the threads accepts the demon request, yielding process

(νbkk′)(k![“name”]... | k′![k].Ftpd[b] | k′?(x).x?(username)... | Πn−1FtpThread[b])

where a new session is established on the newly created channel k′, between the demon
and one the threads. The server side of the session k is then transferred from the demon
to the thread, so that the client now talks directly to the FTP thread via channel k.

(νbkk′)(k![“name”]... | Ftpd[b] | k?(username)... | Πn−1FtpThread[b])

3.3. Errors and Main Result

Reduction may go wrong for a number of reasons. Traditional problems include non-
boolean values in a conditional, as in if a then Q else Q′, and arity mismatch in process
calls, as in (rec X(xy).Q)[true]. Here we are interested on communication errors, problems
arising from a mismatch of the expectations of the partners involved in a particular
interaction. Examples include the parallel composition of two partners, where one tries
to send a value, whereas the other expects a label to branch upon, as in k![true] | k �

{li : Qi}i∈I , or when both partners try to output, as in k![true] | k � l.Q, or even when
three partners try to read/write on the same channel, as for example in k![true] | k� l.Q |
k?(x).Q′. The formal definition of what we mean by an error process is below, where for
simplicity we have omitted the “traditional” problems.

Definition 3.1 (Error Process). A k-prefixed process (k-process for short) is a process
prefixed by channel k; that is: k![v].Q, k?(x).Q, k � l.Q, or k � {li : Qi}i∈I . A k-redex
is the parallel composition of two k-processes, either of form (k![v].Q | k?(x).Q′) or
(k � l.Q | k � {li : Qi}i∈I). Then Q is an error if

Q ≡ (νñ)(Q′ | Q′′)

V. T. Vasconcelos, M. Giunti, N. Yoshida, and K. Honda 12

where Q′ is, for some k, the parallel composition of two k-processes that do not form a
k-redex.†

Let →∗ denote the reflexive and transitive closure of the reduction relation. We are
now in a position to state the main result of the paper.

Theorem 3.2 (Type Safety). If Γ ` P .∆ and P →∗ Q, then Q is not an error.

Proof. See page 22.

Notice that the type system in Figures 4 and 5 is meant to type programs only. The
straightforward extension of the type system to the runtime syntax, which amounts
to allow runtime channels k, as opposed to channel variables x alone, both in linear
environments and in processes, does not satisfy subject reduction. Take a process P
ready to initiate a simple session:

request a(x).x![true].0 | accept a(y).y?(z).0

We have a : 〈?[bool].end〉 ` P . ∅. But P reduces to

(νk)(k![true].0 | k?(z).0)

whose parallel composition is not typable, for both operands will have k on the channel
environment, making the disjoint union not defined in rule [Conc].

4. The Polarity Runtime Language

This section introduces a polarity-based runtime system for the programmer’s syntax. In
particular it describes the runtime language, its typing system and operational semantics,
and the new notion of error. It concludes by proving the subject reduction and the type
safety properties for the new language.

4.1. Syntax, Semantics, Typing System, and Errors

The syntax for the polarized runtime language, in Figure 9, is obtained from that in
Figure 1 by adding polarized channels. To avoid confusion, we indicate polarized runtime
processes with letter R. Polarized channels k+ and k− represent the two ends of a single
channel k of the base runtime language (defined in Figure 6). We call each of these
channel-polarity pairs a channel-end or channel for short, when confusion may not arise.
The dual of polarity p, denoted by p, is − when p is + and vice-versa.

The polarized language differs from the simple runtime language in Section 3 in that
polarized channels replace simple channels as values, so that k![true].0 is no longer a
process, but k−![true].0 is. The ν-binders however remains unchanged, as for example in
(νk)(k−![true].0). Given that we did not change the bindings and that polarized channels

† This notion of error encompasses that of (HVK98), that included the case of three or more k-processes.

In fact, if Q1, Q2, Q3 are three k-processes, than obviously two (at least) of them cannot form a k-

redex.

Type Safety without Subject Reduction for Session Types 13

New syntactic forms

v ::= x | true | false | kp values

p ::= + | − polarity

New reduction rules

accept a(x).R | request a(y).R′ → (νk)(R[k+/x] | R′[k−/y]) [LinkP]

kp![v].R | kp?(y).R′ → R | R′[v/y] [ComP]

kp
� lj .R | kp

� {li : Ri}i∈I → R | Rj [CaseP]

New typing rules

Γ ` R .∆, k+ : T, k− : T

Γ ` (νk)R .∆
[ResP]

Fig. 9. The polarity language.

are indeed (channel-polarity) pairs, the notion of free channels in a process remain the
same, for example fc((νk)(k−![k′+].0)) = {k′}.

At this point we have three languages: one programming language and two runtime
languages (the base and the polarized language) generated by the grammars in Figures 1,
6, and 9, respectively. The programming language is a sub language of both runtime
languages. The runtime languages add (νk) bindings; they both add channels as values,
either simple k or polarized kp.

The reduction relation for the new language is given by the rules [LinkP], [ComP],
[CaseP] in Figure 9; the remaining rules are taken from Figure 8. The new [LinkP] rule
creates, for two processes accept a(x).R and request a(y).R′ ready to engage in a session,
one channel k and distributes its + polarity to one of the partners and the − polarity
to the other. As in the base language, once channels are created interaction progresses
either by value exchanging or by selection/branching, only that this time each partner
uses its channel-end. For example, rule [ComP] performs value passing from the sending
party kp![v].R to the receiving partner kp?(y).R′. We write R →p R

′ when R → R′ can
be deduced by the rules of polarity runtime reduction.

