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Abstract 

This paper describes an independent validation study for a suite of reusability metrics for 

component based design (CBD). We use an approach to metrics definition and collection that 

is different from the one originally proposed by the original authors. The metrics under 

validation were proposed using a semi-formal notation, namely a combination of 

mathematical formulae with natural language descriptions for elementary parts of those 

formulae. They were then computed using proprietary tools. In contrast, we will present a 

formalization for the metrics suite that combines the UML 2.0 metamodel with OCL. By using 

this technique, our contribution provides: (i) a formal, portable and executable definition of 

the metrics set that can be used by other researchers and practitioners to perform 

independent validations of the metrics suite; (ii) a prototype working environment to perform 

such independent validation experiments, both with this and other metrics sets. 

 

1. Motivation 

Software quality modeling involves not only the definition of adequate taxonomies of quality 

attributes, but also the establishment of methods to assess those attributes. This assessment 

may be performed both in a qualitative and in a quantitative way. In this paper, we are 

concerned with the latter. The quantitative assessment of quality attributes requires the usage 

of software metrics. Quality models can then be built based on a combination of such metrics, 

using general purpose statistical techniques. 

Statistical models require validation before they can be adopted by a large community. This 

validation should cover:  

• Internal consistency – The model is specified through a set of mathematical statements, 

so, its’ validity may be checked for mathematical correctness. A set of inputs are collected 



from the system represented by the model, as well as any assumptions about the system 

elements. The model allows computing a set of outputs representing the predicted 

behaviors of the systems being modeled. In an internally consistent model, the outputs are 

valid if the inputs are valid.  

• External consistency – A model has external consistency if information collected from it 

is not contradicted by other valid information. This relates to the applicability of the 

model, as it focuses on the extent to which the assumptions made in the model apply 

beyond the sample from which the model was delivered. 

The credibility of CBD quality models and related metrics suites depends not only on the 

soundness of their proposal, but also on the extent to which they are validated, not only by 

their own proponents, but also through third-party efforts. The current state of practice in 

what concerns CBD quality models and metrics is still far from reaching this level of 

maturity. Some quality models and metrics have been proposed [1, 2], but they lack proper 

validation in order to be widely accepted by the CBD community. 

Although more validation studies are required, several difficulties hamper this task, such as 

the lack of available data for conducting case studies, problems with the interpretation of the 

models and metrics specifications and lack of supporting tools for data collection. 

In this paper, we undergo a CBD metrics suite validation effort. While the original validation 

used semi-formally defined metrics and proprietary tools to collect them we will use a formal 

definition for such metrics and an experimental environment that combines widely used tools 

with standard languages for representing the metrics specification, heuristics based on those 

metrics and the experimental data. This approach creates the conditions so that further 

experiments with this metrics suite can be performed upon different samples of components. 

Furthermore, the techniques and tools used in this paper are generic and can be used in the 

specification and validation of other metrics sets, such as the one proposed by [3].  

Our approach combines UML 2.0 class diagrams with OCL functions to specify both metrics 

and heuristics. With the upcoming adoption of the new UML standard [4, 5] it is likely that 

the major tool vendors will provide direct support to the new metamodel, as well as OCL [6], 

which is also part of the standard.  



This paper is organized as follows. In section 2, we present some related work on independent 

validation of software metrics. In section 3, we present the formal definition of the metrics set 

used in this experiment as well as a brief discussion on its main features. Section 4 contains 

the formal definitions of a set of heuristics that helps interpreting the metrics. In section 5, a 

metrics collection experiment is described and discussed. The used metrics set is then 

analyzed for its limitations. Some limitations of the formalization technique applicability are 

also identified. The experimental setting is discussed in section 6. Conclusions and further 

work are outlined in section 7.  

2. Related work 

The idea of independent validation of quality models and metrics is not new. It was borrowed 

from other sciences, where it is common to cross-check model validity by conducting 

independent experiments. For instance, in the pharmaceutical industry, new drugs have to 

undergo independent testing before they are approved to be made available to the community.  

In the realm of experimental software engineering, there are several examples of this sort of 

independent scrutiny, concerning software metrics suites. In [7], Basili checked the adequacy 

of Chidamber and Kemerer’s metrics suite [8] to predict class fault-proneness. The same 

metrics suite has been assessed as a maintainability predictor in [9]. Metrics such as 

McCabe’s cyclomatic complexity [10] have been extensively used both in academic and 

industrial settings and integrated in several commercial development tools. 

