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Abstract 

 
Objective: Formalization of metrics definitions to 

assess CORBA component assemblies’ quality 
attributes.  

Method: Representation of a component assembly 
as an instantiation of the CORBA Component Model 
metamodel. The resulting meta-object diagram can 
then be traversed using Object Constraint Language 
clauses. These clauses are a formal and executable 
definition of the metrics that can be used to assess 
quality attributes from the assembly and its constituent 
components. 

Results: Demonstration of the expressiveness of our 
technique by formally defining metrics proposed 
informally by several authors on different aspects of 
components’ and assemblies’ quality attributes.  

Conclusion: Providing a formal and executable 
definition of metrics for CORBA component assemblies 
is an enabling precondition to allow for independent 
scrutiny of such metrics which is, in turn, essential to 
increase practitioners confidence on predictable 
quality attributes. 

 
Keywords: Software Metrics, CORBA Component 

Model, OCL, Component-Based Software Engineering  
 
1. Introduction 

One of the goals of Component-Based Software 
Engineering (CBSE) is to achieve predictability of 
system quality based on the quality attributes of the  
constituent components [1]. Currently, developers are 
unable to make such predictions. Difficulties 
hampering this task include determining which 
properties would be useful to component developers 
and users, how the properties of individual 
components should be combined to predict the 
properties of assemblies, how they should be measured 
and how this information should be presented to 
component users. Current component models used in 

industry are not prediction-enabled, although this is an 
active topic of research [2, 3]. 

In current component models, the functional aspects 
of component wiring are supported, at least to a certain 
extent. Simple component models, such as JavaBeans 
[4] offer the ability to access components through their 
provided interfaces. Other, more sophisticated 
component models, such as the CORBA Component 
Model (CCM) [5], allow several input and output 
interfaces, support synchronous and asynchronous 
operations, as well as publishing and subscribing 
events.  

The non-functional aspects of components are less 
supported than the functional ones by the 
aforementioned component models. For instance, the 
new UML 2.0 standard [6, 7] includes constructs for 
representing several of the above mentioned 
component wiring mechanisms, but not for the 
representation of non-functional properties. These are 
defined as a UML profile [8], an extension mechanism, 
but are not part of the core language. This may be a 
limitation in practice, since modeling tools are less 
likely to support UML extensions as part of their 
standard distribution.  

Quality attributes can be classified according to a 
quality model. As noted by some authors [9, 10] 
specific quality models must be developed for CBSE. 
From a component user perspective, components are 
black-boxes whose evolution the user does not control. 
A component user is more concerned with the 
complexity involved in selecting and composing 
components.  

Likewise, existing metrics for structured or object 
oriented development are not well suited for CBSE, 
since those were mainly concerned with internal 
complexity. Several traditional complexity metrics are 
useless to a component user, as their computation 
depends on having access to implementation details 
(e.g. McCabe’s cyclomatic complexity [11]).  

Due to the black-box nature of components and 
their specification state of practice, we are restricted to 
consider functional aspects when assessing their 



quality attributes, either in isolation or in assembly. In 
a recent survey, we have identified several proposals 
for the quantitative assessment of components and 
assemblies, based upon their functional properties [12]. 
We have observed several recurrent problems in those 
metrics proposals, which are also common in metrics 
proposals for other purposes, such as OO design 
evaluation: 
(1) Lack of a quality framework – occurs when 

metrics definition is not framed by a particular 
quality model. 

(2) Lack of an ontology – occurs when the 
architectural concepts, either of functional or non-
functional nature, to be quantified, are not clearly 
defined, namely in what regards their 
interrelationship. An ontology for modeling 
architectural concepts is called a metamodel. 

(3) Lack of an adequate formalism – occurs when 
metrics are defined either with a formalism that 
requires a strong mathematical background, often 
not held by practitioners, or using natural 
language, which normally leads to subjective 
definitions that will jeopardize the correctness of 
metrics collection. 

(4) Lack of validation – occurs when independent 
cross validation is not performed, mainly due to 
difficulties in experiment replication. Such 
validation is required before widespread 
acceptance is sought. 