In the case of our running example, the parallel composition of the Server and the
Client reduces in two steps to

(νbk)(k−![“name”]... | request b(y).y![k+].Ftpd[b] | ΠnFtpThread[b])

using the recursion expansion rule for demon followed by the session initiation rule. The
client (the request side) keeps the negative polarity, while the server (the accept) uses the
positive polarity of a same channel k.

The types for the polarized runtime language are those of the base language, described
of Figure 2. Channel environments ∆ now associate polarized channels kp to types T .
The type system introduces a single new rule, [ResP] in Figure 9, that incorporates in
the linear typing environment ∆ two entries, one for k+, the other for k−, of dual types.
We write Γ `p R.∆ whenever the sequent Γ ` R.∆ is provable in the system in Figure 9.

V. T. Vasconcelos, M. Giunti, N. Yoshida, and K. Honda 14

Recalling the example at the end of Section 3, process P now reduces to

(νk)(k+![true].0 | k−?(z).0)

which is still typable since there are two disjoint typing environments typing processes
k+![true].0 and k−?(z).0, namely, k+ : ![bool].end and k− : ?[bool].end. The parallel compo-
sition of the two processes produces typing k+ : ![bool].end, k− : ?[bool].end, and the new
restriction rule [ResP] produces the empty typing environment, since the types for k+

and k− are dual.
The notion of error processes in the base language (Definition 3.1) is now re-casted

into the polarized language.

Definition 4.1 (Runtime error process). A k-process is a process prefixed by a
polarized channel kp; that is: kp![v].Q, kp?(x).Q, kp � l.Q, or kp � {li : Qi}i∈I . A k-redex
is the parallel composition of two polarized k-processes of opposite polarities, either of
form (kp![v].Q | kp?(x).Q′) or (kp � l.Q | kp �{li : Qi}i∈I). Then R is, as before, an error
if

R ≡ (νñ)(R′ | R′′)
where R′ is, for some k, the parallel composition of two k-processes that do not form a
k-redex.

4.2. Subject Reduction

Subject reduction and type-safety hold only for balanced environments only (GH05;
YV07).

Definition 4.2 (Balanced environment). We say that ∆ is balanced if {k+, k−} ⊆
dom(∆) implies ∆(k+) = ∆(k−).

Lemma 4.3 (Weakening Lemma). Let Γ `p R .∆.

1 Γ, x : S `p R .∆.
2 Γ `p R .∆, u : end.
3 Γ, X : α̃ `p R .∆.

Proof. A simple induction on the derivation tree of each sequent. As an example, we
prove item 2. We underline that u not in dom(∆) by hypothesis.

[Inact] We have that Γ ` 0 . ~u : ~end. Clearly Γ ` 0 . ~u : ~end, u : end.
[Conc] We have that Γ `p R1 | R2 . ∆ has been inferred from Γ `p R1 . ∆1 and

Γ `p R2 .∆2 with ∆ = ∆1,∆2. By induction hypothesis we have Γ `p R1 .∆1, u : end.
We apply the [Conc] rule to above sequent and to Γ `p R2 . ∆2 to infer Γ `p R1 |
R2 .∆1,∆2, u : end as needed.

[Cat] We have that Γ `p w?(x).R . ∆, w : ?[T].U has been inferred from Γ `p R .

∆, w : U, x : T . We assume that x 6= u (possibly by alpha-renaming x in R). Therefore
the induction hypothesis is Γ `p R . ∆, w : U, x : T, u : end. We apply the [Cat] rule
and infer Γ `p R .∆, w : ?[T].U, u : end.

Type Safety without Subject Reduction for Session Types 15

Lemma 4.4 (Strengthening Lemma). Let Γ `p R .∆.

1 If x 6∈ fv(R), then Γ \ x `p R .∆.
2 If k 6∈ fc(R), then Γ `p R .∆ \ k+ \ k− and ∆(kp) = end when kp ∈ dom(∆).
3 If X 6∈ fpv(R), then Γ \X `p R .∆.

Proof. A simple induction on the typing derivations. We draw some cases from clause 2.

[ResP] Let Γ `p (νk1)R .∆ and k 6∈ fc((νk1)R). We assume k 6= k1 (possibly by alpha-
renaming k1 in R) and use the induction hypothesis Γ `p R. (∆, k+

1 : T, k−1 : T)\k+ \
k−, that is Γ `p R . (∆ \ k+ \ k−), k+

1 : T, k−1 : T . We apply the [ResP] rule and infer
Γ `p (νk1)R .∆ \ k+ \ k−, as required. From the induction hypothesis we also know
that ∆(kp

1) = end when kp ∈ dom(∆, k+
1 : T, k−1 : T), hence when kp ∈ dom(∆) since

k 6= k1.
[Conc] We have that Γ `p R1 | R2 . ∆ and k 6∈ fc(R1 | R2). Let Γ `p R1 . ∆1 and

Γ `p R2 . ∆2 with ∆ = ∆1,∆2. By the induction hypothesis we have Γ `p R1 .

∆1 \ k+ \ k− and Γ `p R2 . ∆2 \ k+ \ k−. We apply the [Conc] rule and obtain
Γ `p R1 . (∆1 \ k+ \ k−), (∆2 \ k+ \ k−) and we are done, since it is easy to see that
∆ \ k+ \ k− = (∆1 \ k+ \ k−), (∆2 \ k+ \ k−). From the induction hypothesis we know
that ∆i(k

p
1) = end when kp ∈ dom(∆i, k

p
1 : T, k−1 : T), hence when kp ∈ dom(∆i),

hence when kp ∈ dom(∆).

