
Formal Definition of Metrics upon the CORBA Component Model

Miguel Goulão, Fernando Brito e Abreu
QUASAR Research Group, Departamento de Informática, FCT/UNL, Portugal

{miguel.goulao, fba}@di.fct.unl.pt

Abstract

Objective: Formalization of metrics definitions to

assess CORBA component assemblies’ quality
attributes.

Method: Representation of a component assembly
as an instantiation of the CORBA Component Model
metamodel. The resulting meta-object diagram can
then be traversed using Object Constraint Language
clauses. These clauses are a formal and executable
definition of the metrics that can be used to assess
quality attributes from the assembly and its constituent
components.

Results: Demonstration of the expressiveness of our
technique by formally defining metrics proposed
informally by several authors on different aspects of
components’ and assemblies’ quality attributes.

Conclusion: Providing a formal and executable
definition of metrics for CORBA component assemblies
is an enabling precondition to allow for independent
scrutiny of such metrics which is, in turn, essential to
increase practitioners confidence on predictable
quality attributes.

Keywords: Software Metrics, CORBA Component

Model, OCL, Component-Based Software Engineering

1. Introduction

One of the goals of Component-Based Software
Engineering (CBSE) is to achieve predictability of
system quality based on the quality attributes of the
constituent components [1]. Currently, developers are
unable to make such predictions. Difficulties
hampering this task include determining which
properties would be useful to component developers
and users, how the properties of individual
components should be combined to predict the
properties of assemblies, how they should be measured
and how this information should be presented to
component users. Current component models used in

industry are not prediction-enabled, although this is an
active topic of research [2, 3].

In current component models, the functional aspects
of component wiring are supported, at least to a certain
extent. Simple component models, such as JavaBeans
[4] offer the ability to access components through their
provided interfaces. Other, more sophisticated
component models, such as the CORBA Component
Model (CCM) [5], allow several input and output
interfaces, support synchronous and asynchronous
operations, as well as publishing and subscribing
events.

The non-functional aspects of components are less
supported than the functional ones by the
aforementioned component models. For instance, the
new UML 2.0 standard [6, 7] includes constructs for
representing several of the above mentioned
component wiring mechanisms, but not for the
representation of non-functional properties. These are
defined as a UML profile [8], an extension mechanism,
but are not part of the core language. This may be a
limitation in practice, since modeling tools are less
likely to support UML extensions as part of their
standard distribution.

Quality attributes can be classified according to a
quality model. As noted by some authors [9, 10]
specific quality models must be developed for CBSE.
From a component user perspective, components are
black-boxes whose evolution the user does not control.
A component user is more concerned with the
complexity involved in selecting and composing
components.

Likewise, existing metrics for structured or object
oriented development are not well suited for CBSE,
since those were mainly concerned with internal
complexity. Several traditional complexity metrics are
useless to a component user, as their computation
depends on having access to implementation details
(e.g. McCabe’s cyclomatic complexity [11]).

Due to the black-box nature of components and
their specification state of practice, we are restricted to
consider functional aspects when assessing their

quality attributes, either in isolation or in assembly. In
a recent survey, we have identified several proposals
for the quantitative assessment of components and
assemblies, based upon their functional properties [12].
We have observed several recurrent problems in those
metrics proposals, which are also common in metrics
proposals for other purposes, such as OO design
evaluation:
(1) Lack of a quality framework – occurs when

metrics definition is not framed by a particular
quality model.

(2) Lack of an ontology – occurs when the
architectural concepts, either of functional or non-
functional nature, to be quantified, are not clearly
defined, namely in what regards their
interrelationship. An ontology for modeling
architectural concepts is called a metamodel.

(3) Lack of an adequate formalism – occurs when
metrics are defined either with a formalism that
requires a strong mathematical background, often
not held by practitioners, or using natural
language, which normally leads to subjective
definitions that will jeopardize the correctness of
metrics collection.

(4) Lack of validation – occurs when independent
cross validation is not performed, mainly due to
difficulties in experiment replication. Such
validation is required before widespread
acceptance is sought.

A solution to address (1) is to use the Goal-

Question-Metric (GQM) approach [13], along with an
appropriate quality model. In this paper, we present an
approach to mitigate the remaining three problems. We
use the CCM as a representation for components and
component assemblies, due to its wide coverage of
features provided by current component models used
in industry, such as Enterprise Java Beans, COM or
.Net. The CCM has a metamodel, upon which we
define Object Constraint Language (OCL) expressions
to specify and collect the metrics. Having a standard
metamodel clearly defines the basic concepts being
measured, thus solving problem (2). OCL expressions
formally define how we measure such concepts. OCL
combines formality with a syntax easily understood by
practitioners familiar with OO development and is
therefore an adequate formalism to help solve problem
(3). Moreover, OCL expressions can be automatically
evaluated. Since both OCL and the metamodel being
used are Object Management Group (OMG) standards,
the approach is inherently portable, thus making it
suitable for independent replication in different
settings. The combination of formality, with
understandability and replicability is a facilitator to the

independent scrutiny of metrics-based approaches to
CBSE, therefore creating conditions to mitigate
problem (4).