 
A solution to address (1) is to use the Goal-

Question-Metric (GQM) approach [13], along with an 
appropriate quality model. In this paper, we present an 
approach to mitigate the remaining three problems. We 
use the CCM as a representation for components and 
component assemblies, due to its wide coverage of 
features provided by current component models used 
in industry, such as Enterprise Java Beans, COM or 
.Net. The CCM has a metamodel, upon which we 
define Object Constraint Language (OCL) expressions 
to specify and collect the metrics. Having a standard 
metamodel clearly defines the basic concepts being 
measured, thus solving problem (2). OCL expressions 
formally define how we measure such concepts. OCL 
combines formality with a syntax easily understood by 
practitioners familiar with OO development and is 
therefore an adequate formalism to help solve problem 
(3). Moreover, OCL expressions can be automatically 
evaluated. Since both OCL and the metamodel being 
used are Object Management Group (OMG) standards, 
the approach is inherently portable, thus making it 
suitable for independent replication in different 
settings. The combination of formality, with 
understandability and replicability is a facilitator to the 

independent scrutiny of metrics-based approaches to 
CBSE, therefore creating conditions to mitigate 
problem (4). 

This paper is organized as follows: In section 2 we 
discuss some related work. In section 3, we briefly 
present the CCM, as well as its underlying metamodel. 
In section 4 we formalize metrics for CBSE upon the 
CCM metamodel. In section 5, we present a 
component assembly example and the metrics 
collected upon it. In section 6 we discuss our 
formalization technique within the framework of the 
problems identified in the introduction. Conclusions 
and further work are presented in section 7. 

 
2. Related Work 

Some proposals aim at establishing requisites and 
guidelines for CBD metrics, both concerning 
individual components [14] and component assemblies 
[15]. Although these proposals do not contribute with 
concrete metrics, they provide useful insight on the 
specificities to consider when developing metrics for 
CBD, mainly in what concerns the focus of such 
metrics. Several authors have contributed with 
proposals for the evaluation of component interfaces 
and dependencies [16-18]. These proposals focus on 
different aspects of the interfaces and dependencies of 
components and are mostly concerned with the 
complexity involved in understanding those interfaces, 
and reusing the components. Narasimhan and 
Hendradjaya proposed metrics to assess component 
integration density (a measure of its internal 
complexity) and interaction density (a measure of the 
complexity of relationships with other components) 
[19]. Hoek et al. proposed metrics to assess service 
utilization in component assemblies [20].  

All of these proposals include, to some extent, 
informal specifications. While reading them, one has to 
make educated guesses to fill in the details that are left 
ambiguous. In this paper, we present a collection of 
metrics taken from some of these proposals, and 
formalized with OCL upon the CCM metamodel. Our 
contribution makes explicit our interpretation of the 
metrics definition and provides an executable 
specification for them. This facilitates independent 
validation efforts for these metrics. 

In [21] we formalized a metrics set for component 
reusability assessment [18]. We used that formalization 
to conduct an independent validation experiment on 
the same metrics set in [22], using the UML 2.0 
metamodel. Here, we will use the CCM metamodel, 
because the latter has more expressive power than 
UML 2.0 for representing components.  



Our formalization has also been used in other 
contexts, therefore with different metamodels. In [23], 
we formalized well-known OO design metrics. This 
formalization was based on an OCL expressions 
library, named FLAME, aimed at helping metrics 
extraction in UML 1.x models [24]. More recently, we 
have successfully applied the same technique with 
object-relational database schema metrics [25]. 

 
3. CORBA components 
3.1. The CORBA Component Model 

The CCM [5] is the Object Management Group 
(OMG) standard for the specification of software 
components. As such, it is independent from a specific 
vendor, both in what concerns the component’s 
programming languages and platforms. CORBA 
components are created and managed by homes (a 
home is a meta-type which offers standard factory and 
finder operations and is used to manage a component 
instance), run in containers that handle system services 
transparently and are hosted by generic application 
component servers. Each component may have several 
provided (facets) and required (receptacles) interfaces 
as well as the ability to publish (event sources) and 
subscribe (event sinks) events. Components also offer 
navigation and introspection capabilities. The CCM 
also has support for distribution and Quality of Service 
(QoS) properties. Overviews on the CCM can be found 
at [26, 27]. 

 
3.2. The CCM metamodel 

The CCM specification includes a Meta Object 
Facility–compliant metamodel [28], where the CCM 
modeling elements are precisely defined. The 
metamodel includes three packages (Figure 1). 