Lemma 4.5 (Typing Congruence). If Γ `p R .∆ and R ≡ R′, then Γ `p R
′ .∆.

Proof. By case analysis on the rules generating relation ≡. The interesting cases are
detailed below.

Case R | 0 ≡ R. We show that if Γ `p R | 0 .∆ then Γ `p R .∆. Let the judgement be
inferred from Γ `p R.∆1 and Γ `p 0.~u : ~end, with ∆ = ∆1, ~u : ~end. Using Weakening
(Lemma 4.3) we obtain Γ `p R . ∆ as needed. For the other direction we start with
derivation Γ `p 0 . ∅ and then apply rule [Conc].

Case (νk)(R1 | R2) ≡ (νk)R1 | R2. We show that if Γ `p (νk)(R1 | R2) . ∆ then Γ `p

(νk)R1 | R2 .∆. Let the judgement be inferred from Γ `p R1 | R2 .∆, k+ : T, k− : T .
We have that Γ `p R1 . ∆1 and Γ `p R2 . ∆2 with ∆, k+ : T, k− : T = ∆1,∆2. First
notice that k+ and k− can be both in either ∆i or one in each.
When they are both in ∆1 we conclude the case by applying [ResP] and [Conc].
When they are both in ∆2 we apply Weakening to obtain Γ `p R1.∆1, k

+ : end, k− : end.
By [ResP] we infer Γ `p (νk)R1 . ∆1. We apply Strengthening (Lemma 4.4) to R2

to remove channels k+ and k− (since k is not in the free names of R2), then we use
[Conc] and we conclude.
When k+ is in ∆1 and k− in ∆2, since k 6∈ fc(R2), we apply Strengthening to R2 and
remove k−. Strengthening also tells us that T = end. Then we weaken ∆1 by adding
k− : end. We use [Scop] to obtain Γ `p (νk)R1 .∆ and [Conc] to conclude.
For the other direction, let the sequent Γ `p (νk)R1 | R2 . ∆ be inferred from Γ `p

V. T. Vasconcelos, M. Giunti, N. Yoshida, and K. Honda 16

R1 . ∆1, k
+ : T, k− : T and Γ `p R2 . ∆2, with ∆ = ∆1,∆2. We assume {k+, k−} ∩

dom(∆2) = ∅, possibly by alpha-renaming k in R1. We apply [Conc] followed by
[ResP] to conclude.

Case (νn)0 ≡ 0. We must consider the case when n is a channel and when is a name.
The most interesting case is when n is a channel k and we start from Γ ` 0 .∆. We
apply Weakening to introduce two entries k+ : end, k− : end if not already in ∆, then
apply rule [ResP], and finally Weakening again to reintroduce the entries kp in ∆.

Lemma 4.6. Assume Γ `p R .∆. If x 6∈ dom(∆) then x 6∈ fc(R).

Proof. A simple induction on the derivation tree for each sequent.

Lemma 4.7 (Substitution Lemma).

1 If Γ `p v : S and Γ, x : S `p R .∆ then Γ `p R[v/x] .∆.
2 If Γ `p R .∆, x : T then Γ `p R[v/x] .∆, v : T .
3 If Γ, X : ~S ~T `p R.∆ and Γ, X : S̃T̃ , x̃ : S̃ `p R

′.ỹ : T̃ then Γ `p R[rec X(~x~y).R′/X].∆.

Proof. We proceed by induction on the typing derivation for the process. We first prove
(1). Assume Γ `p v : S and Γ, x : S `p R.∆. From [True],[Name] we infer Γ = Γ∗, v : S.

[Acc] Let Γ, x : S `p accept u(y).R .∆. be inferred from

Γ, x : S `p u : 〈T 〉 Γ, x : S `p R .∆, y : T

In case u = x we infer Γ∗, v : S `p u[v/x] : 〈T 〉 otherwise by strenghtening we have
Γ `p u[v/x] : 〈T 〉. The induction hypothesis is

Γ `p R[v/x] .∆, y : T

We apply [Acc] and infer

Γ `p (accept u(y).R)[v/x] .∆, y : T

[Send] Let Γ, x : S `p w![u].R .∆, w : ![S∗].T be inferred from

Γ, x : S `p u : S∗ Γ, x : S `p R .∆, w : T

If u = x then we infer Γ∗, v : S `p u[v/x] : S∗ otherwise by strenghtening Γ `p

u[v/x] : S∗.
Notice w 6= x. The induction hypothesis is

Γ `p R[v/x] .∆, w : T

We apply [Send] and infer

Γ `p (w![u].R)[v/x] .∆, w : ![S∗].T

[Conc] Let Γ, x : T `p P | P ′ .∆,∆′ be inferred from

Γ, x : T `p P .∆ Γ, x : T `p P
′ .∆′

Type Safety without Subject Reduction for Session Types 17

The induction hypotheses are

Γ `p P [v/x] .∆ Γ `p P
′[v/x] .∆′

We apply [Conc] and by grouping the substitution we obtain

Γ `p (P | P ′)[v/x] .∆,∆′

as requested.
[Inact] We have Γ, x : T `p 0 . ~u : ~end and by strenghtening we obtain

Γ `p 0 . ~u : ~end

Since the substitution [v/x] has no effect on the inhert process we infer

Γ `p 0[v/x] . ~u : ~end

as requested.
Cases [Req],[Rcv],[Br],[Sel],[If] are analogous to [Acc]. The remaining cases are
analogous to [Conc] and follow directly from the induction hypothesis.