This paper is organized as follows: In section 2 we
discuss some related work. In section 3, we briefly
present the CCM, as well as its underlying metamodel.
In section 4 we formalize metrics for CBSE upon the
CCM metamodel. In section 5, we present a
component assembly example and the metrics
collected upon it. In section 6 we discuss our
formalization technique within the framework of the
problems identified in the introduction. Conclusions
and further work are presented in section 7.

2. Related Work

Some proposals aim at establishing requisites and
guidelines for CBD metrics, both concerning
individual components [14] and component assemblies
[15]. Although these proposals do not contribute with
concrete metrics, they provide useful insight on the
specificities to consider when developing metrics for
CBD, mainly in what concerns the focus of such
metrics. Several authors have contributed with
proposals for the evaluation of component interfaces
and dependencies [16-18]. These proposals focus on
different aspects of the interfaces and dependencies of
components and are mostly concerned with the
complexity involved in understanding those interfaces,
and reusing the components. Narasimhan and
Hendradjaya proposed metrics to assess component
integration density (a measure of its internal
complexity) and interaction density (a measure of the
complexity of relationships with other components)
[19]. Hoek et al. proposed metrics to assess service
utilization in component assemblies [20].

All of these proposals include, to some extent,
informal specifications. While reading them, one has to
make educated guesses to fill in the details that are left
ambiguous. In this paper, we present a collection of
metrics taken from some of these proposals, and
formalized with OCL upon the CCM metamodel. Our
contribution makes explicit our interpretation of the
metrics definition and provides an executable
specification for them. This facilitates independent
validation efforts for these metrics.

In [21] we formalized a metrics set for component
reusability assessment [18]. We used that formalization
to conduct an independent validation experiment on
the same metrics set in [22], using the UML 2.0
metamodel. Here, we will use the CCM metamodel,
because the latter has more expressive power than
UML 2.0 for representing components.

Our formalization has also been used in other
contexts, therefore with different metamodels. In [23],
we formalized well-known OO design metrics. This
formalization was based on an OCL expressions
library, named FLAME, aimed at helping metrics
extraction in UML 1.x models [24]. More recently, we
have successfully applied the same technique with
object-relational database schema metrics [25].

3. CORBA components
3.1. The CORBA Component Model

The CCM [5] is the Object Management Group
(OMG) standard for the specification of software
components. As such, it is independent from a specific
vendor, both in what concerns the component’s
programming languages and platforms. CORBA
components are created and managed by homes (a
home is a meta-type which offers standard factory and
finder operations and is used to manage a component
instance), run in containers that handle system services
transparently and are hosted by generic application
component servers. Each component may have several
provided (facets) and required (receptacles) interfaces
as well as the ability to publish (event sources) and
subscribe (event sinks) events. Components also offer
navigation and introspection capabilities. The CCM
also has support for distribution and Quality of Service
(QoS) properties. Overviews on the CCM can be found
at [26, 27].

3.2. The CCM metamodel

The CCM specification includes a Meta Object
Facility–compliant metamodel [28], where the CCM
modeling elements are precisely defined. The
metamodel includes three packages (Figure 1).

ComponentIDLBaseIDL CIF

Figure 1 - The CCM metamodel packages

 The BaseIDL package contains the modeling
elements concerning the CORBA Interface Description
Language (IDL) An excerpt of it is represented in
Figure 3 (provided in Appendix B, for increased
readability). BaseIDL is extended by ComponentIDL, to
add the component specific constructs. Finally,
ComponentIDL is extended by the CIF package, which
includes the definitions relating to the component life
cycle.

Figure 4 (also in Appendix B) represents an excerpt
of the ComponentIDL package, where we can observe
how the metamodel relates components with their

required and provided interfaces, as well as with the
events they publish or subscribe.

4. Metrics formalization with OCL
4.1. Formalization technique

A CCM assembly can be represented as an instance
of the CCM metamodel. This instance can be seen as a
directed graph of meta-objects (nodes) representing the
modeling elements used in the assembly, and the
appropriate meta-links (edges) among them. By
traversing this graph, we can collect information on the
assembly we want to analyze.

OCL expressions can be used to collect the relevant
information from the meta-data (meta-objects and
meta-links). Those expressions provide us the distilled
information required for our metrics computation.
Although expressions on specific meta-data could be
written, our option is to define OCL functions at the
meta-class level, thus making the expressions (and,
therefore, the metrics definitions) reusable for all
instances of the meta-class where they were defined.