It is more often the case where metrics are proposed but insufficiently validated. Examples 

can be found concerning metrics in general and CBD-related ones in particular (e.g. [3, 11, 

12]). Other proposals, such as the one by Washizaki [13] go further along the way of 

validating the proposed models. The latter contrasts with the previous ones in that its 

validation relies on a sounder statistical analysis, rather than on anecdotal examples or “gut-

feeling” hints on descriptive statistics collected from small samples. As it happens with most 

metrics proposals for CBD, to the best of our knowledge it still lacks independent validation. 

Among other reasons, the novelty of these metrics is one of the motives why they still have 

not been independently validated. We expect our work to contribute in mitigating this 

problem. 

The formalization approach presented in this paper is an evolution of our previous work 

concerning the formalization of metrics for OO design. The approach of using OCL to 



perform such formalization was introduced in [14], using the GOODLY OO design language 

[15] as a base metamodel. With the growing adoption of UML by the software industry and 

academia, the need to make metrics available to the common practitioner has led us to 

developing the FLAME metrics extraction library in OCL, based upon the UML metamodel, 

upon which several metrics suites were formalized [16-19]. With the upcoming UML 2.0 

standard, and its extended expressiveness for specifying component based architectures, as 

shown in [20], we have decided to evolve our approach so that it would support the new UML 

standard and benefit from it in the quantitative evaluation of CBD. The work presented in this 

paper differs from our previous work in metrics formalization in the following ways: 

• we are now using a new metamodel as a basis for our experiments;  

• the focus of the metrics being analyzed as shifted from OO design to CBD;  

• the tool support is becoming more and more independent from proprietary formats, with 

the adoption of XMI as the input format for our metrics collection tools. 

3. Washizaki’s metrics set formalization 

3.1. Metrics set description 

Washizaki proposed a metrics set of 5 metrics for JavaBeans component reusability 

assessment in [13]. For each of the metrics, the authors presented: 

• their intent; 

• their definitions combining a mathematical and an informal formulation; 

• a confidence interval [Lower Limit; Upper Limit] for each metric; if its value is outside 

this interval, the component is regarded as potential source of future problems, badly 

designed, or prone to exhibit bad behavior;  

• interpretation heuristics based on such confidence intervals. 

The quality characteristic, factors and criteria that lead to the development of each of the 

metrics are presented in Figure 1.  
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Figure 1 – Washizaki’s quality model for reusability (adapted from [13]) 

In order to validate his approach, Washizaki performed a case study where a sample of 125 

JavaBeans from jars.com [21] was used, along with a prototype tool to extract the metrics 

from jar files. At jars.com, components are rated for quality with an 8 levels scoring system 

that employs expert opinions on the components. The rationale is that this rating can be used 

for component reusability because the criteria publicized by jars.com (presentation, 

functionality and originality) are related to component reusability. This rating was used as a 

dependent variable in his validation experiment. His confidence intervals for high quality 

components, used in the definition of heuristics, were computed by selecting only the 

components at the top 2 quality levels and then computing the typical values for each metric 

in those components, with a confidence coefficient of 95%. 

3.2. Metrics formalization 

An enabling step for applying our technique is the formalization of the original metrics 

definitions to OCL, using the UML 2.0 metamodel as a basis upon which we represent the 

components. The discussion on the formalization was presented in [22]. Only 4 out of the 5 

metrics in Washizaki’s set were formalized. The remaining metric (Existence of Meta-

Information – EMI) cannot be conveniently expressed upon the UML 2.0 metamodel because 

it is implementation language dependant. Here, we present the metrics formalization for the 

purpose of self-containment of the paper. The functions with the comment (Washizaki) 

are Washizaki’s metrics, while the ones with the (Auxiliar) comment, are auxiliary 

functions. 