 

ComponentIDLBaseIDL CIF

 
Figure 1 - The CCM metamodel packages 

 The BaseIDL package contains the modeling 
elements concerning the CORBA Interface Description 
Language (IDL) An excerpt of it is represented in 
Figure 3 (provided in Appendix B, for increased 
readability). BaseIDL is extended by ComponentIDL, to 
add the component specific constructs. Finally, 
ComponentIDL is extended by the CIF package, which 
includes the definitions relating to the component life 
cycle.  

Figure 4 (also in Appendix B) represents an excerpt 
of the ComponentIDL package, where we can observe 
how the metamodel relates components with their 

required and provided interfaces, as well as with the 
events they publish or subscribe. 

 
4. Metrics formalization with OCL 
4.1. Formalization technique 

A CCM assembly can be represented as an instance 
of the CCM metamodel. This instance can be seen as a 
directed graph of meta-objects (nodes) representing the 
modeling elements used in the assembly, and the 
appropriate meta-links (edges) among them. By 
traversing this graph, we can collect information on the 
assembly we want to analyze. 

OCL expressions can be used to collect the relevant 
information from the meta-data (meta-objects and 
meta-links). Those expressions provide us the distilled 
information required for our metrics computation. 
Although expressions on specific meta-data could be 
written, our option is to define OCL functions at the 
meta-class level, thus making the expressions (and, 
therefore, the metrics definitions) reusable for all 
instances of the meta-class where they were defined. 

OCL functions are defined in a given context. In 
our approach we use them in the context of a meta-
class to facilitate information retrieval from instances 
of that meta-class. Consider the following example, 
where we define the functions Operations and 
OperationsCount in the context of the InterfaceDef 
meta-class, to represent the set of operations available 
in that interface and the number of elements in that set, 
respectively: 
InterfaceDef 

Operations(): Set(OperationDef) =  
   self.contents->select(o |  
     o.oclIsKindOf(OperationDef))-> 
     collect(oclAsType(OperationDef))->asSet() 

OperationsCount(): Integer =  
  self.Operations()->size() 

To support our metrics definitions, we built a 
library of reusable functions, which includes these 
ones, described in Appendix A.  
 
4.2. Formalizing metrics for CBD 

In this section, we formalize several metrics for 
CBD proposed in the literature, using the library 
introduced in the previous section. For the sake of 
uniformity, we follow a similar pattern for each metric, 
or group of related metrics. We start by presenting 
their (i) name and original specification, keeping the 
notation used by their proponents (thus illustrating the 
variability of notations commonly used in metrics 
definitions), and the (ii) metric’s rationale, in their 
proponents’ view. These are followed by (iii) 



considerations and assumptions made during the 
formalization process and the formalization of the 
metric in OCL. This may include auxiliary functions. 
The AuxilaryFuncion typeface is used to identify 
these functions. The final expression of the metric is 
expressed within an outline bar.  
 
4.2.1. Component interface complexity assessment 

In this section we present the formalization of a 
selection of metrics concerning the complexity of 
component interfaces proposed by Boxall and Araban 
[16]. These metrics aim at assessing the 
understandability of a component interface. 

Arguments per Procedure (APP)[16] 
 
(i) The average number of arguments in publicly 

declared procedures (within the interface) was defined 
as in (Eq. 1), 

p
a

n
n

APP =  
(Eq. 1) 

where: 
na = total count of arguments of the publicly 

declared procedures 
np = total count of publicly declared procedures 
 
(ii) The rationale for this metric is that humans have 

a limited capacity of receiving, processing and 
remembering information  [29], so the number of 
chunks of information in the procedure definition (in 
this case, its arguments) should be limited. It is 
suggested that an increased number of arguments 
damages the interface’s understandability. 

(iii) Overloaded and overridden procedures 
(operations, in the CCM) are considered, but not 
inherited ones. The original metric specification makes 
no reference to the latter, so we assume them to be 
outside the scope of this metric. If the component is 
implemented in an OO language, all public and 
protected OO methods should be counted, but not the 
private ones.  

The metric’s definition assumes a single, or at least 
unified, interface for the component. There is no 
directly equivalent modelling element in the CCM 
metamodel. The component equivalent interface is 
broader, as it includes all implicit operations (a set of 
operatrions defined by component homes), operations 
and attributes which are inherited by the component 
(also through supported interfaces) and attributes 
defined inside the component. On the other hand, 
considering just a single interface as the context would 
lead to a different metric than the one proposed by 
Boxall and Araban. To be precise, we use the union of 

procedures in the provided interfaces as the set of 
procedures to be analyzed.  