OCL functions are defined in a given context. In
our approach we use them in the context of a meta-
class to facilitate information retrieval from instances
of that meta-class. Consider the following example,
where we define the functions Operations and
OperationsCount in the context of the InterfaceDef
meta-class, to represent the set of operations available
in that interface and the number of elements in that set,
respectively:
InterfaceDef

Operations(): Set(OperationDef) =
 self.contents->select(o |
 o.oclIsKindOf(OperationDef))->
 collect(oclAsType(OperationDef))->asSet()

OperationsCount(): Integer =
 self.Operations()->size()

To support our metrics definitions, we built a
library of reusable functions, which includes these
ones, described in Appendix A.

4.2. Formalizing metrics for CBD

In this section, we formalize several metrics for
CBD proposed in the literature, using the library
introduced in the previous section. For the sake of
uniformity, we follow a similar pattern for each metric,
or group of related metrics. We start by presenting
their (i) name and original specification, keeping the
notation used by their proponents (thus illustrating the
variability of notations commonly used in metrics
definitions), and the (ii) metric’s rationale, in their
proponents’ view. These are followed by (iii)

considerations and assumptions made during the
formalization process and the formalization of the
metric in OCL. This may include auxiliary functions.
The AuxilaryFuncion typeface is used to identify
these functions. The final expression of the metric is
expressed within an outline bar.

4.2.1. Component interface complexity assessment

In this section we present the formalization of a
selection of metrics concerning the complexity of
component interfaces proposed by Boxall and Araban
[16]. These metrics aim at assessing the
understandability of a component interface.

Arguments per Procedure (APP)[16]

(i) The average number of arguments in publicly

declared procedures (within the interface) was defined
as in (Eq. 1),

p
a

n
n

APP =
(Eq. 1)

where:
na = total count of arguments of the publicly

declared procedures
np = total count of publicly declared procedures

(ii) The rationale for this metric is that humans have

a limited capacity of receiving, processing and
remembering information [29], so the number of
chunks of information in the procedure definition (in
this case, its arguments) should be limited. It is
suggested that an increased number of arguments
damages the interface’s understandability.

(iii) Overloaded and overridden procedures
(operations, in the CCM) are considered, but not
inherited ones. The original metric specification makes
no reference to the latter, so we assume them to be
outside the scope of this metric. If the component is
implemented in an OO language, all public and
protected OO methods should be counted, but not the
private ones.

The metric’s definition assumes a single, or at least
unified, interface for the component. There is no
directly equivalent modelling element in the CCM
metamodel. The component equivalent interface is
broader, as it includes all implicit operations (a set of
operatrions defined by component homes), operations
and attributes which are inherited by the component
(also through supported interfaces) and attributes
defined inside the component. On the other hand,
considering just a single interface as the context would
lead to a different metric than the one proposed by
Boxall and Araban. To be precise, we use the union of

procedures in the provided interfaces as the set of
procedures to be analyzed.

The context for the metric definition is
ComponentDef. We start by defining
ProvidedOperations, the set of operations used in the
metrics definition, and ProvidedOperationsCount, the
size of this set. The formalization of the APP metric
becomes straightforward, with these auxiliary
functions.
ComponentDef

ProvidedOperations(): Set(OperationDef) =
 self.ProvidesNoDups()->
 collect(Operations())->flatten()->asSet()

ProvidedOperationsCount(): Integer =
 self.ProvidedOperations()->size()

NA(): Integer =
 self.ProvidedOperations()->
 collect(ParametersCount())->sum()

NP(): Integer =
 self.ProvidedOperationsCount()

APP(): Real =
 self.NA()/self.NP()

Distinct Argument Count (DAC), and Distinct
Arguments Ratio (DAR) [16]

(i) The number of distinct arguments in publicly

declared procedures was defined as in (Eq. 2). Its
percentage on the component interface was defined as
in (Eq. 3),

ADAC = (Eq. 2)

where:
A = set of the <name,type> pairs representing

arguments in the publicly declared procedures
|A| = number of elements in the set A.

an
DACDAR = (Eq. 3)

where:
na = total count of arguments of the publicly

declared procedures

(ii) DAC is influenced by the adoption of a

consistent naming convention for arguments in the
operations provided by a component. If the same
argument is passed over and over to the component’s
operations, the effort required for understanding it for
the first time is saved in that argument’s repetitions

throughout the interface. The smaller the number of
distinct arguments a component user has to understand,
the better. Likewise, a lower DAR leads to a higher
understandability. Unlike DAC, DAR is immune to the
size of the interface.

