
ECOOP’95
Quantitative Methods Workshop

Aarhus, August 1995

Design Metrics for Object-Oriented Software Systems

Fernando Brito e Abreu
INESC / ISEG

PORTUGAL

Design Metrics for Object-Oriented Software Systems Page 2

Fernando Brito e Abreu INESC / ISEG

PRESENTATION OUTLINE

This presentation proposes:

F The experimental validation of a set of metrics suitable for evaluating the use of the

mechanisms that support the main concepts of the Object-Oriented paradigm and the

consequent emphasis on reuse, that are believed to be responsible for the increase in

software quality and development productivity.

Design Metrics for Object-Oriented Software Systems Page 3

Fernando Brito e Abreu INESC / ISEG

QUALITY: TWO SCHOOLS OF THOUGHT

Software quality can be characterized by the presence of several external attributes. However

F no consensus on how to evaluate those external attributes
F some attributes can only be assessed when the system is available (too late...)

THE "OUTSIDE-IN" APPROACH FOR QUALITY:

A defined and controlled process is a required condition for the production of quality software
products and with fewer costs

THE "INSIDE-OUT" APPROACH FOR QUALITY:

The quality of internal structure is a required condition for ensuring that external quality and
increased productivity are achieved.

Design Metrics for Object-Oriented Software Systems Page 4

Fernando Brito e Abreu INESC / ISEG

"INSIDE-OUT" QUALITY IN OBJECT-ORIENTATION

Internal quality in OO is due to the use of:

• encapsulation
• information hiding
• inheritance

• polymorphism
• message passing
• reuse (class, pattern or framework level)

F the use of mechanisms that support those concepts can be varied, depending on the designer
ability - several alternatives for the same system are possible

F for the same specification we can expect rather different quality products to emerge, as well as
different productivity gains, depending on the corresponding design

Design Metrics for Object-Oriented Software Systems Page 5

Fernando Brito e Abreu INESC / ISEG

GOAL, STRATEGY AND TACTICS

Goal:
Improve the OO design process to achieve better maintainability and reusability, by setting design
recommendations (heuristics). Those may be included in OO CASE tools.

Strategy:
Identify structural quality in designs by means of quantitative evaluation of the use of the OO
paradigm mechanisms that are supposed to be responsible for internal quality

Tactics:
Establish comparisons throughout the academic and practitioners community

Design Metrics for Object-Oriented Software Systems Page 6

Fernando Brito e Abreu INESC / ISEG

CRITERIA FOR DESIRED METRICS

Criterion 1: metrics determination should be formally defined

F different people at different times or places get the same values for the same systems
F avoids subjective ratings (e.g. Very Low, Low, Average, High, Very High)

Criterion 2: non-size metrics should be system size independent

F allows comparisons across different projects (cumulative knowledge)

Criterion 3: metrics should be dimensionless or expressed in some unit system

F avoids subjective or "artificial" units that inevitably yield to misunderstandings. (e.g. LOC,
Function Points)

Design Metrics for Object-Oriented Software Systems Page 7

Fernando Brito e Abreu INESC / ISEG

Criterion 4: metrics should be obtainable early in the life-cycle

F allows to identify possible flaws, before too much effort is built on top of them

Criterion 5: metrics should be orthogonal

F thus representing different aspects of the system under measurement

Criterion 6: metrics should be easily computable

F eases the repetitive, tedious and expensive collection process
F requires that criterion 1 is met and that designs are also formally defined

Criterion 7: metrics should be language independent

F allows a common base of understanding for the metrics analysis process

Design Metrics for Object-Oriented Software Systems Page 8

Fernando Brito e Abreu INESC / ISEG

THE MOOD METRICS SET (V1.2)
(Metrics for Object Oriented Design)

Several authors have suggested sets of metrics for the OO paradigm, but none known fulfills all the
above criteria. The MOOD metrics are:

• Attribute Hiding Factor
• Method Hiding Factor
• Method Inheritance Factor
• Attribute Inheritance Factor

• Coupling Factor
• Polymorphism Factor
• Clustering Factor
• Reuse Factor

F These metrics can be viewed as probabilities - quantifying the use of different abstractions -
ranging from 0 (total absence of use) to 1 (maximum possible use)