The context for the metric definition is 
ComponentDef. We start by defining 
ProvidedOperations, the set of operations used in the 
metrics definition, and ProvidedOperationsCount, the 
size of this set. The formalization of the APP metric 
becomes straightforward, with these auxiliary 
functions. 
ComponentDef 

ProvidedOperations(): Set(OperationDef) = 
   self.ProvidesNoDups()-> 
   collect(Operations())->flatten()->asSet() 

ProvidedOperationsCount(): Integer =            
   self.ProvidedOperations()->size() 

NA(): Integer =  
   self.ProvidedOperations()-> 
     collect(ParametersCount())->sum() 

NP(): Integer =  
   self.ProvidedOperationsCount() 

APP(): Real =  
   self.NA()/self.NP() 

Distinct Argument Count (DAC), and Distinct 
Arguments Ratio (DAR) [16] 

 
(i) The number of distinct arguments in publicly 

declared procedures was defined as in (Eq. 2). Its 
percentage on the component interface was defined as 
in (Eq. 3), 
 

ADAC =  (Eq. 2) 

where: 
A = set of the <name,type> pairs representing 

arguments in the publicly declared procedures 
|A| = number of elements in the set A. 
 

an
DACDAR =  (Eq. 3) 

where: 
na = total count of arguments of the publicly 

declared procedures 
 
(ii) DAC is influenced by the adoption of a 

consistent naming convention for arguments in the 
operations provided by a component. If the same 
argument is passed over and over to the component’s 
operations, the effort required for understanding it for 
the first time is saved in that argument’s repetitions 



throughout the interface. The smaller the number of 
distinct arguments a component user has to understand, 
the better. Likewise, a lower DAR leads to a higher 
understandability. Unlike DAC, DAR is immune to the 
size of the interface. 

 (iii) Boxall and Araban consider a parameter as a 
duplicate of another one if the pair <name, type> is 
equal in both arguments. ExistsNameType returns true 
if a duplicate of the parameter is found in a set of 
parameters. DistinctArguments returns the list of 
arguments used in the provided interfaces operation 
signatures, without duplicates. Finally, DAC computes 
the distinct arguments count and DAR their percentage 
in the component interface. 
ParameterDef  

ExistsNameType(s:Set(ParameterDef)): Boolean =  
   s->exists((self.identifier = identifier) 
         and (self.idlType = idlType)) 

ComponentDef  

DistinctArguments(): Set(ParameterDef) =  
   self.ProvidedOperations().Parameters()-> 
     iterate(p: ParameterDef;  
             noDups: Set(ParameterDef) =  
               oclEmpty(Set(ParameterDef)) | 
       if (not (p.ExistsNameType(noDups)))              
       then noDups->including(p) 
       else noDups 
       endif) 

DAC(): Integer =  
   self.DistinctArguments()->size() 

DAR(): Real =  
   self.DAC()/self.NA() 

Argument Repetition Scale (ARS) [16] 
 
(i) The ARS aims to account for the repetitiveness 

of arguments in a component’s interface (Eq. 4). 
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(Eq. 4) 

where: 
A = set of name-type pairs in the interface 
|a| = count of procedures in which argument name-

type a is used in the interface 
na = argument count in the interface 

 
(ii) Repetitiveness of arguments increases an 

interface’s understandability. 
(iii) We define two additional auxiliary functions 

aCount and Sum_A, which compute the count of 

procedures in which argument is used, and the sum of 
the squares of aCount.  
ComponentDef  
aCount(a: ParameterDef): Integer =  
   self.ProvidedOperations()-> 
      select(o: OperationDef | 
      a.ExistsNameType(o.Parameters()))-> 
         size() 

Sum_A (): Integer =  
   self.DistinctArguments()->collect(p|  
      aCount(p)*aCount(p))->sum() 

ARS(): Real = self.Sum_A()/self.NA() 

 
4.2.2. Component packing density 

The metric presented in this section was proposed 
by Narasimhan and Hendradjaya and aims at assessing 
the complexity of a component, with respect to the 
usage of a given mechanism [19]. 