 (iii) Boxall and Araban consider a parameter as a
duplicate of another one if the pair <name, type> is
equal in both arguments. ExistsNameType returns true
if a duplicate of the parameter is found in a set of
parameters. DistinctArguments returns the list of
arguments used in the provided interfaces operation
signatures, without duplicates. Finally, DAC computes
the distinct arguments count and DAR their percentage
in the component interface.
ParameterDef

ExistsNameType(s:Set(ParameterDef)): Boolean =
 s->exists((self.identifier = identifier)
 and (self.idlType = idlType))

ComponentDef

DistinctArguments(): Set(ParameterDef) =
 self.ProvidedOperations().Parameters()->
 iterate(p: ParameterDef;
 noDups: Set(ParameterDef) =
 oclEmpty(Set(ParameterDef)) |
 if (not (p.ExistsNameType(noDups)))
 then noDups->including(p)
 else noDups
 endif)

DAC(): Integer =
 self.DistinctArguments()->size()

DAR(): Real =
 self.DAC()/self.NA()

Argument Repetition Scale (ARS) [16]

(i) The ARS aims to account for the repetitiveness

of arguments in a component’s interface (Eq. 4).

a

Aa
n

a
ARS

∑
= ∈

2

(Eq. 4)

where:
A = set of name-type pairs in the interface
|a| = count of procedures in which argument name-

type a is used in the interface
na = argument count in the interface

(ii) Repetitiveness of arguments increases an

interface’s understandability.
(iii) We define two additional auxiliary functions

aCount and Sum_A, which compute the count of

procedures in which argument is used, and the sum of
the squares of aCount.
ComponentDef
aCount(a: ParameterDef): Integer =
 self.ProvidedOperations()->
 select(o: OperationDef |
 a.ExistsNameType(o.Parameters()))->
 size()

Sum_A (): Integer =
 self.DistinctArguments()->collect(p|
 aCount(p)*aCount(p))->sum()

ARS(): Real = self.Sum_A()/self.NA()

4.2.2. Component packing density

The metric presented in this section was proposed
by Narasimhan and Hendradjaya and aims at assessing
the complexity of a component, with respect to the
usage of a given mechanism [19].

Component Packing Density (CPD) [19]

(i) The CPD represents the average number of

constituents of a given type in a component (Eq. 5),

components
tconstituenCPD typetconstituen #

#
_

><
=

(Eq. 5)

where:
constituent_type = can be one of lines of code,

operations, classes, modules and so on
#<constituent> = number of elements of

constituent_type in the assembly
#components = number of components in the

assembly

(ii) A higher density indicates a higher complexity

of the component, thus requiring, as Narasimhan and
Hendradjaya suggest, a more thorough impact analysis
and risk assessment. CPD can be defined for a
multitude of different constituents, but most of those
suggested by Narasimhan and Hendradjaya are not
available for users of black-box components. We will
exemplify a possible formalization of this metric
considering the number of operations in the provided
interfaces as constituent, but other formalizations could
be proposed similarly, for other constituents (e.g.
interfaces). This metric can be formalized in OCL with
the CPD function. To compute the number of operations
made available by the component, we reuse the
auxiliary function ProvidedOperationsCount, which
we have formalized earlier.

ModuleDef

Components(): Set (ComponentDef) =
 self.contents->
 select(oclIsKindOf(ComponentDef))->
 collect(oclAsType(ComponentDef))->asSet()

ComponentsCount(): Integer =
 self.Components()->size()

ConstituentsCount(): Integer =
 self.Components()->
 collect(ProvidedOperationsCount())->
 sum()

CPD(): Real = self.ConstituentsCount()/
 self.ComponentsCount()

4.3. Increasing the coverage of the metrics set
The metrics formalized in this paper focus mainly

on the provided interfaces of components. To increase
the coverage of this metrics set, we include 3 extra
metrics, based on simple counts provided by our
metrics collection library, so that we can also asses the
complexity of understanding the events emitted and
consumed, as well as the one resulting from the
configurability of each component. Since we are
proposing these metrics ourselves, we provide the
definition directly in OCL. Therefore, we only present
their definition and Rationale.

Event Fan-In (EFI) and Event Fan-Out (EFO) and
Configurable Properties Count (CPC)

(i) The EFI represents the number of Events emitted

or published by a component. Conversely, the EFO
represents the number of Events consumed by the
component. CPC counts the number of configuration
properties in each component. Their formal definition
in OCL is as follows:
ComponentDef

EFI(): Integer =
 self.PublishesCount() + self.EmitsCount()

EFO(): Integer = self.ConsumesCount()

CPC(): Integer = self.PropertiesCount()

(ii) For EFI and EFO, the understandability of the
component interaction with other components gets
lower as the number of events gets higher. The same
applies to CPC. More configurable properties imply a
higher complexity in configuring a component, but
they also increase the flexibility of its configuration.