 

Component 
-- (Washizaki) Rate of Component Observability  
RCO(): Real = if self.A() = 0 then 
                 0.0 
              else 
                 self.Pr()/self.A() 
              endif 



 
-- (Washizaki) Rate of Component Customizability 
RCC(): Real = if self.A() = 0 then 
                 0.0 
              else 
                 self.Pw()/self.A() 
              endif 
 
-- (Washizaki) Self-Completeness of Component's return value 
SCCr(): Real = if self.B() = 0 then 
                  1.0 
               else 
                  self.Bv()/self.B() 
               endif 
 
-- (Washizaki) Self-Completeness of Components Parameter 
SCCp(): Real = if self.B() = 0 then 
                  1.0 
               else 
                  self.Bp()/self.B() 
               endif 
 
-- (auxiliar) Readable Properties 
Pr(): Integer = self.ownedOperation->select(o: Operation|  
                                            o.stereotype = 'getter')->size() 
 
-- (auxiliar) Writable Properties 
Pw(): Integer = self.ownedOperation->select(o: Operation| 
                                            o.stereotype = 'setter')->size() 
 
-- (auxiliar) Properties in the component 
A(): Integer = self.ownedAttribute->size() 
 
-- (auxiliar) Total number of constructors in the component 
Co(): Integer = self.ownedOperation->select(o: Operation| 
                                            o.stereotype = 'constructor')->size() 
 
-- (auxiliar) Business methods with no return value 
Bv(): Integer = self.ownedOperation->select(o: Operation| 
   (not (o.stereotype = 'constructor'))and 
   (not (o.stereotype = 'getter')) and 
   (not (o.stereotype = 'setter')))->select(b: Operation| 
                                            b.RETURN_TYPE() = 'void')->size() 

 

4. Formal definition of heuristics 

Along with his metrics set, Washizaki also proposed a set of heuristics, to aid in the metrics 

interpretation. We can further explore this formalization effort by providing the OCL 

specifications of such heuristics.  

Class 

AboveRange (limit: Real, value: Real): Boolean = value > limit 

BelowRange (limit: Real, value: Real): Boolean = value < limit 

OutOfRange (lowerLimit: Real, upperLimit: Real, value: Real): Boolean = 
   (self.BelowRange (lowerLimit, value)) or (self.AboveRange (upperLimit, value)) 

Component 
WarningRCO(lowerThreshold: Real, upperThreshold: Real): Boolean = 
          self.OutOfRange (lowerThreshold, upperThreshold, self.RCO()) 



WarningRCC(lowerThreshold: Real, upperThreshold: Real): Boolean = 
           self.OutOfRange (lowerThreshold, upperThreshold, self.RCC()) 

WarningSCCr(lowerThreshold: Real): Boolean =  
           self.BelowRange(threshold, self.SCCr()) 

WarningSCCp(lowerThreshold: Real, upperThreshold: Real): Boolean = 
   self.OutOfRange (lowerThreshold, upperThreshold, self.SCCp()) 

DesignWarning(RCO_LL:  Real, RCO_UL:  Real,  
              RCC_LL:  Real, RCC_UL:  Real,  
              SCCp_LL: Real,  
              SCCr_LL: Real, SCCp_UL: Real): Boolean = 
                (self.WarningRCO(RCO_LL, RCO_UL))  
             or (self.WarningRCC(RCC_LL, RCC_UL))  
             or (self.WarningSCCr(SCCr_LL))  
             or (self.WarningSCCp(SCCp_LL, SCCp_UL)) 

We chose to define the first three predicates at the Class level, rather than at the Component 

one. In the UML 2.0 metamodel, Component is a subclass of Class, so the predicates can be 

used with components. This allows us to reuse those predicates in the definition of heuristics 

based on metrics for OO design. Three of the heuristics based on Washizaki’s metrics 

(WarningRCO, WarningRCC and  WarningSCCp) behave as a band-pass filter, in the sense a 

potential problem warning should be issued if the metrics value is either lower than the lower 

threshold, or higher than the upper one, for the RCO, RCC and SCCp metrics. The WarningSCCr 

heuristic only establishes a minimum threshold for the value of the SCCr metric. If the metric 

value is below the threshold, this should be interpreted as an indication of a potential problem 

regarding the quality characteristic being assessed by that particular metric (portability). 

Finally the DesignWarning heuristic is defined as a simple combination of the previous ones. 

The arguments of the DesignWarning predicate allow calibrating each heuristic, as more data 

gets collected. Table 1 summarizes the heuristics thresholds information provided by 

Washizaki. For each metric, we present its acronym, the average value found in the metrics 

sample, the lower and upper limits for high confidence and the number of components in the 

sample which fulfill this For the sake of completeness, we include also the thresholds for EMI. 

All the metrics in this suite are defined as ratios and their maximum possible value is 1,00. 

For this motive, the predicate of SCCr does not require an Upper Limit. 