Next we prove (2). Assume v 6∈ dom(∆).

[Thr] Let Γ `p w![u].R .∆, w : ![T ∗].U, u : T ∗ be inferred from

Γ `p R .∆, w : U

If x = w the induction hypothesis is

Γ `p R[v/x] .∆, v : T ′

We apply [Thr] and infer

Γ `p v![u].R[v/x] .∆, v : ![T ∗].T ′, u : T ∗

as requested.
Otherwise assume x 6= w. If u = x by Lemma 4.6 we know that x 6∈ fc(R) Therefore
the substitution [v/x] has no effect on R and we could infer

Γ `p R[v/x] .∆, w : U

We apply [Thr] and infer

Γ `p w![v].R[v/x] .∆, w : ![T ∗].U, v : T ∗

Finally when u 6= x 6= w the result follows directly from the induction hypothesis.
[Cat] Let Γ ` u?(y).R .∆, u : ?[T ∗].U be inferred from

Γ `p R .∆, u : U, y : T ∗

When u 6= x the result follows from the induction hypothesis. Assume u = x; the
induction hypothesis is

Γ `p R[v/y] .∆, v : U, y : T ∗

We apply [Cat] and infer

Γ ` v?(y).R[v/y] .∆, v : ?[T ∗].U

V. T. Vasconcelos, M. Giunti, N. Yoshida, and K. Honda 18

as requested.
[Conc] Let Γ ` R | R′ .∆,∆′ be inferred from

Γ ` R .∆ Γ ` R′ .∆′

Assume ∆ = ∆∗, x : T . The induction hypothesis is

Γ ` R[v/x] .∆∗, v : T

Since x 6∈ dom(∆′) by Lemma 4.6 we infer x 6∈ fc(R′). Therefore the substitution
[v/x] has no effect on R′. We use [Conc] and by grouping the subtitution we obtain

Γ ` (R | R′)[v/x] .∆∗, v : T,∆′

The case ∆′ = ∆∗, x : T is analogous.
[Inact] Assume Γ ` 0.~u : ~end, x : end. We apply [Inact] and infer Γ ` 0[v/x].~u : ~end, v :

end.
[Res] Let Γ ` (νk)R .∆, x : T be inferred from

Γ `p R .∆, x : T, k+ : U, k− : U

and assume v 6= k (eventually by alpha-renaming k, if necessary). The induction
hypothesis is

Γ `p R[v/x] .∆, v : T, k+ : U, k− : U

We apply [Res] and infer

Γ ` (νk)R .∆, v : T

Cases [Br],[Sel] are analogous to [Cat]. The remaining cases follow directly from
the induction hypothesis.

To prove (3), we proceed by induction on the derivation for Γ, X : ~S ~T `p R . ∆. We
prove the main cases; the remaining one are analogous.

[PVar] We have Γ, X : S̃T̃ `p X[ũṽ]. ~w : ~end, ṽ : T̃ inferred from Γ `p ũ : S̃. This together
with the hypothesis Γ, X : S̃T̃ , x̃ : S̃ `p R

′ . ỹ : T̃ let us apply [Rec] and infer

Γ `p (rec X(x̃ỹ).R′)[ũṽ] . ṽ : T̃

By weakening we infer

Γ `p (rec X(x̃ỹ).R′)[ũṽ] . ~w : ~end, ṽ : T̃

that is what we need since

Γ `p X[ũṽ][rec X(x̃ỹ).R′/X] . ~w : ~end, ṽ : T̃

[Conc] We have Γ, X : S̃T̃ `p R1 | R2 .∆1,∆2 since

Γ, X : S̃T̃ `p R1 .∆1 and Γ, X : S̃T̃ `p R2 .∆2

Assume Γ, X : S̃T̃ , x̃ : S̃ `p R
′ . ỹ : T̃ . By induction hypothesis both

Γ, X : S̃T̃ `p R1[recX(~x~y).R′/X] .∆1 and Γ, X : S̃T̃ `p R2[recX(~x~y).R′/X] .∆2

Type Safety without Subject Reduction for Session Types 19

We apply [Conc] and infer

Γ, X : S̃T̃ `p R1[recX(~x~y).R′/X] | R2[recX(~x~y).R′/X] .∆1,∆2

We group the substitution and infer

Γ, X : S̃T̃ `p (R1 | R2)[recX(~x~y).R′/X] .∆1,∆2

as requested.
[Thr] We have that Γ, X : S̃T̃ `p u![v].R.∆, u : ![T].U, v : T is inferred from Γ, X : S̃T̃ `p

R .∆, u : U . Assume Γ, X : S̃T̃ , x̃ : S̃ `p R
′ . ỹ : T̃ .