5. Metrics collection example
5.1. The elevator control system example

Consider an elevator control system. Figure 2
depicts a component assembly with 4 components,
MotorsController, Alarm, ElevatorsController and
RequestManager that interact to implement it.

The RequestManager is responsible for handling the
requests of the elevator users and sending adequate
instructions to the ElevatorsController component,
as well as handling any interactions with the Alarm.
The ElevatorsController send orders to the
MotorsController, and notifies the RequestManager
of any change in the elevators’ status.
MotorsController controls the elevator’s motion,
ordering it to move up or down, at different speeds,
and stop.

Trigger

Component
Alarm

Component
MotorsController

Switch Switch

Component
ElevatorsController

Component
RequestManager

Motion

AlarmSwitch

AlarmTrigger

Motion

MotorSwitch

Switch ControllerSwitch

NotifyStatus

RequestMoveToMoveTo

Status

UpdateFloorFloor

PitRangesElevatorsCapacities NumberOfElevatorsNumberOfElevators

Policies

NumberOfElevators NumberOfElevators

Figure 2 – The Elevator CCM assembly

The following IDL definitions complement the
information on the assembly. For each interface we
identify the facet(s) that provide it. For each event type
we identify the event source that emits it. The
components’ configurable properties have the
following types: Policies is of type PolicyType;
PitRanges is of type PitRangeSeq; Capacities is of
type ShortSeq and the several NumberOfElevators
properties are of type Short.
enum StatusType {Stopped, Moving, Overload};

enum PolicyType {Closer, Direction};

struct PitRangeType {
 short lower;
 short upper;
}

typedef PitRangeSeq sequence <PitRangeType>;

typedef ShortSeq sequence <short>;

interface ISwitch {
 void On(in short motor);
 void Off(in short motor);
} // Used in the several Switch facets

interface IMotion {
 void Up(in short motor, in double speed);
 void Down(in short motor, in double speed);
 void NewSpeed(in short motor,
 in double speed);
 void Stop(in short motor);
} // Used in the Motion facet

eventtype UpdateStatusEvent {
 public short elevator;
 public StatusType theStatus;
} // Used in the NotifyStatus event source

eventtype MoveRequestEvent {
 public short elevator;
 public short theFloor;
} // Used in the RequestMoveTo event source

eventtype UpdateFloorEvent {
 public short elevator;
 public short theFloor;
} // Used in the UpdateFloor event source

eventtype AlarmTriggerEvent {
 public short elevator;
} // Used in the AlarmTrigger event source

5.2. Metrics results
The formalized metrics were computed for the

elevator example. Table I summarizes the metrics
values for each of the components. Please note that as
some of the metrics are computed as ratios, it is not
possible to compute them when the denominator is 0.
Those cases are written as N/A.

Table I - Metrics for the Elevator assembly

Context APP DAC DAR ARS EFI EFO ATC

MotorsController 1,50 2 0,22 5,00 0 0 1

ElevatorsController 1,00 1 0,50 2,00 2 1 2

Alarm 1,00 1 0,50 2,00 1 0 1

RequestManager N/A 0 N/A N/A 1 3 3

The remaining metric, CPD, is computed for the

whole component assembly. Its value is 2,50.

6. Discussion
6.1. Quality framework

Without a clear notion of the quality attribute we
wish to assess and the criteria we will use to interpret
the metrics values, it is not possible to interpret the
metrics values. Although the authors of the proposed

metrics provide a rationale for them, the lack of a well
defined quality framework is noticeable.

When analyzing the values presented in Table I,
based on the rationale presented during their
formalization, one can only make relative judgments
on their values. For instance, from the point of view of
these metrics, the understandability of components
ElevatorsController and Alarm is similar in what
concerns their provided interfaces, but
ElevatorsController emits and consumes more
events, and has more configuration parameters. So, the
overall interaction with this component is expected to
be more complex than with the Alarm component.
Further research is required before we can establish
thresholds for any of the presented metrics.

6.2. Ontology

The lack of an adequate ontology in the original
metrics definitions justifies our need to include several
comments on the assumptions made before formalizing
each metric (see section (ii) of all metrics
formalizations). An ontology clarifies the used
concepts and their interrelationships, providing a
backbone upon which we can formalize the metrics
definitions with OCL. The combination of the
ontology with the OCL expressions removes the
subjectivity from the metrics definitions. The ontology
is also useful for the automation of metrics collection.