Metric Average Lower Limit Upper Limit # components 

RCO 0,40 0,17 0,42 36 

RCC 0,35 0,17 0,34 35 

SCCr 0,85 0,61 1,00 108 

SCCp 0,74 0,42 0,77 28 

EMI 0,84 0,50 1,00 105 



Table 1 – Washizaki’s heuristics thresholds 

Checking if a given component violates any of these heuristics can then be achieved by 

evaluating the following expression: 

DesignWarning (0.17, 0.42, 0.17, 0.34, 0.61, 0.42, 0.77) 

5. Discussion 

5.1. A metrics collection experiment 

In order to test our formalization technique we conducted the following experiment: we 

collected Washizaki’s metrics upon a public domain component library. The FukaBeans 

component library [23] was developed according to the JavaBeans component system [24] by 

Washizaki’s research team. Each component is distributed as a separate jar file.  

Table 2 contains the metrics values for each of the components in the library. In our analysis, 

we used reverse engineered models obtained from those jar files. The bold values represent 

data points where the heuristics proposed by Washizaki are not followed.  

Although all the average values for the metrics are well inside the quality intervals suggested 

by Washizaki’s experiments, only two of the components (GameBean and GraphBean) comply 

with all the quality heuristics. Seven out of twelve components fail three out of four 

heuristics. It may seem surprising that the components developed by the metrics set 

proponents fail to meet the structural quality standards proposed by their own authors. It is 

worth noticing that while Washizaki’s model was calibrated with commercial JavaBeans 

components, this sample contains JavaBeans developed with academic purposes, with usually 

less than 10 methods. A possible interpretation for the apparent lack of reusability, with 

respect to Washizaki’s quality model, is that, for such relatively small interfaces, the model is 

vulnerable: since all the metrics are defined as ratios, the small number of elements used in 

their computation leads to a high standard deviation of metrics values. 

JavaBean RCO RCC SCCr SCCp 
CellBean 0,037 0,111 0,909 0,818 
FileUtil 1,000 0,667 1,000 1,000 
FilterBean 0,267 0,133 0,933 0,200 
FukaCalendarBean 0,444 0,444 0,857 0,571 
FukaGraphBean 1,000 1,000 1,000 0,733 
FukaStopWatchBean 0,667 0,667 1,000 0,200 
FukaTextBean 0,000 0,000 1,000 1,000 
GameBean 0,250 0,250 1,000 0,556 
GraphBean 0,182 0,273 1,000 0,714 



StatementBean 0,667 0,667 0,500 0,500 
DocumentBean2 0,000 0,000 1,000 1,000 
WordBean2 0,000 0,000 1,000 1,000 
Mean 0,376 0,351 0,933 0,691 
Standard deviation 0,376 0,333 0,145 0,294 

Table 2 - Washizaki's metrics for the FukaBeans Library 

5.2. Definition of the metrics set 

Several issues can be raised regarding the definition of this metrics set.  

The original metrics definition is ambiguous in what concerns inheritance. It is unclear how 

inherited features (methods and attributes) should be accounted for. Our formalization only 

uses the directly defined features. While for this particular sample of components this is not a 

problematic issue, it is possible to define hierarchies of object-oriented components where this 

option would have an influence on the metrics values. 

Another possible concern relates to the complexity associated with parameter types in the 

evaluation of the complexity of method interfaces. The metrics just count the number of 

parameters, thus being blind to parameter type repetition and parameter type complexity. It 

can be argued that none of them should be irrelevant, here. Consider two methods with N 

arguments. The first one has all the arguments of the same type, while the second has N 

different types of arguments, so, this may be a source of extra complexity that is not captured 

by these metrics. The parameters complexity may also have its weight in the perceived 

complexity by the component user, but, again, this is not reflected in this metrics set. 

5.3. Applicability of the metrics set  

Washizaki’s metrics set was designed to assess reusability of fine grained components 

(JavaBeans) through the analysis of their interface complexity. This limits somewhat the 

scope of model elements being analyzed. UML architectural components have a much richer 

expressiveness than the one used in these metrics, which leave out important model elements 

such as the provided and required interfaces, as well as the events the component may 

produce or consume. Furthermore, it does not address extra-functional aspects of the 

components. 