F They allow the application of statistical theory to software metrics

Design Metrics for Object-Oriented Software Systems Page 9

Fernando Brito e Abreu INESC / ISEG

VALIDATION EXPERIMENT

THE SAMPLE (all in C++ source code):

• Microsoft Foundation Classes (MFC) - Microsoft Corporation
• GNU glib++ (GNU) - Free Software Foundation / Cygnus Support
• ET++ library (ET++) - UBILAB / Union des Banques Suisses (Switzerland)
• NewMat library (NMAT) - Robert B. Davies (Victoria University - New Zealand)
• MotifApp library (MOTIF) - Douglas A. Young [Young92]
• Sun C++ Compiler Class library (SunC++) - Sun Corporation
• Centerline C++ Compiler Class Library (Centerline) - Centerline Corporation
• Not Invented Here Class Library (NIHCL) - Free Software Foundation

MFC GNU ET++ NewMat Motif SunC++ Centerline NIHCL TOTAL
Classes 135 84 262 90 35 54 36 64 760

Methods 2970 1478 4812 881 199 465 428 2094 13327
Attributes 613 151 980 119 76 119 102 181 2341

LOC 74895 32371 55022 12795 4884 36487 4636 15315 236405

Table 1 - Some indicators of sample size

Design Metrics for Object-Oriented Software Systems Page 10

Fernando Brito e Abreu INESC / ISEG

Information Hiding

Attributes (or variables, fields, data members, ...) may be visible or hidden

A C A C A Cd i v i h i() () ()= +

Attribute Hiding Factor

AHF
A C

A C

A C

A C

h ii

TC

d ii

TC
v ii

TC

d ii

TC= = −=

=

=

=

∑
∑

∑
∑

()

()

()

()
1

1

1

1

1

Design Metrics for Object-Oriented Software Systems Page 11

Fernando Brito e Abreu INESC / ISEG

SAMPLE VALUES FOR AHF

AHF
MFC 67.7%
GNU 85.0%
ET++ 69.0%
NewMat 83.2%
Motif 97.1%
SunC++ 80.2%
Centerline 81.9%
NIHCL 90.4%

Attribute Hiding Factor (AHF)

MFC

GNU

ET++

NewMat

Motif

SunC++ Centerline

NIHCL

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Design Metrics for Object-Oriented Software Systems Page 12

Fernando Brito e Abreu INESC / ISEG

HEURISTIC FOR AHF

AHF and MHF are a measure of the use of the information hiding concept that is supported by the
encapsulation mechanism. Information hiding should be used to:

• cope with complexity by looking at complex components such as black boxes
• reduce "side-effects" provoked by implementation refinement
• support a top-down approach
• test and integrate systems incrementally.

For attributes (AHF) we want this mechanism to
be used as much as possible. Ideally all
attributes would be hidden (being only accessed
by the corresponding class methods)

Very low values for AHF should trigger the
designers’ attention.

AHF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Design Metrics for Object-Oriented Software Systems Page 13

Fernando Brito e Abreu INESC / ISEG

Information Hiding

Methods (or operations, function members, tasks, routines, ...) may be visible or hidden

M C M C M Cd i v i h i() () ()= +

Method Hiding Factor

MHF
M C

M C

M C

M C

h ii

TC

d ii

TC

v ii

TC

d ii

TC= = −=

=

=

=

∑
∑

∑
∑

()

()

()

()
1

1

1

1

1

Design Metrics for Object-Oriented Software Systems Page 14

Fernando Brito e Abreu INESC / ISEG

SAMPLE VALUES FOR MHF

MHF
MFC 24.0%
GNU 12.9%
ET++ 9.5%
NewMat 10.3%
Motif 36.9%

SunC++ 16.9%

Centerline 14.3%
NIHCL 21.7%

Method Hiding Factor (MHF)

MFC

GNU
ET++ NewMat

Motif

SunC++
Centerline

NIHCL

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Design Metrics for Object-Oriented Software Systems Page 15

Fernando Brito e Abreu INESC / ISEG

HEURISTIC FOR MHF

The number of visible methods is a measure of the class functionality. Increasing the overall
functionality will reduce MHF.

For implementing that functionality we must adopt a top-down approach, where the abstract
interface (visible methods) should only be the tip of the iceberg. This suggests a MHF increase.

Very low MHF indicate an insufficiently
abstracted implementation.