6.3. Specification formalism

We deliberately used the original formalisms in
metrics definitions (see section (i) of all metrics
formalization) to illustrate their diversity. For instance,
the concept of collection size is conveyed with three
different notations in (Eq. 1-5): a plain identifier (e.g.
na), an identifier between a pair of ‘|’ characters (e.g.
|A|), and the # notation (e.g. #<constituents>). (Eq. 4)
uses simultaneously two of the notations. This may
lead to misinterpretations of the formulae.

Ambiguity resulting from the usage of natural
language is also a problem. Suppose that rather than
counting provided operations as constituents for the
CPD metric, we would like to count provided
interfaces. It is possible for different components to
provide the same interface. In that case, should we
count it once, or several times? If we use the informal
version of the definition, we might just write
“constituent_type = provided interface” and be left
with an ambiguous definition. Now, consider the two
following alternative ConstituentsCount function
definitions:

ModuleDef

-- Constituents as Interfaces with duplicates
ConstituentsCount(): Integer =
 self.Components()->
 collect(ProvidesCount())->sum()

-- Constituents as interfaces w/out duplicates
ConstituentsCount(): Integer =
 self.Components()->
 collect(ProvidesNoDupsCount())->sum()

From the formal definition, it is clear that what we
mean is “several times” in the first version and “once”
on the second one, thus removing the ambiguity. A
similar argument can be made for several of the
metrics presented in this paper.

6.4. Validation

To the best of our knowledge, none of the metrics
presented in this paper has undergone a thorough
validation, so far. Due to the problems presented from
sections 6.1. through 6.3., it should become clear that
the ideal conditions for independent scrutiny of these
metrics were not present in their original definitions.
Several plausible interpretations can be provided to the
definitions and this hampers experimental replicability.

6. Conclusions and further work

In this paper we explored the expressiveness of the
CCM metamodel as a valuable ontology upon which
we can formally define metrics for CBSE, using OCL
expressions. We formally defined 5 metrics found in
the literature, along with 3 new metrics, so that the
resulting set covers most composition mechanisms
used in the CCM.

We discussed our technique with respect to
recurrent problems with metrics definitions (lack of a
quality framework, lack of an ontology, inadequate
specification formalism and insufficient validation)
and how to mitigate them. Having a formal and
executable definition of metrics for CORBA
component assemblies is an enabling precondition to
allow for independent scrutiny of such metrics, when
combined with an adequate quality framework. While
the provided metrics formalization is in itself a
contribution to such an independent scrutiny, the
formalization technique is amenable to the definition
of new metrics, not only for CCM assemblies, but also
for other component models and even other domains.

This paper is our second essay on the formalization
of metrics sets for CBSE, proposed by other authors.
Both the current and the previous [22] focused on
metrics applicable to components in isolation. In a
following paper we will present a similar formalization
essay focused on component assemblies. While metrics

of the first kind may somehow help component
integrators in their selection process, the current
components marketplace has not yet achieved the point
where quasi-equivalent parts are available from multi-
vendor parties as it is common in other engineering
fields. Therefore, we believe that metrics for
component assemblies, by allowing evaluating the
resulting software architectures, will be much more
useful in the short term. Among other things they will
help in the evaluation and comparison of alternative
design approaches, on the identification of cost
effective improvements and on long term financial
planning (total cost of ownership) by allowing to
produce estimates on deployment and evolution costs.

References
[1] I. Crnkovic, H. Schmidt, J. A. Stafford, and K. Wallnau,
"6th ICSE Workshop on Component-Based Software
Engineering: Automated Reasoning and Prediction", ACM
SIGSOFT Software Engineering Notes, vol. 29, 2004.
[2] K. Wallnau, "Volume III: A Technology for Predictable
Assembly from Certifiable Components", Carnegie Mellon,
Software Engineering Institute, Technical Report, CMU/SEI-
2003-TR-009, April 2003.
[3] M. Larsson, "Predicting Quality Attributes in
Component-based Software Systems", PhD Thesis,
Department of Computer Science and Engineering,
Mälardalen University, Västeras, Sweden, 2004.
[4] V. Matena and M. Hapner, "Enterprise JavaBeans
Specification 1.1", Sun MicroSystems, Inc. 1999.
[5] OMG, "CORBA Components - Version 3.0", Object
Management Group Inc., formal/02-06-65, June 2002.
[6] OMG, "UML 2.0 Infrastructure Final Adopted
Specification", Object Management Group, Inc., ptc/03-09-
15, September 2003.
[7] OMG, "UML 2.0 Superstructure Final Adopted
Specification", Object Management Group Inc., ptc/03-08-
02, August 2003.
[8] OMG, "UML Profile for Modeling Quality of Service
and Fault Tolerance Characteristics and Mechanics", Object
Management Group Inc., OMG Adopted Specification,
ptc/04-09-01, September 2004.
[9] M. Bertoa and A. Vallecillo, "Quality Attributes for
COTS Components", 6th International Workshop on
Quantitative Approaches in Object-Oriented Software
Engineering (QAOOSE'2002), Málaga, Spain, 2002.
[10] R. P. S. Simão and A. D. Belchior, "Quality
Characteristics for Software Components: Hierarchy and
Quality Guides", in Component-Based Software Quality:
Methods and Techniques, LNCS 2693, A. Cechich, M.
Piattini, and A. Vallecillo, Eds.: Springer, 2003, pp. 184-206.
[11] T. McCabe, "A Complexity Measure", IEEE TSE, vol.2,
pp.308-320, 1976.
[12] M. Goulão and F. B. Abreu, "Software Components
Evaluation: an Overview", 5th APSI Conference, Lisbon,
Portugal 2004.
[13] V. R. Basili, G. Caldiera, and D. H. Rombach, "Goal
Question Metric Paradigm", in Encyclopedia of Software