By induction hypothesis, we infer

Γ `p R[recX(~x~y).R′/X] .∆, u : U

We apply [Thr] and infer

Γ, X : S̃T̃ `p u![v].(R[recX(~x~y).R′/X]) .∆, u : ![T].U, v : T

that is equal to

Γ, X : S̃T̃ `p (u![v].R)[recX(~x~y).R′/X] .∆, u : ![T].U, v : T

as requested.
[ResP] We have Γ, X : S̃T̃ `p (νk)R .∆ inferred from

Γ, X : S̃T̃ `p R .∆, k+ : T, k− : T

Assume Γ, X : S̃T̃ , x̃ : S̃ `p R
′ . ỹ : T̃ with k 6∈ fc(R′). By induction hypothesis, we

infer

Γ `p R[recX(~x~y).R′/X] .∆, k+ : T, k− : T

We apply [ResP] and infer

Γ `p (νk)R[recX(~x~y).R′/X] .∆

We are now in possession of all the ingredients we need prove subject reduction.

Theorem 4.8 (Subject Reduction for the Polarized Language). If Γ `p R.∆ with
∆ balanced and R→p R

′, then Γ `p R
′ .∆′ with ∆′ balanced and dom(∆) = dom(∆′).

Proof. By induction on the structure of the inference R →p R
′. The interesting cases

are detailed below. [Str] is obtained from Typing Congruence (Lemma 4.5).

[LinkP] Let accept a(x).R1 | request a(y).R2 →p (νk)(R1[k+/x] | R2[k−/y]). Assume

Γ `p accept a(x).R1 | request a(y).R2 . ∆1,∆2

is inferred from

Γ `p R1 .∆1, x : T and Γ `p R2 .∆2, y : T and Γ `p a : 〈T 〉 and ∆1,∆2 balanced

via rules [Conc], [Acc], and [Req]. We show that Γ `p (νk)(R1[k+/x] | R2[k−/y]) .
∆1,∆2.

V. T. Vasconcelos, M. Giunti, N. Yoshida, and K. Honda 20

The variable convention tells us that k 6∈ fc(R1, R2) and that k+, k− are not in ∆1

nor in ∆2. Then we apply the Substitution Lemma to obtain

Γ `p R1[k+/x] .∆1, k
+ : T and Γ `p R2[k−/y] .∆2, k

− : T

Finally we apply [Conc], [ResP] to conclude.
[ComP] We analyze first the session passing (throw/catch) case. Let k+![v].R1 | k−?(x).R2 →p

R1 | R2[v/x], and assume that there is ∆ balanced such that

Γ `p k
+![v].R1 | k−?(x).R2 .∆

From these hypotheses and rules [Conc], [Thr] and [Cat] we infer that there are
types T,U such that

Γ `p R1 .∆1, k
+ : U

Γ `p R2 .∆2, k
− : U, x : T

∆ = (∆1, k
+ : ![T].U, v : T), (∆2, k

− : ?[T].U)

We show that

Γ `p R1 | R2[v/x] .∆′ with ∆′ = (∆1, k
+ : U), (∆2, k

− : U, v : T)

which is what we need since ∆′ is balanced and dom(∆′) = dom(∆).
We apply the second clause of the Substitution Lemma to Γ `p R2 .∆2, k

− : U, x : T ,
followed by rule [Conc] to obtain the result.
In the case of shared value passing (send/receive) we follow the same pattern but use
the first clause of the Substitution Lemma.

[CaseP] Let k+ � l.R | k− � {li : Ri}i∈I →p R | Rj , j ∈ I. Assume that there is ∆
balanced such that

Γ `p k
+ � lj .R | kp � {li : Ri}i∈I .∆

From these hypotheses and rules [Conc], [Br] and [Sel] we infer that

Γ `p R .∆1, k
+ : Tj

Γ `p Rj .∆2, k
− : Ti ∀i ∈ I

∆ = (∆1, k
+ : ⊕ {li : Ti}i∈I), (∆2, k

− : &{li : Ti}i∈I)

We show that

Γ `p R | Rj .∆′ with ∆′ = ∆1, k
+ : Tj ,∆2, k

− : Tj

This closes the proof because ∆′ is balanced and dom(∆′) = dom(∆). We apply
[Conc] to conclude the case.

[Rec] Let (rec X(x̃ỹ).P)[ũṽ]→ P [ũ/x̃][ṽ/ỹ][rec X(x̃).P/X]. Assume that there are ṽ : T̃
balanced and Γ such that

Γ `p (recX(x̃ỹ).P)[ũṽ] . ṽ : T̃ and Γ `p ũ : S̃

We show that Γ `p P [ũ/x̃][ṽ/ỹ][recX(z̃).P/X] . ṽ : T̃ . Apply in turn each of the three
clauses in the Substitution Lemma to conclude the case.

Type Safety without Subject Reduction for Session Types 21

[Scop] We analyse channel restriction; name restriction is easier. Let (νk)R →p (νk)R′

be inferred from R → R′. Assume that Γ `p (νk)R . ∆ with ∆ balanced has been
inferred via [ResP] from

Γ `p R .∆, k+ : T, k− : T

By induction hypothesis there is ∆′ balanced with the domain of ∆, k+ : T, k− : T ,
such that Γ `p R

′ . ∆′. Then ∆′ must be of the form ∆′′, k+ : U, k− : U . We apply
rule [Scop] to obtain Γ `p (νk)R′ .∆′′. It is easy to see that ∆′′ is balanced and has
the same domain as ∆.

[Par] Let R1 | R2 →p R
′ | R2 be inferred from R1 →p R

′. We assume that Γ `p R1 | R2.

∆ has been inferred from

Γ `p R1 .∆1 and Γ `p R2 .∆2 with ∆ = ∆1,∆2

It is easy to see that ∆1 is balanced. We can therefore apply the induction hypothesis
to R1 →p R

′ and infer that there is ∆′ balanced such that dom(∆′) = dom(∆1) and
Γ `p R

′.∆′. Then we know that ∆′,∆2 is defined, balanced and has the same domain
as ∆1,∆2. We apply [Par] to conclude the case.