5.4. Formalization technique limitations 

Our formalization technique relies on the expressiveness of the underlying metamodel. As 

long as a concept can be consistently and unambiguously represented by the meta-objects of 

such metamodel, it should be possible to explore those meta-objects with appropriate OCL 

expressions and extract relevant information from them. Therefore, the formalization 

limitations may arise from two sources:  

• Lack of expressiveness of the meta-model – the standard UML 2.0 metamodel may have 

to be extended with profiles to conveniently express some extra-functional properties 

• Lack of expressiveness of OCL – OCL may lack the syntactic sugar to extract some 

information 

In this paper, we briefly discussed one limitation that combines both issues, concerning the 

automatic detection of BeanInfo classes. Such detection would imply analyzing the classes’ 

names and detecting JavaBeans naming conventions and these are not conveniently captured 

by the meta-model, or detectable with OCL expressions. 

 

6. Experimental setting 

In this section we describe a portable tool environment we are assembling to apply the 

formalization technique described in this paper to real-world examples. Since the metrics are 

formalized as OCL expressions based upon the UML 2.0 metamodel, we require three 

abilities from such an environment: 

• the ability to generate an abstract representation of UML2.0-compliant meta-objects out of 

a given components’ architecture; 

• the ability to instantiate the UML2.0 meta-classes with those meta-objects; 

• the ability to parse and execute OCL expressions upon the metamodel populated with the 

meta-objects. 

Figure 2 presents an overview of our experimental environment. The UML metamodel 

specification was obtained from [25] in XMI format. The component assembly specifications 

we want to evaluate were also obtained in XMI format, produced by a UML design tool used 

for reverse-engineering the jar files and then converting the reverse-engineered models to 

XMI. OCL metrics specifications and heuristics specifications are also fed into the OCL 



expressions evaluator. The evaluation of metrics expressions and heuristics expressions are 

the outputs of this process. 
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Figure 2 - Overview of metrics evaluation support 

Until a new generation of case tools, with UML 2.0 compliant dictionaries and supporting 

OCL expressions evaluation is not available, we are using the USE tool as our OCL 

expressions evaluator. Both the USE tool and the XMI front-end will be further described in 

this section. 

5.1. USE tool  

The USE tool [26] was developed by Mark Richters at the University of Bremen to allow 

expressing constraints on UML class diagrams with OCL. This allows populating the 

specified system and evaluating the value of the OCL expressions. We now analyze with 

some detail the benefits and shortcomings of this tool. 

5.1.1. Benefits of the USE tool 

The USE tool includes a model loader. The OCL evaluator is used not only for checking the 

model state against the model’s constraints, but also to query detailed information about the 

model’s state. Both features are key elements for the metrics formalization: the former, by 

allowing to load the UML metamodel, so that we can populate it with model elements that 

correspond to the component infrastructure we want to measure; the latter, because each 

metric’s specification is defined as a query upon the loaded model’s state. 

5.1.2. Drawbacks of the USE tool 

Despite of its virtues, USE has a few shortcomings. The first one is that it only supports a 

subset of the UML, leaving out some model elements that would be quite useful to our 



intents, such as packages. Although this limitation can be circumvented by using qualified 

identifiers rather than simple ones, it is nevertheless an extra source of complexity for our 

metrics definition. A second shortcoming of the USE tool is that it uses non-standard import 

formats for UML models and objects. In our first formalization attempts, we developed an 

adaptor between a commercial UML modeling tool and USE [16, 18]. The drawback of this 

approach was being tied to a specific proprietary tool. The increasing adoption of XMI as a 

standard interchange format by tool producers, lead us to the requirement of developing an 

XMI front-end. Another drawback of the USE tool is the lack of an incremental loading 

facility that would allow the separation of metrics definition from heuristics and from the 

model itself. 

5.2. XMI front-end 

In order to generate USE specifications from models specified with several UML design 

tools, we have developed a XMI to USE adapter that takes as input an XMI specification and 

outputs the two following results: 

• a USE specification equivalent to the UML class diagram expressed in XMI; we use this 

feature to generate a UML 2.0 metamodel in the USE input format (UML 2.0 metamodel 

meta-classes, in Figure 2);  

• a USE command file with the instructions to generate the set of meta-objects representing 

the component assembly (UML 2.0 component assembly instantiation, in Figure 2). 

With these 2 features we are then able to input the UML 2.0 metamodel in the USE tool and 

then load it with any given meta-objects representing a specific component assembly. 

In order to illustrate the metrics collection process, we now provide a small example. 