Engineering, vol. 1, J. J. Marciniak, (Ed.) John Wiley &
Sons, 1994, pp. 469-476.
[14] N. S. Gill and P. S. Grover, "Component-Based
Measurement: Few Useful Guidelines", ACM SIGSOFT
Software Engineering Notes, vol. 28, 2003.
[15] S. Sedigh-Ali, A. Ghafoor, and R. A. Paul, "Software
Engineering Metrics for COTS-Based Systems", IEEE
Computer, 2001.
[16] M. Boxall and S. Araban, "Interface Metrics for
Reusability Analysis of Components", Australian Software
Engineering Conference (ASWEC'2004), Australia, 2004.
[17] N. Gill and P. Grover, "Few Important Considerations
for Deriving Interface Complexity Metric for Component-
Based Software", Software Engineering Notes, vol. 29, 2004.
[18] H. Washizaki, H. Yamamoto, and Y. Fukazawa, "A
Metrics Suite for Measuring Reusability of Software
Components", 9th IEEE International Software Metrics
Symposium (METRICS 2003), Sydney, Australia, 2003.
[19] V. L. Narasimhan and B. Hendradjaya, "A New Suite of
Metrics for the Integration of Software Components", The
First International Workshop on Object Systems and
Software Architectures (WOSSA'2004), Australia, 2004.
[20] A. v. d. Hoek, E. Dincel, and N. Medvidovic, "Using
Service Utilization Metrics to Assess and Improve Product
Line Architectures", Ninth International Software Metrics
Symposium (Metrics'03), Sydney, Australia, 2003.
[21] M. Goulão and F. B. Abreu, "Formalizing Metrics for
COTS", International Workshop on Models and Processess
for the Evaluation of COTS Components (MPEC 2004) at
ICSE 2004, Edimburgh, Scotland, 2004.
[22] M. Goulão and F. B. Abreu, "Cross-Validation of a
Component Metrics Suite", IX Jornadas de Ingeniería del
Software y Bases de Datos, Málaga, Spain, 2004.
[23] A. Baroni and F.B. Abreu, "Formalizing Object-
Oriented Design Metrics upon the UML Meta-Model",
Brazilian Symposium on Software Engineering, Brazil, 2002.
[24] A. Baroni and F. B. Abreu, "A Formal Library for
Aiding Metrics Extraction", Int. Workshop on Object-
Oriented Reengineering at ECOOP'2003, Germany, 2003.
[25] A. Baroni, C. Calero, F. Ruiz, and F. B. Abreu,
"Formalizing Object-Relational Structural Metrics", 5th APSI
Conference, Lisbon, Portugal, 2004.
[26] N. Wang, D. C. Schmidt, and C. O'Ryan, "Overview of
the CORBA Component Model", in Component-Based
Software Engineering: Putting the Pieces Together, G. T.
Heineman and W. T. Councill, (Eds.), Addison-Wesley
Publishing Company, 2001, pp. 557-571.
[27] J. Estublier and J.-M. Favre, "Component Models and
Technology", in Building Reliable Component-Based
Software Systems, I. Crnkovic and M. Larsson, (Eds.),
Artech House, 2002, pp. 57-86.
[28] OMG, "Meta Object Facility (MOF) Specification
(Version 1.4)", Object Management Group Inc., April, 2002.
[29] G. A. Miller, "The Magical Number Seven, Plus or
Minus Two : Some limits in our Capacity for Processing
Information", Psychological Review, vol.63, pp.81-97, 1956.

Appendix A – Auxiliary functions library
We only present the signatures of the functions of

our library for metrics specification (the full version
available at http://ctp.di.fct.unl.pt/QUASAR/).