Corollary 4.9. If Γ `p R.∆ with ∆ balanced and R→∗p R′, then Γ `p R
′ .∆′ for some

∆′ balanced.

Proof. By induction on R →n
p R

′. The case n = 0 is trivial. Otherwise assume R →n
p

R1 →p R
′. The induction hypothesis is that Γ `p R1 . ∆1 and ∆1 balanced. We apply

Theorem 4.8 to obtain that there is ∆′ balanced such that Γ `p R
′ .∆′, thus concluding

the proof.

4.3. Type Safety

The rest of this section is dedicated to the proof of type safety for the polarized language.

Theorem 4.10. If Γ `p R .∆ and ∆ is balanced, then R is not an error.

Proof. Assume that Γ `p (νx̃k̃)(R1 | R2) .∆ with ∆ balanced. After multiple applica-
tions of typing rules [ResP] and [Res] we obtain

Γ, x̃ : S̃ `p Ri : ∆i

with ∆1,∆2 = ∆, k̃+ : T̃ , k̃− : T̃ . Notice that each ∆i is balanced. Assume that process
R1 is the parallel composition of two k-processes. It is easy to see that R1 is not typable
except when the two k-processes form a k-redex.

Corollary 4.11 (Type Safety for the Polarized Language). Let Γ `p R . ∆ with
∆ balanced. If R→∗p R′, then R′ is not an error.

Proof. By Corollary 4.9 we know that there is ∆′ balanced such that Γ `p R
′ .∆′. We

complete the proof with Theorem 4.10.

V. T. Vasconcelos, M. Giunti, N. Yoshida, and K. Honda 22

5. Well-typed Programs Do Not go Wrong

At the end of Section 3 we have seen that the straightforward extension of the type sys-
tem for programs does not satisfy the subject reduction property. This section presents a
proof of the main result (Theorem 3.2), via an erase mapping from the polarized runtime
language to the base runtime language, using operational and error correspondence re-
sults. The erase function maps a polarity runtime process R into a base runtime process
Q by simply removing all polarities +,− from the given process. The formal definition
is by induction on the structure of process R, which we omit.

The proof of Theorem 3.2 is simple.

Proof. Let P be a program such that Γ ` P . ∆(1), and let Q be a runtime process
such that P →∗ Q(2). We need to show that Q is not an error. The proof proceeds as
follows.

— We note that

Γ ` P .∆(1) =⇒ Γ `p P .∆(3) and ∆ balanced(4)

for the type systems for the two languages coincide on programs.
— We show an operational correspondence (Theorem 5.2) stating that

Γ ` P .∆ and P →∗ Q =⇒ ∃R such that P →∗p R and erase(R) = Q;

to obtain, from (1) and (2), that ∃R such that P →∗p R(5) and erase(R) = Q(6).
— We apply (3), (4) and (5) and Subject Reduction for the polarity language (Corol-

lary 4.9) to obtain that Γ `p R .∆′(7) and ∆′ balanced(8).
— We establish an error correspondence result (Theorem 5.3) stating that

Γ `p R .∆ and ∆ balanced =⇒ erase(R) not an error

to obtain, from (7) and (8) that erase(R) is not an error(9).
— From (6) and (9) we obtain the sought result, namely that Q is not an error.

The rest of this section is dedicated of the proofs of the operational and the error
correspondence, Lemmas 5.2 and 5.3.

5.1. Operational Correspondence

The next Lemma is the core of the proof of operational correspondence.

Lemma 5.1. If Γ `p R.∆ with ∆ balanced and erase(R)→ Q, then there is a polarized
process R′ such that R→p R

′ and erase(R′) = Q .

Proof. By induction on the length of the inference erase(R) → Q. We outline some
cases below.

[Link] Let erase(R) = accept a(x).erase(R1) | request a(y).erase(R2) andQ = (νk)(Q1[k/x] |
Q2[k/y]). From [LinkP] we infer

accept a(x).R1 | request a(y).R2 →p (νk)R1[k+/x] | R2[k−/y]

Type Safety without Subject Reduction for Session Types 23

From erase((νk)R1[k+/x] | R2[k−/y]) = Q we conclude.
[Com] Let erase(R) = k![erase(w)].erase(R1) | k?(x).erase(R2) and Q ≡ erase(R1) |

erase(R2)[erase(w)/x]. From Γ `p R . ∆ we infer Γ ` erase(kp![w].R1) . ∆1 and
Γ ` erase(kp′

?(x).R2) . ∆2 with ∆ = ∆1,∆2. Since ∆ is balanced we know that
p′ = p. From [ComP] we infer

kp![w].R1 | kp?(x).R2)→p R1 | R2[w/x]

From erase(R1 | R2[w/x]) ≡ Q we conclude.
[Scop] Let erase(R) = (νk)Q′ and let (νk)Q′ → Q be inferred from Q′ → Q′′ with

Q = (νk)Q′′. Therefore R = (νk)R′ with erase(R′) = Q′. From Γ `p R . ∆ we infer
that Γ `p R

′ . ∆, k+ : T, k− : T . Since ∆ is balanced, ∆, k+ : T, k− : T is balanced.
We may apply the induction hypothesis and infer that there is R′′ such that R′ →p

R′′ and erase(R′′) ≡ Q′′. We apply [ResP] to obtain

(νk)R′ →p (νk)R′′

From erase((νk)R′′) = (νk)Q′′ = Q we conclude.
[Str] Assume erase(R) → Q is obtained from erase(R) ≡ Q′, Q′ → Q′′ and Q′′ ≡ Q.