Consider the JavaBean component Chart, in Figure 3. Although quite simple, this bean allows 

us to show how the metrics are computed. It contains two attributes and five operations. Out 

of those five operations, one is a constructor, one is a getter, one is a setter, and the remaining 

two are business operations. The setter operation is the only one with an argument. The 

comment label presented on the left shows the values of Washizaki’s metrics, when computed 

for this JavaBean. 



Chart
title : String
value : List

<<constructor>> Chart()
<<getter>> getTitle() : String
<<setter>> setTitle(t : String) : void
plot() : void
grid() : void

<<component>>EMI(Chart) = 0 
RCO(Chart) = 0,5
RCC(Chart) = 0,5
SCCr(Chart) = 1
SCCp(Chart) = 1

 

Figure 3 – Chart JavaBean class diagram 

The metrics collection relies on a relatively small subset of the UML metamodel. A portion of 

it is depicted in Figure 4. From this metamodel extract, we can see how components are 

linked to their operations (ownedOperations) and properties (ownedAttributes). 

 

Figure 4 – UML 2.0 metamodel extract 

To collect the metrics, we need to populate the metamodel with the necessary meta-objects. 

Again, we just show a few of them for illustration purposes, in Figure 5. In this extract, we 

show only the Chart component and its owned operations and attributes. The computation of 

the metrics is performed by navigating through this populated metamodel. For instance, to 
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compute the number of properties, we simply compute the size of the collection of elements 

linked to c1 by the ownedAttribute association.  

c1: Component

name = "Chart"

o5: Operation

name = "grid"

o1: Operation

name = "Chart"
stereoty pe= "constructor"

o4: Operation

name = "plot"

o3: Operation

name = "setTitle"
stereoty pe = "setter"

o2: Operation

name = "getTitle"
stereoty pe = "getter"

p2: Property

name = "v alue"

p1: Property

name = "title"

ownedAttribute

ownedAttribute

ownedOperation ownedOperation

ownedOperation

ownedOperation ownedOperation

 

Figure 5 – Meta-objects diagram extract 

 

7. Conclusions and future work 

Independent validation of metrics is an essential step if they are to be adopted by a broader 

audience. The current CBD metrics state of the art is dominated by proposals that are 

insufficiently validated not only by their own authors, but also by third party experiments. 

This status quo results from several factors, ranging from the relative novelty of most CBD 

metrics proposals to the “traditional” difficulty of getting appropriate samples to validate the 

proposed metrics. Other common difficulties with a large number of metrics specifications are 

the ambiguity in metrics definition and the usage of inadequate specifying formalisms. Both 

hamper independent validation of metrics. 



The work presented in this paper contributes to mitigate some of these problems. It provides a 

formal, portable and executable way of specifying metrics for CBD, using standard notations 

such as UML 2.0 class diagrams, OCL, and XMI, as well as a prototype environment upon 

which metrics collection can be performed. The emphasis on standard technologies aims to 

bring together the academic and practitioners communities, by providing a simple, but 

powerful mechanism to integrate metrics collection and heuristics-based help for CBD with 

the practitioners’ normal development environments. We believe this level of integration is a 

key factor to foster independent validation of metrics proposals.  

Although the metrics formalized in this paper are centered in fine-grained components, the 

approach is flexible enough to be applied at different levels of granularity and with different 

concerns. In particular, we are interested in exploring metrics for component assemblies, to 

assess the hypothesis that rather than evaluating isolated components, we should focus our 

attention in evaluating component assemblies. The final objective is to capture the effect of 

the different components interaction in the overall quality of the component assembly. 

The approach is generic in the sense that, from a conceptual point of view, it is independent 

from the underlying metamodel. In a parallel effort, we are exploring the definition of metrics 

for the Common Warehouse Metamodel. 

References 

[1] M. Bertoa and A. Vallecillo, "Quality Attributes for COTS Components", 6th 

International Workshop on Quantitative Approaches in Object-Oriented Software Engineering 

(QAOOSE'2002), Málaga, Spain, 2002. 

[2] N. S. Gill and P. S. Grover, "Component-Based Measurement: Few Useful Guidelines", 

ACM SIGSOFT Software Engineering Notes, vol. 28, 2003. 

[3] A. v. d. Hoek, E. Dincel, and N. Medvidovic, "Using Service Utilization Metrics to Assess 

and Improve Product Line Architectures", Ninth International Software Metrics Symposium 

(Metrics'03), Sydney, Australia, 2003. 

