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Abstract. This paper describes an independent validation study for a suite of 
reusability metrics for component based design published in the literature. The 
metrics under validation were originally proposed using a semi-formal notation, 
namely a combination of mathematical formulae with natural language 
descriptions for elementary parts of those formulae. They were then computed 
using proprietary tools. By contrast, we present a formalization for the metrics 
suite that combines the version 2.0 of the UML metamodel with OCL. This 
technique provides a formal, portable and executable definition of the metrics 
set that can be used to perform other cross-validations of the metrics suite. A 
prototype working environment to perform such cross-validation experiments, 
both with this and other metrics sets was developed and a metrics collection 
experiment using that environment is discussed. 

1. Motivation 

Software quality modeling involves not only the definition of adequate taxonomies of 
quality attributes, but also the establishment of methods to assess those attributes. This 
assessment may be performed both in a qualitative and in a quantitative way. In this 
paper, we are concerned with the latter. The quantitative assessment of quality 
attributes requires the usage of software metrics. Quality models can then be built 
based on a combination of such metrics, using general purpose statistical techniques, 
such as multivariate regression models. 

Statistical models require validation before they can be adopted by a large 
community. This validation should cover: 
• Internal consistency – The model is specified through a set of mathematical 

statements, whose validity should be checked for mathematical correctness. A set 
of inputs are collected from the system represented by the model, along with 
relevant information on the assumptions made about the system elements. The 
model allows computing a set of outputs representing the predicted behavior of the 
system being modeled. In an internally consistent model, the outputs are valid if the 
inputs are valid.  

• External consistency – A model has external consistency if information collected 
from it is not contradicted by other information observed in practice. This relates to 
the applicability of the model, as it focuses on the extent to which the assumptions 
made in the model apply beyond the sample from which the model was delivered. 



 The credibility of component-based development (CBD) quality models and 
related metrics suites depends not only on their soundness, but also on the extent to 
which they are validated, both by their own proponents and by independent parties. 
The current state of practice of experimental software engineering in what concerns 
CBD quality models and metrics is still far from reaching this level of maturity. Some 
quality models and metrics have been proposed [1, 2], but they lack proper validation 
in order to be widely accepted by the CBD community. 

Although more validation studies are required, several difficulties hamper this task, 
such as (i) the lack of available data for conducting case studies, (ii) problems with the 
interpretation of the models and metrics specifications and (iii) lack of supporting 
tools for data collection. 

In this paper, we present a CBD metrics suite cross-validation effort. On the 
original metrics set proposal, its authors used semi-formally defined metrics and 
proprietary tools to collect them and support their validation effort. Here, we 
formalize the metrics’ definition and present an experimental environment that 
combines publicly available tools with standard languages for representing the metrics 
specification, heuristics based on those metrics, and the analyzed software 
components specification.  

Our formalization technique, developed within the QUASAR research group 
(http://ctp.di.fct.unl.pt/QUASAR/) uses a metamodel of the target domain – CBD 
modeling with the Unified Modeling Language (UML), in the present case – upon 
which metrics are defined using the Object Constraint Language (OCL). The 
advantages of this formalization technique are manifold: 

i. it is not affected by subjectivity, since the underlying metamodel removes any 
concept imprecision, or fuzzy inter-relationship interpretation; 

ii. it is formal, because OCL [3] offers the required mechanisms for granting 
precision in metrics definition; 

iii. it is standard, since both the metamodel and the metrics specification are expressed 
using the UML standard, of which OCL is a part; 

iv. it is understandable to software practitioners, because both class diagrams (used 
for representing the meta-model) and the OCL itself were conceived for simplicity, 
without sacrificing expressiveness; 

v. it is generic, therefore creating the conditions either for replication of validation 
experiments with this metrics suite, or with others; 

vi. it is easily automated, since with the upcoming adoption of the new UML 2.0 
standard [4, 5] it is likely that many tool producers will provide direct support to 
the new UML metamodel, as well as to OCL, which is also part of the UML 
standard.  
This paper is organized as follows. In section 2, we present some related work 

concerning independent validation of software metrics. In section 3, we present our 
technique for formally defining metrics upon the UML 2.0 metamodel, using OCL. 
The formal definition of Washizaki et al.’s metrics set is presented in section 4. 
Section 5 contains the formal definitions of a set of heuristics that helps interpreting 
the metrics. In section 6, a metrics collection experiment is described and discussed. 
The used metrics set is then analyzed for its weaknesses. Conclusions are presented in 
section 7, while further work is outlined in section 8. 