It’s easy to find R′ ≡p R such that Q′ = erase(R′). Let Γ `p .∆ with ∆ balanced.
By typing congruence (Lemma 4.5) we infer Γ `p R

′ . ∆. We apply the induction
hypothesis and obtain that there is R′′ such that R′ →p R

′′ and erase(R′′) ≡ Q′′.
From [Str] we infer that R →p R

′′, and we are done, since erase(R′′) ≡ Q′′ ≡ Q, as
requested.

We are now in a position to prove operational correspondence.

Theorem 5.2 (Operational Correspondence). Let P be a program such that Γ `
P .∆. If there is a runtime process Q such that P →n Q, then there is a polarized process
R such that P →n

p R and erase(R) = Q.

Proof. By induction on the length n of reduction. When n = 0, we have that Q = P

and we are done. For the induction step, assume P →k Q1 → Q. We apply the induction
hypothesis and infer that there is R1 such that P →k

p R1 and erase(R1) = Q1. From
Γ ` P . ∆ we know that Γ `p P . ∆, since the two type systems coincide on the
programmers’ syntax. Typing environments in the programmer’s syntax do not contain
polarized channels, hence ∆ is balanced. By subject reduction (Theorem 4.8) we know
that there is ∆1 balanced such that Γ `p R1 .∆1. We apply Lemma 5.1 to conclude

5.2. Error Correspondence

To close the proof of our main result, we need to show that the erase function maps
typed polarized processes into error-free processes.

Theorem 5.3 (Error Correspondence). If Γ `p R.∆ with ∆ balanced, then erase(R)
is not an error.

V. T. Vasconcelos, M. Giunti, N. Yoshida, and K. Honda 24

Proof. Theorem 4.10 tells us that R is not an error, hence that, if R ≡ (νñ)(R1 | R2)
then it is not the case that R1 is the parallel composition of two (polarized) k-processes
that do not form a k-redex, by Definition 4.1. We know that erase(R) ≡ (νñ)(erase(R1) |
erase(R2)). Then it is not the case that erase(R1) is the parallel composition of two (base)
k-processes that do not form a k-redex, by Definition 3.1. Hence erase(R) is not an error.

6. Conclusion

Related work. An embryo of this work can be found in (GHVY09). In the introduction we
present those works most closely related to our investigation; here we review additional
work in adjoining areas. Refer to (DCd10) for an overview of sessions and session types,
including language extensions, extensions to typing, embeddings into different program-
ming paradigms and implementations.

From the original formulation in a variant of the pi calculus, the concept of session
types is now used in different realms, including in functional languages (GV10; VGR06;
Vas09a), the higher-order pi calculus (MY07; MY09), web services (CHY07), multi-
core programming (YVPH08), to describe components (VVR06), in object-oriented lan-
guages (BCDC+08; CCDC+09; CDCY07; DCDGY07; HYH08; GVR+10; DCDMY09),
in logics (BHY08; VLC09), in relation to intuitionistic linear logic (CP09), to men-
tion a few. The concept of sessions describing the interaction between to partners was
eventually extended to allow the description of interacting involving a larger number of
partners (BC08; HYC08; CV09; YDBH10; MYH09; BCD+08; BCD+09).

Polarities, or more generally the ability to syntactically distinguish the ends of a same
channel (GH05; YV07; Vas09b), are used in most works on binary sessions. They do
become particularly relevant in the presence of buffered (or asynchronous) semantics,
where each of the two partners involved in an interaction is supposed to have its own
message buffer. To send a message is to write on the partner’s buffer; to receive a message
is to read from one’s own buffer. A two-way communication channel is then transformed
into a pair of buffers, allowing each partner to proceed at its own pace. The semantics
(static and dynamic) then work with two distinct channel ends, usually denoted by k+

and k− for a single channel k. In the case of buffered semantics, the distinction between
the two ends in a channel can be justified based solely on the underlying computational
model.

Summary. We have presented a simple and intuitive operational semantics for a variant
of the pi calculus with sessions where typable processes are guaranteed to be exempt from
runtime errors. The type system, meant to type programs, cannot be directly used to
type the runtime language. In the absence of a simple extension of the type system for the
runtime language, precluding proving type safety via the traditional subject reduction
property, we resorted to a different runtime language. This new language, based on
polarities, enjoys subject reduction; the sought result is then obtained by proving suitable
correspondences between the two languages. The exercise shows that polarities, now

Type Safety without Subject Reduction for Session Types 25

widely used in binary session types, are justified solely by technical reasons, and need
not be exposed to programmers neither in the operational semantics nor in the type
system.

Acknowledgements. Giunti and Vasconcelos were partially supported by the EU IST
proactive initiative FET-Global Computing (project Sensoria, IST–2005–16004). Vascon-
celos was partially supported by the Large-Scale Informatics Systems Laboratory, Por-
tugal. Honda and Yoshida are partially supported by EPSRC GR/T03208, GR/T03215,
EP/F002114 and EP/F003757. Vasconcelos, Yoshida and Konda were partically sup-
ported by the Treaty of Windsor Anglo-Portuguese Joint Research Programme B–4/08.