Very high MHF indicate very little functionality

MHF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Design Metrics for Object-Oriented Software Systems Page 16

Fernando Brito e Abreu INESC / ISEG

Inheritance

Methods available in a class instance (response for a class) can be the defined ones or inherited
ones (not overridden):

M C M C M Ca i d i i i() () ()= +

Methods defined in a class can be new (locally defined) or a redefined version (overriding) of
inherited ones:

M C M C M Cd i n i o i() () ()= +

Method Inheritance Factor

MIF
M C

M C

M C

M C

i ii

TC

a ii

TC

d ii

TC

a ii

TC= = −=

=

=

=

∑
∑

∑
∑

()

()

()

()
1

1

1

1

1

Design Metrics for Object-Oriented Software Systems Page 17

Fernando Brito e Abreu INESC / ISEG

Inheritance

Attributes available in a class can be the defined ones or inherited ones (not overridden):

A C A C A Ca i d i i i() () ()= +

Attributes defined in a class can be new (locally defined) or a redefined version (overriding) of
inherited ones:

A C A C A Cd i n i o i() () ()= +

Attribute Inheritance Factor

AIF
A C

A C

A C

A C

i ii

TC

a ii

TC

d ii

TC

a ii

TC= = −=

=

=

=

∑
∑

∑
∑

()

()

()

()
1

1

1

1

1

Design Metrics for Object-Oriented Software Systems Page 18

Fernando Brito e Abreu INESC / ISEG

SAMPLE VALUES FOR MIF

MIF
MFC 84.4%
GNU 63.1%
ET++ 83.9%
NewMat 72.5%
Motif 64.3%
SunC++ 73.3%
Centerline 75.8%
NIHCL 60.9%

Method Inheritance Factor (MIF)

MFC

GNU

ET++

NewMat

Motif

SunC++ Centerline

NIHCL

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Design Metrics for Object-Oriented Software Systems Page 19

Fernando Brito e Abreu INESC / ISEG

SAMPLE VALUES FOR AIF

AIF
MFC 61.3%
GNU 62.6%
ET++ 51.8%
NewMat 58.1%
Motif 50.3%
SunC++ 72.2%
Centerline 75.7%
NIHCL 37.4%

Attribute Inheritance Factor (AIF)

MFC GNU

ET++

NewMat

Motif

SunC++
Centerline

NIHCL

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Design Metrics for Object-Oriented Software Systems Page 20

Fernando Brito e Abreu INESC / ISEG

HEURISTICS FOR MIF AND AIF

MIF and AIF are measures of inheritance. This allows:
• expressing similarity among classes
• the portrayal of generalization and specialization relations
• simplification of the definition of inheriting classes, by means of reuse

However, the composition of several inheritance relations builds a tree, whose depth and width make
understandability and testability quickly fade away.

MIF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AIF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Design Metrics for Object-Oriented Software Systems Page 21

Fernando Brito e Abreu INESC / ISEG

Polymorphism

Polymorphism Factor

PF
M C

M C DC C

o ii

TC

n i ii

TC=
×

=

=

∑
∑

()

() ()
1

1

Numerator: possible different polymorphic situations (system under consideration)

Denominator: maximum number of possible different polymorphic situations (extreme situation
where all methods were overridden in all classes, except the base ones)

Design Metrics for Object-Oriented Software Systems Page 22

Fernando Brito e Abreu INESC / ISEG

SAMPLE VALUES FOR PF:

PF
MFC 2.0%
GNU 2.6%
ET++ 4.5%
NewMat 12.7%
Motif 9.8%
SunC++ 2.1%
Centerline 1.7%
NIHCL 15.1%

Polymorphism Factor (PF)

MFC GNU ET++

NewMat
Motif

SunC++ Centerline

NIHCL

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Design Metrics for Object-Oriented Software Systems Page 23

Fernando Brito e Abreu INESC / ISEG

HEURISTIC FOR PF:

By allowing to bind a common message call to one of several class instances, polymorphism allows:
• to build flexible systems
• refinement of the taxonomy without side-effects

However if we need to debug such a taxonomy,
by tracing the control flow, this same
polymorphism will make the job harder.

This is particularly true if we compare this
situation with the procedural counterpart where,
for a similar functionality, we usually have a
series of decision statements for triggering the
required operation.