Component Packing Density (CPD) [19] 
 
(i) The CPD represents the average number of 

constituents of a given type in a component (Eq. 5), 

components
tconstituenCPD typetconstituen #

#
_

><
=

 

(Eq. 5) 

where: 
constituent_type = can be one of lines of code, 

operations, classes, modules and so on  
#<constituent> = number of elements of 

constituent_type in the assembly 
#components = number of components in the 

assembly 
 
(ii) A higher density indicates a higher complexity 

of the component, thus requiring, as Narasimhan and 
Hendradjaya suggest, a more thorough impact analysis 
and risk assessment. CPD can be defined for a 
multitude of different constituents, but most of those 
suggested by Narasimhan and Hendradjaya are not 
available for users of black-box components. We will 
exemplify a possible formalization of this metric 
considering the number of operations in the provided 
interfaces as constituent, but other formalizations could 
be proposed similarly, for other constituents (e.g. 
interfaces). This metric can be formalized in OCL with 
the CPD function. To compute the number of operations 
made available by the component, we reuse the 
auxiliary function ProvidedOperationsCount, which 
we have formalized earlier.  
 



ModuleDef 

Components(): Set (ComponentDef) = 
   self.contents->  
   select(oclIsKindOf(ComponentDef))-> 
   collect(oclAsType(ComponentDef))->asSet() 

ComponentsCount(): Integer = 
   self.Components()->size() 

ConstituentsCount(): Integer = 
   self.Components()-> 
     collect(ProvidedOperationsCount())-> 
        sum() 

CPD(): Real = self.ConstituentsCount()/ 
              self.ComponentsCount()  

4.3. Increasing the coverage of the metrics set 
The metrics formalized in this paper focus mainly 

on the provided interfaces of components. To increase 
the coverage of this metrics set, we include 3 extra 
metrics, based on simple counts provided by our 
metrics collection library, so that we can also asses the 
complexity of understanding the events emitted and 
consumed, as well as the one resulting from the 
configurability of each component. Since we are 
proposing these metrics ourselves, we provide the 
definition directly in OCL. Therefore, we only present 
their definition and Rationale. 

Event Fan-In (EFI) and Event Fan-Out (EFO) and 
Configurable Properties Count (CPC)  

 
(i) The EFI represents the number of Events emitted 

or published by a component. Conversely, the EFO 
represents the number of Events consumed by the 
component. CPC counts the number of configuration 
properties in each component. Their formal definition 
in OCL is as follows: 
ComponentDef 

EFI(): Integer =   
   self.PublishesCount() + self.EmitsCount() 

EFO(): Integer = self.ConsumesCount() 

CPC(): Integer = self.PropertiesCount() 

(ii) For EFI and EFO, the understandability of the 
component interaction with other components gets 
lower as the number of events gets higher. The same 
applies to CPC. More configurable properties imply a 
higher complexity in configuring a component, but 
they also increase the flexibility of its configuration. 
 

5. Metrics collection example 
5.1. The elevator control system example 

Consider an elevator control system. Figure 2 
depicts a component assembly with 4 components, 
MotorsController, Alarm, ElevatorsController and 
RequestManager that interact to implement it.  

The RequestManager is responsible for handling the 
requests of the elevator users and sending adequate 
instructions to the ElevatorsController component, 
as well as handling any interactions with the Alarm. 
The ElevatorsController send orders to the 
MotorsController, and notifies the RequestManager 
of any change in the elevators’ status. 
MotorsController controls the elevator’s motion, 
ordering it to move up or down, at different speeds, 
and stop.  
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Figure 2 – The Elevator CCM assembly 

The following IDL definitions complement the 
information on the assembly. For each interface we 
identify the facet(s) that provide it. For each event type 
we identify the event source that emits it. The 
components’ configurable properties have the 
following types: Policies is of type PolicyType; 
PitRanges is of type PitRangeSeq; Capacities is of 
type ShortSeq and the several NumberOfElevators 
properties are of type Short. 
enum StatusType {Stopped, Moving, Overload}; 

enum PolicyType {Closer, Direction}; 

struct PitRangeType { 
   short lower; 
   short upper; 
} 

typedef PitRangeSeq sequence <PitRangeType>; 

typedef ShortSeq sequence <short>; 



interface ISwitch { 
   void On(in short motor); 
   void Off(in short motor); 
} // Used in the several Switch facets 

interface IMotion { 
   void Up(in short motor, in double speed); 
   void Down(in short motor, in double speed); 
   void NewSpeed(in short motor, 
                 in double speed); 
   void Stop(in short motor); 
} // Used in the Motion facet  

eventtype UpdateStatusEvent { 
   public short elevator; 
   public StatusType theStatus; 
} // Used in the NotifyStatus event source 

eventtype MoveRequestEvent { 
   public short elevator; 
   public short theFloor; 
} // Used in the RequestMoveTo event source 

eventtype UpdateFloorEvent { 
   public short elevator; 
   public short theFloor; 
} // Used in the UpdateFloor event source 

eventtype AlarmTriggerEvent { 
   public short elevator; 
} // Used in the AlarmTrigger event source 