2. Related Work 

The idea of independent validation of quality models and metrics is not new. It was 
borrowed from other sciences, where it is common to cross-check model validity by 
conducting independent experiments. For instance, in the pharmaceutical industry, 
new drugs have to undergo independent testing before being approved for public use 
(see, for instance, the regulations concerning this process in the United States of 
America – http://www.fda.gov/).  

In the realm of experimental software engineering, there are several examples of 
this sort of independent scrutiny, concerning software metrics suites. In [6], Harrison 
et al. validated the MOOD (Metrics for Object-Oriented Design) metrics set [7]. In 
[8], Basili et al. checked the adequacy of Chidamber and Kemerer’s metrics suite [9] 
to predict class fault-proneness. The same metrics suite was assessed as a 
maintainability predictor in [10]. Metrics such as McCabe’s cyclomatic complexity 
[11] have been extensively used both in academic and industrial settings and 
integrated in several commercial development tools. 

However, the previous examples are the exception and not the rule. Most of the 
metrics proposed in the literature have gone through scarce validation, if any at all. 
This phenomenon is particularly true within the more recent quest for CBD metrics 
(e.g. [12-14]). One noteworthy exception is the proposal of Washizaki et al. [15], 
which has gone further along the way of validating the proposed models. Their 
validation relies on a sounder statistical analysis, rather than on anecdotal examples or 
“gut-feeling” hints on descriptive statistics collected from small samples (see [16] for 
an overview on current CBD metrics proposals). 

No known cross-validation has been performed on any of the CBD metrics sets. 
Washizaki et al.’s metrics set is no exception, regarding this. This paper is expected to 
mitigate this problem and to open the road for other cross-validation studies (of this 
and other metrics sets) by sharing our methodological approach. 

The formalization approach presented in this paper is an evolution of our previous 
work concerning the formalization of metrics for object-oriented (OO) design. The 
approach of using OCL to perform such formalization was introduced in [17], using 
the metamodel of the GOODLY (a Generic Object Oriented Design Language? Yes!) 
OO design language [18]. With the growing adoption of UML by the software 
industry and academia, the need to make metrics available to the common practitioner 
has led us to develop the FLAME (Formal Library for Aiding in Metrics Extraction) 
metrics extraction library in OCL, on top of the UML 1.x metamodel, upon which 
several metrics suites were formalized [19-22]. The work presented in this paper 
differs from our previous work in metrics formalization in the following ways: 
• instead of version 1.x, we are now using the UML 2.0 metamodel as a basis for our 

experiments; this is a sensible choice, due to its extended expressiveness for 
specifying component based architectures, as shown in [23]. 

• the focus of the metrics being analyzed has shifted from OO design to CBD;  
• the tool support became more independent from proprietary formats, with the 

adoption of XMI as the input format for our metrics collection tools. 



3. Metrics formalization and collection technique 

Our metrics formalization and collection technique relies on the specification of OCL 
clauses that allow us to navigate through a metamodel and collect the required 
information for metrics computation. Consider a very small subset of the UML 2.0 
metamodel, depicted in Figure 1. From this metamodel extract, we can see, for 
instance, how components are linked to their operations (ownedOperation) and 
properties (ownedAttribute), as well as how operations may contain parameters 
(ownedParameter). Due to space constraints, and for the sake of readability, we 
omit a few model elements and attributes used in the formalization described in this 
paper, as they would imply a much denser class diagram. 
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Figure 1 – UML 2.0 metamodel extract 

 
In order to illustrate the metrics collection process, we now provide a small 

example. Consider the SQL_Select component, in Figure 2. This fine grained 
component allows us to show how metrics can be computed. It contains 9 attributes 
and 21 operations. Out of those 21 operations, 1 is a constructor, 5 are getters, 5 are 
setters, and the remaining 10 are business operations (all the operations with no 
stereotype, in the example). We use the term “business operations” to conform to 
Washizaki et al.’s classification for all the available operations that implement the 
functionality of components other than constructors, getters and setters.  

The following OCL expressions compute the set of owned properties, its size, the 
set of owned operations, and its size, respectively. The two size expressions, in 



particular, show how simple metrics can be computed for a given component. The 
results of the evaluation of each of the expressions are presented in italic. For the 
sake of simplicity, we assume the objects that populate the metamodel to have the 
same name as the model elements they represent, in the following OCL clauses. 