 Collection functions are useful when building up a
more complex metric; counting functions increase the
readability of other functions using them.
OperationDef
-- Operation’s parameters
Parameters(): Set(ParameterDef)
ParametersCount(): Integer

-- Input parameters
InParameters (): Set(ParameterDef)
InParametersCount(): Integer

-- Output parameters
OutParameters(): Set(ParameterDef)
OutParametersCount(): Integer

-- Input/Output parameters
InOutParameters(): Set(ParameterDef)
InOutParametersCount(): Integer

-- Number of parameters with a different
-- <name,type> pair.
DistinctParametersTypeCount(): Integer

InterfaceDef
-- Operations available in the interface
Operations(): Set(OperationDef)
OperationsCount(): Integer

ComponentDef
-- Events emitted by the component
Emits(): Set (EmitsDef)
EmitsCount(): Integer

-- Events published by the component
Publishes(): Set(PublishesDef)
PublishesCount(): Integer

-- Events consumed by the component
Consumes(): Set(ConsumesDef)
ConsumesCount(): Integer

-- Facets of the component
Facets(): Set(ProvidesDef)
FacetsCount(): Integer

-- Configuration properties of the component
Properties(): Set(AttributeDef)
PropertiesCount(): Integer

-- Interfaces provided by the component
ProvidesNoDups(): Set(InterfaceDef)
ProvidesNoDupsCount(): Integer
Provides(): Bag(InterfaceDef)
ProvidesCount(): Integer

--Interfaces Required by the component
Receptacles(): Set(UsesDef)
ReceptaclesCount(): Integer
ReceptaclesNoDups(): Bag(InterfaceDef)
ReceptaclesNoDupsCount(): Integer
ReceptaclesInterfacesNoDups():
 Set(InterfaceDef)
ReceptaclesInterfacesNoDupsCount(): Integer

--Interfaces supported by the component
SupportsInterfacesNoDups(): Bag(InterfaceDef)
SupportsInterfacesNoDupsCount(): Integer
SupportsInterfaces(): Set(InterfaceDef)
SupportsInterfacesCount(): Integer

Appendix B – The CCM metamodel (excerpt)

AliasDef

any
<<primitiv e>>

Array Def

boolean
<<primitiv e>>

ConstantDef

EnumDef

Field

FixedDef

long
<<primitiv e>>

ModuleDef

ParameterDef

Primitiv eDef

SequenceDef

short
<<primitiv e>>

string
<<primitiv e>>

StringDef

StructDef

Ty peCode
<<primitiv e>>

Ty pedef Def

UnionField

unsigned long
<<primitiv e>>

unsigned short
<<primitiv e>>

ValueBoxDef

ValueMemberDef

WstringDef

Ty ped

UnionDef

IDLTy pe

Interf aceDef

ValueDef

OperationDef

AttributeDef

ExceptionDef

ContainedContainer

Primitiv eKind
<<enumeration>>

ParameterMode
<<enumeration>>

Def initionKind
<<enumeration>>

0..n

1

+ty ped
0..n

+idlTy pe
1

Ty pedBy

0..n

1

+unionDef0..n

+discriminatorTy pe1

DiscriminatedBy

0..n

0..n

+base

0..n

Interf aceDeriv edFrom

+deriv ed
0..n

0..n

0..1

+v alueDef 0..n

+interf aceDef

0..1

Supports

0..1

0..n

+base

0..1

ValueDeriv edFrom

+deriv ed

0..n

0..n

0..n

+abstractDeriv ed
0..n

AbstractDeriv edFrom

+abstractBase

0..n

0..n

0..n

+operationDef
0..n +exceptionDef

0..n

CanRaise

0..n

0..n

+getAttribute

0..n

+getException
0..n

GetRaises

0..n

0..n

+setAttribute
0..n

+setException
0..n

SetRaises

0..n

0..1

+contents

0..n+def inedIn

0..1

Contains

Figure 3 - Excerpt of the BaseIDL package

OperationDef
(f rom BaseIDL)

EventDefEventPortDef

EmitsDef PublishesDef ConsumesDef

ProvidesDef UsesDef

FactoryDef FinderDef

ComponentDef

ValueDef
(f rom BaseIDL)

InterfaceDef
(f rom BaseIDL)

HomeDef

10..n

+type

10..n

Event_Type

+emits
0...

+publishes 0... +consumes0...

+facet 0...

0...

+receptacle
0...

0...

+factory0... +finder0...11

0...

1

0...

1

11

0...

11

0...

11

0...

0...
+component

1

+primary_key
0...

+provides
11

0...
+uses
1

0...

1

+supports 0..n0..n

0...

+supports0..n

11
0...

11
0...

+home0...

1

0...

+home
0...

0...

0...
0...

0..n

0...

Figure 4 - Excerpt of the ComponentIDL package