5.2. Metrics results 
The formalized metrics were computed for the 

elevator example. Table I summarizes the metrics 
values for each of the components. Please note that as 
some of the metrics are computed as ratios, it is not 
possible to compute them when the denominator is 0. 
Those cases are written as N/A. 

Table I - Metrics for the Elevator assembly 

Context APP DAC DAR ARS EFI EFO ATC 

MotorsController 1,50 2 0,22 5,00 0 0 1 

ElevatorsController 1,00 1 0,50 2,00 2 1 2 

Alarm 1,00 1 0,50 2,00 1 0 1 

RequestManager N/A 0 N/A N/A 1 3 3 

 
The remaining metric, CPD, is computed for the 

whole component assembly. Its value is 2,50. 
 

6. Discussion 
6.1. Quality framework 

Without a clear notion of the quality attribute we 
wish to assess and the criteria we will use to interpret 
the metrics values, it is not possible to interpret the 
metrics values. Although the authors of the proposed 

metrics provide a rationale for them, the lack of a well 
defined quality framework is noticeable.  

When analyzing the values presented in Table I, 
based on the rationale presented during their 
formalization, one can only make relative judgments 
on their values. For instance, from the point of view of 
these metrics, the understandability of components 
ElevatorsController and Alarm is similar in what 
concerns their provided interfaces, but 
ElevatorsController emits and consumes more 
events, and has more configuration parameters. So, the 
overall interaction with this component is expected to 
be more complex than with the Alarm component. 
Further research is required before we can establish 
thresholds for any of the presented metrics. 

 
6.2. Ontology 

The lack of an adequate ontology in the original 
metrics definitions justifies our need to include several 
comments on the assumptions made before formalizing 
each metric (see section (ii) of all metrics 
formalizations). An ontology clarifies the used 
concepts and their interrelationships, providing a 
backbone upon which we can formalize the metrics 
definitions with OCL. The combination of the 
ontology with the OCL expressions removes the 
subjectivity from the metrics definitions. The ontology 
is also useful for the automation of metrics collection. 

  
6.3. Specification formalism 

We deliberately used the original formalisms in 
metrics definitions (see section (i) of all metrics 
formalization) to illustrate their diversity. For instance, 
the concept of collection size is conveyed with three 
different notations in (Eq. 1-5): a plain identifier (e.g. 
na), an identifier between a pair of ‘|’ characters (e.g. 
|A|), and the # notation (e.g. #<constituents>). (Eq. 4) 
uses simultaneously two of the notations. This may 
lead to misinterpretations of the formulae. 

Ambiguity resulting from the usage of natural 
language is also a problem. Suppose that rather than 
counting provided operations as constituents for the 
CPD metric, we would like to count provided 
interfaces. It is possible for different components to 
provide the same interface. In that case, should we 
count it once, or several times? If we use the informal 
version of the definition, we might just write 
“constituent_type = provided interface” and be left 
with an ambiguous definition. Now, consider the two 
following alternative ConstituentsCount function 
definitions: 
 



ModuleDef 

-- Constituents as Interfaces with duplicates 
ConstituentsCount(): Integer = 
   self.Components()-> 
     collect(ProvidesCount())->sum() 

-- Constituents as interfaces w/out duplicates 
ConstituentsCount(): Integer = 
   self.Components()-> 
      collect(ProvidesNoDupsCount())->sum() 

From the formal definition, it is clear that what we 
mean is “several times” in the first version and “once” 
on the second one, thus removing the ambiguity. A 
similar argument can be made for several of the 
metrics presented in this paper. 

 
6.4. Validation 

To the best of our knowledge, none of the metrics 
presented in this paper has undergone a thorough 
validation, so far. Due to the problems presented from 
sections 6.1. through 6.3., it should become clear that 
the ideal conditions for independent scrutiny of these 
metrics were not present in their original definitions. 
Several plausible interpretations can be provided to the 
definitions and this hampers experimental replicability. 
 