References

Eduardo Bonelli and Adriana B. Compagnoni. Multipoint session types for a distributed calcu-

lus. In TGC, volume 4912 of LNCS, pages 240–256. Springer, 2008.

Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-Ciancaglini,

and Nobuko Yoshida. Global progress in dynamically interleaved multiparty sessions. In

CONCUR, volume 5201 of LNCS, pages 418–433, 2008.

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet, and James

Leifer. Cryptographic protocol synthesis and verification for multiparty sessions. In CSF,

pages 124–140, 2009.

Lorenzo Bettini, Sara Capecchi, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Betti

Venneri. Session and union types for object oriented programming. In Concurrency, Graphs

and Models, volume 5065 of LNCS, pages 659–680. Springer, 2008.

Martin Berger, Kohei Honda, and Nobuko Yoshida. Completeness and logical full abstraction

in modal logics for typed mobile processes. In ICALP, volume 5126 of LNCS, pages 99–111.

Springer, 2008.

Sara Capecchi, Mario Coppo, Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, and Elena

Giachino. Amalgamating sessions and methods in object-oriented languages with generics.

Theoretical Computer Science, 410(2-3):142–167, 2009.

Mario Coppo, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. Asynchronous session

types and progress for object-oriented languages. In Proceedings of FMOODS’07, volume

4468 of LNCS, pages 1–31. Springer, 2007.

Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-centred pro-

gramming for web services. In ESOP’07, volume 4421 of LNCS, pages 2–17, 2007.

Lúıs Caires and Frank Pfenning. A concurrent interpretation of intuitionistic linear logic. sub-

mitted, 2009.

Lúıs Caires and Hugo Torres Vieira. Conversation types. In ESOP, volume 5502 of LNCS, pages

285–300. Springer, 2009.

Mariangiola Dezani-Ciancaglini and Ugo de’Liguoro. Sessions and session types: an overview.

In WS-FM’09, LNCS. Springer, 2010. To appear.

Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Elena Giachino, and Nobuko Yoshida.

Bounded session types for object-oriented languages. In Proceedings of FMCO’07, volume

4709 of LNCS, pages 207–245. Springer, 2007.

Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Dimitris Mostrous, and Nobuko Yoshida.

Objects and session types. Inf. Comput., 207(5):595–641, 2009.

V. T. Vasconcelos, M. Giunti, N. Yoshida, and K. Honda 26

Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia Drossopolou.

Session types for object-oriented languages. In Proceedings of ECOOP’06, volume 4067 of

LNCS, pages 328–352. Springer, 2006.

Simon Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta Informatica,

42(2–3):191–225, 2005.

Marco Giunti, Kohei Honda, Vasco T. Vasconcelos, and Nobuko Yoshida. Session-based type

discipline for pi calculus with matching. PLACES’09, 2009.

Simon Gay and Vasco T. Vasconcelos. Linear type theory for asynchronous session types. Journal

of Functional Programming, 20(1):19–50, 2010.

Simon Gay, Vasco T. Vasconcelos, António Ravara, Nils Gesbert, and Alexandre Z. Caldeira.

Modular session types for distributed object-oriented programming. In POPL, pages 299–312.

ACM Press, 2010.

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type disciplines

for structured communication-based programming. In ESOP, volume 1381 of LNCS, pages

22–138. Springer, 1998.

K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In POPL,

pages 273–284. ACM Press, 2008.

Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed programming in

Java. In Proceedings of ECOOP’08, volume 5142 of LNCS, pages 516–541. Springer, 2008.

Dimitris Mostrous and Nobuko Yoshida. Two session typing systems for higher-order mobile

processes. In TLCA, volume 4583 of Lecture Notes in Computer Science. Springer, 2007.

Dimitris Mostrous and Nobuko Yoshida. Session-based communication optimisation for higher-

order mobile processes. In TLCA, volume 5608 of LNCS, pages 203–218. Springer, 2009.

Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. Global principal typing in partially

commutative asynchronous sessions. In ESOP’09, volume 5502 of LNCS, pages 316–332,

2009.

Vasco T. Vasconcelos. Session types for linear multithreaded functional programming. In PPDP,

pages 1–6. ACM Press, 2009.

Vasco T. Vasconcelos. SFM, volume 5569 of LNCS, chapter Fundamentals of Session Types,

pages 158–186. Springer, 2009.

Vasco T. Vasconcelos, Simon Gay, and António Ravara. Typechecking a multithreaded functional

language with session types. Theoretical Computer Science, 368(1–2):64–87, 2006.

Jules Villard, Étienne Lozes, and Cristiano Calcagno. Proving copyless message passing. In

APLAS, volume 5904 of LNCS, pages 194–209. Springer, 2009.

Antonio Vallecillo, Vasco T. Vasconcelos, and António Ravara. Typing the behavior of objects

and components using session types. Fundamenta Informaticæ, 73(4), 2006.

Nobuko Yoshida, Pierre-Malo Deniélou, Andi Bejleri, and Raymond Hu. Parameterised multi-

party session types. In FoSSaCs, LNCS, 2010.

Nobuko Yoshida and Vasco T. Vasconcelos. Language primitives and type discipline for struc-

tured communication-based programming revisited: Two systems for higher-order session

communication. In SecReT, number 171(4) in ENTCS, pages 73–93, 2007.

Nobuko Yoshida, Vasco Thudichum Vasconcelos, Hervé Paulino, and Kohei Honda. Session-

based compilation framework for multicore programming. In FMCO, volume 5751 of Lecture

Notes in Computer Science, pages 226–246. Springer, 2008.