SQL_Select.ownedAttribute         = {NO_WORK, …, maxRows} 
SQL_Select.ownedAttribute->size() = 9 
SQL_Select.ownedOperation         = {SQL_Select, …, writeObject} 
SQL_Select.ownedOperation->size() = 21 

SQL_Select
NO_WORK : int
DO_SELECT : int
work : int
spaces : Logical View::java::lang::String
url : Logical View::java::lang::String
user : Logical View::java::lang::String
password : Logical View::java::lang::String
selectString : Logical View::java::lang::String
maxRows : int

<<constructor>> Select()
doLayout() : void
doWork() : void
getMaxRows() : int
<<getter>> getPassword() : Logical View::java::lang::String
<<getter>> getSQL() : Logical View::java::lang::String
<<getter>> getURL() : Logical View::java::lang::String
<<getter>> getUser() : Logical View::java::lang::String
<<getter>> getWork() : int
initialize() : void
layout() : void
readObject(arg0 : ObjectInputStream) : void
select() : void
<<setter>> setMaxRows(arg0 : int) : void
<<setter>> setPassword(arg0 : Logical View::java::lang::String) : void
<<setter>> setSQL(arg0 : Logical View::java::lang::String) : void
<<settter>> setURL(arg0 : Logical View::java::lang::String) : void
<<setter>> setUser(arg0 : Logical View::java::lang::String) : void
update() : void
update(arg0 : ActionEvent) : void
writeObject(arg0 : ObjectOutputStream) : void

<<component>>

 

Figure 2 – The select component 

Furthermore, we can define clauses within a given context. The following OCL 
expressions define a set of clauses that we will use later in the paper as auxiliary 
clauses to specify a component metrics set. The first set of clauses is defined for the 
model element Component, while the second one is defined for Operation. 

Component  
-- Readable Properties 
Pr(): Integer = self.ownedOperation->select(o: Operation|  
                o.stereotype = ‘getter')->size() 



-- Writable Properties 
Pw(): Integer = self.ownedOperation->select(o: Operation| 
                o.stereotype = 'setter')->size() 
-- Properties in the component 
A(): Integer  = self.ownedAttribute->size() 
-- Total number of constructors in the component 
Co(): Integer = self.ownedOperation->select(o: Operation|                                           
                o.stereotype = 'constructor')->size() 
-- Business methods with no return value 
Bv(): Integer = self.ownedOperation->select(o: Operation| 
                (not (o.stereotype = 'constructor'))and 
                (not (o.stereotype = 'getter')) and 
                (not (o.stereotype = 'setter')))-> 
                     select(b: Operation| 
                            b.ReturnType()= 'void')->size() 
-- Business methods with no parameters 
Bp(): Integer = … -- Similar to Bv(), but counting operations  
                  -- with an empty parameter list. 
-- Business methods (all bur getters, setters and constructors) 
B() : Integer = self.ownedOperation->size()  
              + self.Pr() + self.Pw() + self.Co() 
Operation 
-- Set of formal parameters (except return parameter) 
Params(): Set(Parameter) = self.formalParameter->                                       
                   select(fp: Parameter | 
                          fp.direction <> #return) 
-- Set of return parameters of an Operation  
ReturnParams(): Set(Parameter) =               
                self.formalParameter-> 
                   select(fp: Parameter |  
                          fp.direction = #return) 
-- Return type of an Operation 
ReturnType (): String =  
               if (self.formalParameter -> 
                       exists(direction = #return)) 
               then 
                  if (self.ReturnParams()->                            
                         asSequence() ->first.type.isDefined)         
                  then 
                     self.ReturnParams()->asSequence()->  
                         first.type.name 
               else 
                  'void' 
               endif 
           else  
               'void' 
       endif 

We can then use these clauses to extract information about a given component. For 
instance, the number of constructors provided by c1 is given by: 

c1.Co() = 1 



4. Washizaki et al.’s metrics set formalization 

4.1. Metrics set description 

Washizaki et al. proposed a metrics set of 5 metrics for JavaBeans component 
reusability assessment in [15]: Existence of Meta-Information (EMI), Rate of 
Component Observability (RCO), Rate of Component Customizability (RCC), Self-
Completeness of Components parameters (SCCp) and Self-Completeness of 
Components’ return values (SCCr).  For each of the metrics, the authors presented: 
• their intent; 
• their definitions, combining a mathematical and an informal formulation; 
• a confidence interval [Lower Limit; Upper Limit] for each metric; if its value is 

outside this interval, the component is regarded as a potential source of future 
problems, badly designed, or prone to exhibit bad behavior;  