6. Conclusions and further work 

In this paper we explored the expressiveness of the 
CCM metamodel as a valuable ontology upon which 
we can formally define metrics for CBSE, using OCL 
expressions. We formally defined 5 metrics found in 
the literature, along with 3 new metrics, so that the 
resulting set covers most composition mechanisms 
used in the CCM. 

We discussed our technique with respect to 
recurrent problems with metrics definitions (lack of a 
quality framework, lack of an ontology, inadequate 
specification formalism and insufficient validation) 
and how to mitigate them. Having a formal and 
executable definition of metrics for CORBA 
component assemblies is an enabling precondition to 
allow for independent scrutiny of such metrics, when 
combined with an adequate quality framework. While 
the provided metrics formalization is in itself a 
contribution to such an independent scrutiny, the 
formalization technique is amenable to the definition 
of new metrics, not only for CCM assemblies, but also 
for other component models and even other domains. 

This paper is our second essay on the formalization 
of metrics sets for CBSE, proposed by other authors. 
Both the current and the previous [22] focused on 
metrics applicable to components in isolation. In a 
following paper we will present a similar formalization 
essay focused on component assemblies. While metrics 

of the first kind may somehow help component 
integrators in their selection process, the current 
components marketplace has not yet achieved the point 
where quasi-equivalent parts are available from multi-
vendor parties as it is common in other engineering 
fields. Therefore, we believe that metrics for 
component assemblies, by allowing evaluating the 
resulting software architectures, will be much more 
useful in the short term. Among other things they will 
help in the evaluation and comparison of alternative 
design approaches, on the identification of cost 
effective improvements and on long term financial 
planning (total cost of ownership) by allowing to 
produce estimates on deployment and evolution costs. 
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Appendix A – Auxiliary functions library 
We only present the signatures of the functions of 

our library for metrics specification (the full version 
available at http://ctp.di.fct.unl.pt/QUASAR/). 

 Collection functions are useful when building up a 
more complex metric; counting functions increase the 
readability of other functions using them.  
OperationDef 
-- Operation’s parameters 
Parameters(): Set(ParameterDef)  
ParametersCount(): Integer 

-- Input parameters  
InParameters (): Set(ParameterDef) 
InParametersCount(): Integer 

-- Output parameters  
OutParameters(): Set(ParameterDef)  
OutParametersCount(): Integer 

-- Input/Output parameters 
InOutParameters(): Set(ParameterDef)  
InOutParametersCount(): Integer  

-- Number of parameters with a different 
-- <name,type> pair. 
DistinctParametersTypeCount(): Integer 

InterfaceDef 
-- Operations available in the interface 
Operations(): Set(OperationDef) 
OperationsCount(): Integer 

ComponentDef 
-- Events emitted by the component 
Emits(): Set (EmitsDef)  
EmitsCount(): Integer 

-- Events published by the component 
Publishes(): Set(PublishesDef)  
PublishesCount(): Integer 

-- Events consumed by the component 
Consumes(): Set(ConsumesDef)  
ConsumesCount(): Integer 

-- Facets of the component 
Facets(): Set(ProvidesDef) 
FacetsCount(): Integer 

-- Configuration properties of the component 
Properties(): Set(AttributeDef) 
PropertiesCount(): Integer 

-- Interfaces provided by the component 
ProvidesNoDups(): Set(InterfaceDef)  
ProvidesNoDupsCount(): Integer 
Provides(): Bag(InterfaceDef)  
ProvidesCount(): Integer 

--Interfaces Required by the component 
Receptacles(): Set(UsesDef)  
ReceptaclesCount(): Integer 
ReceptaclesNoDups(): Bag(InterfaceDef)  
ReceptaclesNoDupsCount(): Integer 
ReceptaclesInterfacesNoDups(): 
   Set(InterfaceDef) 
ReceptaclesInterfacesNoDupsCount(): Integer 

--Interfaces supported by the component 
SupportsInterfacesNoDups(): Bag(InterfaceDef)  
SupportsInterfacesNoDupsCount(): Integer 
SupportsInterfaces(): Set(InterfaceDef)  
SupportsInterfacesCount(): Integer 

 
 



Appendix B – The CCM metamodel (excerpt) 
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Figure 3 - Excerpt of the BaseIDL package 
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Figure 4 - Excerpt of the ComponentIDL package 