[4] U2-Partners, "3rd revised submission to OMG RFP ad/00-09-01: Unified Modeling 

Language: Infrastructure - version 2.0", U2-Partners January 2003. 

[5] OMG, "Unified Modeling Language: Superstructure - Version 2.0 - Final Adopted 

Specification", Object Management Group Inc. ptc/03-08-02, 2003 2003. 

[6] OMG, "Unified Modeling Language: OCL (version 2.0)", Object Management Group Inc. 

ptc/03-08-08, August 2003. 



[7] V. Basili, L. Briand, and W. L. Melo, "A Validation of Object-Oriented Design Metrics as 

Quality Indicators", IEEE Transactions on Software Engineering, vol. 22, pp. 751-760, 1996. 

[8] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object Oriented Design", IEEE 

Transactions on Software Engineering, vol. 20, pp. 476-493, 1994. 

[9] W. Li and S. Henry, "Object-Oriented Metrics that Predict Maintainability", Journal of 

Systems and Software, vol. 23, pp. 111-122, 1993. 

[10] T. McCabe, "A Complexity Measure", IEEE Transactions on Software Engineering, vol. 

2, pp. 308-320, 1976. 

[11] R. Dumke and A. Schmietendorf, "Possibilities of the Description and Evaluation of 

Software Components", Metrics News, vol. 5, 2000. 

[12] M. A. S. Boxall and S. Araban, "Interface Metrics for Reusability Analysis of 

Components", Australian Software Engineering Conference (ASWEC'2004), Melbourne, 

Australia, 2004. 

[13] H. Washizaki, H. Yamamoto, and Y. Fukazawa, "A Metrics Suite for Measuring 

Reusability of Software Components", Metrics'2003, 2003. 

[14] F. B. Abreu, "Using OCL to formalize object oriented metrics definitions", INESC, 

Software Engineering Group ES007/2001, May (versão 0.9) 2001. 

[15] F. B. Abreu, L. M. Ochoa, and M. A. Goulão, "The GOODLY Design Language for 

MOOD2 Metrics Collection", ECOOP Workshop on Quantitative Approaches in Object-

Oriented Software Engineering, Lisboa, Portugal, 1999. 

[16] A. L. Baroni, S. Braz, and F. B. Abreu, "Using OCL to Formalize Object-Oriented 

Design Metrics Definitions", QUAOOSE'2002, Malaga, Spain, 2002. 

[17] A. L. Baroni, "Formal Definition of Object-Oriented Design Metrics": Vrije Universiteit 

Brussel - Belgium, in collaboration with Ecole des Mines de Nantes - France and 

Universidade Nova de Lisboa - Portugal, 2002. 

[18] A. L. Baroni and F. B. Abreu, "Formalizing Object-Oriented Design Metrics upon the 

UML Meta-Model", Brazilian Symposium on Software Engineering, Gramado - RS, Brazil, 

2002. 

[19] A. L. Baroni and F. B. Abreu, "A Formal Library for Aiding Metrics Extraction", 

International Workshop on Object-Oriented Re-Engineering at ECOOP'2003, Darmstadt, 

Germany, 2003. 

[20] M. Goulão and F. B. Abreu, "Bridging the gap between Acme and UML for CBD", 

Specification and Verification of Component-Based Systems (SAVCBS'2003), at the 

ESEC/FSE'2003, Helsinki, Finland, 2003. 



[21] JARS, "http://www.jars.com/". 

[22] M. Goulão and F. B. Abreu, "Formalizing Metrics for COTS", MPEC'2004, Edimburgh, 

2004. 

[23] Y. Fukazawa, H. Washizaki, H. Yamamoto, T. Adachi, Y. Sakai, K. Satoh, and D. 

Hoshi, "FukaBeans: JavaBeans Components Library, 

http://www.fuka.info.waseda.ac.jp/Project/CBSE/fukabeans/". 

[24] G. Hamilton, "JavaBeans (version 1.01-A)", Sun Microsystems, API Specification 

August 1997. 

[25] N. Consortium, "Neptune Consortium UML 2.0 resources page - http://neptune.irit.fr/". 

[26] M. Richters, "A UML-based Specification Environment". http://www.db.informatik.uni-

bremen.de/projects/USE: University of Bremen, 2001. 

 