• interpretation heuristics based on such confidence intervals. 
The quality characteristics, factors and criteria that lead to the development of each 

of the metrics are presented in Figure 3. 
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Figure 3 – Washizaki et al.’s quality model for reusability (adapted from [15]) 

In order to validate their approach, Washizaki et al. performed a case study where a 
sample of 125 JavaBeans from jars.com [24] was used, along with a prototype tool to 
extract the metrics from jar files. At jars.com, components are rated for quality with 
an 8 levels scoring system that employs expert opinions on the components. The 
criteria publicized by jars.com are presentation, functionality and originality. The 
rationale is that this rating can be used for component reusability assessment. This 
rating was used as a dependent variable in their validation experiment. They computed 
95% confidence intervals for high quality components, based upon the average value 
of each metric, for components on the two top quality levels.  

4.2. Metrics formalization 

The first step for applying our technique is the formalization of the original metrics 
definitions with OCL, using the subset of the UML 2.0 metamodel that corresponds to 
component diagrams. A discussion on the formalization was presented in [25]. Only 4 
out of the 5 metrics in Washizaki et al.’s set were formalized. The remaining metric 



(EMI, valued 1 when a BeanInfo class exists for the component, or 0 otherwise) 
cannot be conveniently expressed upon the UML 2.0 metamodel, as we will discuss in 
section 4.3. Here, we present the metrics formalization for the purpose of self-
containment of the paper. All the elementary OCL clauses were defined in section 3.  

Component 
-- Rate of Component Observability  
RCO(): Real = if self.A() = 0 then 
                 0.0 
              else 
                 self.Pr()/self.A() 
              endif 

-- Rate of Component Customizability 
RCC(): Real = if self.A() = 0 then 
                 0.0 
              else 
                 self.Pw()/self.A() 
              endif 

-- Self-Completeness of Component's return value 
SCCr(): Real = if self.B() = 0 then 
                  1.0 
               else 
                  self.Bv()/self.B() 
               endif 

-- Self-Completeness of Components Parameter 
SCCp(): Real = if self.B() = 0 then 
                  1.0 
               else 
                  self.Bp()/self.B() 
               endif 

4.3. On the formalization expressiveness 

As seen on the previous section, we did not formalize the EMI metric. Our 
formalization technique relies on the expressiveness of the underlying metamodel, as 
well as on our ability to populate it from an existing specification (in this case, a jar 
archive). As long as a concept can be consistently and unambiguously represented by 
the meta-objects of the metamodel, it is possible to explore those meta-objects with 
appropriate OCL expressions and extract relevant information from them. In this 
particular case, detecting the BeanInfo class would require that we would parse the 
name of classes associated with our JavaBean, as our reverse engineering tools do not 
make any special annotations to express this. On the one hand, the UML metamodel 
itself does not include any special abstraction for this JavaBean’s specific mechanism; 
on the other, OCL is not a convenient language to implement string parsing.  



This is not an intrinsic limitation of the formalization technique. We could extend 
the metamodel to address this issue and improve the parsing mechanism to populate 
the extended metamodel with appropriate meta-objects. The trade-off would be to 
sacrifice the conformance to the standard meta-model, with its obvious negative 
implications to the portability of our formalization. 

The formalization of metrics concerning extra-functional properties is also a 
challenge for the future. The UML 2.0 metamodel would have to be extended with 
convenient profiles in order for us to use our formalization approach. 

5. Formalizing a suite of reusability heuristics 

Along with their metrics set, Washizaki et al. also proposed a set of heuristics, to aid 
in the metrics interpretation. Three of the heuristics based on these metrics, referred to 
as WarningRCO, WarningRCC and  WarningSCCp, behave as a band-pass filter, in 
the sense a potential problem warning should be issued if the metrics value is either 
lower than the lower threshold, or higher than the upper one (for RCO, RCC and SCCp, 
respectively). The WarningSCCr heuristic only establishes a minimum threshold for 
the value of the SCCr metric. If the metric value is below the threshold, this should be 
interpreted as an indication of a potential problem regarding the quality characteristic 
being assessed by that particular metric (portability). These heuristics can be 
formalized with OCL. 