COF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Design Metrics for Object-Oriented Software Systems Page 24

Fernando Brito e Abreu INESC / ISEG

Coupling

A client class is the one that contains at least one reference to a feature (or the whole) of another
class (the supplier) . References can be of several kinds:
F messages (or event, stimulus, ...) to another class instance (dynamic coupling)
F references due to semantic associations (static coupling) / object containment

Coupling Factor

COF
is client C C

TC TC DC C

i jj

TC

i

TC

ii

TC=
− − ×

==

=

∑∑
∑

_ (,)

()

11

2

1
2

is client C C
iff

C C C C

C C

otherwise
c s

c s c s

c s_ (,) ()=

⇒ ∧ ≠

∧¬ →
1

0

Design Metrics for Object-Oriented Software Systems Page 25

Fernando Brito e Abreu INESC / ISEG

SAMPLE VALUES FOR COF

COF
MFC 8.8%
GNU 2.6%
ET++ 4.4%
NewMat 24.3%
Motif 6.3%
SunC++ 3.1%
Centerline 4.3%
NIHCL 13.8%

Coupling Factor (COF)

MFC
GNU ET++

NewMat

Motif
SunC++ Centerline

NIHCL

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Design Metrics for Object-Oriented Software Systems Page 26

Fernando Brito e Abreu INESC / ISEG

HEURISTIC FOR COF

It has been noted [Meyer88] that it is desirable that classes communicate with as few others as
possible and even then, that they exchange as little information as possible.

Coupling relations increase complexity, reduce encapsulation and potential reuse, and limit
understandability and maintainability.

Thus, it seems that we should avoid it as much
as possible. Very high values of COF should be
avoided by designers.

However, for a given application, classes must
cooperate somehow to deliver some kind of
functionality. Therefore, COF is expected to be
lower bounded.

COF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Design Metrics for Object-Oriented Software Systems Page 27

Fernando Brito e Abreu INESC / ISEG

 HEURISTICS IN NUMBERS ...

Minimum Mean Maximum Shape
MHF 12.7% 17.3% 21.8% BP
AHF 75.2% 81.9% HP
MIF 66.4% 72.4% 78.5% BP
AIF 52.7% 59.5% 66.3% BP

COF 4.0% 7.6% 11.2% BP
PF 2.7% 6.1% 9.6% BP

Table 2 - 95% Confidence interval for the sample

• A few values below the 10% percentile and above the 90% percentile were set to the
corresponding percentile limit values (outlier removal)

Design Metrics for Object-Oriented Software Systems Page 28

Fernando Brito e Abreu INESC / ISEG

SIZE INDEPENDENCE

Classes Methods Attrib. LOC
MHF -0.41 -0.23 -0.21 -0.02
AHF -0.75 -0.71 -0.80 -0.84
MIF 0.67 0.57 0.75 0.68
AIF -0.31 -0.42 -0.28 0.04
COF -0.08 -0.01 -0.15 -0.22
PF -0.18 -0.13 -0.28 -0.52

Table 3 - Correlation of MOOD metrics with some size metrics

Design Metrics for Object-Oriented Software Systems Page 29

Fernando Brito e Abreu INESC / ISEG

MOOD METRICS ORTHOGONALITY

MHF AHF MIF AIF COF PF
MHF 0.40 -0.26 -0.30 0.04 0.17
AHF -0.91 -0.28 0.17 0.58
MIF 0.28 -0.14 -0.50
AIF -0.47 -0.73

COF 0.82
PF

Table 4 - Correlation among MOOD metrics

Design Metrics for Object-Oriented Software Systems Page 30

Fernando Brito e Abreu INESC / ISEG

EVOLUTION OF OUR RESEARCH

i) MOOD metrics set proposal [Abreu94]

ii) practical validation of the underlying rationale of the proposed set

iii) construction and public distribution of a tool for automatic collection of MOOD metrics

iv) support for industrial and academic wide experimentation and statistical validation

v) theoretical validation of the MOOD metrics (using Measurement Theory)

vi) MOOD set refinement based on iii) and iv) results (MOOD V2 proposal)

vii) embedding of MOOD V2 and corresponding design heuristics on a OO CASE tool

viii) assessment of correlation between MOOD and maintainability sub-characteristics