Class 
AboveRange (limit: Real, value: Real): Boolean = value > limit 
BelowRange (limit: Real, value: Real): Boolean = value < limit 
OutOfRange (lowerLimit: Real, upperLimit: Real, value: Real): 
Boolean =   (self.BelowRange (lowerLimit, value))  
         or (self.AboveRange (upperLimit, value)) 
pre: lowerLimit < upperLimit 

Component 
WarningRCO(lowerThreshold: Real, upperThreshold: Real):  
Boolean = self.OutOfRange (lowerThreshold, upperThreshold,  
                             self.RCO()) 
WarningRCC(lowerThreshold: Real, upperThreshold: Real):  
Boolean = self.OutOfRange (lowerThreshold, upperThreshold,  
                           self.RCC()) 
WarningSCCr(lowerThreshold: Real): Boolean =  
          self.BelowRange(threshold, self.SCCr()) 
WarningSCCp(lowerThreshold: Real, upperThreshold: Real): 
Boolean = 
   self.OutOfRange (lowerThreshold, upperThreshold, self.SCCp()) 

We defined the first three clauses in the Class context, rather than at the 
Component one. In the UML 2.0 metamodel, Component is a subclass of Class, so 
the clauses defined for Class can be used with Component. This allows us to reuse 
those clauses in the definition of heuristics based on other kinds of metrics based upon 
the UML metamodel (e.g. OO design metrics upon class diagrams).  



 
 
 

Metric Average LowerLimit Upper Limit # components 
RCO 0,40 0,17 0,42 36 
RCC 0,35 0,17 0,34 35 
SCCr 0,85 0,61 1,00 108 
SCCp 0,74 0,42 0,77 28 
EMI 0,84 0,50 1,00 105 

Table 1 – Washizaki et al. heuristics thresholds 

Table 1 summarizes the heuristics thresholds information provided by Washizaki et 
al.. For each metric, we present its acronym, the average value found in the metrics 
sample, described in 4.1, the lower and upper thresholds for the quality filters and the 
number of components in the sample which fulfill that criterion. For the sake of 
completeness, we include also the thresholds for EMI. All the metrics in this suite are 
defined as ratios and their maximum possible value is 1,00. For this reason, the 
predicate of WarningSCCr does not require an upperThreshold.  

Finally the DesignWarning heuristic is defined as a simple combination of the 
previous ones. The arguments of the DesignWarning predicate allow calibrating 
each heuristic, as more data gets collected. 

Component  
DesignWarning(RCO_LL:  Real, RCO_UL:  Real,  
              RCC_LL:  Real, RCC_UL:  Real,  
              SCCp_LL: Real,  
              SCCr_LL: Real, SCCp_UL: Real): Boolean = 
                (self.WarningRCO(RCO_LL, RCO_UL))  
             or (self.WarningRCC(RCC_LL, RCC_UL))  
             or (self.WarningSCCr(SCCr_LL))  
             or (self.WarningSCCp(SCCp_LL, SCCp_UL)) 

Checking if a given component (e.g. c1) violates any of these heuristics can then be 
achieved by evaluating the following OCL expression: 

c1.DesignWarning (0.17, 0.42, 0.17, 0.34, 0.61, 0.42, 0.77) 

6. Cross-validation experiment 

6.1. Metrics collection 

In order to test our formalization technique we conducted the following experiment: 
we collected Washizaki et al.’s metrics upon a public domain component library, the 
FukaBeans component library [26]. This library was developed according to the 



JavaBeans component model [27] by Washizaki’s research team. Each component is 
distributed as a separate jar file.  

Table 2 contains the metrics values for each of the components in the library. In our 
analysis, we used reverse engineered models of those components, obtained from their 
jar files. The bold values represent data points where the heuristics proposed by 
Washizaki et al. trigger design warnings.  

Although all the average values for the metrics are well inside the quality intervals 
suggested by Washizaki et al.’s experiments, only two of the components 
(GameBean and GraphBean) comply with all the quality heuristics. Seven out of 
twelve components fail three out of four heuristics. It may seem surprising that the 
components developed by the metrics set proponents fail to meet the structural quality 
standards proposed by themselves. It is worth mentioning that while Washizaki et al.’s 
model was calibrated with commercial JavaBeans components, this sample contains 
JavaBeans developed with academic purposes, with usually less than 10 methods. A 
possible interpretation for the apparent lack of reusability, with respect to Washizaki 
et al.’s quality model, is that, for such relatively small interfaces, the model is 
vulnerable: since all the metrics are defined as ratios, the small number of elements 
used in their computation leads to a high standard deviation of metrics values. 

 
JavaBean RCO RCC SCCr SCCp 

CellBean 0,037 0,111 0,909 0,818 

FileUtil 1,000 0,667 1,000 1,000 

FilterBean 0,267 0,133 0,933 0,200 

FukaCalendarBean 0,444 0,444 0,857 0,571 

FukaGraphBean 1,000 1,000 1,000 0,733 

FukaStopWatchBean 0,667 0,667 1,000 0,200 

FukaTextBean 0,000 0,000 1,000 1,000 

GameBean 0,250 0,250 1,000 0,556 

GraphBean 0,182 0,273 1,000 0,714 

StatementBean 0,667 0,667 0,500 0,500 

DocumentBean2 0,000 0,000 1,000 1,000 

WordBean2 0,000 0,000 1,000 1,000 

Mean 0,376 0,351 0,933 0,691 

Standard deviation 0,376 0,333 0,145 0,294 

Table 2 - Washizaki et al.'s metrics for the FukaBeans Library 



6.2. Definition of the metrics set 

Several issues can be raised regarding the definition of this metrics set. The original 
metrics definition is ambiguous in what concerns inheritance. It is unclear how 
inherited features (methods and attributes) should be accounted for. Our formalization 
only uses the directly defined features. While for this particular sample of components 
this is not a problematic issue, it is possible to define hierarchies of object-oriented 
components where this option would have an influence on the metrics values. 

Another possible concern relates to the complexity associated with parameter types 
in the evaluation of the complexity of method interfaces. The metrics just count the 
number of parameters, thus being blind to parameter type repetition and parameter 
type complexity. For instance, a method with N parameters of distinct types is 
intuitively more complex than another method with N parameters of the same type. 
Also, arguments of atomic types (e.g. Integer, Real or Boolean) are intuitively less 
complex than ones of a composed type. 

6.3. Applicability of the metrics set  

Washizaki et al.’s metrics set was designed to assess reusability of fine grained 
components (JavaBeans) through the analysis of their interface complexity. This limits 
somewhat the scope of model elements being analyzed. UML architectural 
components have a much richer expressiveness than the one used in these metrics, 
which leaves out important model elements such as the provided and required 
interfaces, as well as the events the component may produce or consume. 
Furthermore, it does not address non-functional aspects of the components. 

7. Conclusions 

Independent validation of metrics is an essential step to foster adoption by a broader 
audience. The current CBD metrics state of the art is dominated by proposals that are 
insufficiently validated not only by their own authors, but mainly by third parties. 
Although we could argue that most CBD metrics proposals are recent, from our 
experience in the field for the past ten years, we believe that the most important 
factors hampering the replication of experiments are the ambiguity in metrics 
definition and the usage of inadequate specifying formalisms. 

The proposal presented in this paper solves these two problems. It provides a 
formal, portable and executable way of specifying metrics for CBD, using standard 
notations such as UML 2.0 class diagrams and OCL. The emphasis on standard 
technologies aims to bring together the academic and practitioners communities, by 
providing a simple, but powerful solution to integrate metrics collection and 
heuristics-based help for CBD with the practitioners’ normal development 
environments. This level of integration is a key factor to foster cross-validation of 
metrics proposals.  Furthermore, using precise mechanisms based on standard 
notations to support the validation (and subsequently, the usage) of metrics makes  



validation activities become testable and reproducible, two essential characteristics to 
promote them from a “craft” to a “science”. 

8. Future work 

Although the metrics formalized in this paper are centered in fine-grained compo-
nents, the approach is flexible enough to be applied at different levels of granularity 
and with different concerns. In particular, we are interested in exploring metrics for 
component assemblies, rather than evaluating isolated components, with the objective 
of capturing the effect of the different components interaction in the overall quality of 
the component assembly. 

The proposed approach is generic in the sense that, from a conceptual point of 
view, it is independent from the underlying metamodel. In particular, we expect to 
explore this technique for the evaluation of software product lines, using metrics sets 
such as the one proposed by [13]. In a parallel effort, we are exploring the definition 
of metrics for object-relational database schemas [28]. 
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